

Redmoor 2017 Phase 1 Drilling Update

ASX Release | 1 November 2017

New Age Exploration ("NAE" or "the Company") is pleased to announce the results from the remaining 5 holes of the Phase 1 drilling programme (15 holes in total) at its Redmoor Tin-Tungsten Project, undertaken through its joint venture vehicle Cornwall Resources Limited ("CRL").

HIGHLIGHTS

- More positive results from high-grade zones within the Sheeted Vein System (SVS), with further broad intercepts and improved grades compared to the previous positive results released in September. This has added confidence in the continuity of the high-grade zones:
 - CRD013: 7.41 m @ 2.11 % SnEq from 298.74 m, including 1.15 m @ 7.45 % SnEq from 298.74 m
 - CRD014: 7.83 m @ 1.52 % SnEq from 156.15 m, including 2.07 m @ 3.05 % SnEq from 156.15 m
 - CRD015: 15.03 m @ 1.01 % SnEq from 311.99 m, including 3.01 m @1.51 % SnEq from 311.99 m, and
 1.00 m @ 4.40 % SnEq from 322.02 m
 - CRD015: 6.63 m @ 1.44 % SnEq from 343.74 m, including 1.00m @ 5.56% SnEq from 343.74 m
- High grade mineralisation also intersected in Kelly Bray Lode:
 - CRD011: 0.75 m @ 4.18% SnEq from 367.25 m; intercept down-dip of known workings
- CRL's joint venture partners NAE and SML have committed to evenly fund a further £180,000 to cover 2 additional two Phase 2 holes (increasing Phase 2 to a total of 5 holes), completion of the resource update and project overhead costs for 2018.
- The Phase 2 drilling programme has continued to target high-grade zones within the SVS. 19 of the 20 combined Phase 1 and Phase 2 holes have now been drilled and completion of the final hole is imminent.
- The results from the five Phase 2 holes will be released after completion of logging, core cutting and laboratory analysis and are expected by the end of 2017 and a resource update is expected in Q1 2018.
- Community support remains positive, with 14 community meetings held since November 2016.

NAE Managing Director Gary Fietz commented "These new results from the Redmoor drilling programme continue to show broad intercepts from high-grade zones within the SVS with even higher grades than those released in September. This continues to support the potential for an underground mining project focussed on the high-grade zones within the Sheeted Vein System.

Drilling of the five Phase 2 holes is now nearing completion. We look forward to providing an update on the results of these holes by the end of the year, when laboratory analysis is completed and results are compiled. The team will then commence working on a resource update which is expected during the first quarter of 2018.

I would like to thank the CRL team, Energold Drilling and the other contractors involved in our 2017 drilling programme, and most importantly the local community for the support it has extended to CRL and to the project."

Introduction

REDMOOR GEOLOGY OVERVIEW

Sheeted Vein System (SVS)

The SVS is a zone containing numerous closely-spaced sub-parallel narrow quartz veins carrying high-grade tin, tungsten and copper mineralisation. The SVS system strikes at approximately 070° and dips at approximately 70° to the north. The SVS has previously been demonstrated to be continuous along a strike length of over 650 m with a width of approximately 100 m and a down dip extent of approximately 300 m.

The drilling completed during 2017 has indicated that the mineralisation within the SVS is preferentially confined within discrete high-grade zones that have been interpreted to dip steeply to the north, sub-parallel with the overall SVS envelope, and with a plunge of approximately 25° to the west. It is this higher grade mineralisation that has now become the focus of CRL's drilling programme. Holes CRD012, CRD013, CRD014, and CRD015, reported within this release, were all directed at and successfully intersected the SVS.

High Grade Lode

<u>Kelly Bray Lode</u> is a narrow high-grade lode which outcrops in the north and dips to the south. It has been historically mined intermittently over a length of more than 200 m and to a depth of approximately 210 m. Hole CRD011 reported within this release, was directed at and successfully intersected Kelly Bray Lode.

