

ASX: G88

CAPITAL STRUCTURE

Total shares on issue: 52.44m
Unlisted Issued Options: 6.77m
Market Cap @ \$0.66: \$34.6 million

CORPORATE DIRECTORY

Mr Rhod Grivas Non-Executive Chairman

> Mr Tim Putt Managing Director

Dr Koon Lip Choo Non-Executive Director

Mr Phillip Grundy Non-Executive Director

CONTACT DETAILS

1B/ 205-207 Johnson St, Fitzroy, Victoria, 3065 **T:** +61 (0) 3 9191 0135 **F:** +61 (0) 3 8678 1747

ACN 614 538 402

www.goldenmileresources.com.au

ASX Announcement 18 March 2018

QUICKSILVER DISCOVERY: NICKEL MINERALISATION EXTENDED

Pyrite & pyrrhotite sulphides from drilling north of Anomaly 3

HIGHLIGHTS

- A third phase of drilling has now been completed over the Quicksilver nickel discovery, extending the mineralised envelope to the west.
- Drill to commence in early June on priority MLEM target at Anomaly One with departmental works approval in place.
- Results include:

QRC 093 5m @ 1.10% Nickel & 0.11% Cobalt from 23m

QRC 103 28m @ 0.86% Nickel & 0.03% Cobalt from 0m

Incl. 3m @ 2.21% Nickel & 0.07% Cobalt from 20m

- Ongoing drill results expected in coming weeks
- A number of drill holes have been pushed to depth, well into fresh rock, and have encountered wide intercepts of sulphides

Golden Mile Resources (ASX: G88) ("Golden Mile" or "Company") is pleased to announce that drilling continues to return significant nickel intercepts, with exploration extending the mineralised envelope to the granite boundary, west of the existing drill pattern at the Company's Quicksilver Nickel project in the South-West Mineral Field of Western Australia.

Executive Director Tim Putt said:

'We've extended our drilling pattern to the west of the existing known mineralisation and continue to encounter strong nickel mineralisation in the supergene zone.'

'In addition, we've been pushing some of the holes deeper (towards 200 metres) and encountering wide intercepts of disseminated sulphides, which bodes well for the upcoming drilling program to test Anomaly One at Wyatt's'.

Drilling also included five drill holes over Anomalies 2 & 3 to facilitate Down Hole Electromagnetics ('DHEM') to test for the potential of massive sulphides at depth within these target areas.

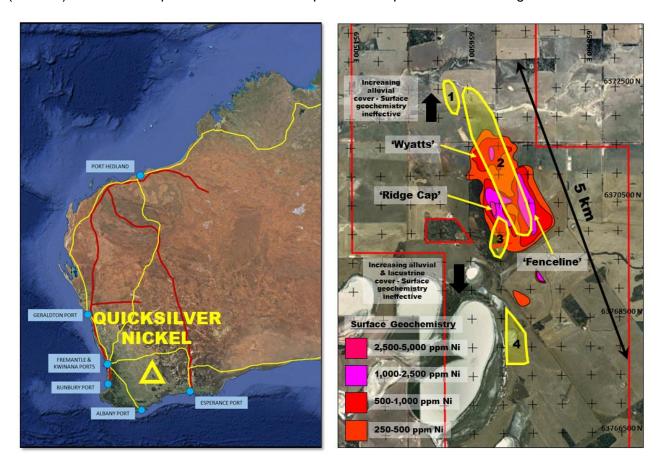


Figure 1 – Quicksilver project location (left) and MLEM targets (1-4) over nickel geochemistry at Garard's (right).

1. Phase 3 Drilling Program

A third phase of drilling has now been completed at Quicksilver, with more than 5,600 metres of RC drilling completed. This drilling was designed to:

Extend the supergene (shallow) RC program to the west of the existing drilling

Emplace five drill holes to facilitate Down Hole EM ('DHEM') over MLEM Anomalies 2 & 3

Results from the supergene phase of the drilling have now been received, with additional assays due in the coming weeks, and continue to show the presence of broad envelope nickel-cobalt mineralisation in the saprolitic zone. Intercepts include:

QRC 093	5 metres @ 1.10% Nickel & 0.11% Cobalt from 23 metres
QRC 103	28 metres @ 0.86% Nickel & 0.03% Cobalt from Surface
Incl.	3 metres @ 2.21% Nickel & 0.06% Cobalt from 20 metres
QRC 107	12 metres @ 0.92% Nickel & 0.08% Cobalt from 25 metres
QRC 108	15 metres @ 0.83% Nickel & 0.03% Cobalt from 12 metres
QRC 114	6 metres @ 0.98% Nickel & 0.04% Cobalt from 22 metres

A number of these drill holes were also extended well into fresh rock due to the presence of sulphides in the drill chips. Wide intercepts of sulphides were observed in a number of drill holes, particularly adjacent to 'Anomaly 3'. Sulphides included pyrite and pyrrhotite, with assaying showing this mineralisation to be anomalous in both copper (up to 520 ppm) and scandium (~40 ppm). The relevance of these sulphides to the mineralised system will be further investigated as exploration continues at Quicksilver.

Drilling continues to confirm the presence of significant nickel mineralisation over the Quicksilver target areas, with the target area at Garard's (in the southern Quicksilver tenement area) now covering more than 5,000 metres of strike and extending to more than 100 metres depth in drill holes (Figure 1).

Figure 2 shows the location of the recent drilling along with significant intercepts.

Results from this latest phase of drilling will continue to be reported in the coming weeks.

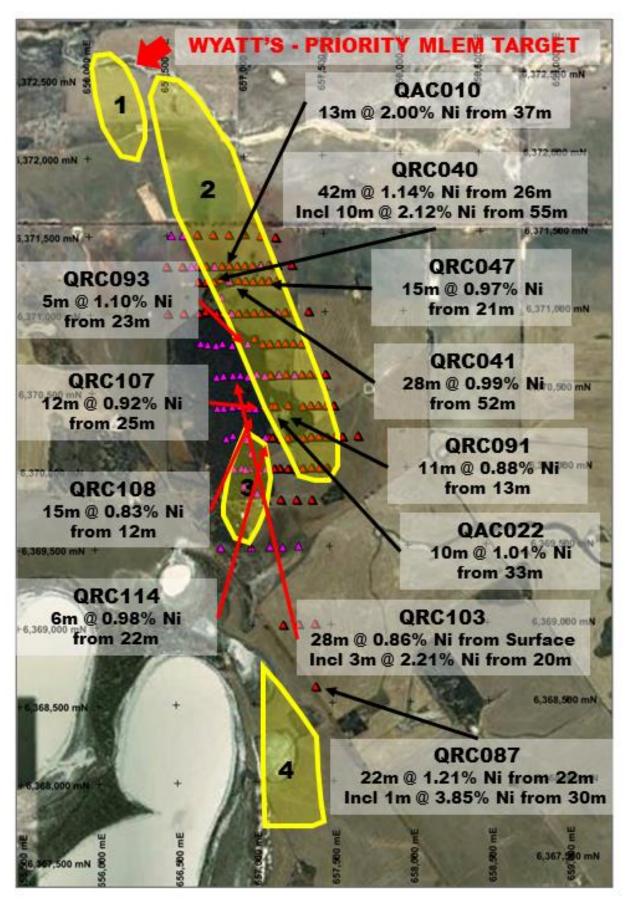


Figure 2 – Garard's drilling area, 2017 drilling (red triangles) and 2018 RC drilling (pink triangles) with results and MLEM Anomalies (1-4)

2. DHEM Drilling and Results

Follow up geophysics was completed on the two of the four Moving Loop Electromagnetic ("MLEM") anomalies to better define and understand the MLEM signatures, delineated as part of the MLEM survey earlier in the year.

