

SIGNIFICANT NEAR MINE MINERALISATION IDENTIFIED

Promising results confirms exploration potential

Asia-Pacific gold development company Nusantara Resources Limited ('Nusantara', ASX: NUS) is pleased to provide the following update of ongoing exploration at several near-mine prospects at its 100%-owned Awak Mas Gold Project located in South Sulawesi, Indonesia.

The immediate exploration focus for 2018 is exploring exciting Near Mine prospects (Figure 1) within a 3km radius of the proposed processing plant with the aim of extending the proposed eleven-year mining operation¹. The program also includes the re-processing of previously acquired geophysical data which is demonstrating considerable potential for further discoveries across the entire Contract of Work (CoW) area.

Highlights

• Significant gold and copper results from surface and trench samples adjacent to the Awak Mas and Salu Bulo deposits enhance near mine exploration prospectivity:

Salu Kombong

- Three significant new gold and copper outcrops identified on intrusive related quartz veining covering an area of approximately 250m x 100m (Figure 2)
- Assay results of up to 2.8 g/t gold and 1.2% copper sampled on extensive structures
- Nearby magnetic intrusive unit mapped, strong local geophysical signatures revealed

Puncak Utara

- Manually excavated trenches confirm mineralisation with grades up to 11.0 g/t gold
- Broad continuous zones of mineralisation, up to 12m @ 2.39 g/t gold
- Extensive area of gold anomalism now defined over large footprint, approximately 750m x 1500m

Puncak Selatan

- First pass manually excavated trenches confirming surface mineralisation, up to 5.3 g/t gold
- o Broad mineralised area has strategic value given immediate proximity to the planned Awak Mas pit
- Geological model showing significant potential between Awak Mas and Salu Bulo
- Intrusive related mineralisation now confirmed at Salu Kombong; newly reprocessed geophysics highlights multiple intrusive targets in near-mine areas and across the CoW area
- Surface exploration program has also commenced at the highly prospective Tarra Main area²

The recent exploration results are extremely encouraging, which combined with extensive historic sampling, confirms the prospectivity of near mine areas and will be the focus of further mechanical trenching by

¹ Refer to ASX Announcement: 4 October 2018, Definitive Feasibility Study Confirms Robust, Long-life, Low Cost Project

² Refer to ASX Announcement: 8 May 2018, Mineral Resource Estimate Update

excavator and subsequent drill targeting. A number of untested or largely untested exploration prospects (Figure 3) that have the potential to be satellite deposits have been identified within the area, both adjacent to the planned two initial open pits containing a 1.1 Moz Ore Reserve³ and near to the proposed processing plant site. In addition, re-processing of previously acquired geophysical data is demonstrating considerable potential for further discoveries across the entire CoW.

These advancements in the exploration program are covered in more detail in *Appendix 1: Awak Mas Gold Project Exploration Update*. Appendix 2 reports all near mine exploration results completed by Nusantara (with attached JORC Code, 2012 edition, Table 1). All historical exploration results for the CoW are located on Nusantara's website: www.nusantararesources.com.

"The completion of the DFS allows a shift in focus to CoW exploration. These promising early exploration results demonstrate the potential of the Awak Mas Gold Project to grow organically and provide potential high-grade satellite operations to augment production from the existing deposits. Our confidence in the exploration model, together with renewed focus on geophysics and the possibility of further and substantial discovery, add enormously to the future long-term viability of the Project' commented Nusantara's Managing Director and CEO, Mike Spreadborough. "Once again, we are seeing our understanding of the geology continue to rapidly evolve, which fits well with our goal of growing the project life beyond eleven years."

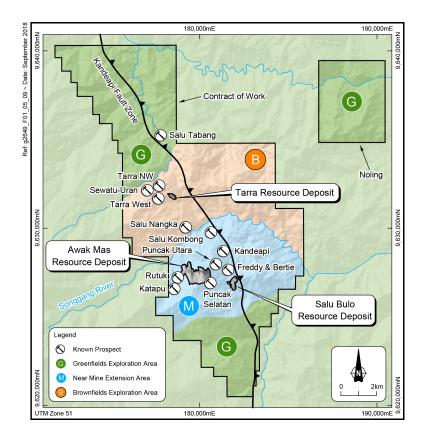


Figure 1: Relationship of Near Mine, Brownfields and Greenfields exploration areas

³ ASX Announcement: 13 September 2018, Ore Reserve increased by 11% to 1.1 Moz Gold

Figure 2: Gold and copper mineralisation outcrop at Salu Kombong KB047 sample location

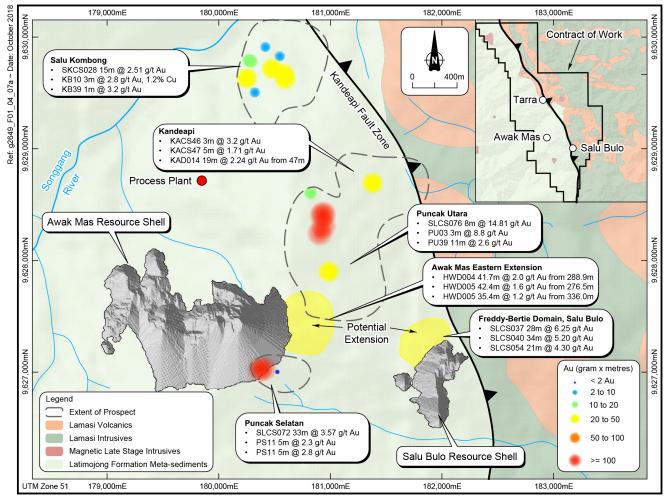


Figure 3: Near Mine prospects showing selected historic and recent results; and prospect locations identified as gram x metre anomalies

APPENDIX 1: AWAK MAS GOLD PROJECT EXPLORATION UPDATE

Near Mine Exploration

Ongoing surface exploration at the near mine prospect locations of Salu Kombong, Puncak Utara and Puncak Selatan continues to support the potential for additional satellite deposits within close proximity to the Awak Mas and Salu Bulo deposits (Figure 1).

Results to date from recent sampling within these near mine prospects total 376 samples with 90 significant assays greater than 0.5 g/t Au (Appendix 2). These new samples, together with extensive historic sampling, confirm the prospectivity of these immediate near mine prospects and the surrounding area. The exploration underway will focus on further mechanical trenching by excavator, to allow confirmation of the area geology and the development of drill targets.

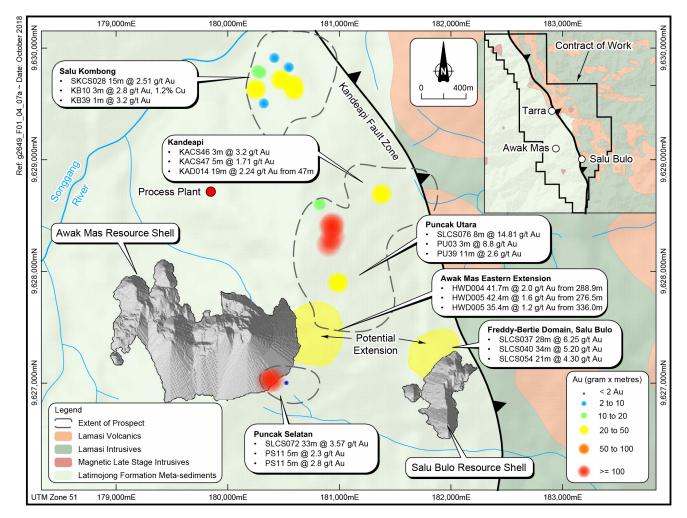


Figure 1: Near Mine prospects showing selected historic and recent results; and prospect locations identified as gram x metre anomalies

Salu Kombong

As previously reported⁴, newly recognised gold and copper mineralisation has been identified within the highly prospective Salu Kombong area, lying within 1.5km of the proposed process plant. Previous historic sampling has shown significant Au results with more than 350 samples \geq 0.5 g/t Au with individual assays up to 32.7 g/t Au and averaging 2.6 g/t Au.

Nusantara have continued to pursue the significant Au and Cu results recently discovered in three discrete outcrop areas that have not previously been recognised. A total of 201 recent samples have been returned, of which, 29 are \geq 0.5 g/t Au, averaging 1.4 g/t Au with a high of 3.2 g/t Au.

A program of mechanical trenching has been designed and access via vehicular track into the area has commenced. Recent significant results include:

- KB010: 3m @ 2.8 g/t Au and 1.2% Cu
- o KB047: 2m @ 1.29 g/t Au and 0.79% Cu
- KB048: 1m @ 1.14 g/t Au and 0.4% Cu

Figure 2: Au and Cu mineralisation outcrop at Salu Kombong KB010 sample location

Puncak Utara

This area has been the focus of current sampling activity, with manual trenching and sampling up to the end of September 2018 totalling 91 samples; of which, 24 are ≥ 0.5 g/t Au with individual assay results up to 11.0 g/t Au and an average grade of 3.6 g/t Au. A broad area of mineralisation is defined approaching 750m x 1500m in extent to date. Vehicular access has been established and mechanical trenching using an excavator has commenced.

The first of four planned costeans has been completed with mapping and sampling underway; all results are pending. Significant results from recent manual sampling include:

- PU01: 2m @ 5.5 g/t Au
- PU03: 3m @ 8.78 g/t Au

⁴ ASX Announcement, 31 July 2018, June 2018 Quarterly Activities Report

- PU04: 2m @ 3.0 g/t Au
- PU014: 1m @ 9.9 g/t Au
- o PU039: 12m @ 2.39 g/t Au

Figure 3: Mechanical trenching commenced at Puncak Utara

The extent of the mineralisation at Puncak Utara continues to grow and given its proximity to the planned haul road from Salu Bulo to the proposed processing plant, it represents a strategic opportunity for a satellite deposit that could supplement early mine feed.

Puncak Selatan

Puncak Selatan is located immediately adjacent to the south eastern rim of the planned Awak Mas pit and presents a significant opportunity for early access to supplementary mill feed. Historic sampling in this area had highlighted significant grade at surface, some of which has now been resampled by Nusantara.

A total of 84 recent samples have been taken, of which 37 are ≥ 0.5 g/t Au with an average grade of 1.6 g/t Au and a high of 5.3 g/t Au. As with the other key prospect areas, access via a vehicular track is being established and mechanical trenching is planned to commence by the end October 2018.

Significant results from recent manually excavated trench and grab samples include:

- \circ ~ PS11: 5m @ 2.32 g/t Au, 5m @ 2.8 g/t Au, and 2m @ 2.13 g/t Au
- PS12: 2m @ 1.28 g/t Au, 2m @ 3.0 g/t Au, and 1m @ 2.46 g/t Au.

The significance of these recent results takes on further importance and potential when the Awak Mas eastern extension drilling is considered; this newly discovered mineralisation⁵ demonstrates the potential of the Near Mine corridor to host further discoveries to support expanded mine operations.

⁵ Refer to ASX Announcement: 4 April 2018, Significant Results from Awak Mas Extension Drilling

Figure 4: Steeply dipping, highly visible outcropping mineralisation at Puncak Selatan

Collectively, the near mine prospectivity offers considerable potential to enhance the current mine plan and adds to the viability of the planned mining operation as announced in the Definitive Feasibility Study⁶.

The combination of the revised geology model, new understanding of the mineralisation setting, and the strong results returned to date, demonstrate the tangible potential of the near mine prospects.

Figure 5 below shows the near mine corridor with the interpreted structural repetition and mineralisation connection between Awak Mas and Salu Bulo; which, through drilling and sampling results to date, has proven the accuracy of the geological model. Figure 6 shows the respective Near Mine, Brownfield and Greenfield relationship within the CoW and the known prospect areas.

Tarra

Once the near mine prospects have been further assessed, the exploration focus at the Tarra Brownfield area, which historically produced interesting exploration results, will increase.

Reprocessing of Geophysics data

Nusantara engaged the services of Global Ore Discovery consultants to reprocess the significant amount of historic geophysics (airborne magnetic and radiometric) data that was flown in 1996 by World Geoscience Corporation and subsequently reviewed by GPX Surveys in 2015.

The reprocessing of the magnetics and radiometrics data by Global Ore Discovery has produced enhanced imagery on which to base interpretation and identify exploration targets.