2017 DRILLING PROGRAMME

On 21 March 2017, CRL began a 13-hole Phase 1 diamond drilling programme aimed at increasing the high grade tin-tungsten-copper resource at its Redmoor Project. The Phase 1 programme was funded by the farm-in payment made by Strategic Minerals Plc (SML) in February 2017. As a result of this payment SML and NAE became equal 50% joint venture partners in CRL and therefore the Redmoor Project.

Results for the first 10 Phase 1 holes (CRD001 to CRD010 inclusive) were published in the release dated 7 September 2017.

This update provides results for the remaining five Phase 1 holes from CRD011 to CRD015 inclusive.

Based on continued encouraging results in high-grade zones within the SVS, CRL's joint venture partners NAE and SML have agreed to evenly fund a further £180,000 to cover an additional 2 Phase 2 holes (increasing Phase 2 to a total of five holes), completion of the resource update and project overhead costs for 2018.

Currently 19 of the 20 holes of the combined Phase 1 and 2 2017 programme have been completed and completion of the last hole is imminent.

The results from the five Phase 2 holes will be released after completion of logging, core cutting and laboratory analysis and are expected by the end of 2017.

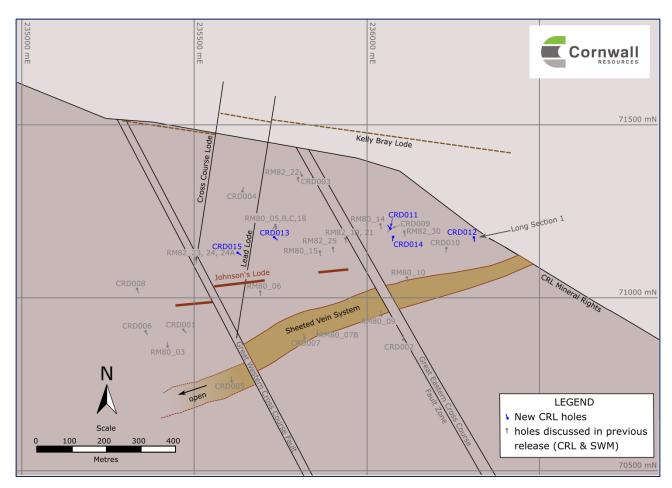


Figure 1 - Drillhole Collar Location Plan with surface representation of the SVS and high-grade lodes

Phase 1 Drilling Results (CRD011 to CRD015)

Of the four holes reported within this release that were targeted at the SVS, three successfully intersected high-grade zones within the SVS. The results from these latest holes have been particularly encouraging and continue to build on and confirm the previously reported SVS high-grade zone results, with, as an example CRD015 intercepting 15.03 m @1.01% SnEq from 311.99 m.

One of the five holes reported within this release, CRD011, targeted the Kelly Bray lode; and successfully intersected a narrow but exceptionally high-grade lode, grading 8.70% Cu over 0.75 m from 367.25 m. This intersection was directly down dip of known mine workings in an area that had previously been reported as an Exploration Target and which continues to remain such.

SHEETED VEIN SYSTEM HIGH GRADE ZONES

SVS High Grade Zone Significant Intercepts

CRL's 2017 drilling targeted at high-grade zones within the SVS has continued to be successful. Holes CRD012, CRD013, CRD014, and CRD015 reported within this release were all directed at this target. Three of these holes have yielded more high-grade intersections, with best widths per hole ranging from 7.4 m to 15.0 m (see Appendix 1, Table (a) - Significant Intercepts). Highlights are provided below:

- CRD013: 7.41 m @ 2.11 % SnEq from 298.74 m, including 1.15 m @ 7.45 % SnEq from 298.74 m
- CRD014: 7.83 m @ 1.52 % SnEq from 156.15 m, including 2.07 m @ 3.05 % SnEq from 156.15 m
- CRD015: 15.03 m @ 1.01 % SnEq from 311.99 m, including 3.01 m @1.51 % SnEq from 311.99 m, and 1.00 m @ 4.40 % SnEq from 322.02 m
- CRD015: 6.63 m @ 1.44 % SnEq from 343.74 m, including 1.00m @ 5.56% SnEq from 343.74 m

