ASX Release

Lithium Project Update

19 June 2019

Highlights

- Restricted drilling at the Eagle dyke indicates dyke continuity below 100m from surface.
- The reconnaissance drill programme indicates lithium zonation is likely within both the Eagle and Hollow Way Dykes conforming to typical LCT pegmatite dykes worldwide.
- Ongoing fieldwork and helicopter surveys continue to identify pegmatite targets for follow-up with a focus on testing dykes with tonnage potential.

Roadside Drill Results – Eagle and Hollow Way Dykes

Dart Mining NL (Dart Mining) has now received all drill sample assay results from its recent roadside drill program. Geological interpretation is complete from the reconnaissance reverse circulation (RC) drill program at both the Hollow Way and Eagle dykes. This roadside drilling program, which represents the first drilling to have been undertaken along the Dorchap Dyke Swarm for lithium, targeted two dykes with available roadside access within the Dorchap fractionation target area – Figure 1. The drilling was limited to targets that could be accessed without the need to incur vegetation offset costs. All drill holes intersected pegmatite below the mapped dyke outcrops. The Hollow Way dyke is interpreted to consist of a series of discontinuous plunging lenses of variable width and strike extent. The Eagle dyke (Figure 1) appears to be continuous down dip up to 100m below the outcrop where intersected by drilling. Lithium mineralization was confirmed at the Eagle dyke, but no significant lithium mineralization was returned at the Hollow Way dyke, despite strong rock chip assay results and coarse visible Petalite crystals in outcrop.

ASX Code: DTM

Key Prospects / Commodities:

GOLD

Mountain View / New Discovery - Au Fairleys - Au Rushworth – Phoenix - Au Onslow – Au Saltpetre Gap - Au

LITHIUM / TIN / TANTALUM

Empress – Li-Sn-Ta Eskdale / Mitta – Li-Sn-Ta

PORPHYRY GOLD / COPPER / MOLYBDENUM

Empress – Au-Cu Stacey's – Au-Cu Copper Quarry – Cu+/- Au Gentle Annie – Cu Morgan Porphyry – Mo-Ag-Au Unicom Porphyry – Mo-Cu-Ag

Investment Data:

Shares on issue: 1,002,673,136 Unlisted Options: 25,000,000

Substantial Shareholders:

Top 20 Holdings: 55.17 %

Board & Management:

Managing Director: James Chirnside Non-Executive Director: Dr Denis Clarke Non-Executive Director: Luke Robinson Company Secretary: Julie Edwards

Dart Mining NL

ACN 119 904 880

Contact Details:

4 Bryant Street, Corryong VIC 3707 Australia

James Chirnside

Phone: +61 (0)260 762 336 Email: jchirnside@dartmining.com.au

Visit our webpage: www.dartmining.com.au

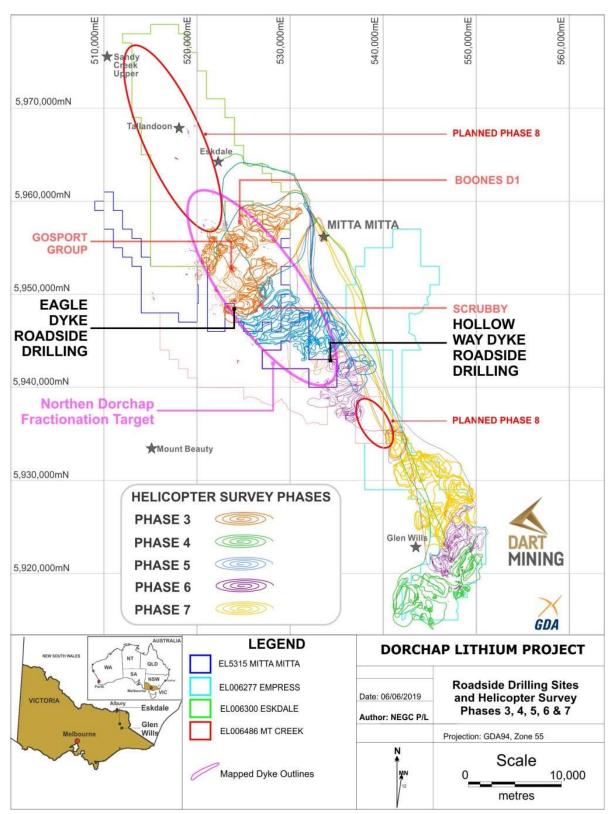


Figure 1. Location map of the Dorchap Lithium Project roadside drill sites and Phase 7 helicopter survey area in relation to existing exploration tenements held 100% by Dart Mining NL.

