

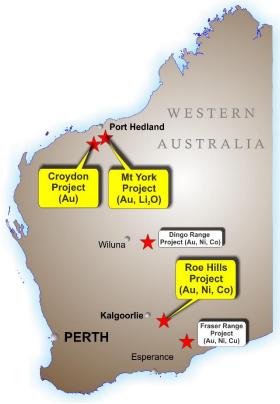
### **QUARTERLY REPORT FOR THE PERIOD ENDING 31 DECEMBER 2017**

### Pilbara Gold Project (Pilbara, WA)

- Highly encouraging results received from maiden helicopter-supported exploration program targeting the conglomerate-hosted gold potential of Kairos' extensive Pilbara tenement portfolio:
  - Visible gold discovered from newly identified conglomerates at the Croydon Project within the previously identified 22km strike length of the prospective contact between the basal Mt Roe Basalt and the Archaean basement;
  - Significant thick conglomerate exposed at four locations beneath the Mt Roe Basalt which had not previously been reported by Government mapping;
  - Exceptional results returned subsequent to Quarter-end from stream sediment sampling which identified widespread and significant gold anomalism including assays up to 12.3g/t Au and 7g/t Au.
- Highly successful 2,600m RC drill program at Mt York hits wide zones of strong, shallow BIF-hosted mineralisation along a ~1km strike length in a previously untested area east of the historical Main Hill and Breccia Hill open pits. 100% success rate from the drilling with selected assay results including:

| КМҮС018:  | 22m @ 1.93g/t Au from 106m, including<br>5m @ 7.02g/t Au from 113m;   |
|-----------|-----------------------------------------------------------------------|
| КМҮС019:  | 22m @ 1.56g/t Au from 96m, including<br>16m @ 1.95g/t Au from 102m;   |
| KMYC013A: | 16m @ 1.21g/t Au from 137m, including<br>7m @ 1.53g/t Au from 146m;   |
| КМҮС014:  | 17m @ 1.05g/t Au from 86m, including<br>5m @ 2.38g/t Au from 98m;     |
| КМҮС020:  | 11m @ 6.97g/t Au from 112m, including:<br>2m @ 33.39g/t Au from 114m; |

• The results confirm that Mt York Project contains a significantly larger BIF-hosted gold system than previously thought, with strong potential to rapidly expand the current Mineral Resource (Total Indicated & Inferred Resource: 5.692Mt at 1.42g/t for 258,000oz Au)


### Roe Hills Gold Project, WA

• 3,101m Aircore/RC drilling program completed targeting extensions of previously defined mineralisation at Lingering Kiss, Lady of the Lake, Terra plus initial drilling at a new geochemical prospect.

### Corporate

- Leading global investor, Eric Sprott, through Sprott Capital Partners, joined the Kairos share register as a significant holder after subscribing for \$5M as part of a \$7.3M share placement completed during the quarter.
- Cash reserves at Quarter-end of \$9.6M, including proceeds of option conversions totalling \$1.9M.





**Figure 1: Project Locations** 

### PILBARA GOLD PROJECT, PILBARA REGION (KAIROS: 100%)

### **CROYDON PROJECT (KAI: 100%)**

In the Pilbara, Kairos holds 1,158 square kilometres of tenure which is highly prospective for conglomerate-hosted gold discoveries. The Company's portfolio includes ~100 strike kilometres of prospective lower Fortescue Group rocks including both the base of the Hardey Formation and the basal sequence of the Mount Roe Basalt. Major exploration programs are underway targeting these highly prospective stratigraphic horizons, which have been associated with a number of recent high-profile gold discoveries in the Pilbara.

Following the fast-tracked geological review of the conglomerate gold potential of its extensive Pilbara tenement holding completed last quarter, Kairos commenced helicopter-supported reconnaissance exploration programs during the quarter, initially focused on the 100%-owned Croydon Project.

Despite extremely hot weather conditions and the inaccessibility of many of the targeted locations, first pass exploration was able to achieve remarkable progress and delivered a number of highly encouraging results in a relatively short space of time.

The helicopter-supported program focused on the contact between the basal Fortescue Group Mount Roe Basalt and older Archean basement along a 22km long corridor within E47/3522 & E47/3523 (see Figure 2).

The field work successfully identified extensive areas of previously unrecognised prospective conglomerate units up of up to  $\sim$ 30m in thickness at four different locations predominantly within the southern portion of tenement package.

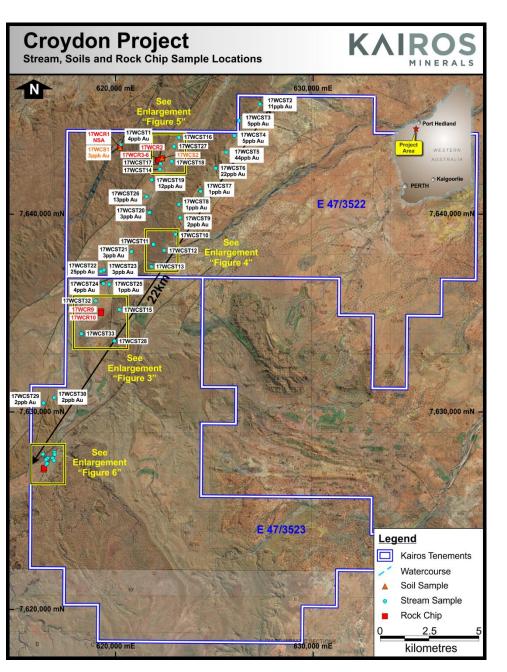



Figure 2: Priority target areas on E47/3522 and E47/3523

Results from the regional geochemistry program were received subsequent to the quarter and were detailed in an announcement to ASX on 10 January 2018.

### Stream Sediment Sample 17WCST 15

This stream sediment sample returned significant gold anomalism and this catchment is considered a high-priority target.

The 2kg cyanide leach samples (-2mm fraction) returned 196ppb Au repeat 59ppb Au. The aqua regia result also from the -2mm fraction returned >2000ppb Au repeat 7,650 ppm Au (7.65 g/t). The coarse fraction sample (-5mm+2mm) returned 131pb Au.

ΚΛΙ

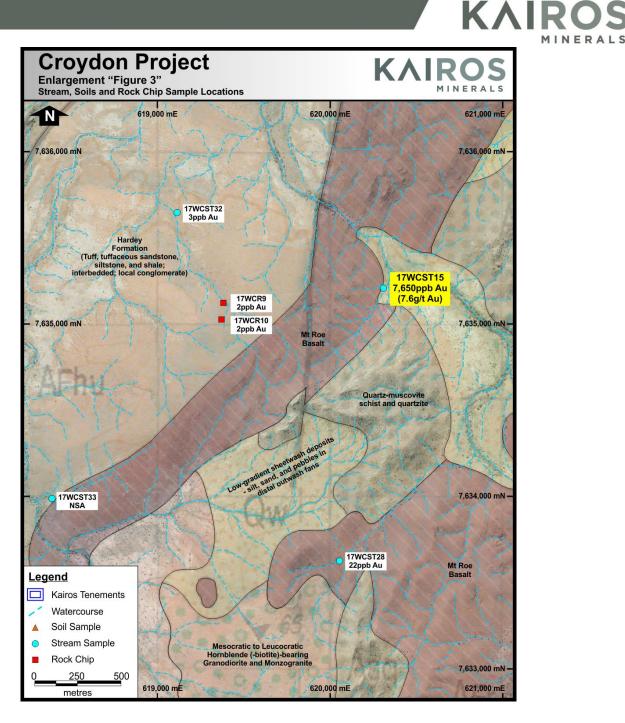



Figure 3: Sample location

The stream sediment samples were collected from a small creek system draining the unconformity between the Mount Roe Basalt and Archaean granitic basement. The creek has a drainage length of approximately 650 metres. This catchment was inspected from the air during the helicopter assisted sampling programme in late 2017 with no obvious conglomerate or sedimentary material observed.