Hole CRD012 also targeted the eastern edge of the mineralisation, close to surface. Anomalous but non-significant mineralisation was intersected in CRD012 including 0.53 m @ 1.68% SnEq from 50.11 m and 2.00 m @ 0.96% SnEq from 122.07 m, locating the eastern extreme of the SVS mineralisation, where mineralisation is less well developed.

The thicknesses quoted above, and all other thicknesses in this report are, unless otherwise stated, apparent thicknesses. Estimated true thicknesses are shown in Appendix 1. For convenience, significant intercepts are also expressed in terms of a calculated tin equivalent value¹ (SnEq).

These results have continued to identify multiple high-grade zones within the SVS, which are interpreted to plunge to the west at around 25°.

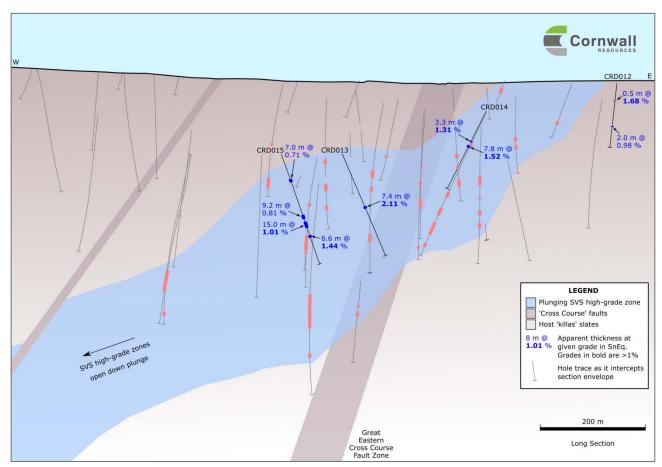


Figure 2 – Long section showing significant intercepts (dark blue) within the SVS. Please refer to previous release dated 7 September 2017 for previous intercepts, shown in red. This section has a slice depth of 180 m

¹ Equivalent metal calculation notes; Sn(Eq)% = Sn%*1 + WO3%*1.43 + Cu%*0.40. Commodity price assumptions: WO3 US\$ 33,000/t, Sn US\$ 22,000/t, Cu US\$ 7,000/t. Recovery assumptions: total WO3 recovery 72%, total Sn recovery 68% & total Cu recovery 85% and payability assumptions of 81%, 90% and 90% respectively.

SVS High Grade Zone Exploration Potential

The SVS high-grade zone significant intercepts continue to represent potentially attractive underground mining targets. The NAE and SML Directors continue to believe that the delineation of the SVS high-grade zones has the potential to significantly increase the grade of the SVS Resource previously stated in the 15 December 2015 Resource Update announcement, albeit within a reduced tonnage, and may support a larger tonnage of high grade material than the high-grade lode resource reported in the 15 December 2015 resource update.

The Phase 2 drilling programme is focused on continuing to define, and increase confidence in, the continuity of these high-grade zones within the SVS.

HIGH GRADE LODES

Kelly Bray Lode

Hole CRD011 was drilled to target the Kelly Bray Lode, which is located in the northern part of the area, and dips to the south. This hole was targeted beneath known workings on the Kelly Bray Lode in an area where an Exploration Target had previously been delineated and was successful in identifying narrow but high grade mineralisation that had not been mined. Results are as detailed in Appendix 1, Table (b), with highlights summarised below:

• CRD011: 0.75 m @ 4.18% SnEq from 367.25 m; intercept down-dip of known workings

COMMUNITY

CRL continues to prioritise the maintaining of a close working relationship with the local community and local and County Councils. No complaints have been received to date regarding the drilling and support activities or any other matter, and, where possible during the programme, local employment has been created. Following the most recent batch of results a community "pop up shop" event was held over two days to provide an opportunity for community members to hear about progress from the drilling programme.