⁶ Refer to ASX Announcement: 4 October 2018, Definitive Feasibility Study Confirms Robust, Long-life, Low Cost Project

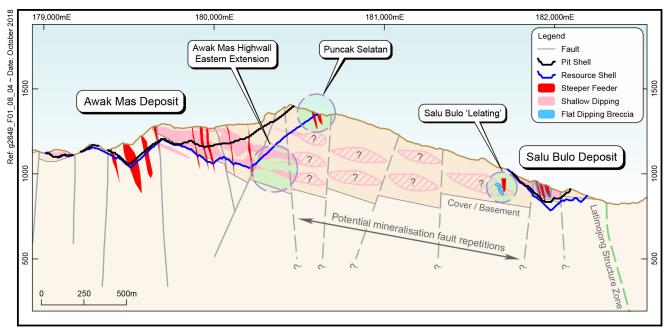


Figure 5: Geological model showing modelled potential for continuity of mineralisation

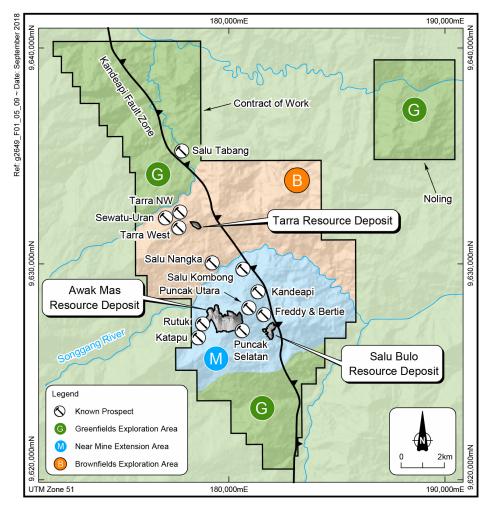


Figure 6: Relationship of Near Mine, Brownfields and Greenfields exploration areas showing key known prospects within the CoW

The work has defined a regional scale structural and intrusive architecture of major west-northwest structural corridors (the Awak Mas – Salu Bulo trend), intersecting with established north trending zones (parallel to the Kandeapi Fault Zone), which appears to present opportunity for the occurrence of the current deposits. Mineralisation is also interpreted to be intrusive related with magnetic high features coincident with known prospects (Figure 7).

Global Ore Discovery reports "The recognition of geophysical signatures and characteristics of the known mineralisation have led to recognition of several near mine targets and significant prospectivity in the CoW for new intrusive-related systems". Targets for ground-truthing have been generated west and east of the Kandeapi Fault Zone.

Further prospect scale analysis is required to complete the interpretation in more detail; particularly in the near mine area and to integrate geological and geochemical data with field evaluation. At this early stage, Nusantara are in the process of evaluating and further understanding the significance of the enormous amount of new data and will be incorporating this into ongoing exploration work.

Global Ore Discovery has noticed a strong analogy when comparing the hydrothermal alteration and Analytical Signal of the world class Waihi low-sulphidation epithermal Au - Ag system in the Waihi Region of New Zealand (Figure 8). This is important as similar processing of other epithermal deposits show the significance of these zones associated with hydrothermal alteration & mineralisation.

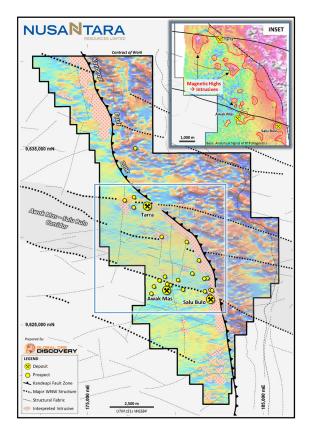
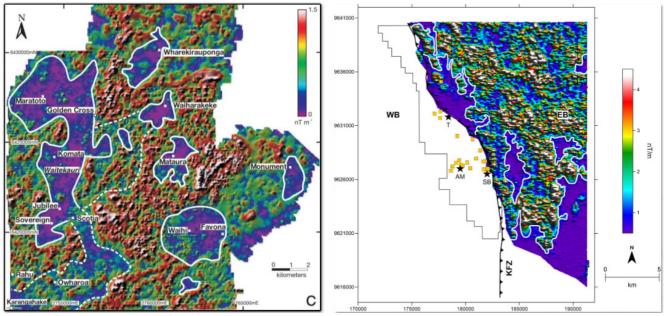



Figure 7: Composite figure of Structural and Magnetic signature with inset showing interpreted intrusive units

Analytical Signal, Waihi, New Zealand; Isles, 2013

Awak Mas (AM), Salu Bulo (SB), Tarra (T) Prospect locations Kandeapi Fault Zone (KFZ), West Block (WB) & East Block (EB), Comparison Waihi & Awak Mas Project

Figure 8: Comparison showing significance of hydrothermal alteration & mineralisation zones at Waihi and similarity at Awak Mas

APPENDIX 2: ASSAY RESULTS FROM ALL NUSANTARA SAMPLING AT SALU KOMBONG, PUNCAK UTARA AND PUNCAK SELATAN UNDERTAKEN DURING 2018

Reporting Criteria: Au and Ag grades are reported to two significant figures being greater than, or equal to, 0.1g/t Au. Samples are from outcrop or trenches taken by channel or chip sampling methods. Rock samples are sent to the laboratory for preparation and assaying. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples are analysed for gold using the fire assay (FAA40) technique with analysis for silver by multi-acid digest, with AAS finish (GAI02) technique.

NUSAN	TARA
	RESOURCES LIMITED

Survey Tag	Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au	Ag	Cu
			UTM Grid (m)	UTM Grid (m)	(m)	Interval	g/t	gt	ppm
						(m)			
Salu Kombong	Prospect								
KB001	RC154464	Grab	180,376	9,629,256	915	-	1.8	0.3	70
KB004	RC154465	Grab	180,366	9,629,425	851	-	0.1	0.3	22
KB006a	RC154466	Channel	180,626	9,629,600	842	3.2	2.6	0.6	25
KB006c	RC154477	Channel	180,622	9,629,613	835	2.7	2.1	1.2	26
KB007	RC154467	Channel	180,572	9,629,635	821	1.0	1.0	0.3	10
KB008	RC154468	Channel	180,517	9,629,642	816	1.0	2.8	0.3	54
KB010	RC154469	Channel	180,513	9,629,710	771	3.0	2.8	5.4	11,900
KB012a	RC154478	Channel	180,631	9,630,081	614	3.4	0.9	1.2	74
KB012b	RC154479	Channel	180,630	9,630,082	611	2.0	0.3	1.0	32
KB014	RC154470	Channel	180,574	9,630,164	603	1.0	0.8	0.3	67
KB015	RC154471	Channel	180,531	9,630,174	586	1.0	0.3	0.7	118
KB016	RC154472	Channel	180,486	9,630,006	635	1.0	0.1	0.3	59
KB017	RC154473	Channel	180,481	9,630,045	631	1.0	0.4	0.3	32
KB022a	RC154480	Grab	180,321	9,629,509	828	-	2.4	0.3	36
KB023	RC154481	Channel	180,313	9,629,532	804	1.0	0.2	0.3	25
KB024	RC154482	Channel	180,258	9,629,518	808	2.0	2.0	0.3	32
KB026	RC154483	Channel	180,273	9,629,588	787	1.0	0.1	0.3	6
KB027	RC154484	Channel	180,348	9,629,669	781	1.0	0.3	0.3	15
KB028	RC154485	Channel	180,409	9,629,662	811	2.0	1.5	0.5	1
KB029a	RC154486	Channel	180,215	9,629,715	711	1.0	0.4	0.3	1
KB030D	RC154657	Channel	180,383	9,629,688	795	1.0	0.7	1.8	63
KB030E	RC154658	Channel	180,382	9,629,689	795	1.0	0.1	1.9	28
KB030F	RC154660	Channel	180,382	9,629,690	795	1.0	1.4	1.9	4
KB030G	RC154661	Channel	180,382	9,629,690	795	1.0	0.1	1.5	2
КВ030Н	RC154662	Channel	180,381	9,629,691	795	1.0	0.1	1.2	21
KB030T	RC154674	Channel	180,373	9,629,683	788	1.0	1.0	0.6	60
KB030W	RC154678	Channel	180,374	9,629,687	788	1.0	0.4	0.9	53
KB030X	RC154679	Channel	180,375	9,629,688	788	1.0	0.3	0.3	65
KB030Z	RC154681	Channel	180,375	9,629,690	788	1.0	0.3	0.5	62
KB030AA	RC154682	Channel	180,365	9,629,691	781	1.0	0.4	0.3	9
KB030AB	RC154683	Channel	180,366	9,629,692	781	1.0	0.3	0.3	7
KB030AC	RC154684	Channel	180,366	9,629,693	781	1.0	0.1	0.3	5

Survey Tag	Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au	Ag	Cu
			UTM Grid (m)	UTM Grid (m)	(m)	Interval	g/t	gt	ppm
						(m)	-		
KB031A	RC154736	Channel	180,364	9,629,707	777	1.0	0.1	0.3	25
KB031B	RC154737	Channel	180,365	9,629,706	778	1.0	0.2	0.3	15
KB032	RC154694	Channel	180,355	9,629,735	777	1.0	0.2	0.6	26
KB036A	RC154738	Channel	180,641	9,629,613	834	1.0	1.0	0.7	99
KB036B	RC154739	Channel	180,642	9,629,614	834	1.0	0.8	0.6	130
KB036C	RC154740	Channel	180,642	9,629,614	834	1.0	0.2	0.3	71
KB036E	RC154743	Channel	180,643	9,629,616	834	1.0	0.7	0.3	46
KB036G	RC154745	Channel	180,644	9,629,618	834	1.0	0.2	0.5	70
KB036I	RC154747	Channel	180,645	9,629,620	834	1.0	0.1	0.8	68
KB037A	RC154751	Channel	180,650	9,629,627	832	1.0	0.4	0.3	8
KB037B	RC154752	Channel	180,651	9,629,628	831	1.0	1.0	0.3	2
KB037C	RC154753	Channel	180,651	9,629,629	831	1.0	0.4	0.3	5
KB037D	RC154754	Channel	180,652	9,629,630	830	1.0	0.7	0.3	33
KB037E	RC154755	Channel	180,652	9,629,630	830	1.0	0.2	0.3	3
KB037G	RC154757	Channel	180,653	9,629,632	829	1.0	0.5	0.3	4
KB037H	RC154758	Channel	180,654	9,629,632	828	1.0	0.7	0.5	20
KB037I	RC154760	Channel	180,655	9,629,633	828	1.0	0.1	0.3	10
KB037K	RC154762	Channel	180,656	9,629,635	828	1.0	0.8	0.3	24
KB039L	RC154806	Channel	180,665	9,629,688	794	1.0	3.2	0.3	24
KB039M	RC154807	Channel	180,665	9,629,689	793	1.0	0.3	0.3	24
KB039R	RC154819	Channel	180,667	9,629,693	792	1.0	1.9	0.3	22
KB040_01	RC154821	Channel	180,671	9,629,729	772	1.0	0.1	0.3	52
KB040_04	RC154824	Channel	180,671	9,629,732	771	1.0	0.1	0.3	40
KB040_05	RC154825	Channel	180,671	9,629,733	771	1.0	0.2	0.3	49
KB041_06	RC154851	Channel	180,676	9,629,752	758	1.0	0.2	0.3	62
KB041_07	RC154852	Channel	180,676	9,629,753	758	1.0	0.7	0.3	96
KB043-1	RC155022	Channel	180,509	9,629,737	763	1.0	0.4	0.3	5
KB043-2	RC155023	Channel	180,510	9,629,738	763	1.0	0.3	0.7	4
KB043-3	RC155024	Channel	180,510	9,629,739	763	1.0	0.2	0.7	4
KB043-4	RC155025	Channel	180,510	9,629,739	762	1.0	0.3	0.6	4
KB045-4	RC155031	Channel	180,475	9,629,850	738	1.0	0.1	0.5	69
KB045-9	RC155037	Channel	180,471	9,629,852	737	1.0	0.1	0.6	126
KB045-11	RC155039	Channel	180,472	9,629,854	736	1.0	0.2	0.6	126
KB047_01	RC154865	Channel	180,497	9,629,878	711	1.0	1.3	3.7	6,144