The priority drill target is now Anomaly One – **Wyatt's**. The Wyatt's target lies more than **500 metres north of the existing drilling pattern** at Garard's (Figure 1). Drilling of 3 holes, targeted with the assistance of Newexco is planned to commence in early June 2018.

The Wyatt's conductor has been rated as a 'Category 1' (highest priority) anomaly and has been recommended for immediate drill testing by Newexco, due to the strong and consistent nature of the geophysical response.

The anomaly exhibits the following characteristics:

- Lies 500 metres north of the existing drill pattern at Garard's
- Is over 500 metres long with a north-south orientation
- Lies in a sub-vertical orientation, with the top of the EM anomaly approximately 100 metres below surface
- Is '...consistent with a massive sulphide bedrock conductor'1
- The '...modelled conductance is 6700 Siemens and is in the range of expected values for nickel sulphide targets¹

The Company has secured access to this target and has also recently received approval from the Department of Mining, Industry Regulation & Safety (DMIRS) for a comprehensive Program of Works ('PoW').

MLEM Anomaly 2 is a large 2.5km long laterally extensive anomaly (Figure 2) with a lower order response than Anomaly 1. It was interpreted as deeper weathering and/or high conductance geology. The weathered zone above Anomaly 2 hosts the majority of the 'supergene' nickel-cobalt mineralisation intersected to date. Two angle drill holes (QRC132 & 139), to depths of 180m, were completed to allow for down-hole EM to test high-grade nickel intersected in QRC040 & 041² (Figure 3). The downhole EM tested a very small portion of Anomaly 2 and didn't return a down hole geophysical response in the vicinity of QRC132 & 139.

The MLEM and downhole EM techniques are best at defining massive sulphide conductors rather than disseminated bodies. Given the presence of disseminated sulphide in the bedrock and the large size of Anomaly 2 the Company is considering alternative targeting methods such as Induced Polarisation (IP) surveying to better focus follow-up bedrock drilling below the 'supergene' nickel-cobalt mineralisation.

MLEM Anomaly 3 is a 500m long lower order anomaly defined by the MLEM survey. The anomaly sat to the east of the 'supergene' drilling conducted at the time. Due to the poor definition of the anomaly Newexco recommended additional testing such as downhole EM was required to verify and further define the anomaly.

Three angle RC drill holes were targeted near QRC128-130 to depths of 150 metres, with disseminated sulphides (in the form of pyrite, chalcopyrite and pyrrhotite) intersected in the drill holes (Figure 3).

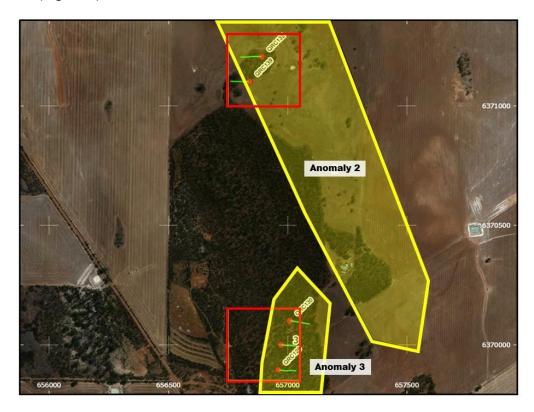


Figure 3 – Quicksilver DHEM survey areas (red) with interpreted MLEM anomalies 2 & 3 (yellow).

The DHEM did not confirm the MLEM Anomaly 3 conductor at depth, however the extensive presence of sulphides in the angle drillholes and adjacent vertical 'supergene' RC holes (detailed above) is encouraging and may indicate the presence of a larger mineralised system, with the sulphides (in the form of pyrite, chalcopyrite and pyrrhotite) associated with the western contact, proximal to Anomaly 3 showing **anomalous copper** values of up to 520 ppm.

No downhole EM was completed on MLEM Anomaly 4.

The most efficient exploration methods to test and target deeper drilling over both Anomalies 2, 3 & 4, are continuing to be assessed.

The immediate drilling priority will now be the testing the massive sulphide target at **Anomaly One.**

Golden Mile looks forward to updating shareholders as results continue to be received from the recent RC drilling program and drilling commences over the priority MLEM target at Anomaly One.

References

- Quicksilver EM Highlights Sulphide Anomalies, ASX Announcement, Golden Mile Resources Ltd, 23 February 2018
- **2.** Quarterly Activities Report, Period Ending 31 March 2018, ASX Announcement, Golden Mile Resources Ltd, 30 April 2018.

For further information please contact:

Tim Putt - Executive Director,

Golden Mile Resources Ltd (ASX: G88)

T: (08) 9480 0636, **F**: (08) 9321 0320

E: tputt@goldenmileresources.com.au

Justyn Stedwell – Company Secretary, Golden Mile Resources Ltd (ASX: G88)

T: (03) 9191 0135, **F**: (03) 8678 1747

E: justyn@stedwell.com.au

About Golden Mile Resources Ltd

Golden Mile Resources is an Australian based exploration and development company, with an outstanding suite of cobalt, gold, and base metal projects in Western Australia. The Company was formed in 2016 to carry out the acquisition, exploration and development of mining assets in Western Australia, and has to date acquired a suite of exploration projects, predominantly within the fertile North-Eastern Goldfields of Western Australia.

The Company's portfolio includes two nickel-cobalt projects, namely the Quicksilver project in the South West Mineral Field and the Minara project in the North-Eastern Goldfields.

In addition, Golden Mile holds a suite of gold projects adjacent to Leonora which include the Ironstone Well & Leonora East projects.

The Company also holds the Darlot Gold project to the north of Leonora and the Gidgee Polymetallic project north of Sandstone.

For more information please visit the Company's website: https://www.goldenmileresources.com.au/

Exploration Targets

The term 'Exploration Target' should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2012) and therefore the terms have not been used in this context. The potential quantity and grade of the Exploration target is conceptual in nature and there has been insufficient exploration to date to allow the estimation of a Mineral Resource. In addition, it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based upon information compiled by Mr Timothy Putt, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Putt is the Managing Director of Golden Mile Resources Ltd, a full-time employee and shareholder of the Company.