CRL is continuing collaboration arrangements with local and regional universities including Camborne School of Mines, the University of Plymouth, and the University of Portsmouth.

Figure 3: Phase 1 Interim Results Public Meeting, Callington, featuring Portreeve Mark Smith, and Cllr Debbie Smith

Future Work Programme

PHASE 2 DRILLING

The five-hole Phase 2 drilling programme is continuing to target high-grade zones within the SVS with the objective of defining a high-grade resource of sufficient size to potentially support an underground mining operation.

Currently 19 of the 20 holes of the combined Phase 1 and 2 2017 programme have been completed and completion of the last hole is imminent.

The results from the five Phase 2 holes will be released after completion of logging, core cutting and laboratory analysis and are expected by the end of 2017.

RESOURCE UPDATE

Following the receipt of results from the five Phase 2 holes, a resource update will be undertaken, results for which are expected in Q1 2018. The outcome of this will then be used to inform further potential work.

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results is based on information compiled and reviewed by Dr Mike Armitage, who is a Principal Geologist of SRK Consulting (UK) Ltd, a Member of the Institute of Materials, Minerals and Mining (MIMMM), a Fellow of the Geological Society of London (FGS), a Chartered Geologist of the Geological Society of London (CGeol) and a Chartered Engineer, UK (CEng). Dr Armitage has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Armitage is also a Competent Person "as defined in the Note for Mining and Oil & Gas Companies which form part of the AIM Rules for Companies". Dr Armitage has consented to the inclusion in the report of the matters based on his information in the form and context in which it appears.

FORWARD LOOKING STATEMENTS

This report contains "forward-looking information" that is based on the Company's expectations, estimates and forecasts as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, objectives, performance, outlook, growth, cash flow, earnings per share and shareholder value, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses, property acquisitions, mine development, mine operations, drilling activity, sampling and other data, grade and recovery levels, future production, capital costs, expenditures for environmental matters, life of mine, completion dates, commodity prices and demand, and currency exchange rates. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as "outlook", "anticipate", "project", "target", "likely", "believe", "estimate", "expect", "intend", "may", "would", "could", "should", "scheduled", "will", "plan", "forecast" and similar expressions. The forward-looking information is not factual but rather represents only expectations, estimates and/or forecasts about the future and therefore need to be read bearing in mind the risks and uncertainties concerning future events generally.

New Age Exploration Limited

Melbourne, VIC 3000 Australia
Phone: +61 3 8610 6494
Email: info@nae.net.au

ACN 004 749 508

ASX: NAE

APPENDIX 1 – CRL 2017 DRILLING SIGNIFICANT INTERCEPTS FOR HOLES CRD011 – CRD015

(a) Sheeted Vein System High Grade Zone Intercepts

Drillhole	From (m)	To (m)	Intersection Thickness (m)	Est. True Thickness (m)	Sn Eq (%)	Sn (%)	W03 (%)	Cu (%)	Intercept
CRD013	298.74	306.15	7.41	4.75	2.11	1.15	0.43	0.88	HG SVS
including	298.74	299.89	1.15	0.70	7.45	2.92	2.33	2.99	HG SVS
CRD014	144.46	147.78	3.32	2.70	1.31	0.19	0.67	0.40	HG SVS
CRD014	156.15	163.98	7.83	7.20	1.52	0.06	0.93	0.32	HG SVS
including	156.15	158.22	2.07	1.70	3.05	0.05	2.09	0.06	HG SVS
CRD015	210.84	217.84	7.00	5.47	0.71	0.67	0.01	0.07	HG SVS
CRD015	296.00	305.23	9.23	6.89	0.81	0.51	0.12	0.30	HG SVS
including	296.00	297.00	1.00	0.86	2.71	2.54	0.11	0.03	HG SVS
CRD015	311.99	327.02	15.03	11.34	1.01	0.41	0.36	0.19	HG SVS
including	311.99	315.00	3.01	2.51	1.51	0.17	0.84	0.33	HG SVS
including	322.02	323.02	1.00	0.75	4.40	4.18	0.11	0.14	HG SVS
including	326.01	327.02	1.01	0.75	3.48	0.27	2.22	0.10	HG SVS
CRD015	343.74	350.37	6.63	4.72	1.44	0.44	0.57	0.48	HG SVS
including	343.74	344.74	1.00	0.81	5.56	0.27	3.63	0.29	HG SVS
including	345.74	346.75	1.01	0.82	1.50	1.00	0.01	1.20	HG SVS