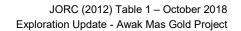
Survey Tag	Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au	Ag	Cu
			UTM Grid (m)	UTM Grid (m)	(m)	Interval	g/t	gt	ppm
						(m)			
KB047_02	RC154866	Channel	180,497	9,629,879	711	1.0	1.3	5.2	9,739
KB048	RC154867	Channel	180,500	9,629,874	714	1.0	1.1	3.3	4,368
KB30AD	RC154685	Channel	180,366	9,629,694	781	1.0	0.9	0.3	10
KB30AE	RC154686	Channel	180,367	9,629,695	781	1.0	0.1	0.3	14
KB30AG	RC154688	Channel	180,366	9,629,701	780	1.0	0.3	0.3	16
KB30AK	RC154693	Channel	180,366	9,629,705	779	1.0	0.1	0.6	168
Puncak Utara I	Prospect								
PU01a	RC154611	Channel	180,821	9,628,609	1,163	1.0	0.1	0.3	61
PU01b	RC154612	Channel	180,820	9,628,609	1,163	1.0	0.8	0.3	37
PU01c	RC154613	Channel	180,819	9,628,608	1,164	1.0	0.1	0.3	15
PU01d	RC154614	Channel	180,819	9,628,608	1,164	1.0	4.0	0.8	14
PU01e	RC154615	Channel	180,818	9,628,607	1,164	1.0	7.0	1.6	33
PU01g	RC154618	Channel	180,816	9,628,606	1,165	1.0	0.3	0.3	40
PU02	RC154453	Channel	180,968	9,628,349	1,180	1.0	2.9	1.2	28
PU03A	RC154649	Channel	180,966	9,628,327	1,209	1.0	11.0	3.6	34
PU03B	RC154650	Channel	180,967	9,628,327	1,208	1.0	9.6	2.1	50
PU03C	RC154651	Channel	180,968	9,628,324	1,208	1.0	5.8	2.2	105
PU04B	RC154455	Channel	180,910	9,628,248	1,220	2.0	3.0	1.7	80
PU04C	RC154456	Channel	180,910	9,628,251	1,220	1.5	0.7	1.3	165
PU08	RC154460	Channel	181,018	9,627,875	1,187	1.0	1.3	0.6	63
PU09	RC154461	Grab	180,995	9,627,890	1,204	-	0.5	0.3	1
PU014	RC154463	Channel	180,983	9,627,913	1,199	1.0	9.9	1.6	27
PU039-01	RC154780	Channel	180,989	9,627,910	1,183	1.0	1.1	0.6	184
PU039-02	RC154781	Channel	180,988	9,627,910	1,183	1.0	1.3	0.3	88
PU039-03	RC154782	Channel	180,987	9,627,910	1,184	1.0	2.9	1.0	23
PU039-04	RC154783	Channel	180,984	9,627,907	1,187	1.0	1.7	0.9	86
PU039-05	RC154784	Channel	180,984	9,627,906	1,187	1.0	2.7	1.4	69
PU039-06	RC154786	Channel	180,983	9,627,905	1,188	1.0	5.1	1.4	80
PU039-07	RC154787	Channel	180,982	9,627,905	1,189	1.0	3.4	1.0	101
PU039-08	RC154788	Channel	180,982	9,627,904	1,190	1.0	3.3	1.2	92
PU039-09	RC154789	Channel	180,982	9,627,903	1,191	1.0	4.9	1.6	75
PU039-10	RC154790	Channel	180,982	9,627,901	1,192	1.0	1.3	0.5	102
PU039-11	RC154791	Channel	180,981	9,627,900	1,193	1.0	0.6	0.3	47
PU039-12	RC154792	Channel	180,981	9,627,900	1,193		0.2	0.3	67

ASX ANNOUNCEMENT 4 October 2018

Survey Tag	Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au	Ag	Cu
			UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	gt	ppm
PU044_01	RC154811	Channel	181,383	9,628,039	1,039	1.0	0.5	0.3	59
PU044_03	RC154813	Channel	181,381	9,628,039	1,039	1.0	0.2	0.3	69
PU045	RC154816	Channel	181,401	9,628,046	1,033	1.0	0.4	0.3	69
Puncak Selata	n Prospect								
PSC02-1	RC154551	Channel	180,446	9,627,087	1,415	2.0	0.2	0.3	37
PSC02-9	RC154559	Channel	180,459	9,627,095	1,418	2.0	0.2	0.3	32
PSC02-10	RC154560	Channel	180,465	9,627,099	1,419	2.0	0.1	0.3	50
PSC02-11	RC154561	Channel	180,467	9,627,100	1,419	2.0	0.4	0.3	59
PSC03-1	RC154565	Channel	180,399	9,627,037	1,418	2.0	0.7	0.3	2
PSC03-2	RC154566	Channel	180,398	9,627,038	1,419	2.0	0.4	0.3	5
PSC03-3	RC154567	Channel	180,397	9,627,039	1,419	2.0	1.3	0.3	2
PSC03-5	RC154569	Channel	180,393	9,627,041	1,422	2.0	0.2	0.3	17
PSC03-6	RC154570	Channel	180,392	9,627,041	1,423	2.0	0.6	0.3	4
PSC04-1	RC154571	Channel	180,456	9,627,019	1,386	2.0	0.1	0.3	3
PSC04-2	RC154572	Channel	180,454	9,627,020	1,388	2.0	0.4	0.3	6
PSC04-3	RC154573	Channel	180,452	9,627,020	1,389	2.0	0.8	0.3	19
PSC04-4	RC154574	Channel	180,450	9,627,020	1,391	2.0	0.1	0.3	19
PSC05-1	RC154575	Channel	180,485	9,627,033	1,376	2.0	0.2	0.3	40
PSC06-1	RC154576	Channel	180,491	9,627,024	1,377	2.0	0.5	0.3	26
PSC06-2	RC154577	Channel	180,492	9,627,025	1,377	2.0	1.9	0.3	35
PSC06-3	RC154579	Channel	180,491	9,627,027	1,378	2.0	0.6	0.5	34
PSC07-1	RC154580	Channel	180,495	9,627,022	1,374	2.0	3.1	0.5	50
PSC07-2	RC154581	Channel	180,495	9,627,023	1,374	2.0	0.6	0.3	64
PSC08-1	RC154582	Channel	180,521	9,627,008	1,354	2.0	1.1	0.6	35
PSC09-1	RC154583	Channel	180,556	9,627,029	1,365	2.0	0.3	0.3	35
PS011-1	RC155045	Channel	180,382	9,627,023	1,436	1.0	3.9	0.8	25
PS011-2	RC155046	Channel	180,382	9,627,023	1,436	1.0	1.6	0.6	9
PS011-3	RC155047	Channel	180,381	9,627,024	1,436	1.0	3.7	0.8	33
PS011-4	RC155048	Channel	180,381	9,627,025	1,437	1.0	1.2	0.3	35
PS011-5	RC155049	Channel	180,380	9,627,026	1,437	1.0	1.2	0.3	22
PS011-6	RC155050	Channel	180,380	9,627,027	1,438	1.0	0.3	0.3	2
PS011-7	RC155051	Channel	180,380	9,627,027	1,439	1.0	0.2	0.3	4
PS011-8	RC155052	Channel	180,379	9,627,028	1,439	1.0	0.2	0.3	4
PS011-9	RC155053	Channel	180,379	9,627,029	1,439	1.0	5.2	0.8	14

ASX ANNOUNCEMENT 4 October 2018

Survey Tag	Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au	Ag	Cu
			UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	gt	ppm
PS011-10	RC155054	Channel	180,378	9,627,030	1,439	1.0	5.3	0.9	16
PS011-11	RC155056	Channel	180,378	9,627,031	1,439	1.0	0.6	0.3	21
PS011-12	RC155057	Channel	180,378	9,627,031	1,443	1.0	1.8	0.3	6
PS011-13	RC155058	Channel	180,377	9,627,032	1,443	1.0	1.1	0.3	23
PS011-14	RC155059	Channel	180,377	9,627,033	1,443	1.0	0.3	0.3	37
PS011-21	RC155067	Channel	180,374	9,627,039	1,441	1.0	0.3	0.3	38
PS011-22	RC155068	Channel	180,373	9,627,039	1,441	1.0	0.2	0.3	39
PS011-23	RC155069	Channel	180,373	9,627,040	1,440	1.0	2.3	0.3	30
PS011-24	RC155070	Channel	180,372	9,627,041	1,440	1.0	1.9	0.7	20
PS012-1	RC155071	Channel	180,360	9,627,060	1,443	1.0	0.7	0.3	47
PS012-2	RC155072	Channel	180,361	9,627,059	1,443	1.0	0.7	0.3	14
PS012-3	RC155073	Channel	180,361	9,627,059	1,443	1.0	0.8	0.3	58
PS012-4	RC155074	Channel	180,361	9,627,058	1,444	1.0	1.1	0.3	54
PS012-5	RC155075	Channel	180,361	9,627,057	1,444	1.0	1.4	0.3	86
PS012-6	RC155076	Channel	180,362	9,627,056	1,444	1.0	0.5	0.3	28
PS012-7	RC155078	Channel	180,362	9,627,055	1,445	1.0	0.6	0.3	9
PS012-8	RC155079	Channel	180,362	9,627,054	1,445	1.0	0.5	0.3	11
PS012-9	RC155080	Channel	180,363	9,627,053	1,445	1.0	0.8	0.3	14
PS012-10	RC155081	Channel	180,363	9,627,052	1,446	1.0	0.2	0.3	24
PS012-13	RC155084	Channel	180,364	9,627,049	1,447	1.0	0.2	0.3	24
PS012-14	RC155085	Channel	180,364	9,627,048	1,447	1.0	0.2	0.3	20
PS012-15	RC155086	Channel	180,364	9,627,048	1,447	1.0	0.4	0.3	42
PS012-16	RC155087	Channel	180,364	9,627,047	1,447	1.0	0.1	0.3	34
PS012-18	RC155090	Channel	180,365	9,627,045	1,448	1.0	0.2	0.3	30
PS012-19	RC155091	Channel	180,365	9,627,044	1,448	1.0	0.7	0.3	31
PS012-20	RC155092	Channel	180,366	9,627,043	1,448	1.0	4.8	0.7	45
PS012-21	RC155093	Channel	180,366	9,627,042	1,449	1.0	1.2	0.5	30
PS012-22	RC155094	Channel	180,367	9,627,041	1,449	1.0	1.0	0.3	12
PS012-23	RC155095	Channel	180,367	9,627,040	1,449	1.0	0.3	1.3	28
PS012-24	RC155096	Channel	180,367	9,627,039	1,449	1.0	0.3	0.3	21
PS012-25	RC155097	Channel	180,368	9,627,039	1,449	1.0	0.6	0.3	18
PS012-26	RC155098	Channel	180,368	9,627,038	1,449	1.0	2.5	0.5	55



JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools	Sampling of historic sample locations has been carried out by Nusantara using channel and single-point grab samples.
	hole gamma sondes, or handheld XRF instruments, etc). These	A total of 800 channel or grab samples were collected by Nusantara, 376 of which comprise the three areas of this report, aiming to confirm previous sampling where mapped sample locations could be determined. Where no evidence of historic sampling was evident, samples were collected from exposed surface outcrops.
		Most samples were taken over an interval length of approximately one (1) metre or composites of sub-intervals. Where this was not possible, a single point grab sample was taken.
		The process included:
		 Open and clean channels to expose the outcrop; Take continuous channel or single point grab sample within the available interval (1m, 2m etc); Place sample in calico bag and number using ticket book; Package and send samples to Geoservices Laboratory in Jakarta, and Analyse samples for Au with FAA40 – Fire Assay (40g) and Ag, As, Cu, Mg,
		Mo, Pb, Sb and Zn with ICP Package Element. No specialised measurement tools, e.g. handheld XRF instrument, were
		employed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	All sampling was carried out under the company's protocols and procedures meeting industry standard practice.
	measurement tools or systems used.	Quality Assurance (" QA ") and Quality Control (" QC ") protocols included the monitoring and analysis of inserted certified reference material, blanks and duplicates samples which to ensure sample representivity.