EAGLE DYKE

The Eagle dyke outcrop is 180m in length and up to 80m in width, narrowing at both ends of the dyke. A 50m strike length portion at the northern extent of the Eagle dyke outcrop has been tested by three RC holes for a total of 274m (Figure 2). Down dip continuity is interpreted from the three holes up to 100m below the outcrop. The dyke appears to narrow both down dip and along strike where intersected (Figures 3, 4 & 5). The drill hole intersections generally show low levels of lithium oxide. Hole MIEDRC003 shows the best intercept across the full width of the dyke with a weighted average of **20m @ 0.332% Li₂O** from 2m down hole, some 5.5m estimated true width (Figure 5). This hole also shows a peak lithium oxide grade of **2m @ 1.158%** Li₂O from 10m down hole. A complete assay listing is provided in Appendix A with drill hole collar location and hole orientations presented in Table 1. Oxidation is variable with depth across all of the holes with the oxidized pegmatite intersected in MIEDRC003 showing the most elevated Li₂O values. Insufficient drilling has been completed to establish the relationship between oxidation and lithium grade, however it would appear there is potential for oxidation to locally increase grades.

The Eagle dyke prospect requires further drill testing as part of the ongoing evaluation of the entire Dorchap Dyke Swarm. Exploration teams continue the search for dykes with potential for both significant tonnage and lithium grades with ongoing mapping and sampling field programs following-up helicopter targets that have already been identified.

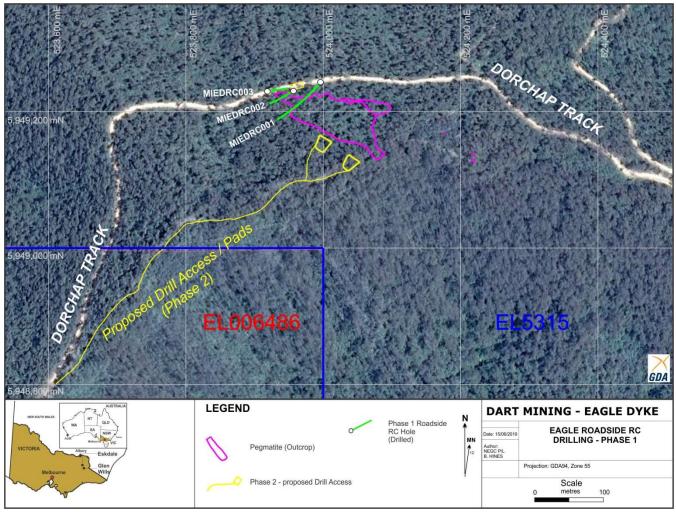


Figure 2. Location map of the Eagle dyke prospect roadside drill collars and hole traces

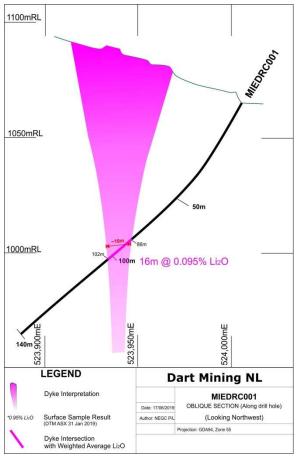


Figure 3. MIEDRC001 Drill Section – Interpretation and results.

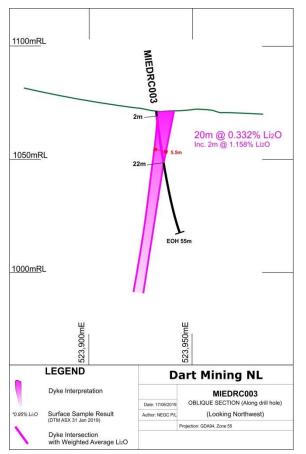


Figure 5. MIEDRC003 Drill Section – Interpretation and results.

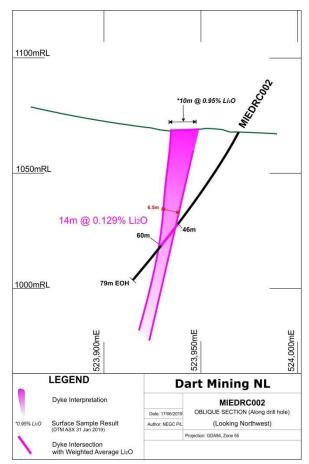


Figure 4. MIEDRC002 Drill Section – Interpretation and results.