(b) High Grade Lode Intercepts

Drillhole	From (m)	To (m)	Intersection Thickness (m)	Est. True Thickness (m)	Sn Eq (%)	Sn (%)	W03 (%)	Cu (%)	Lode
CRD011	367.25	368.00	0.75	0.61	4.18	0.69	0.01	8.70	Kelly Bray Lode

APPENDIX 2

Table of drillhole collar co-ordinates

Hole No.	Easting	Northing	RL/ m	Azimuth	Dip	Length/ m	Diameter
140.	Lasting	Northing	INE/ III	Azimutii	ыр	Length/ III	Diameter
CRD011	236067	71204	192	320	-63	399.10	0-296m HQ3, 296m to EoH NQ3
CRD012	236309	71177	212	168	-50	181.55	0-EoH HQ3
CRD013	235733	71178	172	138	-50	427.06	0-184m HQ3, 184m to EoH NTW
CRD014	236076	71179	192	195	-50	280.35	0-280m HQ3
CRD015	235635	71126	168	128	-57	411.60	0-181m HQ3, 270m to EoH NTW

Notes:

All collar co-ordinates are in British National Grid format. Azimuths are relative to grid north.

All hole collar positions surveyed by DGPS

Abbreviation EoH: End of Hole

Core diameters: HQ3: 61mm, NTW 56mm, BTW 42mm, NQ3 45mm

JORC CODE, 2012 EDITION - TABLE 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
		2017 drilling
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The results announced here are from diamond drill core samples. Core was aligned prior to splitting and halved using a core saw, based on geological boundaries, typically of 1m sample length, and up to 2.5m in less mineralised zones. Sections that did not appear mineralised were not sampled. Drilling was orientated where possible to intersect the target as closely as possible to perpendicular. The deposit contains multiple different mineralisation sets, and so for this reason and limitations of access, not all holes comply with this. Previous drilling The previous exploration results are based on a diamond core surface drilling programme undertaken by SWM between 1980 and 1983 as well as historical data collected from reports and memos relating to underground operations and recording sampling carried out when mining was active. The drilling was orientated to intersect the mineralisation at high angles with the exception, in many cases, of Johnson's Lode as this dips in the opposite direction to the other lodes and SVS. The holes were sampled for assaying and density measurements.
		2017 drilling
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails,	 All drilling was carried out by diamond core drilling, of HQ3 to BTW diameter (61-42mm). Core was generally oriented within the mineralised zone, using a Reflex ACT II system. Previous drilling
	face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 All historic drillholes were completed using HQ, NQ or BQ diamond core. The holes were primarily orientated to intersect the northerly dipping vein system from the north.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	Recoveries were generally good through mineralisation, and typically more than 90%. Recoveries were measured for each run drilled, normally within 24 hours of the hole being drilled.