Mr Putt has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Putt consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Golden Mile Resources Ltd (ASX: G88) planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Golden Mile Resources Ltd (ASX: G88) believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

APPENDIX 1 - RC DRILL HOLE LOCATIONS

APPENDIX 1 – QUICKSILVER RC DRILL HOLE COLLARS (QRCO93-148)

Hole No	Hole Type	North (m)	East (m)	Grid	RL (m)	Dip	Mag Azi	Depth
QRC093	RC	6370802	657001	GDA94_50	325	-90	360	90
QRC094	RC	6370794	656952	GDA94_50	308	-90	360	90
QRC095	RC	6370792	656902	GDA94 50	323	-90	360	102
QRC096	RC	6370805	656840	GDA94_50	319	-90	360	78
QRC097	RC	6370795	656799	GDA94_50	310	-90	360	132
QRC098	RC	6370800	656745	GDA94_50	317	-90	360	84
QRC099	RC	6370808	656700	GDA94_50	322	-90	360	36
QRC100	RC	6370594	657106	GDA94_50	332	-90	360	132
QRC101	RC	6370607	657055	GDA94_50	322	-90	360	96
QRC102	RC	6370591	656997	GDA94_50	319	-90	360	84
QRC103	RC	6370602	656949	GDA94_50	308	-90	360	78
QRC104	RC	6370600	656902	GDA94_50	310	-90	360	84
QRC105	RC	6370598	656842	GDA94_50	310	-90	360	72
QRC106	RC	6370592	656798	GDA94_50	308	-90	360	54
QRC107	RC	6370405	657098	GDA94_50	313	-90	360	96
QRC108	RC	6370386	657044	GDA94_50	318	-90	360	84
QRC109	RC	6370387	657000	GDA94_50	307	-90	360	90
QRC110	RC	6370404	656943	GDA94_50	307	-90	360	90
QRC111	RC	6370400	656894	GDA94_50	308	-90	360	108
QRC112	RC	6370393	656840	GDA94_50	308	-90	360	192
QRC113	RC	6370393	656799	GDA94_50	306	-90	360	114
QRC114	RC	6370204	657102	GDA94_50	309	-90	360	108
QRC115	RC	6370201	657057	GDA94_50	302	-90	360	90
QRC116	RC	6370191	656983	GDA94_50	302	-90	360	96
QRC117	RC	6370208	656951	GDA94_50	306	-90	360	84
QRC118	RC	6370217	656896	GDA94_50	295	-90	360	192
QRC119	RC	6370197	656853	GDA94_50	306	-90	360	84
QRC120	RC	6369999	657100	GDA94_50	305	-90	360	78
QRC121	RC	6369988	657058	GDA94_50	293	-90	360	120
QRC122	RC	6370006	657000	GDA94_50	294	-90	360	192
QRC123	RC	6370006	656946	GDA94_50	285	-90	360	172
QRC124	RC	6370004	656898	GDA94_50	291	-90	360	96
QRC125	RC	6369844	657044	GDA94_50	283	-90	360	96
QRC126	RC	6369850	657000	GDA94_50	283	-90	360	78
QRC127	RC	6369850	656956	GDA94_50	295	-90	360	79
QRC128	RC	6369895	656960	GDA94_50	303	-60	90	156
QRC129	RC	6370000	656972	GDA94_50	299	-60	90	156
QRC130	RC	6370100	657009	GDA94_50	304	-60	90	156
QRC131	RC	6371499	656601	GDA94_50	296	-90	360	66
QRC132	RC	6371205	656891	GDA94_50	319	-60	270	180
QRC133	RC	6371501	656526	GDA94_50	298	-90	360	60

Hole No	Hole Type	North (m)	East (m)	Grid	RL (m)	Dip	Mag Azi	Depth
QRC134	RC	6371300	656800	GDA94_50	312	-90	360	90
QRC135	RC	6371300	656652	GDA94_50	310	-90	360	96
QRC136	RC	6371300	657095	GDA94_50	308	-90	360	84
QRC137	RC	6371302	657195	GDA94_50	307	-90	360	60
QRC138	RC	6370996	657302	GDA94_50	314	-90	360	84
QRC139	RC	6371102	656840	GDA94_50	328	-60	270	180
QRC140	RC	6370999	657197	GDA94_50	309	-90	360	96
QRC141	RC	6370997	656901	GDA94_50	318	-90	360	96
QRC142	RC	6369505	657300	GDA94_50	278	-90	360	60
QRC143	RC	6369499	657199	GDA94_50	276	-90	360	96
QRC144	RC	6369502	657119	GDA94_50	268	-90	360	72
QRC145	RC	6369500	657000	GDA94_50	268	-90	360	66
QRC146	RC	6369500	656804	GDA94_50	275	-90	360	60
QRC147	RC	6370598	657298	GDA94_50	310	-90	360	78
QRC148	RC	6370601	657198	GDA94_50	323	-90	360	78

^{*}Drill holes QRC129-148 have been completed but are not the subject of this report.

APPENDIX 2 – SIGNIFICANT RC ASSAYS (>0.3% Nickel)

APPENDIX 2 - SIGNIFICANT QUICKSILVER RC ASSAYS (>0.3% Nickel)

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC093	G06613	16	17	RC - Split	183	52.7	3940
QRC093	G06614	17	18	RC - Split	178	44.4	3880
QRC093	G06615	18	19	RC - Split	233	79.7	4810
QRC093	G06616	19	20	RC - Split	209	49.9	4870
QRC093	G06617	20	21	RC - Split	344	26.3	3180
QRC093	G06618	21	22	RC - Split	379	38.5	6420
QRC093	G06619	22	23	RC - Split	429	19.5	3880
QRC093	G06621	23	24	RC - Split	565	22.3	11500
QRC093	G06622	24	25	RC - Split	2750	25.3	18100
QRC093	G06623	25	26	RC - Split	1340	17.1	12500
QRC093	G06624	26	27	RC - Split	620	13.7	6310
QRC093	G06625	27	28	RC - Split	406	13.4	6460
QRC093	G06626	28	29	RC - Split	160	9.1	4460
QRC093	G06627	29	30	RC - Split	121	6.4	4440
QRC093	G06628	30	31	RC - Split	151	7.8	4660
QRC093	G06629	31	32	RC - Split	204	7.6	5920
QRC093	G06630	32	33	RC - Split	113	5	3150
QRC093	G06633	35	36	RC - Split	153	3.5	3910
QRC093	G06635	37	38	RC - Split	153	6.2	3150
QRC093	G06638	40	41	RC - Split	223	7.7	3550
QRC093	G06639	41	42	RC - Split	334	8.7	5780
QRC093	G06641	42	43	RC - Split	125	8.1	5130
QRC093	G06642	43	44	RC - Split	117	9.3	3080
QRC093	G06644	45	46	RC - Split	117	6.7	6240
QRC093	G06645	46	47	RC - Split	114	11.4	3100
QRC093	G06646	47	48	RC - Split	197	6.9	4240
QRC093	G06649	50	51	RC - Split	111	13.7	3550
QRC093	G06650	51	52	RC - Split	109	14.5	3010
QRC093	G06652	53	54	RC - Split	281	20.2	3910
QRC093	G06653	54	55	RC - Split	291	16.6	3560
QRC093	G06654	55	56	RC - Split	439	16.1	4990
QRC093	G06659	60	61	RC - Split	204	10.3	3080
QRC094	G06708	16	17	RC - Split	81.7	137.7	4700
QRC094	G06710	18	19	RC - Split	88.8	45.2	3410
QRC094	G06711	19	20	RC - Split	97.5	49.4	3170
QRC094	G06713	21	22	RC - Split	483	112.1	3840
QRC094	G06721	28	29	RC - Split	312	106.7	4320
QRC094	G06723	30	31	RC - Split	425	59.8	4990
QRC094	G06724	31	32	RC - Split	978	95.5	6160
QRC094	G06725	32	33	RC - Split	606	128.6	6470
QRC094	G06726	33	34	RC - Split	548	60.2	5150
QRC094	G06727	34	35	RC - Split	1380	104.6	6600