HOLLOW WAY DYKE

A 100m strike length of the Hollow Way dyke has been tested by four RC drill holes. The holes were drilled from existing road access (Figure 6) as low impact exploration work that did not require vegetation offset. A total of 304m of RC drilling has been completed on 4 drill sections with geological interpretation suggesting the Hollow Way dyke is a discontinuous system of dyke lenses with generally steep dip. Assay data from intersections below outcropping lithium mineralisation show low levels of lithium and associated trace elements, this is despite significant lithium in rock chips showing coarse visible Petalite in outcrop. The discontinuous nature of the dyke, narrow widths and low lithium grade at depth downgrade the prospectivity of the Hollow Way target. Table 1 shows a summary of both the Hollow Way and Eagle Dyke drill hole locations, orientation and lengths (Table 1). A full listing of lithium assay data from the complete drilling program is provided in **Appendix A**.

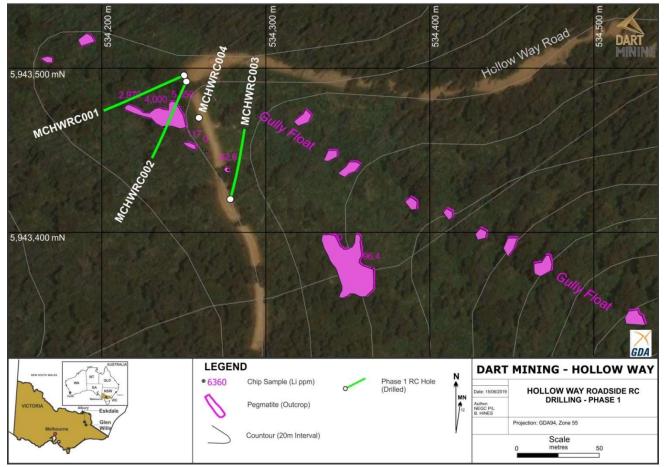


Figure 6. Location map of the Hollow Way dyke prospect roadside drill collars and hole trace (note MCHWRC004 is a vertical hole).

Hole_ID	PROSPECT	DEPTH (m)	MGA94_East	MGA94_North	AHD_RL	AZIMUTH (GRID)	DIP
MCHWRC001	HOLLOW WAY	98	534,252	5,943,496	972	242	-60
MCHWRC002	HOLLOW WAY	90	534,252	5,943,492	972	204	-60
MCHWRC003	HOLLOW WAY	79	534,279	5,943,420	978	19	-60
MCHWRC004	HOLLOW WAY	37	534,259	5,943,470	974	0	-90
MIEDRC001	EAGLE	140	523,992	5,949,234	1065	222.6	-60
MIEDRC002	EAGLE	79	523,965	5,949,227	1068	237	-60
MIEDRC003	EAGLE	55	523,927	5,949,225	1071	94.3	-84.7

 Table 1. Drill Hole Locations and Orientation – Hollow Way and Eagle Drill Program

DRILLING TECHNIQUES AND SAMPLING

A track mounted PDR1000 RC drill rig was used to carry out all roadside drilling using a face sampling hammer with residue samples collected every metre for geological logging and assay samples composited at a nominal two metre sample interval from the cyclone. Each sample was weighed at the rig to determine sample recovery and sample composites submitted for analysis based on geological logging of the interval. All pegmatite intervals were sent for lithium oxide analysis using a total digestion peroxide digest technique (ALS Method ME-ICP89) with associated trace element reporting. Sample size is considered adequate to allow a representative estimate of local lithium levels with two metre composites averaging 4.5kg. All samples are riffle split at the drill rig and bagged into calico bags for submission to the laboratory. There is a secure chain of custody for all sample bags from the drill rig to the laboratory. Samples are transported by Dart Mining personnel from the drill rig to a commercial transport facility for dispatch to the laboratory. Any missing or damaged sample bags are reported by the laboratory.

Dart Mining has adopted a QA/QC system across all drilling and use commercially available certified reference material (CRM) with known lithium and key trace element concentrations. A CRM sample is inserted at 1:10 samples into the laboratory stream and assay results compared with expectations, all CRM results are within expected confidence limits and indicate the results are not biased or inaccurate for the drilling conducted.

Interpretation of the assay data does not indicate any relationship between pegmatite width and lithium assay values (grade) or show any sample bias based on drill hole orientation, as such the assay data is considered representative of the local lithium concentration within intersections. Weighted average lithium oxide grades are reported on cross sections due to a small number of samples being one metre in width. The average grade is presented across the full intersection through the pegmatite with no top cut or bottom cut applied, this is considered appropriate at this early stage of exploration.