Criteria	JORC Code explanation	Commentary
	may have occurred due to preferential loss/gain of fine/coarse material.	 Triple Tube drilling was used where possible given available equipment and core diameter, to enable precise definition of recovery. Voids where encountered were clearly logged as such. Other than where an area may have been mined, as mentioned above, no negative relationship was seen between recovery and grade.
		Previous drilling • All historic drillholes were completed using HQ, NQ or BQ diamond core. Core recovery was recorded on the logs and the results suggest that the core recovery was relatively high, typically ranging from 80% to 100%, the higher losses being in areas of poor ground. SRK is not aware of specific measures taken to reduce core loss but where excessive losses were experienced holes were re-drilled. There is no apparent relationship between core loss and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drill core was digitally logged for lithology, veining, mineralisation, weathering, geotechnical characteristics, and structure. All core was photographed and referenced to downhole geology using Micromine software. Voids where encountered were clearly logged as such. Previous drilling Detailed geological core logging and recording of the features of the core was undertaken as part of the historic drilling campaign and these logs remain available for review. Mineralogical descriptions are qualitative but detailed. Details of all relevant intersections are separately noted.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	2017 drilling Sawn half core was used for all samples submitted to the laboratory. The remaining half core is preserved in the core trays as a record. The routine sample procedure is always to take the half core to the left of the orientation line looking down the hole. The halved samples were submitted to ALS Loughrea laboratory. For holes CRD001 to CRD013, samples, typically in the range 3-7kg were dried and finely crushed to better than 70 % passing a 2 mm screen. A split of up to 250 g was taken

Criteria	JORC Code explanation	Commentary
		and pulverized to better than 85 % passing a 75 micron screen. • For holes CRD014 onwards, samples, typically in the range 3-7kg were dried and finely crushed to better than 95 % passing a 2 mm screen. A split of 1000 g was taken and pulverized to better than 85 % passing a 75 micron screen. • Copies of internal laboratory QC validating that the targeted particle size was being achieved were received. • 5% of samples were re-assayed as coarse reject duplicates. • Once assay results are received, the results from duplicate samples are compared with the corresponding routine sample to ascertain whether the sampling is representative. • Sample sizes are considered appropriate for the style and type of mineralisation, if halved core is used. Previous drilling • Historic drill core was typically sampled at 2 m intervals, using either half core ('split core') analysis or geochemical chip sampling. The remaining half core (relating to split core analysis) was stored for reference. No details are available with regards quality control
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Previous drilling Analysis by method ME-ICP81x was carried out using a sodium peroxide fusion for decomposition and then analysed by ICP-AES for 34 elements, including Sn, Cu, and W. The upper and lower detection limits are considered acceptable for the target elements of Sn, Cu, and W. A limited number of samples were also analysed for silver by method Ag-ICP61. The laboratory shared their internal QC data on blanks, pulp duplicates and standards. CRL also inserted 5% each of blanks, standards and duplicates, as a further control. CRL's blanks show no significant contamination issues and the assays of the laboratory standards, which cover a range of metal values for each of Sn, Cu, W, show no bias. No systematic bias appears to be present in results. Repeatability of results has been further enhanced by selection of a larger split size with effect from CRD014 onwards.

Criteria	JORC Code explanation	Commentary
		 Historic drill core was typically sampled at 2 m intervals, using either half core ('split core') analysis or geochemical chip sampling. The remaining half core (relating to split core analysis) was stored for reference. No details are available with regards quality control procedures in general. No information is available on the laboratory sample preparation and analysis and quality control programmes used for the historic drilling. Verification sampling was completed by SRK and CRL, under which samples were prepared at SGS Cornwall and assayed at the Wheal Jane laboratory. SRK has visited these facilities and reviewed the sample preparation and assaying process. The assaying process involves crushing, splitting, milling and homogenization. XRF and Atomic Absorption Spectroscopy (AAS) was conducted on the samples. SRK considers the laboratory to be working in accordance with accepted industry standards.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 SRK have received copies of CRL's database and laboratory analysis certificates and have reviewed the significant intersections. No twinned holes have been drilled as part of the current programme. SRK have visited the CRL site and audited data entry and verification procedures. Data is automatically backed up off-site. Within significant intercepts, values at detection limits were replaced with 0.5 of the detection limit value. Where duplicate assays exist for the same interval a straight average is taken. Previous drilling SRK was supplied with scanned historical drill logs which have been entered into a Microsoft Excel database. SRK has completed a number of checks on the raw data and data entry process and applied corrections where necessary. Based on the verification work completed, SRK is confident that the compiled excel database is an accurate reflection of the available historic drilling data. Whilst further verification work is required to add confidence to the database, SRK consider that the check sampling undertaken confirms the presence of anomalous grades for the