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC094	G06728	35	36	RC - Split	715	188.5	8780
QRC094	G06729	36	37	RC - Split	190	144.2	6880
QRC094	G06730	37	38	RC - Split	902	175.6	9310
QRC094	G06731	38	39	RC - Split	846	155.9	6000
QRC094	G06732	39	40	RC - Split	197	164.4	6610
QRC094	G06733	40	41	RC - Split	477	193	9320
QRC094	G06734	41	42	RC - Split	247	126.7	4900
QRC094	G06735	42	43	RC - Split	268	48.9	3110
QRC094	G06738	45	46	RC - Split	95.6	46.4	4520
QRC094	G06739	46	47	RC - Split	99.1	22.7	5460
QRC094	G06741	47	48	RC - Split	201	24.7	5190
QRC094	G06748	54	55	RC - Split	137	12.2	3110
QRC095	G06807	20	21	RC - Split	49	182.7	3240
QRC095	G06808	21	22	RC - Split	63	383.8	3310
QRC095	G06833	45	46	RC - Split	589	44.5	3080
QRC095	G06834	46	47	RC - Split	604	49.7	3860
QRC095	G06835	47	48	RC - Split	782	51.4	10500
QRC095	G06836	48	49	RC - Split	186	24.3	3880
QRC095	G06837	49	50	RC - Split	216	18.3	5180
QRC095	G06838	50	51	RC - Split	197	14.6	3900
QRC095	G06839	51	52	RC - Split	204	13.4	4010
QRC095	G06841	52	53	RC - Split	168	12.4	3430
QRC095	G06842	53	54	RC - Split	181	15.7	4850
QRC095	G06845	56	57	RC - Split	178	18.9	5310
QRC095	G06846	57	58	RC - Split	230	28.1	8990
QRC095	G06847	58	59	RC - Split	224	33.1	5430
QRC095	G06848	59	60	RC - Split	144	15.9	4320
QRC095	G06850	61	62	RC - Split	149	17.2	4290
QRC095	G06851	62	63	RC - Split	158	16.9	3710
QRC095	G06854	65	66	RC - Split	148	14.1	3260
QRC095	G06855	66	67	RC - Split	199	16	3860
QRC095	G06856	67	68	RC - Split	167	9.4	4230
QRC095	G06857	68	69	RC - Split	147	9.5	3870
QRC095	G06861	71	72	RC - Split	126	15.1	3590
QRC096	G06901	7	8	RC - Split	93.7	63.6	3080
QRC096	G06913	19	20	RC - Split	106	83.5	4240
QRC096	G06918	24	25	RC - Split	1120	37.4	4220
QRC096	G06919	25	26	RC - Split	969	45.4	4960
QRC096	G06921	26	27	RC - Split	152	152.5	3800
QRC096	G06922	27	28	RC - Split	164	109.6	3050
QRC096	G06924	29	30	RC - Split	569	53.8	5880
QRC096	G06925	30	31	RC - Split	390	61.4	4470
QRC096	G06926	31	32	RC - Split	288	70.6	4440

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC096	G06927	32	33	RC - Split	206	44.1	4970
QRC096	G06928	33	34	RC - Split	240	54.5	6540
QRC096	G06929	34	35	RC - Split	210	94.9	6850
QRC096	G06930	35	36	RC - Split	130	103.9	5570
QRC096	G06931	36	37	RC - Split	136	141.8	5040
QRC096	G06932	37	38	RC - Split	180	166	5060
QRC096	G06933	38	39	RC - Split	136	123.5	4410
QRC096	G06934	39	40	RC - Split	195	123.6	4830
QRC096	G06935	40	41	RC - Split	150	119.2	4030
QRC096	G06936	41	42	RC - Split	229	212.7	4880
QRC096	G06938	43	44	RC - Split	240	84.5	6650
QRC096	G06939	44	45	RC - Split	315	152.8	10400
QRC096	G06941	45	46	RC - Split	188	119.3	4630
QRC096	G06943	47	48	RC - Split	160	171.5	4630
QRC096	G06944	48	50	RC - Split	147	236.4	3140
QRC096	G06954	59	60	RC - Split	140	48.3	4620
QRC096	G06957	62	63	RC - Split	198	109.3	4800
QRC096	G06962	66	67	RC - Split	139	225.7	3220
QRC096	G06966	70	71	RC - Split	145	23.9	3050
QRC096	G06972	76	77	RC - Split	146	6.5	3110
QRC097	G07023	46	47	RC - Split	284	128.3	3120
QRC097	G07024	47	48	RC - Split	260	28.9	3330
QRC097	G07025	48	49	RC - Split	336	36.7	5730
QRC097	G07026	49	50	RC - Split	306	31.4	4880
QRC097	G07027	50	51	RC - Split	366	35.9	5530
QRC097	G07028	51	52	RC - Split	954	91.7	11800
QRC097	G07029	52	53	RC - Split	1080	28.6	5220
QRC097	G07030	53	54	RC - Split	624	21.8	6870
QRC097	G07031	54	55	RC - Split	251	11	4430
QRC097	G07032	55	56	RC - Split	138	7.6	3410
QRC097	G07036	59	60	RC - Split	588	17.7	8850
QRC097	G07038	61	62	RC - Split	292	10.4	4440
QRC097	G07039	62	63	RC - Split	398	11.4	7300
QRC097	G07041	63	64	RC - Split	413	10.3	8740
QRC097	G07042	64	65	RC - Split	408	14.6	8700
QRC097	G07043	65	66	RC - Split	359	11	9410
QRC097	G07044	66	67	RC - Split	200	5.4	3380
QRC097	G07046	68	69	RC - Split	171	6.4	3950
QRC097	G07047	69	70	RC - Split	167	6.9	4560
QRC097	G07052	74	75	RC - Split	747	30.8	7670
QRC097	G07053	75	76	RC - Split	381	24.4	3180
QRC097	G07055	77	78	RC - Split	261	60.2	3280
QRC097	G07056	78	79	RC - Split	261	85.7	3280

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC097	G07077	98	99	RC - Split	361	210.8	12900
QRC097	G07078	99	100	RC - Split	249	27.4	8360
QRC097	G07079	100	101	RC - Split	218	8.9	4560
QRC097	G07081	101	102	RC - Split	150	9.4	3340
QRC100	G07252	13	14	RC - Split	212	143.4	5310
QRC100	G07253	14	15	RC - Split	310	133.5	6170
QRC100	G07254	15	16	RC - Split	410	129.9	4130
QRC100	G07255	16	17	RC - Split	255	117.6	3790
QRC100	G07256	17	18	RC - Split	346	89.3	4860
QRC100	G07263	23	24	RC - Split	800	245	5110
QRC100	G07264	24	25	RC - Split	603	36.7	18200
QRC100	G07265	25	26	RC - Split	1720	46	9420
QRC100	G07266	26	27	RC - Split	2050	19.8	7750
QRC100	G07267	27	28	RC - Split	727	17.1	8400
QRC100	G07268	28	29	RC - Split	205	24	5380
QRC100	G07269	29	30	RC - Split	289	38.5	5440
QRC100	G07270	30	31	RC - Split	196	17.7	5060
QRC100	G07271	31	32	RC - Split	146	13.5	3450
QRC100	G07272	32	33	RC - Split	198	16.6	3860
QRC100	G07273	33	34	RC - Split	211	19.5	4470
QRC100	G07274	34	35	RC - Split	164	20.8	3100
QRC100	G07281	40	41	RC - Split	203	27.9	4550
QRC100	G07282	41	42	RC - Split	102	16.1	3080
QRC100	G07283	42	43	RC - Split	134	31.5	3540
QRC100	G07286	45	46	RC - Split	100	19.2	3150
QRC100	G07290	49	50	RC - Split	100	11.5	3300
QRC100	G07291	50	51	RC - Split	103	6.9	3300
QRC100	G07292	51	52	RC - Split	141	7.7	4300
QRC100	G07298	57	58	RC - Split	114	10	3150
QRC100	G07299	58	59	RC - Split	248	9.8	3770
QRC100	G07301	59	60	RC - Split	180	11.1	3290
QRC100	G07309	67	68	RC - Split	88.3	11.9	3180
QRC100	G07310	68	69	RC - Split	151	8.8	5840
QRC100	G07313	71	72	RC - Split	248	18	4280
QRC100	G07315	73	74	RC - Split	215	11.1	3550
QRC100	G07317	75	76	RC - Split	214	11.5	3650
QRC100	G07318	76	77	RC - Split	205	15.8	3790
QRC100	G07319	77	78	RC - Split	167	13.9	3460
QRC100	G07323	80	81	RC - Split	149	27.4	4310
QRC101	G07378	1	2	RC - Split	1760	197.5	3800
QRC101	G07386	8	9	RC - Split	250	141.1	4020
QRC101	G07387	9	10	RC - Split	212	200.7	4250
QRC101	G07388	10	11	RC - Split	148	172.6	3900