Drill hole collars are surveyed by a combination of GPS and local tape and compass surveys relative to a single GPS control point, this point is accurate to within 10m with relative hole locations accurate to within 2m from the GPS control point. Holes were surveyed for azimuth and dip as a combination of open hole and within rods based on hole collapse conditions. A nominal 30m down hole survey interval has been used.

HELICOPTER SURVEY PHASE 7

A further phase of helicopter survey (Phase 7) was also completed in April with additional dyke targets identified for ground based follow-up mapping and sampling - Figure 1. An upcoming helicopter survey (Phase 8) targeting a small section to the south of Hollow Way and to the north of Boones Dyke is planned as weather over the winter period allows, this will conclude the survey along the full length of the Dorchap Dyke Swarm.

TENEMENT STATUS UPDATE

Dart Mining reported (ASX 5 April 2019) the acquisition of the Rushworth exploration license EL006016 over the historic Rushworth Goldfield in Central Victoria. The granted exploration licence has since been transferred to Dart Mining with 100% beneficial interest. EL006016 covers the expired mining licenses MIN5246 and MIN5306 with a current exploration license application made over the expired MIN5538. Tenement applications continue to pass through the approvals process with the tenements remaining in good standing as at 31 May 2019 (Figure 7).

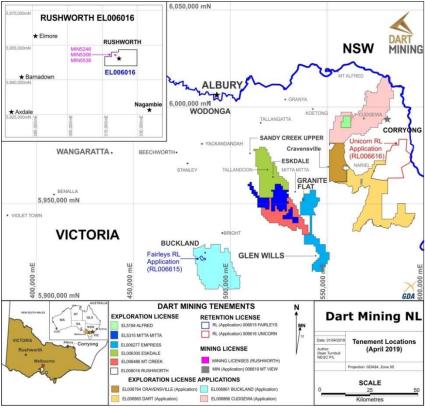


Figure 7. Location map of existing tenements, held 100% by Dart Mining NL.

Table 2. Tenement Status

Tenement Number	Name	Tenement Type	Area (km²) Unless specified	Interest	Location
EL5194	Mt. Alfred	Exploration	27	100%	NE Victoria
EL5315	Mitta Mitta ⁴	Exploration	195	100%	NE Victoria
EL006277	Empress	Exploration	221	100%	NE Victoria
EL006300	Eskdale ³	Exploration	245	100%	NE Victoria
EL006486	Mt Creek	Exploration	190		NE Victoria
EL006764	Cravensville	EL (Application)	~170	100%	NE Victoria
EL006861	Buckland	EL (Application)	~414	100%	NE Victoria
EL006865	Dart	EL (Application)	~500 100%		NE Victoria
EL006866	Cudgewa	EL (Application)	~500 100%		NE Victoria
EL006016	Rushworth	Exploration	61	100%	Central Victoria
RL006615	Fairley's ²	Retention License Application	340 Ha	100%	NE Victoria
RL006616	Unicorn ^{1&2}	Retention License Application	23,243 Ha 100%		NE Victoria
MIN006619	Mt View ²	Mining License Application	224 Ha	100%	NE Victoria

All tenements remain in good standing at 31 May 2019.

NOTE 1: Unicorn Project area subject to a 2% NSR Royalty agreement with Osisko Gold Royalties Ltd dated 29 April 2013.

NOTE 2: Areas subject to a 1.5% Founders NSR Royalty Agreement.

NOTE 3: Areas subject to a 1.0% NSR Royalty Agreement with Minvest Corporation Pty Ltd (See DTM ASX Release 1 June 2016).

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Dean Turnbull B.App.Sc.(Geol) Hons. a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Turnbull is an independent consultant. Mr Turnbull has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Turnbull consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drilling was used to obtain 1 m bulk samples (~ 25 kg) which were collected in plastic bags and examined for lithological logging purposes. Samples were split via a riffle splitter mounted below the cyclone and collected in a calico bag, which was removed every 2m to produce 2m composite samples (~ 4.5kg). The cyclone was cleaned out at the end of each hole and periodically during drilling. 2m composite samples selected based on logged lithology were submitted for analysis. Samples submitted to ALS were whole sample crushed to 70% <2mm, riffle/rotary split off 1 kg, pulverise to >85% passing 75 microns, then assayed by ALS ME- ICP89 and ME-MS91. Certified Reference Material OREAS147, OREAS148 and OREAS149 as well as silica blanks were inserted every 10 samples as part of a QA/QC system.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 7 RC Drillholes were drilled by EDrill Pty Ltd limited over two mineralised dyke structures. Face sampling 5 ¼" RC drilling Down hole surveys used a Trueshot downhole camera both in open hole and within

