

ASX:IMU

MIMOTOPE INDUCED B-CELL ANTIBODIES FOR IMMUNO-ONCOLOGY

Leslie Chong | Chief Executive Officer January/2018

NOTICE: FORWARD LOOKING STATEMENTS

Any forward looking statements in this presentation have been prepared on the basis of a number of assumptions which may prove incorrect and the current intentions, plans, expectations and beliefs about future events are subject to risks, uncertainties and other factors, many of which are outside Imugene Limited's control. Important factors that could cause actual results to differ materially from any assumptions or expectations expressed or implied in this brochure include known and unknown risks. As actual results may differ materially to any assumptions made in this brochure, you are urged to view any forward looking statements contained in this brochure with caution. This presentation should not be relied on as a recommendation or forecast by Imugene Limited, and should not be construed as either an offer to sell or a solicitation of an offer to buy or sell shares in any jurisdiction.

EXECUTIVE SUMMARY

- Experienced management & board
- Novel oncology platforms: Mimotopes: B cell peptide vaccines IP protected to 2036
- Lead mimotope: HER-Vaxx Phase 1b/2 mimotope study in Her2+ gastric cancer (large unmet medical need by current existing therapies)
 - POC demonstrated in Phase 1 Her-2+ breast cancer study safety & immunogenecity established
- Discovery Pipeline: Mimotope candidate selection and Arginine modulators in pre-clinical development

WHAT DOES IMUGENE DO?

Imugene's technology can induce a patient's body to make its own specific antibodies that target cancer.

IMUGENE

A TEAM WITH TRACK RECORD IN DRUG DEVELOPMENT

- Over 19 years of oncology experience in Phase I III of clinical program development
- Leadership role involvement in 2 marketed oncology products
- Previously Senior Clinical Program Lead at Genentech, Inc., in San Francisco

- Previously Clinical Lead on Ipilimumab at Bristol-Myers
 Squibb
- Co-Director of the think-tank Cancer Immunotherapy Consortium

Paul Hopper (Sydney, Australia)

Dr Axel Hoos (Philadelphia, U.S.A.)

Executive Chairman

- International & ASX biotech capital markets experience particularly in immuno-oncology & vaccines
- Chairman of Viralytics, Founder & Director of Prescient, Founder of Imugene & Polynoma LLC, former Director pSivida, Somnomed & Fibrocell Science

Prof Ursula Wiedermann (Vienna, Austria) Chief Scientific Officer

- Co-inventor of HER-Vaxx;
- Professor of Vaccinology at Medical University of Vienna

Prof Christoph Zieliniski (Vienna, Austria) Head of Scientific Advisory Board

- Chairman of the Comprehensive Cancer Centre in Vienna
- Chairman of the Centre for Eastern EU Organisation for Research and the Treatment of Cancer (CEEORTC)
- Editor in Chief and President Nominee of European Society of Medical Oncology (ESMO)

Dr Nick Ede (Melbourne, Australia) Chief Technology Officer

- Over 25 years peptide vaccine and drug development
- Former CEO Adistem, CEO Mimotopes
- VP Chemistry Chiron (now Novartis), Research Fellow CRC Vaccine Technology

A BETTER WAY TO MAKE ANTIBODIES TO TREAT CANCER?

VS

For example, Roche's Herceptin

USING B CELLS IN YOUR OWN BODY

B Cells are cells in the human body that naturally produce millions of antibodies

Teaching B cells to make antibodies using peptide mimotopes

NOVEL MIMOTOPE PEPTIDE PROGRAMS

- A mimotope is a small molecule, often a peptide, which mirrors the structure of an epitope, the specific target an antibody binds to.
- Because of this property, the mimotope induces an antibody response similar to the one elicited by the epitope.
- A mimotope causes your B cells to produce an antibody copy of the antibody you want to "mimic"
- Potential tool for selecting novel vaccine candidates against a variety of tumors
- Technology can be used to copy any approved antibody on the market today

MIMOTOPE: PLATFORM TECHNOLOGY

SELECTION OF MIMOTOPES

A library of mimotopes can be interrogated with any monoclonal antibody to identify the mimotopes to which it binds

CREATION OF A VACCINE

The selected mimotope or mimotopes can be used in isolation or combination to create a B-cell peptide therapy with the appropriate carrier system and adjuvant. Immunization with the peptide will lead to the patients B-cells producing copies of the Ab you want to mimic

IMMUNIZATION

ENDOGENOUS AB PRODUCTION

Successful delivery will result in endogenous Ab production with associated immune memory

The mimotope platform has the potential to be part of the next wave of immuno-oncology products. It makes multi-level therapies against a combination of targets achievable.