Criteria	JORC Code explanation	Commentary
	Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.	All Nusantara samples were subjected to the standard procedures of preparation, analytical process and reporting as have been previously undertaken by PT Geoservices LTD at Cikarang – Bekasi, Indonesia.
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling performed, channel and grab sampling only.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling performed, channel and grab sampling only.
	Measures taken to maximize sample recovery and ensure representative nature of the samples.	No drilling performed, channel and grab sampling only.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling performed, channel and grab sampling only.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling performed, channel and grab sampling only.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc) photography.	All sample material was geologically assessed and reported in terms of the standard terminology used for Awak Mas Gold Project. Sample reporting has been conducted both qualitatively and quantitatively – full description of lithologies, alteration and comments are recorded, as well as percentage estimates on veining and sulphide amount.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	Total length of Nusantara sample intervals has been recorded in the relevant table for reporting exploration results; Significant Assay Table Oct2018_v2.
		Total cumulative length of all significant channel sample data (>0.1 g/t Au) is 193.8m. Single point samples were collected from a further 4 locations reported as being significant (>0.1g/t Au).
Sub- Sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	No drilling undertaken.
Techniques and Sample Preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No drilling undertaken.
-	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Nusantara samples were prepared at PT Geoservices LTD using their "Total Sample Preparation Package", which included:
		 Samples were weighed, dried at 105°C; Jaw crushed (to nominal 4mm) if required; Whole sample is pulverized via LM5 ring mill pulverisers, and Samples >3kg are split and pulverised in separate lots.
		The nature, quality and appropriateness of the sample preparation technique is consistent with industry standard practices.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All samples were channel or grab samples, no sub-sampling applicable.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Coarse reject duplicate, coarse blanks, and both intra and umpire laboratory pulp duplicates were used to ensure the sampling is representative and un-biased.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	A sample size of 2.5-5 kg is considered appropriate and representative of the material being sampled given the width and continuity of the intersections and the grain size of the material being collected.
Quality of Assay Data	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	Current gold analysis by Nusantara has used a 40g charge fire assay method with an AAS finish.
and Laboratory	considered partial or total.	The primary assay laboratory used is PT. Geoservices at Cikarang-Bekasi, Jakarta.
Tests		Additional element analysis included;
		Aqua Regia digest plus ICP elements (GA102_ICP09);

Criteria	JORC Code explanation	Commentary			
		 Ag, As, Cu, Mg, Mo, Pb, Sb, and Zn. These analyses are total assay methods, which is an industry standard for gold 			
		analysis, and an appropriate assay method for this type of deposit.			
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used or data analysed.			
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	The following Quality Control (' QC ") sampling protocols and insertion rates have been adopted by Nusantara for the current diamond drilling;			
	acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Certified Refence Material (5%) Coarse Blank Material (2.5%) Coarse Duplicate Samples (5%) 			
		Performance of the control samples are regularly monitored, with any disparities investigated and remedied.			
		Acceptable levels of accuracy and precision have been established.			
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel.	 For Nusantara, verification protocols involved: Significant intersections were reviewed by the Manager Geology and Senior Geologists following receipt of the assay results. All assay results are processed and validated by the GIS/Database Administrator prior to loading into the database. This includes plotting standard and blank performances, review of duplicate results. Original assay certificates are issued as PDF's for all results and compared against digital CSV files as part of data loading procedure into the database. General Manager Geology reviews all tabulated assay data as the Competent Person for the reporting of Exploration Results. 			
	The use of twinned holes.	Not applicable.			
	Documentation of primary data, data entry procedures, data	For Nusantara, documentation procedures included:			
	verification, data storage (physical and electronic) protocols.	 Field sampling data is recorded directly into Logging templates in Excel spreadsheet format on laptop computers. Excel spreadsheets are imported to MS Access format for validation and management by the GIS/Database Administrator onsite. 			

Criteria	JORC Code explanation	Commentary			
		• All sampling data is uploaded and managed via a centralised Dropbox facility with restricted access.			
	Discuss any adjustment to assay data.	No adjustments have been made to any of the assay data.			
Data Points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Nusantara sample locations were initially located by hand held GPS with an accuracy of about 5-15m, dependent on satellite coverage. All Nusantara sample locations considered to be significant will be located by third party surveyors using Differential Global Positioning System ("DGPS") or total station electronic EDM equipment to an accuracy of approximately 0.1m if deemed further exploration or drilling work is required. 			
		The 3D location of the individual samples is considered to be adequately established, consistent with accepted industry standards			
	Specification of the grid system used.	All sample data is referenced in the UTM WGS 84 Zone 51 (Southern Hemisphere) coordinate system.			
	Quality and adequacy of topographic control.	Topographic mapping of the Awak Mas Gold Project area by Airborne Laser Scanning (LiDAR) survey was carried out by P.T. Surtech in November 2017. Topographic control now exists to a vertical and horizontal accuracy of 0.15m and has been incorporated into all sample location references where possible.			
Data Spacing and	Data spacing for reporting of Exploration Results.	Prospect sample spacing is on a variable basis to verify historical exploration results and help establish future exploration programs.			
Distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Sampling is of an initial reconnaissance nature and spacing is not sufficient at this early exploration phase to establish geological or grade continuity.			
	Whether sample compositing has been applied.	Channel samples were composited to specific intervals at the point of collection where individual outcrop length of exposure allowed.			
Orientation of Data in Relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Single point grab samples were unable to be orientated due to insufficient exposure of the mineralisation. Where sufficient outcrop exposure existed, sampling was performed at orientations perpendicular to the strike of the mineralised host rocks.			

Criteria		JORC Code explanation	Commentary
Geological Structure	I	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sampling is at an early stage and the geological structure and mineralisation orientation has not been established.
Sample Security		The measures taken to ensure sample security.	 Chain of Custody was managed by Nusantara whereby; All samples are placed into calico bags with sample tickets and clear sample ID numbering on the outside; Samples were bagged into polyweave sacks, zip tied, with the sample numbers written on the outside of the sack; Samples were stored onsite within a locked facility ready for dispatch; Prior to sample dispatch, the sample numbers, duplicates, standards were checked against the dispatch form; Samples were freighted by road to Belopa, and then air freighted to the Geoservices laboratory in Jakarta, and Geoservices in Jakarta notified Nusantara when the samples had been securely received intact.
Audits Reviews	or	The results of any audits or reviews of sampling techniques and data.	The results are part of preliminary exploration orientation work and reviews are not considered relevant at this early stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Tenure		The Awak Mas Gold Project includes the three main deposit areas of Awak Mas, Salu Bulo and Tarra for which current mineral Resources exist and have been reported to JORC Code (2012) guidelines.
Status	native title interests, historical sites, wilderness or national park and environmental settings.	Nusantara Resources Limited holds a 100% beneficial interest in the Awak Mas Gold Project via a 7th Generation Contract of Work (" CoW ") through its wholly owned subsidiary PT Masmindo Dwi Area.
		PT Masmindo Dwi Area is an Indonesian foreign investment company, which owns the exploration and mining rights to the Awak Mas Project through the CoW with the Government of the Republic of Indonesia.
		The Awak Mas Gold Project has a long history involving multiple companies through direct ownership, joint venture farm-ins, option to purchase agreements, or equity arrangements;
		 Battle Mountain discovered the Awak Mas deposit in 1991 after earning a 60% equity in the original partnership between New Hope and PT Asminco; Lone Star (1994) acquired the equity of both Battle Mountain and New Hope; Gascoyne structured an agreement which combined the various equities under Masmindo; Placer (1998) entered, and then later withdrew from a Joint Venture ("JV") with Masmindo; Vista Gold (2004) purchased 100% of Masmindo; Pan Asia (2009), now One Asia, acquired a 60% interest via a JV with Vista Gold upon completion of a Feasibility Study ("FS") and Environmental Impact Assessment ("AMDAL"); One Asia (2013) through its subsidiary Awak Mas Holdings purchased 100% of the Project from Vista Gold, and Nusantara Resources Limited (formerly Awak Mas Holdings) demerged from One Asia with a 100% interest in the Awak Mas Gold Project and listed on the Australian Securities Exchange ("ASX") on the 2nd August 2017.
		The Nusantara IPO Prospectus dated 15 June 2017 as lodged on ASX on 1 August 2017 priors an overview of all significant previous exploration on the CoW. The 7th Generation CoW was granted on 19 February 1998 and covers an area of 14,390 ha.

Criteria	JORC Code explanation	Commentary
		The CoW allows for 100% ownership and is located within a non-forested area – (APL) Land for Other Uses.
		The AMDAL for the project has been approved and Environment Permit Issued April 2017. The Competent Person is not aware of any other agreements that are material to the Project.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate	The CoW defines a construction period of 3 years and an operating period of 30 years.
	in the area.	The Competent Person has not been advised of any environmental liabilities associated with the Awak Mas Gold Project at this time.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration work at Awak Mas Gold Project has been characterised by surface geochemical studies and geological mapping, which identified numerous mineralised targets, three of which have become mineral resources. The exploration prospects include the three areas of Salu Kombong, Puncak Utara and Puncak Selatan.
		Prior to One Asia, the most recent exploration work was conducted by Placer Dome in 1999, who completed a core drilling program based on the surface exploration results.
		Infill diamond core drilling by One Asia in 2011-2013 at Awak Mas resulted in the completion of a mineral resource estimate by Tetra Tech which was reported in accordance with the JORC Code (2012) guidelines.
Geology	Deposit type, geological setting and style of mineralization.	The geological setting and mineralisation style at Awak Mas Gold Project is described as being associated with a high level, low sulphidation hydrothermal system has notably developed at the Awak Mas, Salu Bulo and Tarra deposits. A strong sub-vertical fracture control over-print event has then channelled mineralising fluids.
		The mineralising fluids have exploited these pathways with limited lateral migration along foliation parallel shallowly dipping favourable strata (predominantly hematitic mudstone) and along low angle thrusts.
		The multi-phase gold mineralisation is characterised by milled and crackle breccias, vuggy quartz infill, and stockwork quartz veining with distinct sub-vertical feeder structures.

Criteria	JORC Code explanation	Commentary
		Dominant host lithologies for mineralisation are a sequence of chloritic and intercalating hematitic meta-sedimentary rocks metamorphosed to greenschist grade. The geology of the three exploration prospect areas all demonstrate similar geological traits as the main deposits; with the notable exception of the occurrence of elevated Cu at Salu Kombong which appears to be related to fine sheeted to stock work quartz veins with associated secondary copper (malachite) and what is possibly primary enargite which is thought to be possibly associated to nearby late stage intrusives.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	No drilling has been completed by Nusantara on the prospect areas that are part of this Reporting of Exploration Results.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No drilling has been completed by Nusantara on the prospect areas that are part of this Reporting of Exploration Results.
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No weighting or grade cutting techniques have been used in the Reporting of Exploration Results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No aggregation of assay results has been used in the Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values have not been used.
Relationship between Mineralization Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No drilling has been completed on the prospect areas, with the collection of channel or grab samples only. Sampling is at an early stage and the geometry of the mineralisation has not been established.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant sample location plans are included within the main text of this ASX release. All mineralised sample intervals used in the reporting of the Exploration Results are tabulated in Appendix 1.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All exploration results from the current sampling program have been reported.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Historic surface geological mapping and grab or channel sampling have been used to build the geological framework for this surface sampling program.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Awak Mas Gold Project is an active growth project with additional areas to those reported having been identified for further exploration. Within the immediate area of these three exploration prospects, additional and ongoing work will be completed contiguously with the work to date. Planned further exploration sampling and mapping will focus on defining the known areas through the opening up of exposures, manual trenching for additional confirmation of geology and sampling after which mechanical trenching may be

Criteria	JORC Code explanation	Commentary
		performed. The results of this further work will be used to assess whether drill testing is warranted.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Not applicable to this reporting of Exploration results, no Mineral Resource estimate has been conducted.