Criteria	JORC Code explanation	Commentary
		rods (for dip).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Each 2m composite sample was weighed and results recorded to monitor sample recovery – a high average recovery was achieved in all holes. Experienced geologists ensured best drilling and sampling practices were maintained. Experienced drillers ensured best drilling and sampling practices were maintained, including pausing drilling between sample intervals to ensure all sample is out of the system and regular cleaning of the sampling equipment. There was no observable relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Drill chips were geologically logged at 1 m intervals for lithology (including quartz types and percentages), alteration and mineralisation, and drilling conditions Representative chips from each metre were collected in chip trays. Chip trays were photographed. 100% of the drilling was logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of 	 Samples were collected from a riffle splitter below the cyclone. 12.5% of the sample was split with the remainder collected in residue bags. The majority of samples were dry in the shallow holes, there were four wet

Criteria	JORC Code explanation	Commentary
	 samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 samples collected during the program. The sampling procedure is appropriate for the mineralisation style of large pegmatite dykes and is better described in the body of the report. The samples were sent to ALS Laboratories, Pooraka SA.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were submitted to ALS Chemex and analysed for a suite of trace elements using ALS Methods ME- ICP89 and ME-MS91 (a peroxide leach is considered a total extraction technique for lithium). These techniques are appropriate and considered a total extraction technique for key metals Rb, Sn, Nb, Ta, Cs, Be and Li. Samples were whole sample crushed, pulverised and assayed by ALS ME- ICP89 and ME-MS91. Li standards OREAS147, OREAS148 and OREAS149 as well as silica blanks were included every 10 samples as part of the internal QA/QC system. All results are within expected confidence limits. ALS conducted their own internal laboratory checks. Laboratory blanks, standards are reviewed per batch to monitor accuracy and precision.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The laboratory supplies all assay data as an export to a CSV file. The raw data is edited to separate all duplicates and CRM results into a QA/QC tab in the CSV file and reviewed. Verification of significant intersections were made by alternative company personnel. No independent review of assay data has been carried out. Data were logged onto paper and transferred to a spreadsheet and checked Electronic-only assay data is imported into a spreadsheet from the laboratory's electronic data. No holes were twinned at this early exploration stage. Below detection limit data is identified in Appendix 1 using a < character followed by the detection limit.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The location of drill hole collars and geological mapping used a Garmin GPSMAP 62S GPS using the MGA94 Grid Datum (Zone 55) with topographic control taken from the GPS. Accuracy is variable but maintained <5m during the mapping process with constant visual quality assessment conducted. Hand held GPS is used to survey a control point and drill hole collar positions are then measured by tape and compass relative to the GPS control. The accuracy between holes is <2m but