ADVANTAGES OF MIMOTOPE INDUCED B-CELL BASED ANTIBODIES V. SYNTHETIC ANTIBODIES

Issue	Natural B Cell Derived Antibodies	Monoclonal Antibodies
Safety	Stimulates the immune system to produce natural Abs, potentially safer, as demonstrated by HER-Vaxx	Synthetic Ab, with side effects (including ventricular dysfunction, CHF, anaphylaxis, immune mediation)
Efficacy	Polyclonal Ab response reduces risk of resistance and potentially increases efficacy	Monoclonal Ab - single shot
Durability	Antibodies continuously produced a lasting immune response to inhibit tumor recurrence	Half life up to 12 days sometimes less
Usability	Potentially low numbers of vaccinations required per year	Requires regular infusion
Cost	Low cost of production enables greater pricing flexibility facilitating combinations and opening up additional markets	Expensive course of treatment >USD100K per year in the US

B-Cell Vaccines offer a unique opportunity to intervene at multiple points in the immune system and create immune memory which enhances durability of response.

THE MONOCLONAL ANTIBODY (mAb) MARKET

• Multiple antibody therapies are approved to treat cancer, for example:

Total monoclonal antibody market is currently at US\$60 billion

- <u>All of these antibodies are manufactured in a facility.</u>
- Instead of infusing patients with antibodies synthesized in a factory, what if we can induce the patient's own B-cells to make similar cancer-fighting antibodies using Imugene's mimotope technology?

HER-Vaxx MIMOTOPE: MECHANISM OF ACTION

HER-Vaxx IS A PHASE 1B/2 STAGE MIMOTOPE

PEPTIDE THERAPY BEING DEVELOPED FOR

HER2+ GASTRIC CANCER

IMUGENE

PHASE 1 IN BREAST CANCER, COMPLETED AT MEDICAL UNIVERSITY OF VIENNA- SINGLE AGENT, NO CHEMO

DESIGN

- 10 patients
- All late stage breast cancer
 patients
- HER-2 +/++
- Life expectancy > 4 months
- Conducted at Medical University of Vienna

***RESULTS**

- Patients developed anti-HER-2 antibodies
- Induction of cytokines (Th1 biased; IFNγ)
- Induction of memory T & B cells post vaccination
- Reduction in T reg cells post vaccination, indicating strong vaccine response
- Antibodies induced displayed potent antitumor activity
- Promising results Patients were end stage and not primary target group
- Reviewed in peer publication
- * Data Available in Science Booklet

CLINICAL ENDPOINTS

Safety and Tolerability

Immunogenicity: antibodies and cellular responses

* Wiedermann et. al., Breast Cancer Res Treat. 2010 Feb;119(3):673-83.

Safety, Efficacy, Durability, Usability, Cost

HER-VAXX INHIBITS HER-2 EXPRESSING CELLS

HER-Vaxx antibodies demonstrate anti-tumour effect by inhibiting validated HER-2+ gastric cell line

Percentage of Inhibition on NCI-N87 gastric cancer cell growth (c/w control)

HER-2+ gastric cancer cells*

*Collaboration with US company 2017

Combination with Herceptin shows significantly higher inhibition than Herceptin alone.

HER-2+ breast cancer cells*

*BMC Cancer2017, Wiedermann Feb. 2017

PHASE 1B/2 ENHANCED GASTRIC FORMULATION

Her-2/neu specific IgG kinetic, after last immunization

In the mouse model the new formulation sees circulating antibodies maintained for 6 months which equates to many years in humans.