### Stream Sediment Samples 17WCST 11 & 17WCST 12

These two stream sediment samples were collected in the same drainage with sample 17WCST 12 located down stream of deflated conglomerate material identified in late 2017. This creek sample returned significant gold results within the fine fraction 2kg cyanide leach result of 1,464ppb Au (1.46 g/t).



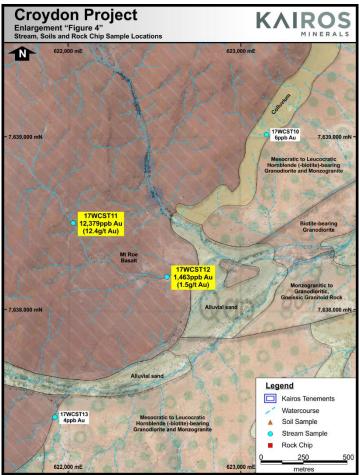



Figure 4: Sample locations

Stream sediment sample 17WCST 12 was collected upstream of the deflated conglomerate and stream sediment sample 17WCST 11 and over Mount Roe Basalt lithologies. The coarse fraction sample was very anomalous with a grade of 12,379 ppb Au (12.4g/t). The objective of this sample was to geochemically assess the overlying Hardey Formation upstream, but further detailed mapping will be required to determine if there is an inlier of the basal conglomerate exposed within this catchment and over the Mount Roe Basalt.

### Stream Sediment Samples 17WCST 2, 3, 4, 5 & 6

These five stream sediment samples were collected in the most northern portion of E47/3522 and were designed to assess the contact between the Mount Roe Basalt and Archaean basement. The Satirist 1:100,000 geological map reports medium-to-coarse grained sandstone in the vicinity of stream sediment sample 17WCST 2.

Stream sediment sample 17WCST 5 reported the most anomalous result with 45ppb Au

# 



Plate 1: Sandstone units mapped under Mt Roe Basalt

### Hardey Formation Conglomerate and Sandstone Targets

The Hardey Formation which overlies the Mount Roe Basalt trends north-east and transects both E47/3522 and E47/3523 in the western portion of the tenements. During the reconnaissance helicopter sampling program, a quartz cobble conglomerate was observed within the Hardey Formation and sampled (Rock samples 17WCR 2, 3, 4, 5 & 6).

These five rock samples all returned significant gold anomalism ranging between 43ppb Au and 202ppb Au. The conglomerates observed have a dominantly siliceous matrix. This area will now require further detailed exploration and provides a new target horizon within the project area.

Several stream sediment samples were also collected in creeks draining these conglomerates. Four samples 17WCST 14, 17, 18, 19 and 27 returned significantly anomalous gold in both the coarse and fine fractions.

Stream sediment sample 17WCST 17, which drains the conglomerate pile discussed above, returned 497ppb Au and repeated 166ppb Au in the 2kg cyanide leach analysis. Stream sediment sample 17WCST 27, collected 1km along strike to the north and draining mapped conglomerates returned 132ppb Au in the 2kg cyanide leach analysis. Stream sediment samples 17WCST 14, 18 & 19 collected over the Hardey Formation returned 42ppb Au, 33ppb Au and 12ppb Au respectively in the coarse fraction samples.



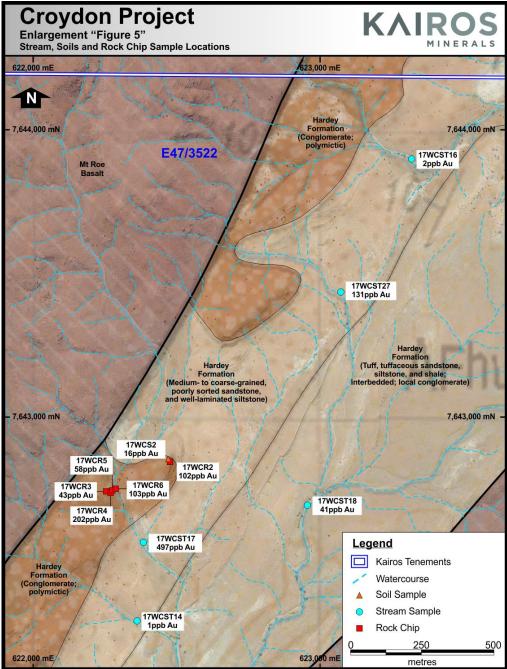



Figure 5: Hardey Formation Conglomerate Sample Locations

At other locations within the Pilbara, auriferous conglomerate horizons are found within the predominately sandy units of the Hardey Formation. Stream sediment samples 17WCST 22 (CN2-25ppb Au/coarse fraction 8ppb Au) and 17WCST 26 (CN2-14ppb Au/coarse fraction 12ppb Au) collected well south and away from the mapped conglomerates discussed above also returned significantly elevated gold responses.

These geochemical results have highlighted the presence of auriferous conglomerates in the Hardey Formation, therefore providing a second target for gold mineralisation within the tenement package.



### Southern Conglomerate Target

This area represents the most interesting and most prospective area within the tenement package thus far. Considerable exposure of conglomerate, over 2,000 metres in strike length and up to 400 metres wide, has been observed to date. Another exposure of conglomerate was recently recognised a further 2,000 metres northwards and along strike which may represent an extension of the southern conglomerate area.

Work completed thus far includes reconnaissance outcrop mapping, stream sediment, soil and rock sampling as well as gold panning.

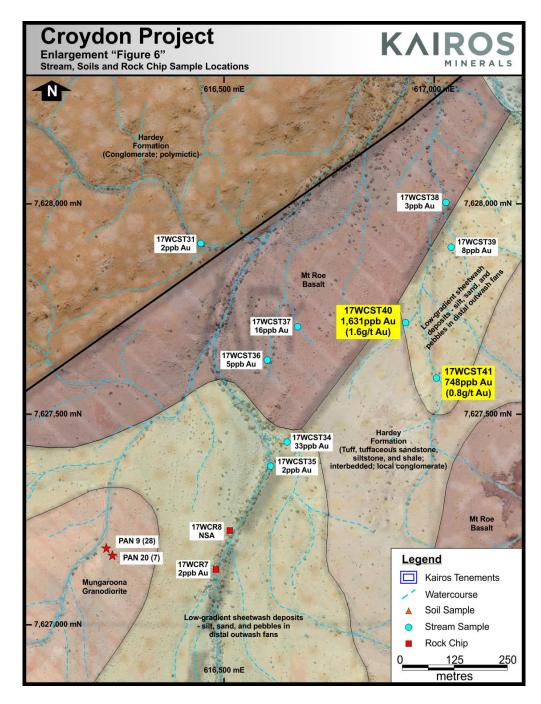



Figure 6: Sample locations

# KAIROS

Numerous surface geochemical samples were collected over the southern area. This includes 22 stream sediment samples, four composite soil samples and two rock samples.

The sampling programme has already identified two areas worthy of follow up. This includes the samples collected in the south western area centred around stream sediment samples Pan 9 and 20. Panning of these fine fraction stream sediment samples returned 28 and 7 pieces of gold respectively. A short soil traverse (4 composite sample-samples Pan 21 to 24) across the head waters of sample sites Pan 9 and 20 was completed with sample Pan 22 returning 278ppb Au in the 2kg cyanide leach analysis and 2 pieces of gold in the pan.



### Plate 2: Southern Conglomerates

The other location worthy of follow up is located upstream of stream sediment sample sites 17WCST 40 and 41 in the eastern side of the conglomerate package. Sample 17WCST 40 returned 1,632ppb Au (1.6 g/t) repeated 572ppb Au in the 2kg cyanide leach result. Sample 17WCST 41 returned 749ppb Au repeated 420ppb Au in the 2kg cyanide leach result. This sample also returned 42ppb Au in the coarse fraction sample. These 2 adjacent sample sites drain an inlier of granitic basement adjacent to conglomerate and Mount Roe Basalt.