Criteria	JORC Code explanation	Commentary
		primary elements assayed, and that the 2017 drilling confirms these.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations were recorded as six-figure grid references, together with RL values in metres, in the British National Grid (OSGB) coordinate system. These were surveyed using a real-time corrected DGPS operated by a professional survey company. Downhole surveys were conducted using the Reflex EZ-Trac system, as a minimum every 50m downhole. Aluminium extension rods were used to minimise magnetic error. Initial collar set up was conducted using an optical sighting compass, at least 10m from the rig, for azimuth, and an inclinometer on the rig for inclination. Previous drilling Historic drillhole logs present collar locations as six-figure grid references in British National Grid (OSGB) coordinate system. In the absence of RL data, SRK has projected collars on to (2005) Lidar topographic survey data. Downhole surveys were typically recorded using either acid tube test or single shot survey camera, with readings taken at approximately every 50 m. Historic plans of the drilling and drillhole traces have been digitized and show a good correlation with the above.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The current programme is aimed at extending and improving continuity of previously identified mineralisation. The data spacing varies depending on the target, within the SVS this is 100-150m apart, and often less. Compositing was applied in order to calculate intersected width equivalents, on an interval length weighted-average basis. Previous drilling The drillholes and sample intersections are typically some 100-150m apart in the main lodes and lode systems of interest which has provided a reasonable indication of continuity of structure for the SVS, Johnson's Lode and the Great South Lode. All individual sample assays remain available.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drillholes in the programme targeted the SVS, Johnson's Lode, Great South Lode, and Kelly Bray Lode, each of which have different dips. Some holes hit more than one of the above, and therefore could not be perpendicular to all mineralisation. In order to minimize impact on local residents, some holes were drilled oblique to the mineralisation. Notwithstanding this, the SVS mineralisation is interpreted to be a broad tabular mineralised zone with an internal plunge component, which is currently being evaluated. The orientation of the drilling is believed to be appropriate for the evaluation of this geometry as presently understood. It is recommended that this be further assessed during subsequent drilling. Intercepts are reported as apparent thicknesses except where otherwise stated. The data spacing varies depending on the target, within the SVS this is 100-150m apart, and often less. Previous drilling The drillholes and sample intersections are typically some 100-150m apart in the main lodes and lode systems of interest which has provided a reasonable indication of continuity of structure for the SVS, Johnson's Lode and the Great South Lode. All individual sample assays, and some of the drill core, remain available. The drillholes were orientated to intersect the SVS and Great South Lode at intersection angles of between 45 and 90 degrees. Two or three holes were though often drilled from one site to limit the number of drill sites needed and also the intersection angles with Johnson's Lode are shallower then ideal due to the different orientation of this structure. Full intersections are however available in all cases so there should be no material bias and the differences between intersected and true lode widths has been accounted for in SRK's evaluation procedures.
Sample security	The measures taken to ensure sample security.	All core is stored at CRL's secure warehouse facility and halved core retained. Samples are catalogued, ticketed, weighed, securely palletized, and dispatched by courier to the laboratory, where sample receipt is confirmed by email. ALS is an internationally accredited laboratory.