PHASE 1B/2, IN GASTRIC CANCER

Phase 1b lead-in

- Open label
- ~Up to 18 patients in 3 cohorts of up to 6 pts per cohort
- Combination with chemo/cisplatin
- Endpoints:
 - Recommended Phase 2 Dose of HER-Vaxx
 - Safety: any HER-Vaxx toxicity
 - Immunogenicity (anti-HER-2 antibody titres)

Phase 2

- Open label
- ~70 patients from sites in Asia
- Combination with chemo
- Randomized
- Primary Endpoints:
 - TBD PFS and/or OS
 - (cont. on Ph1b results)
- Secondary endpoint:
 - Immune response

OUR INVESTIGATORS AND STUDY CENTERS

GASTRIC MARKET OPPORTUNITY

- Asia is the largest market for gastric cancer globally
- Gastric cancer is the second leading cause of cancer mortality in the world & its management, especially in advanced stages, has evolved relatively little
- ~1 million gastric cancer cases per year; ~19% patients with metastatic gastric cancer are HER-2 positive
- Surgery, chemotherapy, radiation & Herceptin are the key treatments
- In many countries, particularly Asia, chemotherapy such as capecitibine and 5-FU, is the standard of care, not Herceptin

Xeloda Capecitat	* bine
500 mg	
120 film-coater	I sablets

Chemotherapy

Monoclonal antibody

MARKET OPPORTUNITY

Indications	Gastric Cancer	Breast Cancer
Incidence	1 million cases of newly diagnosed cases, ~190k are HER2+*	1.67m cases of newly diagnosed cases; ~418k are HER2+*
Prognosis	Poor. Median survival is 7-10 months	Varies in breast cancer type. 0.5m deaths per year
% of Patients HER2+ prevalence	~19%	~25%
Herceptin [®] cost	~3,500 per dose every 3 weeks = \$60,000 per year	~3,500 per dose every 1-2 weeks = 91,000-182,000
Herceptin® benefits (in conjunction with surgery and chemotherapy)	2.7 months OS (overall survival) improvement than chemo alone	Improves OS by 33%-52%. Varies with breast cancer type and line of disease.

- 2017 Herceptin® sales total 6.7b in gastric and breast cancer
- Gastric cancer treatment market to grow at the rate of 14.6% annually to \$4.4 billion by 2024; The Asia-Pacific gastric cancer market is set to grow from its 2015 value of \$1.3 billion to \$2.7 billion by 2022
- HER-Vaxx could address not only relapsed patients, but patients in all stages of cancer progression.
- HER-Vaxx could have a significantly more convenient dosing regime over Herceptin®'s weekly and lengthy infusions.

*http://globocan.iarc.fr/old/FactSheets/

IMUGENE PIPELINE

HER-Vaxx (IMU-13	Discovery	Pre-Clinical	Phas	se IB	Phase 2	
Open Label Randomized, Controlled Study in Gastric Cancer	Chemotherapy + or - HER-Vaxx					
*Combination Study in breast cancer	HER-Vaxx + Herceptin					
*Herceptin Resistant/Failed Study	HER-Vaxx + Chemotherapy					
*HER2+ in bladder and ovarian, NSCLC etc.	HER-Vaxx + Chemotherapy					

*(IST) Investigator Sponsored or Collaboration study *Christoph Zieliniski, CECOG President, ESMO president nominee, engaged

Initiated upon RP2D

MIMOTOPE B-CELL PEPTIDE THERAPY

IMUGENE DISCOVERY PIPELINE

FINANCIAL SUMMARY

ASX:IMU

Market Cap (28/Dec/17)	\$42.8M AUD, \$33.3M USD
Ordinary Shares	2.855 billion
12 month price range	1.2 cents – 2.8 cents AUD
Avg daily volume	6.9M shares (September-December 2017)
Investment to Date	~\$22.4 m (public) ~\$ 5.5 m (VC)
Cash & Equivalents	\$11.9M as of December 2017

Top 5 shareholders (as at Dec. 2017)

	No. of Shares	% Capital
Platinum Asset Management	276,874,515	9.70%
National Nominees Limited	125,895,033	4.41%
Paul Hopper Executive Chairman	71,696,875	2.51%
Merrill Lynch (Australia) Nominees Pty Limited	62,347,506	2.18%
Sarah Cameron	51,817,073	1.82%

24

EXECUTIVE SUMMARY

- Experienced management & board
- Novel oncology platforms: Mimotopes: B cell peptide vaccines IP protected to 2036
- Lead mimotope: HER-Vaxx Phase 1b/2 mimotope study in Her2+ gastric cancer (large unmet medical need by current existing therapies)
 - POC demonstrated in Phase 1 Her-2+ breast cancer study safety & immunogenecity established
- Discovery Pipeline: Mimotope candidate selection and Arginine modulators in pre-clinical development