### MT YORK GOLD-LITHIUM PROJECT (KAI: 100%)

The 100%-owned Mt York Gold-Lithium Project is located ~100km south of Port Hedland in the world-class Pilgangoora district. Since acquiring the project in early 2016, Kairos has rapidly established a 258,000oz JORC 2012 compliant Mineral Resource inventory at Mt York by re-evaluating the known resources from the historical Lynas Find gold mine, which produced over 125,000oz between 1994 and 1998.

### **Outstanding Drilling Results from Mt York**

During the quarter, Kairos completed a 21-hole/~2,600m Reverse Circulation (RC) drilling program at the Mt York Gold-Lithium Project (Figure 3).

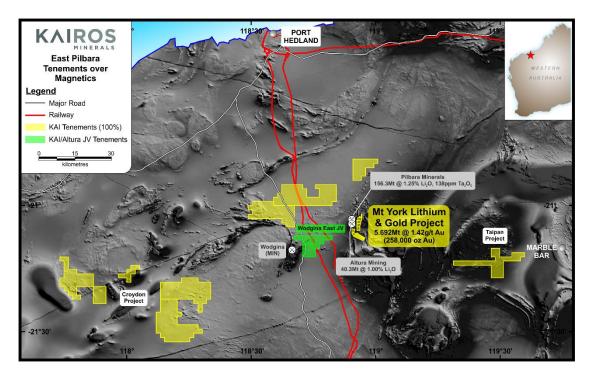



Figure 7: Mt York Project Location, Tenements and Key Gold-Lithium-Tantalum Targets

The drilling program focused initially on testing for potential extensions to the Main Hill and Breccia Hill deposits, over a further 1km of strike eastward to Gossan Hill between surface and a maximum vertical depth of ~150m (Figure 8).

### Main Hill and Breccia Hill – Background

The Main Hill and Breccia Hill deposits (JORC 2012 Compliant Indicated and Inferred Mineral Resource – Main Hill and Breccia Hill: totalling 123,000oz Au) define a zone of BIF-hosted gold mineralization traceable over a strike length of at least 1.5km and extending from surface to a maximum drilled depth of 250m. The deposits were partially mined by Lynas Gold NL as a series of shallow open pits to a maximum depth of about 30m in conjunction with the Iron Stirrup mining operation during the mid-1990s at a much lower gold price environment when global gold prices were ~\$250-\$300/ounce.

The deposits remain open along strike to the north and south and at depth. A central "hinge zone" defined by a marked flexure in the mineralised horizon separates the two deposits. This "gap" remained untested and unmined due to a weakened surface expression and a perception by previous operators that the position was barren. The Hinge Zone represents a data shadow of some 400m in strike, which Kairos' technical team identified as a key structural target with the potential to rapidly expand the current resource, significantly improve future pit expansion/optimization opportunities and to host conceptual underground opportunities.



Three holes were completed in 2016 to provide a preliminary test of the Hinge Zone. The drilling confirmed the presence of both a thickening of the host BIF sequence (>100m thickness) and the presence of a stacked series of gold mineralised lodes well beyond the limits of the known deposits, confirming that the mineralised BIF sequence in this area is significantly wider than was previously recognized.

The results of the 2016 drilling program confirmed Kairos' view that the Main Hill and Breccia Hill deposits are part of a much larger, more extensive mineralised system than was previously recognized, and that the two are connected.

An additional data shadow identified immediately east of Breccia Hill where the BIF sequence remained completely untested over a strike length of some 400m.

### **RC Drilling Results**

The new drill program was designed to test extensions/repetitions to the known mineralisation over the ~1km strike length between Breccia Hill and Gossan Hill on approximate 100m spaced drill lines including a preliminary assessment of the 400m long "data shadow' identified immediately east of the Breccia Hill open pit. Key results received during the Quarter are provided below:

| KMYC018:  | 22m @ 1.93g/t Au from 106m, including<br>5m @ 7.02g/t Au from 113m   |
|-----------|----------------------------------------------------------------------|
| КМҮС019:  | 22m @ 1.56g/t Au from96m, including<br>16m @ 1.95g/t Au from 102m    |
| KMYC013A: | 16m @ 1.21g/t Au from 137m, including<br>7m @ 1.53g/t Au from 146m   |
| KMYC014:  | 17m @ 1.05g/t Au from 86m, including<br>5m @ 2.38g/t Au from 98m     |
| КМҮС015:  | 5m @ 5.17g/t Au from 188m                                            |
| КМҮС020:  | 11m @ 6.97g/t Au from 112m, including:<br>2m @ 33.39g/t Au from 114m |
| КМҮС021:  | 38m @ 1.1g/t Au from 77m, including:<br>7m @ 2.23g/t Au from 102m    |
| КМҮС022:  | 22m @ 1.18g/t Au from 77m, including:<br>4m @ 2.73g/t Au             |
| КМҮС023:  | 12m @ 1.05g/t Au from 32m, including:<br>1m @ 2.58g/t Au from 32m    |
| КМҮС026:  | 11m @ 1.17g/t Au from 11m                                            |
| КМҮС028:  | 16m @ 1.08g/t Au from 80m                                            |
| КМҮС029:  | 4m @ 4.87g/t Au from 4m                                              |