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC101	G07389	11	12	RC - Split	234	184.2	4960
QRC101	G07395	17	18	RC - Split	447	64.3	7660
QRC101	G07396	18	19	RC - Split	754	99	12200
QRC101	G07397	19	20	RC - Split	279	38.4	5280
QRC101	G07398	20	21	RC - Split	279	30.4	5510
QRC101	G07399	21	22	RC - Split	199	50.3	3110
QRC101	G07402	23	24	RC - Split	367	95.8	3780
QRC101	G07403	24	25	RC - Split	446	101.5	3380
QRC101	G07404	25	26	RC - Split	929	46.7	5960
QRC101	G07405	26	27	RC - Split	574	59	14000
QRC101	G07406	27	28	RC - Split	557	117.8	8310
QRC101	G07407	28	29	RC - Split	477	45.6	5550
QRC101	G07408	29	30	RC - Split	594	72.1	12000
QRC101	G07409	30	31	RC - Split	453	53.9	8080
QRC101	G07411	32	33	RC - Split	192	23.8	4700
QRC101	G07412	33	34	RC - Split	189	22.6	4440
QRC101	G07417	38	39	RC - Split	274	23.4	4430
QRC101	G07418	39	40	RC - Split	263	25.9	4190
QRC101	G07419	40	41	RC - Split	265	24.1	5020
QRC101	G07424	44	45	RC - Split	189	12	3460
QRC101	G07425	45	46	RC - Split	326	17.8	6070
QRC101	G07427	47	48	RC - Split	156	15.8	3060
QRC101	G07428	48	49	RC - Split	204	21.4	4510
QRC101	G07429	49	50	RC - Split	172	17.4	4630
QRC101	G07430	50	51	RC - Split	216	21	5050
QRC101	G07431	51	52	RC - Split	125	22.1	3210
QRC101	G07432	52	53	RC - Split	176	24.7	5050
QRC101	G07433	53	54	RC - Split	246	33.8	6070
QRC101	G07434	54	55	RC - Split	166	21.2	3830
QRC101	G07441	60	61	RC - Split	96.6	27.7	3170
QRC102	G07482	3	4	RC - Split	847	98	3200
QRC102	G07483	4	5	RC - Split	216	130.7	3420
QRC102	G07487	8	9	RC - Split	73.4	129.8	4170
QRC102	G07505	25	26	RC - Split	184	54.9	5580
QRC102	G07506	26	27	RC - Split	234	61.6	14300
QRC102	G07507	27	28	RC - Split	460	35.7	8310
QRC102	G07508	28	29	RC - Split	851	33.3	5520
QRC102	G07509	29	30	RC - Split	711	31.1	5780
QRC102	G07510	30	31	RC - Split	459	19.8	5680
QRC102	G07511	31	32	RC - Split	696	17	4340
QRC102	G07512	32	33	RC - Split	273	13.5	4810
QRC102	G07513	33	34	RC - Split	208	13.6	6960
QRC102	G07514	34	35	RC - Split	163	19.2	4890

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC102	G07515	35	36	RC - Split	419	12.4	5720
QRC102	G07516	36	37	RC - Split	401	12.8	5270
QRC102	G07517	37	38	RC - Split	235	22.6	9140
QRC102	G07518	38	39	RC - Split	245	17.7	5220
QRC102	G07521	40	41	RC - Split	287	22.4	4900
QRC102	G07522	41	42	RC - Split	311	16.7	4450
QRC102	G07523	42	43	RC - Split	205	13.9	3440
QRC102	G07525	44	45	RC - Split	280	17.3	4850
QRC102	G07526	45	46	RC - Split	361	24.1	5380
QRC102	G07527	46	47	RC - Split	254	18.8	4160
QRC102	G07536	55	56	RC - Split	126	12	3320
QRC102	G07539	58	59	RC - Split	119	13.2	3130
QRC102	G07541	59	60	RC - Split	124	18.4	3010
QRC102	G07555	73	74	RC - Split	114	22.7	3040
QRC102	G07561	78	79	RC - Split	131	29.9	3340
QRC102	G07562	79	80	RC - Split	131	22.8	3260
QRC103	G07567	0	1	RC - Split	510	82.5	5210
QRC103	G07568	1	2	RC - Split	388	86.1	4800
QRC103	G07569	2	3	RC - Split	326	107	6770
QRC103	G07570	3	4	RC - Split	730	95.7	12500
QRC103	G07571	4	5	RC - Split	722	77.9	8760
QRC103	G07572	5	6	RC - Split	360	53	6350
QRC103	G07573	6	7	RC - Split	77.3	32.8	3790
QRC103	G07574	7	8	RC - Split	91.2	40.8	7610
QRC103	G07575	8	9	RC - Split	97	33.8	7120
QRC103	G07576	9	10	RC - Split	67.6	19.2	4910
QRC103	G07577	10	11	RC - Split	108	28.9	6410
QRC103	G07578	11	12	RC - Split	74.2	33.5	6480
QRC103	G07579	12	13	RC - Split	120	73.4	10300
QRC103	G07581	13	14	RC - Split	100	31.4	6280
QRC103	G07582	14	15	RC - Split	141	37.7	10100
QRC103	G07583	15	16	RC - Split	128	25	7430
QRC103	G07584	16	17	RC - Split	155	17.6	4790
QRC103	G07585	17	18	RC - Split	1250	31.1	6030
QRC103	G07586	18	19	RC - Split	1030	27.1	8860
QRC103	G07587	19	20	RC- Split	161	27.6	6630
QRC103	G07588	20	21	RC - Split	865	41	24200
QRC103	G07589	21	22	RC- Split	620	53.8	22300
QRC103	G07590	22	23	RC - Split	378	38.4	19700
QRC103	G07591	23	24	RC- Split	69.4	9.2	4680
QRC103	G07592	24	25	RC - Split	115	14.2	6820
QRC103	G07593	25	26	RC- Split	118	15.3	4850
QRC103	G07594	26	27	RC - Split	245	24.4	6430