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 absolute accuracy is relative to the original GPS control point at <10m. Down hole, multi-shot surveys were taken at a nominal 30 m interval where possible in an open hole. Where the hole was suspected to have collapsed a downhole, multi-shot survey was conducted within the rods to determine dip. All maps, plans and data are on an MGA datum and GDA94 zone 55 projection. Elevation is established from the GPS control point. Drill sites were restricted to existing tracks. It was not intended to establish a drill spacing for resource estimation although these holes can be used at a later date. 2m assay composites were collected at the splitter on the drill rig. This sample interval is considered appropriate for the style of pegmatite mineralisation tested.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was restricted to existing tracks. However, in all cases it was possible to drill at a high angle to the host structures (refer figures 2 to 6), and achieve a suitable orientation that cross cuts the mineralised dykes. True width intersections are provided in drill sections, there appears to be no relationship between drill orientation and mineralisation grades.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	• All samples submitted for analysis are placed in sealed poly-weave bags and delivered to a commercial transport company for delivery to the laboratory. Any evidence of sample damage or tampering is immediately reported by the laboratory to the company and a decision made as to the integrity of the sample and the remaining samples within the damaged / tampered bag/s.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 An internal review of procedures, operations, sampling techniques and analytical techniques was made by Dart Mining.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Comm	entary				
Mineral	• Type, reference name/number,	All tenements remain in good standing at 31 May 2019.					
tenement and land	location and ownership including agreements or	Tenement Number EL5194	Name Mt. Alfred	Tenement Type Exploration	Area (km²) Unless specified 27	Interest	Location NE Victoria
tenure status		material issues with third parties such as joint ventures,	material issues with third parties such as joint ventures,	material issues with third parties such as joint ventures,	EL5315 EL006277 EL006300 EL006486 EL006764 EL006861	EL5315 Mitta Mitta ⁴ Exploration 195 100% NE EL006277 Empress Exploration 221 100% NE EL006300 Eskdale ³ Exploration 245 100% NE EL006486 Mt Creek Exploration 190 100% NE EL006476 Mt Creek Exploration 190 100% NE	NE Victoria NE Victoria NE Victoria NE Victoria NE Victoria NE Victoria
		EL006865 EL006866 EL006016 RL006615 RL006616 MIN006619	Dart Cudgewa Rushworth Fairley's ² Unicorn ¹⁸² Mt View ²	EL (Application) EL (Application) Exploration Retention License Application Retention License Application Mining License Application	~500 ~500 61 340 Ha 23,243 Ha 224 Ha	100% 100% 100% 100% 100%	NE Victoria NE Victoria Central Victoria NE Victoria NE Victoria NE Victoria
		All tenements remain in good standing at 31 May 2019. NOTE 1: Unicorn Project area subject to a 25% NSR Royalty agreement with <u>Osisko</u> Gold Royalties Ltd dated 29 April 2013. NOTE 2: Areas subject to a 1.5% Founders NSR Royalty Agreement. NOTE 3: Areas subject to a 1.0% NSR Royalty Agreement with <u>Minvest</u> Corporation Pty Ltd (See DTM ASX Release 1 June 2016).					
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. No commercial exploration for Lind occurred, geological investigation academic research has been report pegmatite dykes of the area in: Eagle, R. M., 2009. Petrology, petrogen mineralisation of granitic pegmatites of Wills District, northeastern Victoria. Un thesis, University of Ballarat. Eagle, R. M., Birch, W. D & McKnight, S. Phosphate minerals in granitic pegmatite Mount Wills district, northeastern Victoria 				s as p orted f esis ar the M publis , 2015 tes fro	part of for the nd lount hed m the	
		• Pre on	evious e gold ex	oria. 127:55-68 exploration in t ploration at G tion from pegr	he distric Ien Wills	and h	
Geology	 Deposit type, geological setting and style of mineralisation. 	•	highly granite Caesie dykes graniti discon width length Lithiun	n mineralisation evolved, late e pegmatites of um, Tantalum are thought to c body and ar tinuous bodie (up to many h and tens of m n mineralisation atites is poorly	tectonic p of the con (LCT) cla o be dista re present es of varia undreds on etres in v on within	peralu nplex ass. T I to a t as le ble le ble le of met width) the	minous Lithium, These source enticular, ngth and tres in

		early exploration stage but suspected to be spatially related to the zonation within the complex pegmatites. Lithium mineralisation observed to date appears to be as spodumene and Petalite with Cassiterite also evident within some of the dykes.
Drill hole Information	material to the understanding of	Table 1 provides all drill hole location and hole orientation data in the body of the report. All down hole weighted average lithium grade data is provided on drill hole cross sections with true widths noted per hole interpretation. Weighted lithium oxide grade on cross sections represents the full width of sampled pegmatites and is not subject to top / bottom cutting or grade hurdles – the full width is reported based on logged lithology control.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	The length weighted average lithium content of the pegmatite dykes are provided across the full intersection width in each drill hole and full assay data tabulated in Appendix A for all holes. The nominal sample length is 2m with a limited frequency of 1m sample lengths requiring a length weighted average technique to be used for reporting dyke intersections. No grade cutting or cut-off grade has been applied in reporting the average lithium grades across dyke drill intersections at this early stage of exploration.

	•	The assumptions used for any reporting of metal equivalent values should be clearly stated.		
Relationship between mineralisation widths and intercept lengths	•	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	•	The relationship between the drill hole and the geometry of the mineralised pegmatite dykes is clearly presented in a series of summary cross sections and drill plans. The angle between the drill hole and the dyke structure is variable with an interpretation of the relative geometry presented as cross sections down hole, down hole average grades are also presented on these drill sections and are representative of the current geological interpretation, this interpretation may change over time as more drilling information become available. Dyke interpretation is constrained with surface geological mapping and down hole lithology logging.
Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	A summary table showing the hole location and orientation for all drilling is presented in Table 1. Drill plans and cross sections are also presented for all holes to illustrate the relationship between drill holes and average grades from down hole intersections within the target pegmatite dykes.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	Both summary (weighted average) grade intersections and full assay data is provided as cross sections and tabulated data referenced in the body of the report.
Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	Any other relevant information is discussed in the main body of the report.

Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned work is discussed in the body of the report and is dependent on future company direction.
--------------	---	---

APPENDIX A – ROADSIDE DRILLING RESULTS

SampleID	Hole_ID	Hole_Type	mFrom	mTo	Sample_Type	Sample_Condition	Batch_No	Li_ppm	Li20_%	Li_Method	Cs_ppm	Cs_Method	Nb_ppm	Nb_Method	Rb_ppm	Rb_Method	Ta_ppm	Ta_Method
203523	MCHWRC001	RC	30	32	COMP2	М	AD19069428	130	0.028	ME-ICP89	23.6	ME-MS91	48	ME-MS91	249.0	ME-MS91	23.1	ME-MS91
203524	MCHWRC001	RC	32	34	COMP2	М	AD19069428	110	0.0237	ME-ICP89	25.8	ME-MS91	15	ME-MS91	160.5	ME-MS91	5	ME-MS91
203525	MCHWRC001	RC	34	36	COMP2	D	AD19069428	140	0.0301	ME-ICP89	13.4	ME-MS91	9	ME-MS91	92.9	ME-MS91	0.9	ME-MS91
203526	MCHWRC001	RC	36	38	COMP2	D	AD19069428	100	0.0215	ME-ICP89	13.8	ME-MS91	6	ME-MS91	90.4	ME-MS91	<0.5	ME-MS91
203527	MCHWRC001	RC	38	40	COMP2	М	AD19069428	130	0.028	ME-ICP89	12.2	ME-MS91	6	ME-MS91	89.5	ME-MS91	<0.5	ME-MS91
203530	MCHWRC001	RC	40	42	COMP2	D	AD19069428	110	0.0237	ME-ICP89	10.9	ME-MS91	33	ME-MS91	77.7	ME-MS91	<0.5	ME-MS91
203531	MCHWRC001	RC	42	44	COMP2	D	AD19069428	100	0.0215	ME-ICP89	10.1	ME-MS91	21	ME-MS91	79.7	ME-MS91	<0.5	ME-MS91
203532	MCHWRC001	RC	44	46	COMP2	М	AD19069428	90	0.0194	ME-ICP89	8.2	ME-MS91	7	ME-MS91	66.2	ME-MS91	<0.5	ME-MS91
203533	MCHWRC001	RC	46	48	COMP2	М	AD19069428	100	0.0215	ME-ICP89	5.9	ME-MS91	7	ME-MS91	73.3	ME-MS91	<0.5	ME-MS91
203534	MCHWRC001	RC	48	50	COMP2	М	AD19069428	90	0.0194	ME-ICP89	6.9	ME-MS91	7	ME-MS91	71.7	ME-MS91	<0.5	ME-MS91
203535	MCHWRC001	RC	50	52	COMP2	М	AD19069428	90	0.0194	ME-ICP89	12.6	ME-MS91	12	ME-MS91	151.5	ME-MS91	0.6	ME-MS91
203536	MCHWRC001	RC	52	54	COMP2	М	AD19069428	90	0.0194	ME-ICP89	17.3	ME-MS91	15	ME-MS91	251.0	ME-MS91	1.1	ME-MS91
203537	MCHWRC001	RC	54	56	COMP2	М	AD19069428	40	0.0086	ME-ICP89	12.1	ME-MS91	11	ME-MS91	167.0	ME-MS91	0.7	ME-MS91
203538	MCHWRC001	RC	56	58	COMP2	М	AD19069428	20	0.0043	ME-ICP89	6.3	ME-MS91	10	ME-MS91	123.5	ME-MS91	0.6	ME-MS91
203539	MCHWRC001	RC	58	60	COMP2	М	AD19069428	30	0.0065	ME-ICP89	7	ME-MS91	10	ME-MS91	121.0	ME-MS91	0.5	ME-MS91
203542	MCHWRC001	RC	60	62	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.4	ME-MS91	19	ME-MS91	102.5	ME-MS91	0.7	ME-MS91
203543	MCHWRC001	RC	62	64	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.4	ME-MS91	13	ME-MS91	102.0	ME-MS91	0.6	ME-MS91
203544	MCHWRC001	RC	64	66	COMP2	D	AD19069428	20	0.0043	ME-ICP89	5.9	ME-MS91	11	ME-MS91	105.5	ME-MS91	0.5	ME-MS91
203545	MCHWRC001	RC	66	68	COMP2	М	AD19069428	20	0.0043	ME-ICP89	6.3	ME-MS91	10	ME-MS91	103.5	ME-MS91	0.5	ME-MS91
203546	MCHWRC001	RC	68	70	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.6	ME-MS91	10	ME-MS91	102.0	ME-MS91	0.5	ME-MS91
203547	MCHWRC001	RC	70	72	COMP2	М	AD19069428	20	0.0043	ME-ICP89	6	ME-MS91	10	ME-MS91	110.5	ME-MS91	0.7	ME-MS91
203548	MCHWRC001	RC	72	74	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.7	ME-MS91	9	ME-MS91	102.5	ME-MS91	0.6	ME-MS91
203549	MCHWRC001	RC	74	76	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.6	ME-MS91	10	ME-MS91	106.5	ME-MS91	0.5	ME-MS91
203550	MCHWRC001	RC	76	78	COMP2	М	AD19069428	20	0.0043	ME-ICP89	6.2	ME-MS91	9	ME-MS91	106.0	ME-MS91	0.6	ME-MS91
203551	MCHWRC001	RC	78	80	COMP2	М	AD19069428	20	0.0043	ME-ICP89	4.8	ME-MS91	9	ME-MS91	106.0	ME-MS91	0.6	ME-MS91
203554	MCHWRC001	RC	80	82	COMP2	w	AD19069428	20	0.0043	ME-ICP89	5.3	ME-MS91	58	ME-MS91	100.0	ME-MS91	0.7	ME-MS91
203555	MCHWRC001	RC	82	84	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.2	ME-MS91	32	ME-MS91	104.0	ME-MS91	0.6	ME-MS91