 KMYC030:
 11m @ 1.76g/t Au from 59m

 KMYC031:
 4m @ 2.11g/t Au from 107m

 KMYC025:
 6m @ 1.52g/t Au from 137m

 KMYC032:
 6m @ 2.06g/t Au from 159m

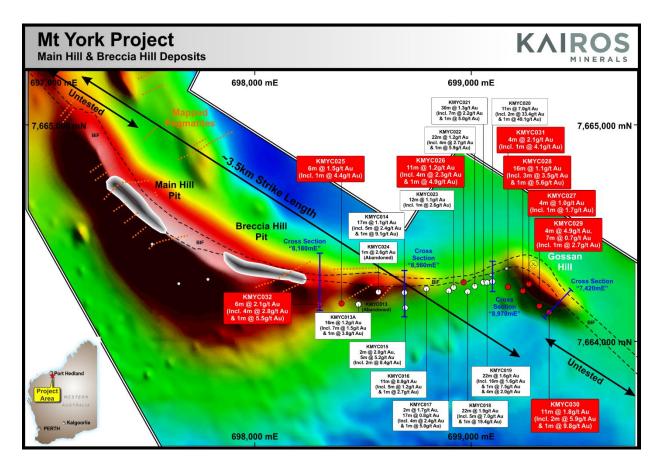



Figure 8: Mt York Project - Main Hill-Breccia Hill-Gossan Hill Plan

# 

|             |           |        |         |           | r 11 1 | Olla     | r L oc | ation & O        | illing Results<br>rientation |            |          |               |          |
|-------------|-----------|--------|---------|-----------|--------|----------|--------|------------------|------------------------------|------------|----------|---------------|----------|
| Prospect    | Hole      | Туре   | E       | N         |        |          | Az     | Total            | From (m)                     | To (m)     | Length   | Grade Au      | Commen   |
|             |           | .,,,,, |         |           |        |          |        | Depth            | ,                            | ,          | (m)      | g/t           |          |
|             |           |        |         |           |        |          |        | (m)              |                              |            |          |               |          |
|             | KMYC013*  | RC     | 698479  | 7664175   | 180    | -60      | 360    | 103              |                              |            |          |               | Abandone |
|             | KMYC013A* | RC     | 698,478 | 7,664,173 | 180    | -60      | 360    | 172              | 137                          | 153        | 16       | 1.21          |          |
|             |           |        |         |           |        |          |        | Includes         | 146                          | 153        | 7        | 1.53          |          |
|             |           |        |         |           |        |          |        | and              | 151                          | 152        | 1        | 3.84          |          |
|             | KMYC014*  | RC     | 698,691 | 7,664,227 | 179    | -60      | 360    | 130              | 86                           | 103        | 17       | 1.05          |          |
|             | 14110014  | RO     | 030,031 | 1,004,221 | 175    | -00      | 360    | including        | 86                           | 92         | 6        | 0.73          |          |
|             |           |        |         |           |        |          |        | and              | 91                           | 92         | 1        | 1.35          |          |
|             |           |        |         |           |        |          |        |                  | 98                           | 103        | 5        | 2.38          |          |
|             |           |        |         |           |        |          |        |                  | 99                           | 102        | 3        | 3.35          |          |
|             |           |        |         |           |        |          |        |                  | 101                          | 102        | 1        | 9.06          |          |
|             | KMYC015*  | RC     | 698,695 | 7,664,156 | 183    | -60      | 360    | 202              | 170                          | 171        | 1        | 0.58          |          |
|             |           |        |         | ,,        |        |          | 000    |                  | 177                          | 179        | 2        | 2.03          |          |
|             |           |        |         |           |        |          |        |                  | 188                          | 193        | 5        | 5.17          |          |
|             |           |        |         |           |        |          |        | Including        | 188                          | 192        | 4        | 6.25          |          |
|             |           |        |         |           |        |          |        | and              | 190                          | 192        | 2        | 8.4           |          |
|             | KMYC016*  | RC     | 698,792 | 7,664,244 | 181    | -60      | 360    | 100              | 29                           | 35         | 6        | 0.39          |          |
|             |           |        |         |           |        |          |        | including        | 29                           | 30         | 1        | 0.51          |          |
|             |           |        |         |           |        |          |        | and              | 34                           | 35         | 1        | 1.24          |          |
|             |           |        |         |           |        |          |        |                  | 65<br>65                     | 76         | 11       | 0.86          |          |
|             |           |        |         |           |        | -        | -      |                  | 65                           | 66         | 5        | 1.15<br>2.67  |          |
|             |           |        | 1       |           |        |          |        | 1                |                              | 00         |          | 2.07          |          |
|             | KMYC017*  | RC     | 698,895 | 7,664,235 | 183    | -60      | 360    | 94               | 53                           | 55         | 2        | 1.72          |          |
|             |           |        |         |           |        |          |        | taut "           | 65                           | 82         | 17       | 0.84          |          |
|             |           |        |         |           |        |          |        | Including        | 65                           | 69         | 4        | 2.37          |          |
|             |           |        |         |           |        | -        | -      | and              | 67<br>79                     | 68<br>80   | 1        | 5<br>1.03     |          |
|             |           | ı      |         |           |        |          |        |                  |                              |            |          |               |          |
|             | KMYC018*  | RC     | 698,983 | 7,664,230 | 187    | -60      | 360    | 148              | 67                           | 68         | 1        | 0.74          |          |
|             |           |        |         |           |        |          |        |                  | 106                          | 128        | 22       | 1.93          |          |
|             |           |        |         |           |        |          |        | including        | 113                          | 118        | 5        | 7.02          |          |
|             |           |        |         |           |        |          |        | and              | 115<br>127                   | 116<br>128 | 1        | 19.41<br>1.07 |          |
|             |           |        |         |           |        |          |        |                  | 127                          | 120        |          | 1.07          |          |
|             | KMYC019*  | RC     | 699,073 | 7,664,273 | 184    | -60      | 360    | 154              | 96                           | 118        | 22       | 1.56          |          |
|             |           |        |         |           |        |          |        | including        | 102                          | 118        | 16       | 1.95          |          |
|             |           |        |         |           |        |          |        | and              | 102                          | 105        | 3        | 2.32          |          |
|             |           |        |         |           |        |          |        |                  | 107                          | 108        | 1        | 2.2           |          |
|             |           |        |         |           |        |          |        |                  | 110<br>114                   | 111<br>118 | 1 4      | 7.48<br>2.01  |          |
| iossan Hill |           |        |         |           |        |          |        |                  |                              | 110        |          | 2.01          |          |
|             | KMYC020*  | RC     | 699,097 | 7,664,278 | 184    | -60      | 360    | 148              | 112                          | 123        | 11       | 6.97          |          |
|             |           |        |         |           |        |          |        | including<br>and | 114<br>115                   | 116        | 2        | 33.39<br>49.1 |          |
|             |           |        |         |           |        |          |        | and              | 115                          | 110        |          | 43.1          |          |
|             | KMYC021*  | RC     | 699,055 | 7,664,274 | 183    | -60      | 360    | 148              | 77                           | 107        | 30       | 1.3           |          |
|             |           |        |         |           |        |          |        | including        | 102                          | 109        | 7        | 2.23          |          |
|             |           |        |         |           |        |          |        | and              | 103                          | 104        | 1        | 5             |          |
|             | KMYC022*  | RC     | 699,016 | 7,664,256 | 185    | -60      | 360    | 124              | 77                           | 99         | 22       | 1.18          |          |
|             |           |        |         |           |        |          |        | including        | 92                           | 96         | 4        | 2.73          |          |
|             |           |        | I       |           |        |          | I      | and              | 95                           | 96         | 1        | 5.89          |          |
|             | KMYC023*  | RC     | 698,918 | 7,664,250 | 185    | -60      | 360    | 76               | 32                           | 44         | 12       | 1.18          |          |
|             |           |        |         |           |        |          |        | including        | 32                           | 33         | 1        | 2.58          |          |
|             |           |        |         |           |        |          |        |                  |                              |            |          |               |          |
|             | KMYC024*  | RC     | 698,571 | 7,664,229 |        |          |        | 76               | 72                           | 73         | 1        | 2.6           | Abandone |
|             | KMYC025   | RC     | 698,400 | 7,664,176 | 179    | -60      | 360    | 178<br>including | 137                          | 143        | 6        | 1.52          |          |
|             |           | I      |         |           |        |          | L      | monuting         | 140                          | 145        | 1        | 4.36          |          |
|             | KMYC026   | RC     | 698,964 | 7,664,274 | 188    | -60      | 360    | 64               | 11                           | 22         | 11       | 1.17          |          |
|             |           |        |         |           |        |          |        | including        | 18                           | 22         | 4        | 2.32          |          |
|             |           |        |         |           |        |          |        | and              | 18                           | 19         | 1        | 4.85          |          |
|             | KMYC027   | DC.    | 699,265 | 7,664,266 | 204    | .60      | 44.5   | 100              | 52                           | 56         | 4        | 0.96          |          |
|             | 10021     | RC     | 033,200 | 7,004,200 | 204    | -60      | -++.0  | including        | 52                           | 55         | 4        | 1.72          |          |
|             |           | I      |         |           |        |          | ·      |                  |                              |            |          | –             |          |
|             | KMYC028   | RC     | 699,237 | 7,664,235 | 198    | -60      | 44.5   |                  | 80                           | 96         | 16       | 1.08          |          |
|             |           |        |         |           |        |          |        | including        | 93<br>94                     | 96<br>95   | 3        | 3.49          |          |
|             |           | ·      |         |           |        | <u> </u> | ·      | and              | 34                           | 30         | <u> </u> | 5.62          |          |
|             | KMYC029   | RC     | 699,314 | 7,664,164 | 197    | -60      | 44.5   |                  | 4                            | 8          | 4        | 4.87          |          |
|             |           |        |         |           |        |          |        | and              | 59                           | 66         | 7        | 0.73          |          |
|             |           | 1      |         |           | I      | I        | I      | including        | 63                           | 64         | 1        | 5.62          |          |
|             | KMYC030   | RC     | 699,359 | 7,664,135 | 194    | -60      | 44.5   | 100              | 59                           | 70         | 11       | 1.76          |          |
|             |           |        |         |           |        |          |        | including        | 68                           | 70         | 2        | 5.93          | -        |
|             |           |        |         |           |        |          | I      | and              | 68                           | 69         | 1        | 9.78          |          |
|             | KMYC031   | RC     | 699,169 | 7,664,253 | 194    | -50      | 44.5   | 130              | 107                          | 111        | 4        | 2.11          |          |
|             |           |        |         |           |        |          |        | including        | 109                          | 110        | 1        | 4.05          |          |
|             |           |        |         |           |        |          |        |                  |                              |            |          |               |          |
|             | KMV0022   | PC     | 608 202 | 7 664 470 | 170    | 60       | 360    | 100              | 150                          | 165        |          | 2.00          |          |
|             | KMYC032   | RC     | 698,300 | 7,664,173 | 178    | -60      | 360    | 190<br>including | 159<br>161                   | 165<br>165 | 6 4      | 2.06<br>2.81  |          |