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC103	G07595	27	28	RC- Split	319	29.9	10200
QRC103	G07596	28	29	RC - Split	73.5	12.3	3030
QRC103	G07597	29	30	RC- Split	139	21.7	4810
QRC103	G07598	30	31	RC - Split	194	19.8	4590
QRC103	G07599	31	32	RC- Split	137	24.7	3250
QRC103	G07601	32	33	RC - Split	197	76.5	4010
QRC103	G07602	33	34	RC- Split	148	34.2	6180
QRC103	G07603	34	35	RC - Split	84.6	16.4	4940
QRC103	G07635	65	66	RC- Split	125	53.1	3080
QRC103	G07637	67	68	RC - Split	129	9.3	3110
QRC103	G07639	69	70	RC- Split	145	8	3110
QRC103	G07647	76	77	RC - Split	142	10.2	3060
QRC104	G07652	3	4	RC- Split	213	158.2	4150
QRC104	G07653	4	5	RC - Split	255	149.8	4100
QRC104	G07655	6	7	RC- Split	67.4	228.6	3310
QRC104	G07656	7	8	RC - Split	94.1	235.2	3860
QRC104	G07658	9	10	RC- Split	104	198.3	4490
QRC104	G07659	10	11	RC - Split	134	140.5	4850
QRC104	G07661	11	12	RC- Split	108	98.6	4450
QRC104	G07668	18	19	RC - Split	42.3	30.5	3150
QRC104	G07669	19	20	RC- Split	52	76.5	4080
QRC104	G07670	20	21	RC - Split	83.8	81.3	5380
QRC104	G07671	21	22	RC- Split	85.5	65	5350
QRC104	G07672	22	23	RC - Split	1000	142.5	5500
QRC104	G07673	23	24	RC- Split	1830	226.4	6330
QRC104	G07693	42	43	RC - Split	158	61.8	3400
QRC104	G07695	44	45	RC- Split	294	219.6	3160
QRC107	G07875	5	6	RC - Split	238	129.8	4540
QRC107	G07876	6	7	RC- Split	451	178.3	4290
QRC107	G07877	7	8	RC - Split	1200	91.3	6200
QRC107	G07878	8	9	RC- Split	595	110.3	6940
QRC107	G07879	9	10	RC - Split	425	145.4	5890
QRC107	G07881	10	11	RC- Split	547	145	4780
QRC107	G07884	13	14	RC - Split	194	153.5	4410
QRC107	G07885	14	15	RC- Split	265	113.2	4520
QRC107	G07889	18	19	RC - Split	115	109.9	3970
QRC107	G07891	20	21	RC- Split	307	110.2	4950
QRC107	G07892	21	22	RC - Split	214	110.8	5180
QRC107	G07895	24	25	RC- Split	180	55.4	3510
QRC107	G07896	25	26	RC - Split	326	100.7	5680
QRC107	G07897	26	27	RC- Split	539	80.1	7580
QRC107	G07898	27	28	RC - Split	717	22.7	11700
QRC107	G07899	28	29	RC- Split	1580	20.8	7310

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC107	G07901	29	30	RC - Split	3160	25.6	16400
QRC107	G07902	30	31	RC- Split	712	14.3	7500
QRC107	G07903	31	32	RC - Split	423	12.5	6140
QRC107	G07904	32	33	RC- Split	359	12.9	6630
QRC107	G07905	33	34	RC - Split	463	26.8	12000
QRC107	G07906	34	35	RC- Split	435	23.1	11800
QRC107	G07907	35	36	RC - Split	423	20.8	9910
QRC107	G07908	36	37	RC- Split	418	16.1	8220
QRC107	G07909	37	38	RC - Split	196	14.7	4120
QRC107	G07910	38	39	RC- Split	203	14.9	4240
QRC107	G07912	40	41	RC - Split	150	9	3200
QRC107	G07913	41	42	RC- Split	165	10	3700
QRC107	G07914	42	43	RC - Split	148	14.9	3190
QRC107	G07915	43	44	RC- Split	206	11.5	6140
QRC107	G07916	44	45	RC - Split	243	12.5	6170
QRC107	G07917	45	46	RC- Split	154	6.6	5920
QRC107	G07918	46	47	RC - Split	168	7.4	4650
QRC107	G07919	47	48	RC- Split	118	6.7	4760
QRC107	G07921	48	49	RC - Split	152	7.4	4780
QRC107	G07922	49	50	RC- Split	199	8	5890
QRC107	G07923	50	51	RC - Split	66.5	11.9	4350
QRC107	G07924	51	52	RC- Split	210	15.3	5110
QRC107	G07925	52	53	RC - Split	335	15.7	9340
QRC107	G07926	53	54	RC- Split	278	13.1	7940
QRC107	G07927	54	55	RC - Split	360	12.2	7850
QRC107	G07928	55	56	RC- Split	327	10.7	7030
QRC107	G07929	56	57	RC - Split	485	9.3	8220
QRC107	G07930	57	58	RC- Split	443	10.3	8170
QRC107	G07931	58	59	RC - Split	234	7.5	6230
QRC107	G07932	59	60	RC- Split	144	5.4	5610
QRC107	G07933	60	61	RC - Split	88.8	2.6	6990
QRC107	G07934	61	62	RC- Split	107	3.9	4660
QRC107	G07935	62	63	RC - Split	145	5.2	3670
QRC107	G07936	63	64	RC- Split	100	3.9	3170
QRC107	G07952	78	79	RC - Split	60.1	9.6	3350
QRC108	G07984	12	13	RC- Split	119	113.7	9650
QRC108	G07985	13	14	RC - Split	94.9	85.8	5540
QRC108	G07986	14	15	RC- Split	138	107.1	13900
QRC108	G07987	15	16	RC - Split	108	41.7	9900
QRC108	G07988	16	17	RC- Split	147	36.5	18100
QRC108	G07989	17	18	RC - Split	77.8	24.2	6780
QRC108	G07991	19	20	RC- Split	84.7	26.2	4210
QRC108	G07992	20	21	RC - Split	185	39.3	10800

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC108	G07993	21	22	RC- Split	711	73.7	13000
QRC108	G07994	22	23	RC - Split	368	75.6	9000
QRC108	G07995	23	24	RC- Split	381	32.2	5740
QRC108	G07996	24	25	RC - Split	78.9	17.5	3380
QRC108	G07997	25	26	RC- Split	592	23.7	5420
QRC108	G07998	26	27	RC - Split	621	40.9	6640
QRC108	G07999	27	28	RC- Split	757	40.8	4760
QRC108	G08001	28	29	RC - Split	252	32.9	3980
QRC108	G08002	29	30	RC- Split	193	26.6	4150
QRC108	G08003	30	31	RC - Split	120	16	4050
QRC108	G08004	31	32	RC- Split	85	18.8	3510
QRC108	G08009	36	37	RC - Split	100	7.6	3260
QRC109	G08063	3	4	RC- Split	663	234.3	3180
QRC109	G08069	9	10	RC - Split	83.3	78.6	3150
QRC109	G08083	22	23	RC- Split	530	36.3	4670
QRC109	G08084	23	24	RC - Split	805	38.7	4280
QRC109	G08085	24	25	RC- Split	493	28.7	4640
QRC109	G08088	27	28	RC - Split	356	16	4430
QRC109	G08089	28	29	RC- Split	219	19.2	4780
QRC109	G08090	29	30	RC - Split	158	13.1	3180
QRC109	G08091	30	31	RC- Split	229	15.9	4790
QRC109	G08093	32	33	RC - Split	309	16.4	5090
QRC109	G08094	33	34	RC- Split	370	17.5	6100
QRC109	G08095	34	35	RC - Split	404	16.8	6390
QRC109	G08096	35	36	RC- Split	414	19.1	6810
QRC110	G08156	2	3	RC - Split	120	42.3	3380
QRC110	G08157	3	4	RC- Split	164	104.3	4870
QRC110	G08158	4	5	RC - Split	489	130.4	5930
QRC110	G08159	5	6	RC- Split	1240	311	9080
QRC110	G08161	6	7	RC - Split	176	86	13000
QRC110	G08162	7	8	RC- Split	66.5	202.1	4380
QRC110	G08163	8	9	RC - Split	75.2	260.7	4030
QRC110	G08164	9	10	RC- Split	82	141	4020
QRC110	G08165	10	11	RC - Split	114	42.4	5640
QRC111	G08255	6	7	RC- Split	147	147.4	3140
QRC111	G08267	17	18	RC - Split	206	284.8	3680
QRC111	G08288	37	38	RC- Split	431	88.1	3690
QRC111	G08289	38	39	RC - Split	650	36.9	8070
QRC111	G08290	39	40	RC- Split	499	37.4	3150
QRC111	G08291	40	41	RC - Split	636	16.9	6190
QRC111	G08292	41	42	RC- Split	455	22.4	11100
QRC111	G08293	42	43	RC - Split	579	79.3	8760
QRC111	G08295	44	45	RC- Split	213	8.7	8160