APPENDIX 1 Awak Mas Gold Project – Significant Exploration Results Tabulation (Au ≥ 0.1 ppm)

Survey_Tag	Sample _Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
LM02_02	RC154991	Channel	179,557	9,627,254	1,300	2.03	0.9	65	94	0.02	1	18	13	40	Lematik	Awak Mas	Sst
LM02_03	RC154992	Channel	179,556	9,627,253	1,300	3.54	1.1	53	33	0.01	1	21	6	61	Lematik	Awak Mas	Sst
LM02_04	RC154993	Channel	179,555	9,627,253	1,300	0.60	<0.5	34	22	0.01	1	<5	7	37	Lematik	Awak Mas	Sst
LM02_05	RC154994	Channel	179,555	9,627,252	1,300	0.11	<0.5	22	43	0.01	1	5	9	27	Lematik	Awak Mas	Sst
LM02_06	RC154995	Channel	179,554	9,627,251	1,300	3.45	0.9	192	73	0.01	1	11	13	51	Lematik	Awak Mas	Sst
LM02_07	RC154996	Channel	179,553	9,627,251	1,300	0.88	<0.5	31	39	0.02	1	13	<5	51	Lematik	Awak Mas	Sst
LM02_08	RC154997	Channel	179,552	9,627,250	1,300	0.14	0.7	23	72	0.15	1	18	7	88	Lematik	Awak Mas	Sst
LM02_09	RC154999	Channel	179,552	9,627,249	1,300	0.33	0.8	44	59	0.05	1	11	8	68	Lematik	Awak Mas	Sst
LM02_10	RC155000	Channel	179,551	9,627,249	1,300	1.36	0.8	60	66	0.08	1	16	9	77	Lematik	Awak Mas	Sst
LM02_11	RC155001	Channel	179,550	9,627,248	1,300	0.41	0.6	55	50	1.75	1	8	7	120	Lematik	Awak Mas	Sst
LM02_12	RC155002	Channel	179,549	9,627,247	1,300	2.64	0.9	43	124	0.04	1	11	30	70	Lematik	Awak Mas	Sst
LM02_13	RC155003	Channel	179,549	9,627,247	1,300	2.09	0.9	67	80	0.04	1	9	14	67	Lematik	Awak Mas	Sst
LM02_14	RC155004	Channel	179,548	9,627,246	1,300	5.72	1.4	134	73	0.02	1	15	16	73	Lematik	Awak Mas	Sst
LM02_15	RC155005	Channel	179,547	9,627,245	1,300	1.49	0.8	103	79	0.03	1	10	14	69	Lematik	Awak Mas	Sst
LM02_16	RC155006	Channel	179,546	9,627,245	1,300	2.02	0.8	64	86	0.09	1	14	13	74	Lematik	Awak Mas	Sst
LM02_17	RC155007	Channel	179,546	9,627,244	1,300	2.63	1.0	77	41	0.02	1	20	8	52	Lematik	Awak Mas	Sst
LM02_18	RC155008	Channel	179,545	9,627,243	1,300	1.62	0.6	58	72	0.01	1	11	15	50	Lematik	Awak Mas	Sst
LM02_19	RC155009	Channel	179,544	9,627,243	1,300	1.14	<0.5	136	67	0.02	1	13	17	52	Lematik	Awak Mas	Sst
LM02_20	RC155010	Channel	179,543	9,627,242	1,300	1.45	0.7	97	64	0.05	1	13	9	81	Lematik	Awak Mas	Sst
LM02_21	RC155011	Channel	179,543	9,627,242	1,300	0.12	0.6	36	54	0.16	1	21	<5	77	Lematik	Awak Mas	Sst
LM02_23	RC155013	Channel	179,541	9,627,240	1,300	0.29	<0.5	106	68	0.06	1	13	7	83	Lematik	Awak Mas	Sst
LM02_24	RC155014	Channel	179,540	9,627,240	1,300	0.21	<0.5	123	61	0.01	1	7	7	48	Lematik	Awak Mas	Sst
LM02_25	RC155016	Channel	179,540	9,627,239	1,300	0.48	<0.5	108	70	0.02	1	13	9	53	Lematik	Awak Mas	Sst
LM02_27	RC155018	Channel	179,538	9,627,238	1,300	3.12	0.8	86	49	0.01	2	30	8	53	Lematik	Awak Mas	Sst
LM02_28	RC155019	Channel	179,537	9,627,237	1,300	0.43	<0.5	65	26	0.05	1	12	<5	38	Lematik	Awak Mas	Sst
PSC02-1	RC154551	Channel	180,446	9,627,087	1,415	0.15	<0.5	71	37	0.27	4	6	<5	54	Puncak Selatan	Puncak Selatan	Sandstone
PSC02-9	RC154559	Channel	180,459	9,627,095	1,418	0.15	<0.5	47	32	0.27	1	<5	<5	41	Puncak Selatan	Puncak Selatan	Silstone
PSC02-10	RC154560	Channel	180,465	9,627,099	1,419	0.13	<0.5	52	50	0.03	4	<5	8	25	Puncak Selatan	Puncak Selatan	Silstone
PSC02-11	RC154561	Channel	180,467	9,627,100	1,419	0.39	<0.5	66	59	0.06	1	6	<5	36	Puncak Selatan	Puncak Selatan	Silstone
PSC03-1	RC154565	Channel	180,399	9,627,037	1,418	0.72	<0.5	17	2	<0.0	1	86	<5	6	Puncak Selatan	Puncak Selatan	Sandstone
PSC03-2	RC154566	Channel	180,398	9,627,038	1,419	0.39	<0.5	9	5	<0.0	1	220	<5	6	Puncak Selatan	Puncak Selatan	Quartz Vn
PSC03-3	RC154567	Channel	180,397	9,627,039	1,419	1.34	<0.5	6	2	<0.0	1	34	<5	<5	Puncak Selatan	Puncak Selatan	Quartz Vn
PSC03-5	RC154569	Channel	180,393	9,627,041	1,422	0.19	<0.5	13	17	<0.0	3	25	<5	7	Puncak Selatan	Puncak Selatan	Quartz Vn
PSC03-6	RC154570	Channel	180,392	9,627,041	1,423	0.62	<0.5	18	4	<0.0	4	85	<5	9	Puncak Selatan	Puncak Selatan	Sandstone
PSC04-1	RC154571	Channel	180,456	9,627,019	1,386	0.10	<0.5	17	3	0.02	1	19	<5	11	Puncak Selatan	Puncak Selatan	Quartz Vn
PSC04-2	RC154572	Channel	180,454	9,627,020	1,388	0.35	<0.5	54	6	0.02	7	35	7	20	Puncak Selatan	Puncak Selatan	Quartz Vn

Nusantara Resources Limited

Survey_Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
PSC04-3	RC154573	Channel	180,452	9,627,020	1,389	0.83	<0.5	27	19	< 0.0	1	10	10	24	Puncak Selatan	Puncak Selatan	Quartz Vn
PSC04-4	RC154574	Channel	180,450	9,627,020	1,391	0.11	<0.5	24	19	< 0.0	1	10	11	24	Puncak Selatan	Puncak Selatan	Sandstone
PSC05-1	RC154575	Channel	180,485	9,627,033	1,376	0.22	<0.5	53	40	0.24	1	10	<5	100	Puncak Selatan	Puncak Selatan	Silstone
PSC06-1	RC154576	Channel	180,491	9,627,024	1,377	0.45	<0.5	64	26	0.03	1	<5	7	36	Puncak Selatan	Puncak Selatan	Sandstone
PSC06-2	RC154577	Channel	180,492	9,627,025	1,377	1.86	<0.5	59	35	0.04	1	7	6	40	Puncak Selatan	Puncak Selatan	Sandstone
PSC06-3	RC154579	Channel	180,491	9,627,027	1,378	0.56	0.5	72	34	0.04	1	9	<5	60	Puncak Selatan	Puncak Selatan	Sandstone
PSC07-1	RC154580	Channel	180,495	9,627,022	1,374	3.07	0.5	87	50	0.03	1	7	11	70	Puncak Selatan	Puncak Selatan	Sandstone
PSC07-2	RC154581	Channel	180,495	9,627,023	1,374	0.59	<0.5	141	64	0.04	1	5	17	78	Puncak Selatan	Puncak Selatan	Sandstone
PSC08-1	RC154582	Channel	180,521	9,627,008	1,354	1.07	0.6	81	35	0.02	3	25	12	44	Puncak Selatan	Puncak Selatan	Sandstone
PSC09-1	RC154583	Channel	180,556	9,627,029	1,365	0.25	<0.5	47	35	0.10	1	20	7	210	Puncak Selatan	Puncak Selatan	Sandstone
PS11-1	RC155045	Channel	180,382	9,627,023	1,436	3.86	0.8	34	25	0.02	1	14	6	62	Puncak Selatan	Puncak Selatan	Sst
PS11-2	RC155046	Channel	180,382	9,627,023	1,436	1.63	0.6	33	9	0.01	2	8	<5	38	Puncak Selatan	Puncak Selatan	Sst
PS11-3	RC155047	Channel	180,381	9,627,024	1,436	3.71	0.8	71	33	0.01	4	12	11	70	Puncak Selatan	Puncak Selatan	Sst
PS11-4	RC155048	Channel	180,381	9,627,025	1,437	1.18	<0.5	85	35	0.03	1	13	9	53	Puncak Selatan	Puncak Selatan	Sst
PS11-5	RC155049	Channel	180,380	9,627,026	1,437	1.24	<0.5	77	22	0.03	1	12	10	53	Puncak Selatan	Puncak Selatan	Quartz
PS11-6	RC155050	Channel	180,380	9,627,027	1,438	0.25	<0.5	6	2	<0.0	1	18	<5	8	Puncak Selatan	Puncak Selatan	Quartz
PS11-7	RC155051	Channel	180,380	9,627,027	1,439	0.21	<0.5	7	4	<0.0	1	48	<5	30	Puncak Selatan	Puncak Selatan	Sst
PS11-8	RC155052	Channel	180,379	9,627,028	1,439	0.18	<0.5	13	4	0.01	1	23	<5	17	Puncak Selatan	Puncak Selatan	Quartz
PS11-9	RC155053	Channel	180,379	9,627,029	1,439	5.19	0.8	21	14	<0.0	10	32	7	27	Puncak Selatan	Puncak Selatan	Sst
PS11-10	RC155054	Channel	180,378	9,627,030	1,439	5.32	0.9	26	16	0.01	3	29	<5	36	Puncak Selatan	Puncak Selatan	Quartz
PS11-11	RC155056	Channel	180,378	9,627,031	1,439	0.57	<0.5	57	21	0.02	1	12	<5	39	Puncak Selatan	Puncak Selatan	Quartz
PS11-12	RC155057	Channel	180,378	9,627,031	1,443	1.80	<0.5	24	6	0.01	1	24	<5	30	Puncak Selatan	Puncak Selatan	Quartz
PS11-13	RC155058	Channel	180,377	9,627,032	1,443	1.08	<0.5	26	23	0.03	1	28	6	60	Puncak Selatan	Puncak Selatan	Sst
PS11-14	RC155059	Channel	180,377	9,627,033	1,443	0.25	<0.5	958	37	0.03	1	20	22	69	Puncak Selatan	Puncak Selatan	Sst
PS11-21	RC155067	Channel	180,374	9,627,039	1,441	0.27	<0.5	188	38	0.05	2	24	20	78	Puncak Selatan	Puncak Selatan	Sst
PS11-22	RC155068	Channel	180,373	9,627,039	1,441	0.15	<0.5	138	39	0.03	3	31	16	62	Puncak Selatan	Puncak Selatan	Sst
PS11-23	RC155069	Channel	180,373	9,627,040	1,440	2.33	<0.5	69	30	0.06	16	44	8	83	Puncak Selatan	Puncak Selatan	Sst
PS11-24	RC155070	Channel	180,372	9,627,041	1,440	1.92	0.7	113	20	0.04	37	78	10	81	Puncak Selatan	Puncak Selatan	Sst
PS12-1	RC155071	Channel	180,360	9,627,060	1,443	0.72	<0.5	664	47	0.01	1	8	15	51	Puncak Selatan	Puncak Selatan	Siltstone Bx
PS12-2	RC155072	Channel	180,361	9,627,059	1,443	0.71	<0.5	336	14	0.01	1	13	<5	32	Puncak Selatan	Puncak Selatan	Siltstone Qtz V Bx
PS12-3	RC155073	Channel	180,361	9,627,059	1,443	0.84	<0.5	192	58	0.08	1	15	17	73	Puncak Selatan	Puncak Selatan	Silstone
PS12-4	RC155074	Channel	180,361	9,627,058	1,444	1.12	<0.5	47	54	0.02	1	23	12	57	Puncak Selatan	Puncak Selatan	Silstone
PS12-5	RC155075	Channel	180,361	9,627,057	1,444	1.43	<0.5	90	86	0.04	1	32	14	77	Puncak Selatan	Puncak Selatan	Silstone
PS12-6	RC155076	Channel	180,362	9,627,056	1,444	0.50	<0.5	88	28	0.02	1	22	5	58	Puncak Selatan	Puncak Selatan	Breccia
PS12-7	RC155078	Channel	180,362	9,627,055	1,445	0.56	<0.5	59	9	0.01	1	13	<5	18	Puncak Selatan	Puncak Selatan	Breccia
PS12-8	RC155079	Channel	180,362	9,627,054	1,445	0.54	<0.5	30	11	0.01	1	8	<5	20	Puncak Selatan	Puncak Selatan	Qtz Vein Bx