Table 1: Mt York Project - Summary of Significant Intersections > 0.5g/t Au



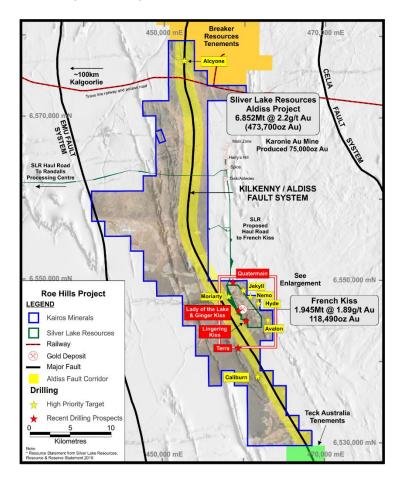

| Prospect     | Material      | Category  | Tonnes<br>(kt) | Au (g/t) | Ounces<br>(koz) |
|--------------|---------------|-----------|----------------|----------|-----------------|
| Iron Stirrup | Fresh         | Indicated | 421            | 2.22     | 30              |
| •            |               | Inferred  | 293            | 1.67     | 15              |
|              | Transitional  | Indicated | 325            | 1.18     | 12              |
| Old Faithful |               | Inferred  | 327            | 1.37     | 14              |
|              | Fresh         | Indicated | 609            | 1.41     | 27              |
|              |               | Inferred  | 807            | 1.41     | 37              |
|              | Oxide         | Indicated | 361            | 0.99     | 11              |
|              | ende          | Inferred  | 339            | 1.16     | 12              |
| Main Hill    | Transitional  | Indicated | 298            | 1.55     | 15              |
|              |               | Inferred  | 560            | 1.26     | 23              |
|              | Fresh         | Inferred  | 83             | 1.85     | 5               |
|              | Oxide         | Indicated | 157            | 1.24     | 6               |
|              | ende          | Inferred  | 154            | 1.01     | 5               |
| Breccia Hill | Transitional  | Indicated | 275            | 1.4      | 12              |
|              |               | Inferred  | 466            | 1.33     | 20              |
|              | Fresh         | Inferred  | 217            | 1.96     | 14              |
| Tot          | al Indicated  | 2,446     | 1.46           | 113      |                 |
| Tot          | al Inferred   |           | 3,246          | 1.40     | 145             |
| Total Ind    | icated + Infe | erred     | 5,692          | 1.42     | 258             |

Table 2: Mt York Project - October 2016 Kairos Minerals JORC 2012 Mineral Resource Table for IronStirrup, Old Faithful Prospects, Breccia Hill and Main Hill (reported at a 0.5g/t cut-off)

KAIROS

### ROE HILLS PROJECT, EASTERN GOLDFIELDS (KAIROS: 100%)

The 100%-owned Roe Hills Project, located 120km east of Kalgoorlie in WA's Eastern Goldfields, comprises an extensive tenement portfolio which is highly prospective for gold, nickel and cobalt discoveries. Kairos' tenure adjoins the emerging Lake Roe gold discovery, owned by Breaker Resources (ASX: BRB).



**Figure 9: Roe Hills Project** 

Towards the end of the Quarter, Kairos completed a new program of gold-focused Aircore and Reverse Circulation (RC) drilling at its 100%-owned Roe Hills Project, located 120km east of Kalgoorlie in Western Australia (Figure 9).

The program comprised a total of 27 holes for approximately 3,101m of combined Aircore/Reverse Circulation drilling and was designed to follow up on the outstanding results and new gold discoveries reported at Roe Hills last year (see ASX announcement: 7 August 2017).

The recently completed program was designed to test both dip and strike extensions of previously defined mineralisation at a number of targets with the potential for near-term resource delineation (such as Lingering Kiss, Lady of the Lake, Terra and Caliburn), and to commence testing of several newly identified greenfields targets (Quartermain, Moriarty, Nemo, Avalon, Nautilus).

Assay results from the drilling were received subsequent to Quarter-end, and were reported to the ASX on 30 January 2018.



Assays confirm visually encouraging indicators with all targets remaining open. Better results include:

| Lingering Kiss | RHRC037 | 1m @ 5.14g/t Au from 96m; and<br>4m @ 4.99g/t Au from 153m, <i>including:</i><br>2m @ 8.87g/t Au from 154m   |
|----------------|---------|--------------------------------------------------------------------------------------------------------------|
| Terra          | RHRC048 | 2m @ 4.87g/t Au from 81m, <i>including:</i><br><i>1m @ 8.96g/t Au from 81m,</i><br>3m @ 1.54g/t Au from 147m |

Preliminary testing also undertaken of the recently defined gold-in-soil geochemical anomalies at Quartermain, 4km north of Silver Lake's French Kiss deposit.