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC111	G08296	45	46	RC - Split	153	9.3	4180
QRC114	G08565	1	2	RC- Split	516	183	5820
QRC114	G08566	2	3	RC - Split	1140	89.3	5810
QRC114	G08567	3	4	RC- Split	2290	135.7	8590
QRC114	G08568	4	5	RC - Split	1740	181	5800
QRC114	G08569	5	6	RC- Split	806	144.8	4310
QRC114	G08571	7	8	RC - Split	230	168.7	6050
QRC114	G08576	12	13	RC- Split	194	99.6	3610
QRC114	G08577	13	14	RC - Split	280	77.2	3520
QRC114	G08587	22	23	RC- Split	175	63	6210
QRC114	G08588	23	24	RC - Split	114	52.5	6850
QRC114	G08589	24	25	RC- Split	460	96.5	16100
QRC114	G08590	25	26	RC - Split	510	70.2	18500
QRC114	G08591	26	27	RC- Split	702	72.1	6060
QRC114	G08592	27	28	RC - Split	621	66	5150
QRC114	G08595	30	31	RC- Split	247	55.1	3160
QRC114	G08597	32	33	RC - Split	119	25.2	3580
QRC114	G08603	37	38	RC- Split	74	15.5	5050
QRC114	G08604	38	39	RC - Split	246	19.6	4260
QRC114	G08605	39	40	RC- Split	328	36.9	5000
QRC114	G08607	41	42	RC - Split	513	51.6	7090
QRC114	G08608	42	43	RC- Split	127	25	3160
QRC114	G08610	44	45	RC - Split	37.4	14.3	4230
QRC114	G08611	45	46	RC- Split	88.8	21.4	7630
QRC114	G08612	46	47	RC - Split	70.1	24.8	6740
QRC114	G08613	47	48	RC- Split	146	14.7	5240
QRC114	G08614	48	49	RC - Split	127	18	5320
QRC114	G08615	49	50	RC- Split	107	24.8	4530
QRC114	G08616	50	51	RC - Split	60.3	24.3	3550
QRC114	G08617	51	52	RC- Split	77.8	14	7310
QRC114	G08618	52	53	RC - Split	125	19.9	7570
QRC114	G08619	53	54	RC- Split	46.2	11.6	4640
QRC114	G08621	54	55	RC - Split	110	18.9	4620
QRC114	G08655	87	88	RC- Split	142	9.2	3070
QRC114	G08661	92	93	RC - Split	110	9.5	3080
QRC114	G08662	93	94	RC- Split	122	10	3850
QRC114	G08664	95	96	RC - Split	114	12.7	4040
QRC114	G08665	96	97	RC- Split	123	26.2	3860
QRC114	G08666	97	98	RC - Split	116	16.4	3140
QRC115	G08738	58	59	RC- Split	107	15.9	5300
QRC115	G08741	60	61	RC - Split	105	10.9	3480
QRC115	G08762	80	81	RC- Split	133	8.3	3250
QRC115	G08771	89	90	RC - Split	145	9.3	3650

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC116	G08804	30	31	RC- Split	253	275.8	7500
QRC116	G08805	31	32	RC - Split	246	178	7600
QRC116	G08806	32	33	RC- Split	270	55.8	5730
QRC116	G08807	33	34	RC - Split	432	72.9	9580
QRC116	G08808	34	35	RC- Split	298	46.9	4260
QRC116	G08812	38	39	RC - Split	257	51.8	3710
QRC116	G08813	39	40	RC- Split	125	35.4	3130
QRC116	G08814	40	41	RC - Split	139	81.5	3590
QRC116	G08815	41	42	RC- Split	164	97.2	3840
QRC116	G08823	48	49	RC - Split	102	176.4	3020
QRC116	G08825	50	51	RC- Split	219	24.6	3750
QRC116	G08826	51	52	RC - Split	174	16.6	3240
QRC117	G09030	35	36	RC- Split	218	267.3	3470
QRC117	G09031	36	37	RC - Split	218	384.8	4900
QRC117	G09032	37	38	RC- Split	190	298.9	5600
QRC117	G09033	38	39	RC - Split	191	169.8	4400
QRC117	G09034	39	40	RC- Split	320	217.3	5390
QRC117	G09041	45	46	RC - Split	474	457.3	3700
QRC117	G09042	46	47	RC- Split	292	238.2	3070
QRC117	G09044	48	49	RC - Split	218	69.8	4100
QRC117	G09045	49	50	RC- Split	386	136.8	6140
QRC117	G09046	50	51	RC - Split	314	116	4830
QRC117	G09047	51	52	RC- Split	183	74.7	4240
QRC117	G09048	52	53	RC - Split	202	213.7	5480
QRC117	G09049	53	54	RC- Split	139	80	4820
QRC117	G09050	54	55	RC - Split	194	142.6	3090
QRC117	G09058	62	63	RC- Split	178	147.3	3700
QRC117	G09065	68	69	RC - Split	134	17.8	4230
QRC120	G09411	38	39	RC- Split	178	29.6	4340
QRC120	G09412	39	40	RC - Split	146	17.8	3390
QRC120	G09413	40	41	RC- Split	169	23	4310
QRC120	G09414	41	42	RC - Split	233	13.5	3780
QRC120	G09427	53	54	RC- Split	298	17.6	3170
QRC120	G09428	54	55	RC - Split	410	20.4	4680
QRC120	G09429	55	56	RC- Split	358	20	3700
QRC120	G09430	56	57	RC - Split	380	19.7	3250
QRC123	G09831	53	54	RC- Split	166	22.2	3900
QRC123	G09832	54	55	RC - Split	143	13.4	3070
QRC123	G09833	55	56	RC- Split	163	22.7	3130
QRC123	G09836	58	59	RC - Split	139	20	3270
QRC123	G09838	60	61	RC- Split	172	21.7	4150
QRC123	G09839	61	62	RC - Split	338	22.4	9610
QRC123	G09841	62	63	RC- Split	178	17.1	3890