Survey_Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
PS12-9	RC155080	Channel	180,363	9,627,053	1,445	0.78	<0.5	52	14	0.01	1	16	<5	38	Puncak Selatan	Puncak Selatan	Qtz Vein Bx
PS12-10	RC155081	Channel	180,363	9,627,052	1,446	0.18	<0.5	104	24	0.04	1	36	8	47	Puncak Selatan	Puncak Selatan	Sandstone
PS12-13	RC155084	Channel	180,364	9,627,049	1,447	0.21	<0.5	148	24	0.03	1	12	7	46	Puncak Selatan	Puncak Selatan	Silltstone
PS12-14	RC155085	Channel	180,364	9,627,048	1,447	0.20	<0.5	159	20	0.03	1	21	15	41	Puncak Selatan	Puncak Selatan	Silltstone
PS12-15	RC155086	Channel	180,364	9,627,048	1,447	0.40	<0.5	115	42	0.06	1	21	12	70	Puncak Selatan	Puncak Selatan	Siltstone
PS12-16	RC155087	Channel	180,364	9,627,047	1,447	0.12	<0.5	60	34	0.02	1	19	8	53	Puncak Selatan	Puncak Selatan	Siltstone
PS12-18	RC155090	Channel	180,365	9,627,045	1,448	0.15	<0.5	40	30	0.03	1	19	9	81	Puncak Selatan	Puncak Selatan	Siltstone
PS12-19	RC155091	Channel	180,365	9,627,044	1,448	0.70	<0.5	52	31	0.03	1	20	10	59	Puncak Selatan	Puncak Selatan	Siltstone
PS12-20	RC155092	Channel	180,366	9,627,043	1,448	4.76	0.7	89	45	0.04	6	65	14	88	Puncak Selatan	Puncak Selatan	Silstone
PS12-21	RC155093	Channel	180,366	9,627,042	1,449	1.21	0.5	79	30	0.03	4	32	14	89	Puncak Selatan	Puncak Selatan	Silstone
PS12-22	RC155094	Channel	180,367	9,627,041	1,449	0.99	<0.5	21	12	0.02	1	31	<5	29	Puncak Selatan	Puncak Selatan	Silstone
PS12-23	RC155095	Channel	180,367	9,627,040	1,449	0.31	1.3	64	28	0.03	3	36	7	83	Puncak Selatan	Puncak Selatan	Silstone
PS12-24	RC155096	Channel	180,367	9,627,039	1,449	0.29	<0.5	55	21	0.02	6	59	8	50	Puncak Selatan	Puncak Selatan	Silstone
PS12-25	RC155097	Channel	180,368	9,627,039	1,449	0.55	<0.5	43	18	0.02	4	64	6	55	Puncak Selatan	Puncak Selatan	Breccia
PS12-26	RC155098	Channel	180,368	9,627,038	1,449	2.46	0.5	78	55	0.02	1	41	8	61	Puncak Selatan	Puncak Selatan	Breccia
PU02	RC154453	Grab	180,968	9,628,349	1,180	2.93	1.2	10	28	0.06	1	7	28	80	Puncak Utara	Puncak Utara	SMr
PU04B	RC154455	Channel	180,910	9,628,248	1,220	3.03	1.7	39	80	0.11	1	10	19	84	Puncak Utara	Puncak Utara	Smh
PU04C	RC154456	Channel	180,910	9,628,251	1,220	0.69	1.3	11	165	0.04	1	9	12	101	Puncak Utara	Puncak Utara	Smh
PU08	RC154460	Channel	181,018	9,627,875	1,187	1.26	0.6	143	63	0.18	1	<5	30	60	Puncak Utara	Puncak Utara	Smc
PU09	RC154461	Channel	180,995	9,627,890	1,204	0.52	<0.5	9	<1	0.03	1	<5	<5	36	Puncak Utara	Puncak Utara	Qtc Bx
PU014	RC154463	Channel	180,983	9,627,913	1,199	9.88	1.6	21	27	0.04	1	8	23	40	Puncak Utara	Puncak Utara	Qtz Bx
PU01a	RC154611	Channel	180,821	9,628,609	1,163	0.12	<0.5	10	61	3.54	1	38	<5	64	Puncak Utara	Puncak Utara	Smr
PU01b	RC154612	Channel	180,820	9,628,609	1,163	0.82	<0.5	9	37	0.97	1	20	<5	60	Puncak Utara	Puncak Utara	Smr
PU01c	RC154613	Channel	180,819	9,628,608	1,164	0.14	<0.5	7	15	2.07	1	8	<5	88	Puncak Utara	Puncak Utara	Smr
PU01d	RC154614	Channel	180,819	9,628,608	1,164	3.99	0.8	9	14	0.47	1	6	<5	65	Puncak Utara	Puncak Utara	Smr
PU01e	RC154615	Channel	180,818	9,628,607	1,164	7.00	1.6	14	33	0.17	1	10	<5	97	Puncak Utara	Puncak Utara	Smr
PU01g	RC154618	Channel	180,816	9,628,606	1,165	0.27	<0.5	8	40	4.05	1	6	<5	64	Puncak Utara	Puncak Utara	Smr
PU03A	RC154649	Channel	180,966	9,628,327	1,209	11.00	3.6	13	34	0.35	1	13	6	66	Puncak Utara	Puncak Utara	Smh
PU03B	RC154650	Channel	180,967	9,628,327	1,208	9.58	2.1	15	50	0.14	1	9	7	72	Puncak Utara	Puncak Utara	SMh
PU03C	RC154651	Channel	180,968	9,628,324	1,208	5.78	2.2	8	105	0.13	1	8	8	67	Puncak Utara	Puncak Utara	SMh
PU39-01	RC154780	Channel	180,989	9,627,910	1,183	1.11	0.6	38	184	0.30	1	13	13	81	Puncak Utara	Puncak Utara	Sss
PU39-02	RC154781	Channel	180,988	9,627,910	1,183	1.29	<0.5	46	88	0.05	1	12	8	56	Puncak Utara	Puncak Utara	Sss
PU39-03	RC154782	Channel	180,987	9,627,910	1,184	2.94	1.0	19	23	0.04	1	6	<5	37	Puncak Utara	Puncak Utara	Sss
PU39-04	RC154783	Channel	180,984	9,627,907	1,187	1.73	0.9	15	86	0.12	1	9	13	59	Puncak Utara	Puncak Utara	Sss
PU39-05	RC154784	Channel	180,984	9,627,906	1,187	2.69	1.4	17	69	0.03	1	270	10	44	Puncak Utara	Puncak Utara	Sss
PU39-06	RC154786	Channel	180,983	9,627,905	1,188	5.14	1.4	27	80	0.04	1	185	9	48	Puncak Utara	Puncak Utara	Sss

Survey_Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
PU39-07	RC154787	Channel	180,982	9,627,905	1,189	3.44	1.0	25	101	0.10	1	22	15	56	i Puncak Utara	Puncak Utara	Sss
PU39-08	RC154788	Channel	180,982	9,627,904	1,190	3.32	1.2	21	92	0.23	1	17	11	59	Puncak Utara	Puncak Utara	Sss
PU39-09	RC154789	Channel	180,982	9,627,903	1,191	4.94	1.6	16	75	0.52	1	16	<5	75	Puncak Utara	Puncak Utara	Sss
PU39-10	RC154790	Channel	180,982	9,627,901	1,192	1.33	0.5	12	102	0.98	1	13	<5	78	Puncak Utara	Puncak Utara	Sss
PU39-11	RC154791	Channel	180,981	9,627,900	1,193	0.57	<0.5	17	47	0.12	1	11	<5	65	Puncak Utara	Puncak Utara	Sss
PU39-12	RC154792	Channel	180,981	9,627,900	1,193	0.21	<0.5	31	67	0.41	1	11	<5	62	Puncak Utara	Puncak Utara	Sss
PU44_01	RC154811	Channel	181,383	9,628,039	1,039	0.54	<0.5	3	59	3.13	1	<5	<5	71	. Puncak Utara	Puncak Utara	Sss
PU44_03	RC154813	Channel	181,381	9,628,039	1,039	0.19	<0.5	3	69	2.29	1	5	<5	93	Puncak Utara	Puncak Utara	Sss
PU45	RC154816	Grab	181,401	9,628,046	1,033	0.38	<0.5	10	69	2.83	1	<5	<5	61	. Puncak Utara	Puncak Utara	Gvc
KDP01	RC154593	Grab	181,806	9,627,599	930	0.41	<0.5	19	89	0.21	25	1770	7	39	S. Lengke Trib	Salu Bulo	Quartz Vn
KDP07	RC154595	Grab	181,742	9,627,605	935	0.26	<0.5	17	88	0.23	1	350	5	17	S. Lengke Trib	Salu Bulo	Quartz Vn
KDP08	RC154596	Grab	181,706	9,627,067	929	0.13	<0.5	18	62	0.53	1	89	<5	45	S. Lengke Trib	Salu Bulo	Quartz Vn
KDP09	RC154597	Grab	181,700	9,627,603	945	0.15	<0.5	34	83	0.10	1	87	<5	23	S. Lengke Trib	Salu Bulo	Quartz Vn
SBM002	RC154599	Grab	181,892	9,626,573	878	0.47	<0.5	21	79	0.05	1	36	<5	64	Salu Bulo	Salu Bulo	Sss + Qtz Vn
SBM004	RC154601	Grab	181,746	9,626,498	925	0.40	<0.5	10	15	0.23	1	57	<5	33	Salu Bulo	Salu Bulo	Sss
SBM008	RC154605	Grab	181,568	9,626,641	1,011	3.19	0.8	80	11	0.16	1	26	<5	33	Salu Bulo	Salu Bulo	Smd
SBM011	RC154607	Grab	182,200	9,626,509	810	0.24	<0.5	21	48	0.26	1	123	<5	78	Salu Bulo	Salu Bulo	Sss
BS001	RC154609	Channel	182,266	9,626,866	848	0.39	<0.5	57	278	1.83	1	30	<5	47	' Salu Bulo	Salu Bulo	Smh
KB001	RC154464	Grab	180,376	9,629,256	915	1.77	<0.5	6	70	0.03	1	5	<5	64	Salu Kombong	Salu Kombong	Qtz V
КВ004	RC154465	Grab	180,366	9,629,425	851	0.11	<0.5	9	22	1.29	1	<5	<5	55	Salu Kombong	Salu Kombong	Qtz Bx
КВ006а	RC154466	Channel	180,626	9,629,600	842	2.58	0.6	14	25	0.55	1	<5	7	54	Salu Kombong	Salu Kombong	Qtz V
КВ007	RC154467	Channel	180,572	9,629,635	821	1.04	<0.5	39	10	0.09	1	6	9	89	Salu Kombong	Salu Kombong	Smh Qtz
КВ008	RC154468	Channel	180,517	9,629,642	816	2.82	<0.5	36	54	0.04	1	<5	7	70) Salu Kombong	Salu Kombong	Qtz Vein
КВ010	RC154469	Channel	180,513	9,629,710	771	2.80	5.4	46	1190	1.39	1	8	78	101	. Salu Kombong	Salu Kombong	Smh
КВ014	RC154470	Channel	180,574	9,630,164	603	0.81	<0.5	13	67	1.21	1	6	<5	39	Salu Kombong	Salu Kombong	Smh Qtz V
КВ015	RC154471	Channel	180,531	9,630,174	586	0.30	0.7	20	118	0.87	1	21	73	72	Salu Kombong	Salu Kombong	Smh Qtz V
КВ016	RC154472	Channel	180,486	9,630,006	635	0.12	<0.5	7	59	2.02	1	6	<5	56	Salu Kombong	Salu Kombong	Ddr, Smh
КВ017	RC154473	Channel	180,481	9,630,045	631	0.40	<0.5	8	32	1.01	1	7	6	68	Salu Kombong	Salu Kombong	Qtz Bx
KB006c	RC154477	Channel	180,622	9,629,613	835	2.13	1.2	7	26	0.07	1	21	<5	46	Salu Kombong	Salu Kombong	Smh Qtz
KB12a	RC154478	Channel	180,631	9,630,081	614	0.89	1.2	15	74	0.77	1	58	49	92	Salu Kombong	Salu Kombong	Smh Qtz
KB12b	RC154479	Channel	180,630	9,630,082	611	0.30	1.0	11	32	0.56	1	24	29	64	Salu Kombong	Salu Kombong	Smh Qtz
KB022a	RC154480	Grab	180,321	9,629,509	828	2.39	<0.5	10	36	2.32	1	<5	<5	52	Salu Kombong	Salu Kombong	Smh Qtz V
KB023	RC154481	Channel	180,313	9,629,532	804	0.21	<0.5	5	25	2.35	1	8	33	66	Salu Kombong	Salu Kombong	Smh Qtz V
KB024	RC154482	Channel	180,258	9,629,518	808	1.96	<0.5	42	32	0.99	1	7	14	65	-	Salu Kombong	Smh Qtz V
KB026	RC154483	Channel	180,273	9,629,588	787	0.11	<0.5	13	6	1.72	1	<5	6	59	Salu Kombong	Salu Kombong	Smh Qtz V
KB027	RC154484	Channel	180,348	9,629,669	781	0.25	<0.5	7	15	1.65	1	<5	8) Salu Kombong	Salu Kombong	Smh Qtz Bx