Criteria	JORC Code explanation	Commentary
		Previous drilling No information is available on sample security for the historic drilling. The majority of the core boxes which had been stored in a dry container on racks remain intact though some of the core has been mixed up and core markers displaced over time and these had to be re-arranged appropriately. SRK is satisfied that the verification resampling programmes undertaken by SRK and CRL utilised industry best practices for Chain of Custody procedures.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	SRK visited CRL's operations and facility in June 2017 and conducted an audit of logging and sampling procedures. No significant concerns were identified. Previous drilling SRK is unaware of any reviews or audits which may have been completed other than those undertaken by SRK itself.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Project is located immediately south of the village of Kelly Bray and approximately 0.5km north of the town of Callington in Cornwall in the United Kingdom. In October 2012, NAE Resources (UK) Limited, acquired a 100% interest in the Redmoor Tin-Tungsten Project through an Exploration License and Option Agreement with the owner of mineral rights covering a large area of approximately 23km² that includes the Redmoor Project. The Exploration License was granted for an initial period of 15 years with modest annual payments. On 14 November 2016, NAE Resources (UK) Limited changed its name to Cornwall Resources Limited (CRL). CRL also has the option to a 25 year Mining Lease, extendable by a further 25 years which can be exercised at any time during the term of the Exploration License. The Mining Lease permits commercial extraction of the minerals subject to obtaining planning and other approvals required and is subject to a 3% Net Smelter Return royalty payable to the mineral right owner once commercial production has commenced. CRL also has a pre-emptive right over the sale of the mineral rights by the vendor. Surface land access for exploration drilling and mining over some of the Redmoor deposit is also included in these agreements.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	South West Minerals (SWM) conducted exploration, including drilling, in the area from 1980 to 1986. The area was the subject of underground development and processing from the 18 th century to around 1946. SRK is unaware of any exploration undertaken by parties other than South West Minerals (SWM).
Geology	Deposit type, geological setting and style of mineralisation.	The geology of the Redmoor Project is typical of other established mining areas of Cornwall. Tin, tungsten and metal sulphide mineralisation is spatially related to granite intrusions which have caused mineral containing fluids to transport and deposit tin, tungsten and copper bearing minerals along fractures and faults in surrounding rocks. At Redmoor the mineralisation occurs both in discrete veins (lodes) and within a stockwork and sheeted zone of numerous closely spaced quartz veins known as the Sheeted Vein System (SVS).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole collar data including position, RL, azimuth, inclination, and length is provided in Appendix 4. Depths of intercepts are provided in Appendices 1-3. Previous drilling Figures previously presented in the 26 November 2015 announcement show the relative location and orientation of the drilling completed by SWM. The intersection intervals of the SVS mineralisation are contained in Appendix 2 SRK consider that providing any more information in this regard would not aid better understanding of the deposit in a material way.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted average intercepts were calculated using sample weighting by length of sample interval. No high cut was thought to be appropriate. Intervals were constructed to reflect average mineralisation of more than 0.5% Sn equivalent. Internal dilution is accepted where a geological basis is thought to exist for reporting a wider package, for example within the SVS. Previous drilling These are geologically rather than cut-off defined and all composited grades reported are length weighted assays without cutting. For each of 2017 and previous drilling, results are expressed in Sn equivalent values. The assumptions for this calculation are:

Criteria	JORC Code explanation	Commentary			
		Metal Sn Cu W	Price \$22,000/t \$7,000/t \$330/mtu (APT)	Payability 90% 90% 81%	Recovery 68% 85% 72%
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The SVS mineralisation is interpreted to be a broad tabular mineralised zone with an internal plunge component, which is currently being evaluated. The orientation of the drilling is believed to be appropriate for the evaluation of this geometry as presently understood. It is recommended that this be further assessed during subsequent drilling. Intercepts are reported as apparent thicknesses except where otherwise stated. Previous drilling Full intersections are available in all cases so there should be no material bias and the differences between intersected and true lode widths have been accounted for in SRK's evaluation procedures. 			
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps, plans, sections and other views of the interpreted mineralisation are included in the announcement.			
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The announcement presents all of the salient exploration data that supports the results presented and where summarised is done so in such a way as to convey all of the results in a balanced manner.			
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant new information has been presented in the announcement.			
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The announcement summarises the geological and other work currently underway and planned and the current considerations regarding the potential of the licence area.			