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC123	G09842	63	64	RC - Split	154	22.4	3260
QRC123	G09843	64	65	RC- Split	150	27.3	6060
QRC123	G09844	65	66	RC - Split	136	15	5570
QRC123	G09941	157	158	RC- Split	348	69.2	3260
QRC126	G10176	16	17	RC - Split	327	288.5	4670
QRC126	G10177	17	18	RC- Split	341	198.4	7890
QRC126	G10178	18	19	RC - Split	338	156.1	10600
QRC126	G10179	19	20	RC- Split	340	149.8	13400
QRC126	G10181	20	21	RC - Split	268	126.7	6610
QRC126	G10182	21	22	RC- Split	252	124	8390
QRC126	G10183	22	23	RC - Split	223	135.4	8230
QRC126	G10184	23	24	RC- Split	147	165	5620
QRC126	G10185	24	25	RC - Split	162	121.7	3840
QRC126	G10186	25	26	RC- Split	186	132.8	5800
QRC126	G10187	26	27	RC - Split	258	133.1	6180
QRC126	G10188	27	28	RC- Split	215	96.6	3850
QRC126	G10189	28	29	RC - Split	248	234.6	4320
QRC126	G10192	31	32	RC- Split	331	163.4	4480
QRC126	G10193	32	33	RC - Split	449	155	6300
QRC126	G10195	34	35	RC- Split	245	150.7	4140
QRC126	G10196	35	36	RC - Split	249	60.2	4580
QRC126	G10197	36	37	RC- Split	194	42.3	3290
QRC126	G10198	37	38	RC - Split	159	47.4	3300
QRC126	G10199	38	39	RC- Split	206	49.1	3540
QRC126	G10201	39	40	RC - Split	151	29.1	3440
QRC126	G10207	45	46	RC- Split	213	19.5	3710
QRC126	G10208	46	47	RC - Split	226	15.6	4040
QRC126	G10209	47	48	RC- Split	234	14.6	4150
QRC127	G10287	43	44	RC - Split	146	13.5	4100
QRC127	G10294	50	51	RC- Split	147	21.7	3080
QRC127	G10296	52	53	RC - Split	125	13.1	4240
QRC127	G10308	63	64	RC- Split	148	21.1	3040
QRC127	G10309	64	65	RC - Split	183	14.7	4120
QRC127	G10310	65	66	RC- Split	188	21.5	4290
QRC127	G10312	67	68	RC - Split	189	69.1	3950
QRC127	G10314	69	70	RC- Split	196	25	4820
QRC127	G10315	70	71	RC - Split	107	18	3190
QRC128	G10353	27	28	RC- Split	441	209.5	3470
QRC128	G10354	28	29	RC - Split	227	206.2	3450
QRC128	G10355	29	30	RC- Split	414	126.6	3930
QRC128	G10356	30	31	RC - Split	225	152	3420
QRC128	G10357	31	32	RC- Split	176	95.7	3550
QRC128	G10358	32	33	RC - Split	216	82.9	5310

Hole No	Sample No	From	То	Sample Type	Co ppm	Cu ppm	Ni ppm
QRC128	G10359	33	34	RC- Split	1240	128.6	6600
QRC128	G10361	34	35	RC - Split	2130	216.3	8060
QRC128	G10362	35	36	RC- Split	295	75.5	4350
QRC128	G10363	36	37	RC - Split	376	96.1	5590
QRC128	G10364	37	38	RC- Split	344	87.3	5490
QRC128	G10365	38	39	RC - Split	516	97.6	4280
QRC128	G10372	45	46	RC- Split	250	20.7	3710
QRC128	G10373	46	47	RC - Split	294	29.2	3410
QRC128	G10376	49	50	RC- Split	260	14.1	4140
QRC128	G10425	95	96	RC - Split	154	40.7	3060
QRC129	G10522	31	32	RC- Split	148	61.9	3290
QRC129	G10541	49	50	RC - Split	123	44.9	4490
QRC129	G10542	50	51	RC- Split	244	72.7	5970
QRC129	G10543	51	52	RC - Split	386	83.7	6720

- A. Ni = Nickel, Co = Cobalt, Cu = Copper
- B. ppm= parts per million, % = percentage

APPENDIX 3 – JORC TABLES

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 56 reverse circulation drill holes were completed as part of the ongoing exploration program over the Quicksilver Project In total, these drill holes yielded over 5,600 samples, comprised of splits samples, standards and blanks. Drill samples are 1 metre rotary splits directly from the drill rig.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling (5.25" face sampling bit) was utilised to test the weathered stratigraphy through to fresh rock
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All samples and subsamples were weighed to assess recovery Very little sample loss was observed at the collar There appears to be no sample bias or relationship between grade and sample recovery
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	 Small subsamples of the 1m drill intervals were collected and placed in a chip tray,

		RESOURCES
	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drill holes were geologically logged, noting lithologies, veining and alteration, from their collar to the end of hole.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Samples were collected in the following manner, a rotary split of approximately 2 kg was taken on 1m intervals directly from the cyclone of the drill rig.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Blanks and standards were introduced as checks through both Golden Mile sampling on site and by LabWest in Malaga.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The laboratory assaying techniques are suitable for the samples submitted. Samples were submitted to LabWest in Malaga, Perth, for a suite of elements including Ag, Co, Cr, Cu, Fe, Mg, Mn, Ni & Sc using an MAD prep and ICP analysis. Golden Mile introduced a mix of standards and blanks throughout the sample runs on a 1:20 ratio to ensure QC, Labwest also initiated duplicate sampling and ran their own standards as part of the assay regime.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Samples were collected, sampled and verified by independent geological consultant in the field and physically checked by Company personnel in the field before submitting to LabWest for assaying. Sampling and logging has been undertaken in hardcopy format prior to being entered into the Company's digital database. No adjustments to assay were done.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Drill holes were located using a hand held GPS (accurate to <5 metres) in GDA 94, Zone 50.

		KESOUKCES
Data spacing and distribution	 Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was undertaken on 200 x 50 metre centres across the Quicksilver prospect Spacing is insufficient to establish a resource at this time, although an 'Exploration Target' has previously been put forward Samples down hole are reported as 1m split.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling is unbiased and was designed to test the weathered and fresh lithologies in the profile and both drill and sampling orientations have been optimised to this end No bias is recognised at this time due to drill orientation.
Sample security	The measures taken to ensure sample security.	 Samples were bagged and secured by field staff prior to submission to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	At this preliminary stage no audits of sampling technique were done.

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	E 70/4641 overlies both private and crown land with access agreements in place over the landowners where the active work program is being undertaken.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Compilation of historical data has been completed and is being utilised to target the ongoing work program.
Geology	Deposit type, geological setting and style of mineralisation.	Ultramafic hosted nickel, cobalt, copper & scandium mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A listing of the drill hole collar information is provided in Appendix 1. of this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted averages have been used in the calculation of drill hole intercepts Lower cut-offs have included 3,000 ppm or 0.3% for nickel Most individual samples are now 1 metre splits Allowable internal dilution was set at up to 4m for Ni-Co intercepts No 'metal equivalents' have been quoted.

		RESOURCES
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 At this point we believe that the mineralisation is 'sub-horizontal' and as such the drill hole dip, predominantly vertical, represents true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps are presented in the accompanying ASX announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 A listing of all the results from the reported intercepts is provided in Appendices of this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	These factors are discussed in the body of the accompanying ASX report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The ongoing work program and discussion of targets for drilling is contained in the body of the report.