Survey_Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
KB028	RC154485	Channel	180,409	9,629,662	811	1.52	0.5	1	<1	3.12	1	<5	10	99	Salu Kombong	Salu Kombong	Smh Qtz Bx
KB029a	RC154486	Channel	180,215	9,629,715	711	0.36	<0.5	6	<1	1.06	1	<5	<5	67	Salu Kombong	Salu Kombong	Smh Qtz V
KB30D	RC154657	Channel	180,383	9,629,688	795	0.67	1.8	11	63	3.28	1	14	9	71	Salu Kombong	Salu Kombong	Smh
KB30E	RC154658	Channel	180,382	9,629,689	795	0.11	1.9	18	28	1.08	1	16	11	92	Salu Kombong	Salu Kombong	SMh
KB30F	RC154660	Channel	180,382	9,629,690	795	1.44	1.9	8	4	2.35	1	12	6	75	Salu Kombong	Salu Kombong	Smh
KB30G	RC154661	Channel	180,382	9,629,690	795	0.13	1.5	10	2	2.14	1	17	8	58	Salu Kombong	Salu Kombong	Smh
КВЗОН	RC154662	Channel	180,381	9,629,691	795	0.11	1.2	12	21	1.29	1	18	9	74	Salu Kombong	Salu Kombong	Smh
KB30T	RC154674	Channel	180,373	9,629,683	788	1.04	0.6	10	60	1.00	1	<5	<5	59	Salu Kombong	Salu Kombong	Smh Qtz Bx
KB30W	RC154678	Channel	180,374	9,629,687	788	0.42	0.9	19	53	2.61	1	<5	<5	59	Salu Kombong	Salu Kombong	Smh Smc
KB30X	RC154679	Channel	180,375	9,629,688	788	0.29	<0.5	20	65	2.13	1	<5	<5	51	Salu Kombong	Salu Kombong	SMh
KB30Z	RC154681	Channel	180,375	9,629,690	788	0.26	0.5	28	62	1.69	1	9	24	44	Salu Kombong	Salu Kombong	Smh Smc
KB30AA	RC154682	Channel	180,365	9,629,691	781	0.35	<0.5	4	9	1.30	1	10	<5	66	Salu Kombong	Salu Kombong	SMh
KB30AB	RC154683	Channel	180,366	9,629,692	781	0.25	<0.5	3	7	1.68	1	6	<5	59	Salu Kombong	Salu Kombong	Smh
KB30AC	RC154684	Channel	180,366	9,629,693	781	0.11	<0.5	3	5	2.18	1	7	<5	61	Salu Kombong	Salu Kombong	Smh
KB30AD	RC154685	Channel	180,366	9,629,694	781	0.91	<0.5	3	10	1.66	1	8	<5	64	Salu Kombong	Salu Kombong	Smh
KB30AE	RC154686	Channel	180,367	9,629,695	781	0.12	<0.5	2	14	2.44	1	6	<5	58	Salu Kombong	Salu Kombong	Smh Bx
KB30AG	RC154688	Channel	180,366	9,629,701	780	0.33	<0.5	12	16	0.84	1	8	6	67	Salu Kombong	Salu Kombong	Qtz Bx
КВЗОАК	RC154693	Channel	180,366	9,629,705	779	0.12	0.6	3	168	0.61	1	9	<5	89	Salu Kombong	Salu Kombong	Smh
KB032	RC154694	Grab	180,355	9,629,735	777	0.21	0.6	5	26	2.38	1	8	<5	83	Salu Kombong	Salu Kombong	Qtz V
KB031A	RC154736	Channel	180,364	9,629,707	777	0.10	<0.5	13	25	1.55	1	6	<5	62	Salu Kombong	Salu Kombong	Smh
KB031B	RC154737	Channel	180,365	9,629,706	778	0.15	<0.5	24	15	0.98	1	6	<5	60	Salu Kombong	Salu Kombong	Smh
KB 36A	RC154738	Channel	180,641	9,629,613	834	0.99	0.7	63	99	0.37	1	6	<5	67	Salu Kombong	Salu Kombong	Qtz Bx
KB 36B	RC154739	Channel	180,642	9,629,614	834	0.78	0.6	222	130	0.41	1	11	<5	70	Salu Kombong	Salu Kombong	Smc
KB 36C	RC154740	Channel	180,642	9,629,614	834	0.20	<0.5	48	71	0.08	1	13	<5	70	Salu Kombong	Salu Kombong	Smh
KB 36E	RC154743	Channel	180,643	9,629,616	834	0.74	<0.5	139	46	0.22	1	6	<5	70	Salu Kombong	Salu Kombong	SMc
KB 36G	RC154745	Channel	180,644	9,629,618	834	0.19	0.5	40	70	0.12	1	12	<5	79	Salu Kombong	Salu Kombong	SMc
KB 36I	RC154747	Channel	180,645	9,629,620	834	0.13	0.8	42	68	0.09	1	7	<5	89	Salu Kombong	Salu Kombong	SMh
KB 37A	RC154751	Channel	180,650	9,629,627	832	0.43	<0.5	191	8	0.57	1	6	<5	66	Salu Kombong	Salu Kombong	Sss
KB 37B	RC154752	Channel	180,651	9,629,628	831	0.95	<0.5	244	2	0.58	1	6	<5	61	Salu Kombong	Salu Kombong	Sss
KB 37C	RC154753	Channel	180,651	9,629,629	831	0.37	<0.5	399	5	0.05	1	5	<5	48	Salu Kombong	Salu Kombong	Sss
KB 37D	RC154754	Channel	180,652	9,629,630	830	0.70	<0.5	524	33	0.29	1	6	<5	57	Salu Kombong	Salu Kombong	Sss
KB 37E	RC154755	Channel	180,652	9,629,630	830	0.20	<0.5	139	3	0.90	1	5	<5	60	Salu Kombong	Salu Kombong	Sss
KB 37G	RC154757	Channel	180,653	9,629,632	829	0.50	<0.5	265	4	0.19	1	5	<5	47	Salu Kombong	Salu Kombong	Sss
КВ 37Н	RC154758	Channel	180,654	9,629,632	828	0.68	0.5	181	20	0.30	1	8	<5	74	Salu Kombong	Salu Kombong	Sss
KB 37I	RC154760	Channel	180,655	9,629,633	828	0.12	<0.5	83	10	0.58	1	5	<5	61	Salu Kombong	Salu Kombong	Sss
КВ 37К	RC154762	Channel	180,656	9,629,635	828	0.81	<0.5	77	24	0.11	1	5	<5	65	Salu Kombong	Salu Kombong	Sss

Survey_Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
KB 39L	RC154806	Channel	180,665	9,629,688	794	3.20	<0.5	10	24	0.17	1	15	<5	83	Salu Kombong	Salu Kombong	Sss
KB 39M	RC154807	Channel	180,665	9,629,689	793	0.25	<0.5	6	24	1.15	1	14	<5	72	Salu Kombong	Salu Kombong	Sss
KB 39R	RC154819	Channel	180,667	9,629,693	792	1.88	<0.5	4	22	0.71	1	<5	<5	66	Salu Kombong	Salu Kombong	Sss
KB 40_01	RC154821	Channel	180,671	9,629,729	772	0.10	<0.5	17	52	1.41	1	7	6	86	Salu Kombong	Salu Kombong	Sss
KB 40_04	RC154824	Channel	180,671	9,629,732	771	0.11	<0.5	7	40	0.79	1	10	<5	83	Salu Kombong	Salu Kombong	Sss
KB 40_05	RC154825	Channel	180,671	9,629,733	771	0.17	<0.5	24	49	0.56	1	12	<5	96	Salu Kombong	Salu Kombong	Sss
KB 41_06	RC154851	Channel	180,676	9,629,752	758	0.22	<0.5	22	62	0.09	1	8	18	77	Salu Kombong	Salu Kombong	Sss
KB 41_07	RC154852	Channel	180,676	9,629,753	758	0.68	<0.5	44	96	0.05	1	11	<5	76	Salu Kombong	Salu Kombong	Sss
KB 47_01	RC154865	Channel	180,497	9,629,878	711	1.29	3.7	102	6144	3.01	1	5	<5	116	Salu Kombong	Salu Kombong	Qz
KB 47_02	RC154866	Channel	180,497	9,629,879	711	1.28	5.2	558	9739	3.41	1	12	16	122	Salu Kombong	Salu Kombong	Qz
КВ 48	RC154867	Channel	180,500	9,629,874	714	1.14	3.3	37	4368	0.11	1	7	6	95	Salu Kombong	Salu Kombong	Smh
КВ43-1	RC155022	Channel	180,509	9,629,737	763	0.37	<0.5	2	5	2.59	1	7	<5	93	Salu Kombong	Salu Kombong	Silicified sandstone
КВ43-2	RC155023	Channel	180,510	9,629,738	763	0.33	0.7	3	4	2.1	1	9	<5	102	Salu Kombong	Salu Kombong	Silicified Sisltone
КВ43-3	RC155024	Channel	180,510	9,629,739	763	0.20	0.7	4	4	3.56	1	8	<5	119	Salu Kombong	Salu Kombong	Hematite Silstone
КВ43-4	RC155025	Channel	180,510	9,629,739	762	0.27	0.6	3	4	2.51	1	8	<5	84	Salu Kombong	Salu Kombong	Hematite Silstone
KB 41_06	RC154851	Channel	180,676	9,629,752	758	0.22	<0.5	22	62	0.09	1	8	18	77	Salu Kombong	Salu Kombong	Sss
KB 41_07	RC154852	Channel	180,676	9,629,753	758	0.68	<0.5	44	96	0.05	1	11	<5	76	Salu Kombong	Salu Kombong	Sss
KB 47_01	RC154865	Channel	180,497	9,629,878	711	1.29	3.7	102	6144	3.01	1	5	<5	116	Salu Kombong	Salu Kombong	Qz
KB 47_02	RC154866	Channel	180,497	9,629,879	711	1.28	5.2	558	9739	3.41	1	12	16	122	Salu Kombong	Salu Kombong	Qz
KB 48	RC154867	Channel	180,500	9,629,874	714	1.14	3.3	37	4368	0.11	1	7	6	95	Salu Kombong	Salu Kombong	Smh
KB43-1	RC155022	Channel	180,509	9,629,737	763	0.37	<0.5	2	5	2.59	1	7	<5	93	Salu Kombong	Salu Kombong	Silicified sandstone
КВ43-2	RC155023	Channel	180,510	9,629,738	763	0.33	0.7	3	4	2.1	1	9	<5	102	Salu Kombong	Salu Kombong	Silicified Sisltone
КВ43-3	RC155024	Channel	180,510	9,629,739	763	0.20	0.7	4	4	3.56	1	8	<5	119	Salu Kombong	Salu Kombong	Hematite Silstone
KB43-4	RC155025	Channel	180,510	9,629,739	762	0.27	0.6	3	4	2.51	1	8	<5	84	Salu Kombong	Salu Kombong	Hematite Silstone
KB45-4	RC155031	Channel	180,475	9,629,850	738	0.13	0.5	11	69	0.15	1	9	5	91	Salu Kombong	Salu Kombong	Silicified Silstone
КВ45-9	RC155037	Channel	180,471	9,629,852	737	0.11	0.6	5	126	4.82	1	<5	<5	53	Salu Kombong	Salu Kombong	Chlorite Sandstone
КВ45-11	RC155039	Channel	180,472	9,629,854	736	0.19	0.6	6	126	3.19	1	6	<5	67	Salu Kombong	Salu Kombong	Chlorite Sandstone
TJ01_02	RC154901	Channel	179,943	9,627,414	1,277	0.11	0.8	12	38	0.02	1	15	<5	35	Tanjung	Awak Mas	Phy
TJ01_03	RC154902	Channel	179,942	9,627,414	1,277	1.27	0.8	25	74	0.03	1	38	15	80	Tanjung	Awak Mas	Phy
TJ01_04	RC154903	Channel	179,941	9,627,414	1,277	0.71	1.1	29	99	0.06	1	14	9	93	Tanjung	Awak Mas	Phy
TJ01_05	RC154904	Channel	179,940	9,627,414	1,277	0.34	<0.5	66	120	0.03	1	16	9	104	Tanjung	Awak Mas	Phy
тј01_06	RC154905	Channel	179,939	9,627,414	1,277	0.69	1	132	76	0.02	3	13	10	91	Tanjung	Awak Mas	Phy
тј01_07	RC154906	Channel	179,938	9,627,415	1,277	1.10	<0.5	37	76	0.01	1	11	6	58	Tanjung	Awak Mas	Phy
тј01_08	RC154907	Channel	179,937	9,627,416	1,277	0.26	0.6	19	60	0.68	1	27	9	125	Tanjung	Awak Mas	Phy
TJ01_11	RC154910	Channel	179,934	9,627,417	1,277	0.14	<0.5	7	30	0.02	1	<5	6	37	Tanjung	Awak Mas	Quartz
TJ01_12	RC154911	Channel	179,933	9,627,417	1,277	0.47	<0.5	26	68	0.01	1	<5	10	47	Tanjung	Awak Mas	Quartz