|                |           | Collar Loca | tion & Ori | ontation |       |          |         | Roe        | Hills Explor | ation Dr   | illing Re  | sults  |              | Intersection Summary                                                         |
|----------------|-----------|-------------|------------|----------|-------|----------|---------|------------|--------------|------------|------------|--------|--------------|------------------------------------------------------------------------------|
|                |           | COllar LUCA |            | entation | 1     |          |         | Total      |              |            | 1          |        | 1            |                                                                              |
| Prospect       | Hole      | Туре        | E          | N        | RL    | Dip      | Az      | Depth      |              | From       | То         | Length | Au (g/t)     | Comments                                                                     |
|                |           |             |            |          |       |          |         | (m)        |              | (m)        | (m)        | (m)    |              |                                                                              |
|                | RHRC048   | RC          | 459520     | 6540761  | 294   | -60      | 63      | 180        |              | 81         | 83         | 2      | 4.87         | Test ~40m below RHRC002 lode intersection                                    |
|                |           |             |            |          |       |          |         |            | including    | 81         | 82         | 1      | 8.96         |                                                                              |
|                |           |             |            |          |       |          |         |            |              | 147<br>157 | 150<br>158 | 3      | 1.54<br>0.78 |                                                                              |
|                |           |             |            |          |       |          |         |            |              | 157        | 150        |        | 0.76         |                                                                              |
|                | RHRC049   | RC          | 459295     | 6541490  | 290   | -60      | 63      | 180        |              | 110        | 119        | 9      | 0.86         | Test up -dip of TD1 & below KR130                                            |
| TERRA          | 10110040  | 110         | 100200     | 0011100  | 200   |          |         |            |              | 128        | 129        | 1      | 1.49         |                                                                              |
|                |           |             |            |          |       |          |         |            |              | 133        | 134        | 1      | 1.1          |                                                                              |
|                |           |             |            |          |       |          |         |            |              | 100        | 101        |        |              |                                                                              |
|                | RHRC050   | RC          | 459177     | 6541707  | 288   | -60      | 63      | 180        |              |            |            |        | NSR          |                                                                              |
|                |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC051   | RC          | 459210     | 6542036  | 288   | -60      | 63      | 180        |              | 176        | 180        | 4      | 0.6          | Test up dip of RHDD036, 4m composite                                         |
|                | BUBBBBB   | RC          | 459940     | 6545080  | 290   | -60      | 270     | 121        | 1            |            |            |        | NSR          |                                                                              |
|                | RHRC035   | RC          | 409940     | 0343080  | 290   | -00      | 270     | 121        |              |            |            |        | NSK          | Exploration 160m west of RHRC021                                             |
|                | RHRC036   | RC          | 460020     | 6545080  | 290   | -60      | 270     | 120        |              |            |            |        | NSR          | Exploration 80m west of RHRC021                                              |
|                |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC037   | RC          | 460180     | 6545080  | 290   | -60      | 270     | 178        |              | 96         | 97         | 1      | 5.14         | 80m Infill between RHRC021 & 022                                             |
|                |           |             |            |          |       |          |         |            |              | 139        | 140        | 1      | 0.62         |                                                                              |
|                |           |             |            |          |       |          |         |            | including    | 153<br>154 | 157<br>156 | 4      | 4.99<br>8.87 |                                                                              |
|                |           |             |            |          |       |          |         |            | including    | 162        | 166        | 4      |              | 4m composite                                                                 |
|                |           |             |            |          |       |          |         |            |              |            |            | 7      | 0.00         |                                                                              |
|                | RHRC038   | RC          | 460440     | 6545080  | 290   | -60      | 270     | 130        |              |            |            |        | NSR          | Collar 100m E of RHRC032. Test zone to west in mag high feature              |
| LINGERING KISS |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC039   | RC          | 460346     | 6545080  | 290   | -60      | 90      | 178        |              |            |            |        | NSR          | Test mag high feature and further lodes east of RHRC032                      |
|                | DUDOS (S  | RC          | 4004.00    | 0545000  | 000   | <u> </u> | 00      | 470        |              | 74         | 76         | 1      | 0.77         |                                                                              |
|                | RHRC040   | RC          | 460106     | 6545080  | 290   | -60      | 90      | 178        |              | 74         | 75<br>77   | 1      | 0.77         | Test beneath RHRC037 & RHRC022 looking for different lode orientations       |
|                |           |             |            |          |       |          |         |            |              | 76<br>121  | 123        | 1      | 0.53         |                                                                              |
|                |           |             |            |          |       |          |         |            |              | 121        | 123        | 2      | 1.00         |                                                                              |
|                | RHRC041   | RC          | 460270     | 6545000  | 290   | -60      | 270     | 178        | 1            | 148        | 153        | 5      | 0.70         | Exploration 80m south along strike of RHRC022 & RHRC037                      |
|                |           |             |            |          |       |          |         |            |              | 156        | 158        | 2      | 0.73         | 2m composite                                                                 |
|                |           |             |            |          |       |          |         |            |              | 174        | 176        | 2      |              | 2m composite                                                                 |
|                |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC042   | RC          | 460440     | 6545000  | 290   | -60      | 270     | 178        |              |            |            |        | NSR          | Test mag high feature south of RHRC038                                       |
|                |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC043   | RC          | 459240     | 6546280  | 290   | -60      | 270     | 120        |              |            |            |        | NSR          | Test 80m west of RHRC025                                                     |
|                | RHRC044   | RC          | 459310     | 6546440  | 288   | -60      | 270     | 120        |              |            |            |        | NSR          | Test 160m north along strike of 6546280N Section and anomalous soils and RAB |
|                | 11110044  | NO          | 100010     | 0010110  | 200   | 00       | 2/0     | 120        |              |            |            |        | Non          |                                                                              |
|                | RHRC045   | RC          | 459470     | 6546440  | 287   | -60      | 270     | 120        |              | 18         | 22         | 4      | 0.90         | Test 160m north along strike of 6546280N Section and anomalous soils and RAB |
|                |           |             |            |          |       |          |         |            |              | 53         | 59         | 6      | 0.46         |                                                                              |
| LADY OF THE    |           |             |            |          |       |          |         |            |              | 106        | 108        | 2      | 0.55         |                                                                              |
| LAKE           |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC046   | RC          | 459630     | 6546440  | 287   | -60      | 270     | 120        |              |            |            |        | NSR          | Test 160m north along strike of 6546280N Section and anomalous soils.        |
|                | DUD00 (7  |             | 450040     | 0540000  | 0.04  |          | 070     | 470        | 1            |            |            |        | 0.40         |                                                                              |
|                | RHRC047   | RC          | 459240     | 6546280  | 291   | -60      | 270     | 178        |              | 4          | 6<br>74    | 2      | 0.48         | Test east of & below RHRC011 Includes waste interval                         |
|                |           |             |            |          |       |          |         |            |              | 135        | 136        | 1      | 1.28         |                                                                              |
|                |           |             | 1          |          | 1 -   |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC014   | RC          | 459421     | 6546123  | 290   | -60      | 270     | 180        |              | 146        | 147        | 1      | 1.06         | Re-entry drill 90 -180m                                                      |
|                | RHRC052   | RC          | 458522     | 6549675  | 284   | -60      | 270     | 24         | 1            |            |            |        | NSR          | Test soil anomaly                                                            |
|                | KHKG052   | RU          | 406022     | 0049070  | 204   | -00      | 270     | 24         |              |            |            |        | NSK          | rest son anomaly                                                             |
|                | RHRC053   | RC          | 458501     | 6549675  | 284   | -60      | 270     | 24         |              |            |            |        | NSR          | Test soil anomaly                                                            |
|                | 101100000 | 110         | 430301     | 0343013  | 204   |          |         | . <u> </u> |              |            |            |        | Non          | rear and many                                                                |
|                | RHRC054   | RC          | 458556     | 6549674  | 284   | -60      | 270     | 30         |              |            |            |        | NSR          | Test soil anomaly                                                            |
|                |           |             |            |          |       |          |         |            |              |            |            |        |              |                                                                              |
|                | RHRC055   | RC          | 458601     | 6549674  | 284   | -60      | 270     | 36         |              | 17         | 21         | 4      | 0.19         | Test soil anomaly, 4 metre composite                                         |
|                | L         |             |            | 1        |       |          |         |            |              |            |            |        |              |                                                                              |
| QUATERMAIN     | RHRC056   | RC          | 458639     | 6549674  | 284   | -60      | 270     | 30         |              |            |            |        | NSR          | Test soil anomaly                                                            |
|                | DUDG      |             | 100-11     | 0545     | 0.0.0 |          | 070     | 00         | 1            |            | 6-         |        | 0            | T                                                                            |
|                | RHRC057   | RC          | 458519     | 6549774  | 284   | -60      | 270     | 36         |              | 18         | 22         | 4      | 0.33         | Test soil anomaly, 4 metre composite                                         |
|                | PUPCASA   | PC          | 459500     | 6540770  | 20.4  | -60      | 270     | 36         | 1            |            |            |        | NOD          | Test sail gromaly                                                            |
|                | RHRC058   | RC          | 458562     | 6549773  | 284   | -00      | 210     | 30         | I            |            |            |        | NSR          | Test soil anomaly                                                            |
|                | RHRC059   | RC          | 458598     | 6549776  | 284   | -60      | 270     | 36         |              |            |            |        | NSR          | Test soil anomaly                                                            |
|                |           |             | 100000     | 2010110  | 201   |          |         | ļ          |              |            |            |        | non          |                                                                              |
|                | RHRC060   | RC          | 458640     | 6549774  | 284   | -60      | 270     | 30         |              |            |            |        | NSR          | Test soil anomaly                                                            |
|                |           |             |            |          |       |          | · · · · |            |              |            |            |        |              | *                                                                            |

**Table 3: Roe Hills Project - Summary of Significant Intersections** 



### CORPORATE

### **Capital Raisings**

The \$7.3 million share placement to sophisticated and professional investor clients of CPS Capital and Patersons Securities was completed on 22 November 2017 after shareholder approval was received to refresh the Company's placement capacity. Leading global investor Eric Sprott, through Sprott Capital Partners, joined the Kairos share register after collectively subscribing for \$5 million as part of the placement.