PHASE IA STUDY DESIGN*

ADMINISTRATION & READOUT SCHEDULE

Vaccination with 10µg of each peptide antigen

Blood draw

Patient inclusion criteria

- Metastatic breast cancer
- HER2 +, ++
- ER/PR pos.
- Life expectance > 4 mo

Primary endpoint

Safety & Tolerability

Secondary endpoint

- Immunogenicity
 - Specific antibodies
 - Cellular responses

PATIENT CHARACTERISTICS – AGES 55-84 *

Patient ID	Age	Metastatic disease since	Prior chemotherapy	Current antihormonal therapy
1	55	Oct. 2006	no	Anastrozol
2	66	May 2004	yes (1 adj)	Fulvestrant
3	84	Mar. 1999	no	Anastrozol
4	79	Sept. 2003	no	Anastrozol
5	67	Apr. 2004	no	Fulvestrant
6	69	Sept. 2004	no	Anastrozol
7	60	Aug. 2002	yes (3 met)	Fulvestrant
8	76	Apr. 1999	no	Fulvestrant
9	63	Jun. 2006	yes (1 met)	Exemestan
10	70	Apr. 2008	No	Anastrozol

SAFETY AND TOLERABILITY – FEW GRADE 1 LOCAL REACTIONS, NONE SYSTEMIC*

Patient ID	Local vaccination reaction grade	Systemic grade 3/4 toxicity
1	1	no
2	0	no
3	0	no
4	1	no
5	1	no
6	0	no
7	0	no
8	0	no
9	1	no
10	0	no

IMUGENE

PHASE 1 SECONDARY ENDPOINT – IMMUNOLOGIC RESPONSES

- 8/10 developed significant anti-peptide antibody levels
- In all but one the antibodies were also directed against Her-2/neu
- The majority also showed a 4-fold increase in influenza titres (HI)

REDUCTION IN REGULATORY T CELLS*

- Significantly higher number of CD4+Foxp3+ regulatory T cells in tumour patients than healthy controls
- Vaccination significantly reduced T reg cells in both groups

ENCOURAGING IMMUNOGENICITY, EVEN AT LOW DOSE, AND IN PATIENTS AGES UP TO 84 YEARS, WITH NO CARDIOTOXICITY

Antibody and cellular responses in human

Pat. #	Peptide-specific ab P4, P6, P7	HER2- specific ab	Infl. HIT	IL-2, IFNy, TNF	T reg
1	$\uparrow \uparrow \uparrow$	↑	-		Ļ
2	<u> </u>	↑	1	$\uparrow \uparrow \uparrow$	Ļ
3	<u> </u>	↑ (+/-)	-	↑	Ļ
4	<u> </u>	1	1	- ↑ ↑	Ļ
5	<u> </u>	↑	1	$\uparrow \uparrow \uparrow$	Ļ
6		-	-	$\downarrow \downarrow \downarrow$	Ļ
7	<u> </u>	<u>↑</u>	1		Ļ
8	↑ ↑ ↑	↑ (+/-)	1	↑ ↑ -	1
9	↑ +/- +/-	↑	1	↑ ↑ ↑	Ļ
10		-	-	+/- ↓+/-	↓

HER-Vaxx breast cancer vaccine – Phase 1 trial 10 µg group

- Immunogenicity in 8/10 patients in Phase 1 study with 10 µg of peptide antigen
- Good correlation with cellular responses (cytokines)
- Safe and well tolerated, in particular no cardiotoxicity
- Protective efficacy of peptides demonstrated in preclinical tumor model in mice showing delay of onset and reduced tumor growth

TUMOR GROWTH INHIBITION IN VIVO*

Time to disease progression

Days after randomization

- Prolonged time to disease progression
- Immunization of c-neu transgenic mice (recognized HER2 cancer model) with tetanus toxoid-conjugated peptides P4, P6 and P7
- Vaccinated animals show significant delay in tumor onset and reduced growth kinetics
- Co-administration of IL-12 further improves the vaccine performance

* Breast Cancer Res Treat. 2010 Feb;119(3):673-83.

Preclinical study with tetanus toxoid-conjugated peptide antigens

d 65

d 235

d 170

Leslie Chong

Chief Executive Officer

leslie.chong@imugene.com

+61 458 040 433