Survey_Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
TJ01_13	RC154912	Channel	179,932	9,627,417	1,277	0.12	<0.5	7	21	0.01	1	6	<5	24	Tanjung	Awak Mas	Phy
TJ01_14	RC154913	Channel	179,931	9,627,417	1,277	0.58	0.9	12	68	0.18	1	23	7	70	Tanjung	Awak Mas	Phy
TJ01_15	RC154915	Channel	179,930	9,627,417	1,277	2.42	0.7	40	97	0.02	1	19	12	52	Tanjung	Awak Mas	Phy
TJ01_16	RC154916	Channel	179,929	9,627,417	1,277	2.30	<0.5	15	53	0.01	1	8	<5	30	Tanjung	Awak Mas	Phy
TJ01_17	RC154917	Channel	179,928	9,627,417	1,277	0.94	0.7	13	76	0.21	1	20	10	66	Tanjung	Awak Mas	Phy
TJ01_18	RC154918	Channel	179,927	9,627,417	1,277	0.36	0.6	16	57	0.39	1	10	10	80	Tanjung	Awak Mas	Phy
TJ01_19	RC154919	Channel	179,926	9,627,417	1,277	1.16	<0.5	15	48	0.48	1	11	9	83	Tanjung	Awak Mas	Phy
TJ01_20	RC154920	Channel	179,926	9,627,416	1,277	0.62	0.9	12	44	0.01	1	9	<5	68	Tanjung	Awak Mas	Quartz
TJ01_21	RC154921	Channel	179,925	9,627,415	1,277	0.48	<0.5	12	39	0.01	1	8	11	30	Tanjung	Awak Mas	Quartz
TJ01_22	RC154922	Channel	179,925	9,627,416	1,277	1.37	<0.5	1	<1	<0.0	1	<5	<5	<5	Tanjung	Awak Mas	Phy
TJ01_23	RC154923	Channel	179,924	9,627,416	1,277	0.82	0.5	15	27	<0.0	1	11	8	26	Tanjung	Awak Mas	Phy
TJ01_24	RC154924	Channel	179,923	9,627,416	1,277	2.06	<0.5	1	<1	<0.0	1	<5	<5	<5	Tanjung	Awak Mas	Phy
TJ01_25	RC154925	Channel	179,922	9,627,412	1,277	0.39	<0.5	14	39	<0.0	1	8	<5	37	Tanjung	Awak Mas	Phy
TJ01_26	RC154926	Channel	179,921	9,627,412	1,277	0.34	<0.5	14	49	0.01	1	9	5	52	Tanjung	Awak Mas	Phy
TJ01_27	RC154927	Channel	179,920	9,627,412	1,277	0.53	<0.5	17	42	<0.0	1	9	6	26	Tanjung	Awak Mas	Phy
TJ01_28	RC154928	Channel	179,919	9,627,412	1,277	0.93	<0.5	20	59	0.01	1	10	14	28	Tanjung	Awak Mas	Phy
TJ01_29	RC154929	Channel	179,918	9,627,412	1,277	1.04	0.6	24	84	0.01	1	11	10	48	Tanjung	Awak Mas	Phy
TJ01_30	RC154931	Channel	179,917	9,627,412	1,277	0.65	1.2	21	76	0.01	1	10	7	67	Tanjung	Awak Mas	Phy
TJ01_31	RC154932	Channel	179,916	9,627,412	1,277	1.17	<0.5	19	40	0.01	1	8	<5	46	Tanjung	Awak Mas	Phy
TJ03_01	RC154944	Channel	179,821	9,627,464	1,236	3.07	1.1	11	45	0.03	1	11	7	77	Tanjung	Awak Mas	Sst
TJ03_02	RC154945	Channel	179,820	9,627,464	1,236	2.31	4.8	17	47	0.08	1	11	<5	77	Tanjung	Awak Mas	Sst
TJ03_03	RC154946	Channel	179,819	9,627,465	1,236	2.12	0.6	15	27	0.01	1	15	5	41	Tanjung	Awak Mas	Sst
TJ03_04	RC154947	Channel	179,818	9,627,465	1,236	0.79	0.8	31	25	0.02	1	25	6	70	Tanjung	Awak Mas	Sst
TJ03_05	RC154948	Channel	179,817	9,627,465	1,236	1.71	0.9	60	31	0.02	1	24	10	77	Tanjung	Awak Mas	Sst
TJ03_06	RC154949	Channel	179,816	9,627,465	1,236	1.51	0.6	37	18	0.04	2	24	<5	62	Tanjung	Awak Mas	Sst
TJ03_07	RC154951	Channel	179,815	9,627,465	1,236	1.62	0.7	91	22	0.02	1	18	5	67	Tanjung	Awak Mas	Qtz
TJ03_08	RC154952	Channel	179,814	9,627,465	1,236	0.88	<0.5	40	38	0.02	1	24	8	50	Tanjung	Awak Mas	Qtz
TJ03_09	RC154953	Channel	179,813	9,627,465	1,236	1.04	0.5	41	44	0.1	1	15	7	101	Tanjung	Awak Mas	Sst
TJ03_10	RC154954	Channel	179,813	9,627,465	1,236	1.55	<0.5	37	17	0.02	1	12	<5	59	Tanjung	Awak Mas	Sst
TJ03_11	RC154955	Channel	179,812	9,627,465	1,236	0.44	<0.5	45	11	0.02	1	17	<5	64	Tanjung	Awak Mas	Sst
TJ03_12	RC154956	Channel	179,811	9,627,464	1,236	0.36	<0.5	30	9	0.02	1	8	<5	48	Tanjung	Awak Mas	Sst
TJ03_13	RC154957	Channel	179,810	9,627,464	1,236	0.60	1.2	113	21	0.02	1	71	7	67	Tanjung	Awak Mas	Sst
TJ03_14	RC154958	Channel	179,809	9,627,464	1,236	1.11	<0.5	147	20	0.01	1	16	5	52	Tanjung	Awak Mas	Sst

Survey_Tag	Sample _Id	Sample Type	Easting	Northing	Elevation	Au	Ag	As	Cu	Mg	Мо	Pb	Sb	Zn	Prospect	Domain	Litho
TJ03_15	RC154959	Channel	179,808	9,627,464	1,236	0.38	<0.5	316	79	0.04	1	10	9	94	Tanjung	Awak Mas	Sst
тј03_16	RC154960	Channel	179,807	9,627,464	1,236	0.54	<0.5	213	43	0.02	1	11	<5	64	Tanjung	Awak Mas	Sst
TJ03_17	RC154961	Channel	179,806	9,627,464	1,236	2.07	0.8	64	65	0.04	1	19	9	52	Tanjung	Awak Mas	Sst
TJ03_18	RC154962	Channel	179,805	9,627,464	1,236	0.72	<0.5	25	130	0.13	1	10	10	45	Tanjung	Awak Mas	Sst
тј03_19	RC154963	Channel	179,804	9,627,464	1,236	0.30	<0.5	57	47	0.05	1	19	<5	66	Tanjung	Awak Mas	Sst
TJ03_20	RC154964	Channel	179,803	9,627,463	1,236	0.43	<0.5	59	34	0.03	1	14	<5	90	Tanjung	Awak Mas	Sst
TJ03_21	RC154966	Channel	179,802	9,627,463	1,236	2.73	0.5	41	41	0.06	1	13	6	70	Tanjung	Awak Mas	Sst
TJ03_22	RC154967	Channel	179,801	9,627,463	1,236	0.12	<0.5	63	37	0.06	1	13	5	49	Tanjung	Awak Mas	Sst
TJ03_23	RC154968	Channel	179,800	9,627,463	1,236	0.13	<0.5	58	39	0.13	1	11	<5	137	Tanjung	Awak Mas	Sst
TJ03_24	RC154969	Channel	179,799	9,627,463	1,236	0.47	<0.5	76	40	0.03	1	13	<5	77	Tanjung	Awak Mas	Sst
TJ03_25	RC154970	Channel	179,798	9,627,463	1,236	0.19	<0.5	34	18	0.14	1	22	<5	81	Tanjung	Awak Mas	Sst
TJ03_26	RC154971	Channel	179,797	9,627,463	1,236	0.95	<0.5	126	54	0.04	1	13	6	83	Tanjung	Awak Mas	Sst
TJ03_27	RC154972	Channel	179,796	9,627,462	1,236	1.41	<0.5	70	26	0.13	1	34	<5	63	Tanjung	Awak Mas	Sst
TR01_11	RC155261	Channel	178,731	9,631,613	1,021	0.12	0.6	4	4	1.53	1	12	<5	113	Tarra	Tarra	Smh
TR01_14	RC155264	Channel	178,734	9,631,612	1,021	0.10	0.9	93	1548	1.18	1	11	187	101	Tarra	Tarra	Qtz Vein Bx
TR09_11	RC155493	Channel	178,932	9,631,901	854	0.11	0.5	11	84	0.03	1	8	<5	92	Tarra	Tarra	Qtz Vein Bx

About Nusantara Resources

Nusantara is an ASX-listed gold development company with its flagship project comprising the 1.1 million-ounce Ore Reserve and 2.0 million-ounce Mineral Resource Awak Mas Gold Project located in South Sulawesi, Indonesia. Discovered in 1988, the Project has over 135 km of drilling completed in over 1,100 holes.

The Project is 100% owned through a 7th Generation Contract of Work (CoW) with the Government of Indonesia (GoI). The CoW was secured prior to the current Mining Law and has recently been amended by mutual agreement to align with the current law.

PT Masmindo Dwi Area (Masmindo), a wholly owned subsidiary of Nusantara, has sole rights to explore and exploit any mineral deposits within the project area until 2050. After this period, the operations under the CoW may be extended in the form of a special mining business license (IUPK) in accordance with prevailing laws and regulations, which currently allows for an extension of 10 years and a further extension of 10 years.

In the 10th year after commercial production, Masmindo is required to offer at least 51% of its share capital to willing Indonesian participants at fair market value according to international practice.

Nusantara's development strategy is for construction of a modern, low strip ratio open pit operation with ore processed by standard carbon-in-leach (CIL) processing delivering high gold recoveries. Environmental approval has already been received for the Project, which is favourably located in non-forestry land close to established roads, ports, airports, and grid power.

Nusantara's second strategy is to grow the resource base and support a mining operation beyond the initial project life of 11 years. Multiple drill-ready targets have already been outlined extending from the three main deposits and in other areas of the 140km² CoW.

Competent Persons Statement

The information in this announcement that relates to the exploration results and Mineral Resources of Nusantara Resources is summarised from publicly available reports as released to the ASX of the respective companies. The results are duly referenced in the text of this report and the source documents noted above.

Exploration and Resource Targets

Any discussion in relation to the potential quantity and grade of Exploration Targets is only conceptual in nature. While Nusantara Resources may report additional JORC compliant resources for the Awak Mas Gold Project, there has been insufficient exploration to define mineral resources in addition to the current JORC compliant Mineral Resource inventory and it is uncertain if further exploration will result in the determination of additional JORC compliant Mineral Resources.

Exploration Results

The information in this report which relates to Exploration Results is based on, and fairly represents, information compiled by Mr Colin McMillan, (BSc) for Nusantara Resources. Mr McMillan is an employee of Nusantara Resources and is a Member of the Australian Institute of Mining and Metallurgy (AusIMM No: 109791).

Mr McMillan has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr McMillan consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

New Information or Data

Nusantara Resources confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

For more information please contact:

Mike Spreadborough

Managing Director and Chief Executive Officer Nusantara Resources Limited +61 (0)419 329 687 info@nusantararesources.com

Nusantara Resources

Nusantara_ASX

Nusantara.com