Milestone for Series B (2,983,333 shares), Series C (3,933,335 shares), Series D (6,700,000 shares), Series E (6,700,000 shares) and Series J (10,500,000 shares) were achieved and issued during the quarter;

74,126,317 KAIO options were exercised (\$1.9M in cash received) during the quarter;

### **Annual General Meeting**

The Company's Annual General Meeting was held in Perth on 15 November 2017, with all resolutions supported by shareholders on a show of hands.

| For further information, please contact: |                              |  |  |  |  |
|------------------------------------------|------------------------------|--|--|--|--|
| Investors:                               | Media:                       |  |  |  |  |
| Mr Terry Topping                         | Nicholas Read/Paul Armstrong |  |  |  |  |
| Executive Chairman                       | Read Corporate               |  |  |  |  |
| Kairos Minerals Limited                  | Ph: 08 9388 1474             |  |  |  |  |

#### COMPETENT PERSON STATEMENT:

Competent Person: The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled and reviewed by Mr Steve Vallance, who is the Technical Manager for Kairos Minerals Ltd and who is a Member of The Australian Institute of Geoscientists. The information was also reviewed by Mr Terry Topping, who is a Director of Kairos Minerals Ltd and who is also a Member of AusIMM. Both Mr Vallance and Mr Topping have sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' (the JORC Code 2012). Mr Vallance and Mr Topping have consented to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

+Rule 5.5

## Appendix 5B

### Mining exploration entity and oil and gas exploration entity quarterly report

Introduced 01/07/96 Origin Appendix 8 Amended 01/07/97, 01/07/98, 30/09/01, 01/06/10, 17/12/10, 01/05/13, 01/09/16

### Name of entity

Kairos Minerals Limited (ASX:KAI)

#### ABN

84 006 189 331

Quarter ended ("current quarter")

31st December 2017

| Con | solidated statement of cash flows              | Current quarter<br>\$A'000 | Year to date<br>(6 months)<br>\$A'000 |
|-----|------------------------------------------------|----------------------------|---------------------------------------|
| 1.  | Cash flows from operating activities           |                            |                                       |
| 1.1 | Receipts from customers                        | -                          | -                                     |
| 1.2 | Payments for                                   |                            |                                       |
|     | (a) exploration & evaluation                   | (1,041)                    | (1,838)                               |
|     | (b) development                                | -                          | -                                     |
|     | (c) production                                 | -                          | -                                     |
|     | (d) staff costs                                | -                          | -                                     |
|     | (e) administration and corporate costs         | (473)                      | (1,031)                               |
| 1.3 | Dividends received (see note 3)                | -                          | -                                     |
| 1.4 | Interest received                              | 2                          | 2                                     |
| 1.5 | Interest and other costs of finance paid       | -                          | -                                     |
| 1.6 | Income taxes paid                              | -                          | -                                     |
| 1.7 | Research and development refunds               | -                          | 808                                   |
| 1.8 | Other (provide details if material)*           | -                          | -                                     |
| 1.9 | Net cash from / (used in) operating activities | (1,512)                    | (2,059)                               |

| 2.  | Cash flows from investing activities |      |      |
|-----|--------------------------------------|------|------|
| 2.1 | Payments to acquire:                 |      |      |
|     | (a) property, plant and equipment    | -    | -    |
|     | (b) tenements (see item 10)          | (20) | (20) |
|     | (c) investments                      | -    | (75) |
|     | (d) other non-current assets         | -    | -    |

+ See chapter 19 for defined terms

| Con | solidated statement of cash flows              | Current quarter<br>\$A'000 | Year to date<br>(6 months)<br>\$A'000 |
|-----|------------------------------------------------|----------------------------|---------------------------------------|
| 2.2 | Proceeds from the disposal of:                 |                            |                                       |
|     | (a) property, plant and equipment              | -                          | -                                     |
|     | (b) tenements (see item 10)                    | -                          | -                                     |
|     | (c) investments                                | -                          | -                                     |
|     | (d) other non-current assets                   | -                          | -                                     |
| 2.3 | Cash flows from loans to other entities        | -                          | -                                     |
| 2.4 | Dividends received (see note 3)                | -                          | -                                     |
| 2.5 | Other (provide details if material)            | -                          | -                                     |
| 2.6 | Net cash from / (used in) investing activities | (20)                       | (95)                                  |

| 3.   | Cash flows from financing activities                                        |       |        |
|------|-----------------------------------------------------------------------------|-------|--------|
| 3.1  | Proceeds from issues of shares                                              | 7,305 | 9,030  |
| 3.2  | Proceeds from issue of convertible notes                                    | -     | -      |
| 3.3  | Proceeds from exercise of share options                                     | 1,927 | 1.927  |
| 3.4  | Transaction costs related to issues of shares, convertible notes or options | (504) | (573)  |
| 3.5  | Proceeds from borrowings                                                    | -     | -      |
| 3.6  | Repayment of borrowings                                                     | -     | -      |
| 3.7  | Transaction costs related to loans and<br>borrowings                        | -     | -      |
| 3.8  | Dividends paid                                                              | -     | -      |
| 3.9  | Other (provide details if material)                                         | -     | -      |
| 3.10 | Net cash from / (used in) financing activities                              | 8,728 | 10,384 |

| 4.  | Net increase / (decrease) in cash and cash equivalents for the period |         |         |
|-----|-----------------------------------------------------------------------|---------|---------|
| 4.1 | Cash and cash equivalents at beginning of period                      | 2,459   | 1,425   |
| 4.2 | Net cash from / (used in) operating activities (item 1.9 above)       | (1,512) | (2,059) |
| 4.3 | Net cash from / (used in) investing activities (item 2.6 above)       | (20)    | (95)    |
| 4.4 | Net cash from / (used in) financing activities (item 3.10 above)      | 8,728   | 10,384  |
| 4.5 | Effect of movement in exchange rates on<br>cash held                  | -       | -       |
| 4.6 | Cash and cash equivalents at end of period                            | 9,655   | 9,655   |

+ See chapter 19 for defined terms

| 5.  | Reconciliation of cash and cash<br>equivalents<br>at the end of the quarter (as shown in the<br>consolidated statement of cash flows) to the<br>related items in the accounts | Current quarter<br>\$A'000 | Previous quarter<br>\$A'000 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|
| 5.1 | Bank balances                                                                                                                                                                 | 9,655                      | 2,459                       |
| 5.2 | Call deposits                                                                                                                                                                 | -                          | -                           |
| 5.3 | Bank overdrafts                                                                                                                                                               | -                          | -                           |
| 5.4 | Other (provide details)                                                                                                                                                       | -                          | -                           |
| 5.5 | Cash and cash equivalents at end of quarter (should equal item 4.6 above)                                                                                                     | 9,655                      | 2,459                       |

| 6.  | Payments to directors of the entity and their associates                                | Current quarter<br>\$A'000 |
|-----|-----------------------------------------------------------------------------------------|----------------------------|
| 6.1 | Aggregate amount of payments to these parties included in item 1.2                      | 125                        |
| 6.2 | Aggregate amount of cash flow from loans to these parties included in item 2.3          | -                          |
| 6.3 | Include below any explanation necessary to understand the transaction items 6.1 and 6.2 | ns included in             |
|     |                                                                                         |                            |

| 7. | Payments to related entities of the entity and their |  |  |
|----|------------------------------------------------------|--|--|
|    | associates                                           |  |  |

| 7.1 | Aggregate amount of payments to these parties included in item 1.2 |  |
|-----|--------------------------------------------------------------------|--|
|     |                                                                    |  |

- Aggregate amount of cash flow from loar in item 2.3 7.2
- 7.3 Include below any explanation necessary to understand the transactions included in items 7.1 and 7.2

\_

| Current quarter<br>\$A'000 |
|----------------------------|
| -                          |

| ····· <b>y</b> ·····         | \$A |
|------------------------------|-----|
| parties included in item 1.2 |     |
| ns to these parties included |     |

| 8.  | Financing facilities available<br>Add notes as necessary for an<br>understanding of the position | Total facility amount<br>at quarter end<br>\$A'000 | Amount drawn at<br>quarter end<br>\$A'000 |
|-----|--------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 8.1 | Loan facilities                                                                                  | -                                                  | -                                         |
| 8.2 | Credit standby arrangements                                                                      | -                                                  | -                                         |
| 8.3 | Other (please specify)                                                                           | -                                                  | -                                         |
| 0.4 |                                                                                                  |                                                    | · · · · · · · · · · · · · · · · · · ·     |

8.4 Include below a description of each facility above, including the lender, interest rate and whether it is secured or unsecured. If any additional facilities have been entered into or are proposed to be entered into after quarter end, include details of those facilities as well.

-

| 9.  | Estimated cash outflows for next quarter | \$A'000 |
|-----|------------------------------------------|---------|
| 9.1 | Exploration and evaluation               | 700     |
| 9.2 | Development                              | -       |
| 9.3 | Production                               | -       |
| 9.4 | Staff costs                              | -       |
| 9.5 | Administration and corporate costs       | 350     |
| 9.6 | Other (provide details if material)      | -       |
| 9.7 | Total estimated cash outflows            | 1050    |

| 10.  | Changes in<br>tenements<br>(items 2.1(b) and<br>2.2(b) above)                                     | Tenement<br>reference<br>and<br>location | Nature of interest | Interest at<br>beginning<br>of quarter | Interest<br>at end of<br>quarter |
|------|---------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|----------------------------------------|----------------------------------|
| 10.1 | Interests in mining<br>tenements and<br>petroleum tenements<br>lapsed, relinquished<br>or reduced |                                          |                    |                                        |                                  |
| 10.2 | Interests in mining<br>tenements and<br>petroleum tenements<br>acquired or increased              |                                          |                    |                                        |                                  |

### Refer to Annexure A.

### Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Sign here: Chairman & CEO

Date: 31 January 2018

Print name: Terry Topping

### Notes

- 1. The quarterly report provides a basis for informing the market how the entity's activities have been financed for the past quarter and the effect on its cash position. An entity that wishes to disclose additional information is encouraged to do so, in a note or notes included in or attached to this report.
- 2. If this quarterly report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.

| Project<br>Tenements                                    | Location | Held at the<br>start of the<br>quarter | Acquired<br>during the<br>quarter | Disposed<br>during the<br>quarter | Held at the end<br>of the quarter |
|---------------------------------------------------------|----------|----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Roe Hills                                               |          |                                        |                                   |                                   |                                   |
| E28/1935                                                |          |                                        |                                   |                                   |                                   |
| E28/2117                                                |          |                                        |                                   |                                   |                                   |
| E28/2118                                                |          |                                        |                                   |                                   |                                   |
| E28/2495                                                |          |                                        |                                   |                                   |                                   |
| E28/2548                                                |          |                                        |                                   |                                   |                                   |
| E28/2585                                                |          |                                        |                                   |                                   |                                   |
| P28/1292                                                |          |                                        |                                   |                                   |                                   |
| P28/1293                                                |          |                                        |                                   |                                   |                                   |
| P28/1294                                                |          |                                        |                                   |                                   |                                   |
| P28/1295                                                | WA       | 100%                                   |                                   |                                   | 100%                              |
| P28/1296                                                |          |                                        |                                   |                                   |                                   |
| P28/1297                                                |          |                                        |                                   |                                   |                                   |
| P28/1298                                                |          |                                        |                                   |                                   |                                   |
| P28/1299                                                |          |                                        |                                   |                                   |                                   |
| P28/1300                                                |          |                                        |                                   |                                   |                                   |
| E28/2593                                                |          |                                        |                                   |                                   |                                   |
| E28/2594                                                |          |                                        |                                   |                                   |                                   |
| E28/2698                                                |          |                                        |                                   |                                   |                                   |
| E28/2699                                                |          |                                        |                                   |                                   |                                   |
| E28/2700                                                |          |                                        |                                   |                                   |                                   |
| Fraser Range<br>Project                                 |          |                                        |                                   |                                   |                                   |
| E69/3411                                                | WA       | 100%                                   |                                   |                                   | 100%                              |
| E69/3308                                                | WA       | 100%                                   |                                   |                                   | 100%                              |
| Dingo Range                                             |          |                                        |                                   |                                   |                                   |
| E53/1731                                                |          |                                        |                                   |                                   |                                   |
| E53/1732                                                |          |                                        |                                   |                                   |                                   |
| E53/1733                                                |          |                                        |                                   |                                   |                                   |
| P53/1624                                                | WA       | 100%                                   |                                   |                                   | 100%                              |
| E53/1814                                                |          |                                        |                                   |                                   |                                   |
| E53/1927                                                |          |                                        |                                   |                                   |                                   |
| E53/1928                                                |          |                                        |                                   |                                   |                                   |
| Pilbara<br>Lithium-Gold<br>Project (Mt<br>York Project) |          |                                        |                                   |                                   |                                   |
| P45/2987                                                |          |                                        |                                   |                                   |                                   |
| P45/2989                                                | ]        |                                        |                                   |                                   |                                   |
| P45/2996                                                | WA       | 100%                                   |                                   |                                   | 100%                              |
| P45/2998                                                | -        |                                        |                                   |                                   |                                   |
| P45/2988                                                |          |                                        |                                   |                                   |                                   |

### Annexure A – Tenement Schedule

| Appendix 5E                                                                  | 3 |
|------------------------------------------------------------------------------|---|
| Mining exploration entity and oil and gas exploration entity quarterly repor | t |

| Project<br>Tenements   | Location | Held at the<br>start of the<br>quarter | Acquired<br>during the<br>quarter | Disposed<br>during the<br>quarter | Held at the end<br>of the quarter |
|------------------------|----------|----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| P45/2992               |          |                                        |                                   |                                   |                                   |
| P45/2993               |          |                                        |                                   |                                   |                                   |
| P45/2994               |          |                                        |                                   |                                   |                                   |
| P45/2990               | 14/4     | 100%                                   |                                   |                                   | 100%                              |
| P45/2991               | WA       | 100%                                   |                                   |                                   | 100%                              |
| P45/2997               |          |                                        |                                   |                                   |                                   |
| P45/2995               |          |                                        |                                   |                                   |                                   |
| L45/0422               |          |                                        |                                   |                                   |                                   |
| Wodjina<br>Project     |          |                                        |                                   |                                   | -                                 |
| E45/4715               |          |                                        |                                   | JV Altura                         |                                   |
| E45/4780               | 14/4     | 100%                                   |                                   | JV Altura                         | 1000/                             |
| E45/4740               | WA       | 100%                                   |                                   |                                   | 100%                              |
| E45/4731               |          |                                        |                                   |                                   |                                   |
| Croydon<br>Project     |          |                                        | ·                                 |                                   |                                   |
| E47/3522               | 14/4     | 100%                                   |                                   |                                   | 1000/                             |
| E47/3523               | WA       | 100%                                   |                                   |                                   | 100%                              |
| Croydon<br>Project     |          |                                        |                                   |                                   |                                   |
| E47/3519               |          |                                        |                                   |                                   |                                   |
| E47/3520               | WA       | 100%                                   |                                   |                                   | 100%                              |
| E47/3521               |          |                                        |                                   |                                   |                                   |
| Lalla Rookh<br>Project |          |                                        |                                   |                                   |                                   |
| E45/4741               | WA       | 100%                                   |                                   |                                   | 100%                              |
| Tiapan Project         |          |                                        |                                   |                                   |                                   |
| E45/4806               | WA       | 100%                                   |                                   |                                   | 100%                              |
| Woodcutters<br>Project |          |                                        |                                   |                                   |                                   |
| E28/2646               |          |                                        |                                   |                                   |                                   |
| E28/2647               | WA       | 100%                                   |                                   |                                   | 100%                              |
| E28/2648               |          |                                        |                                   |                                   |                                   |
| Mooloo<br>Project      |          |                                        |                                   |                                   |                                   |
| E08/2857               | WA       | 100%                                   |                                   |                                   | 100%                              |