203556	MCHWRC001	RC	84	85	1M	W	AD19069428	30	0.0065	ME-ICP89	6.2	ME-MS91	13	ME-MS91	109.5	ME-MS91	1.1	ME-MS91
203557	MCHWRC001	RC	85	86	1M	W	AD19069428	30	0.0065	ME-ICP89	6.4	ME-MS91	14	ME-MS91	110.0	ME-MS91	1.4	ME-MS91
203558	MCHWRC001	RC	86	88	COMP2	М	AD19069428	20	0.0043	ME-ICP89	5.1	ME-MS91	12	ME-MS91	101.0	ME-MS91	1	ME-MS91
203559	MCHWRC001	RC	88	90	COMP2	М	AD19069428	60	0.0129	ME-ICP89	10.2	ME-MS91	14	ME-MS91	155.0	ME-MS91	0.9	ME-MS91
203560	MCHWRC001	RC	90	91	1M	D	AD19069428	60	0.0129	ME-ICP89	10.1	ME-MS91	9	ME-MS91	81.6	ME-MS91	<0.5	ME-MS91
203561	MCHWRC001	RC	91	92	1M	D	AD19069428	80	0.0172	ME-ICP89	15.9	ME-MS91	8	ME-MS91	88.4	ME-MS91	<0.5	ME-MS91
203562	MCHWRC001	RC	92	94	COMP2	D	AD19069428	80	0.0172	ME-ICP89	11.3	ME-MS91	13	ME-MS91	151.0	ME-MS91	1	ME-MS91
203563	MCHWRC001	RC	94	96	COMP2	М	AD19069428	40	0.0086	ME-ICP89	12.2	ME-MS91	17	ME-MS91	185.5	ME-MS91	1.2	ME-MS91
203564	MCHWRC001	RC	96	98	COMP2	М	AD19069428	40	0.0086	ME-ICP89	10.1	ME-MS91	18	ME-MS91	172.0	ME-MS91	1.3	ME-MS91
203567	MCHWRC002	RC	4	5	1M	М	AD19078950	350	0.0754	ME-ICP89	12.9	ME-MS91	25	ME-MS91	162.0	ME-MS91	6.5	ME-MS91
203568	MCHWRC002	RC	5	7	COMP2	М	AD19078950	190	0.0409	ME-ICP89	9.3	ME-MS91	20	ME-MS91	142.5	ME-MS91	3.1	ME-MS91
203569	MCHWRC002	RC	7	8	1M	М	AD19078950	120	0.0258	ME-ICP89	8.5	ME-MS91	20	ME-MS91	137.0	ME-MS91	2	ME-MS91
203572	MCHWRC002	RC	8	10	COMP2	D	AD19078950	90	0.0194	ME-ICP89	6.6	ME-MS91	20	ME-MS91	115.5	ME-MS91	1.2	ME-MS91
203573	MCHWRC002	RC	10	12	COMP2	М	AD19078950	100	0.0215	ME-ICP89	6.8	ME-MS91	21	ME-MS91	120.0	ME-MS91	1.4	ME-MS91
203574	MCHWRC002	RC	12	14	COMP2	М	AD19078950	140	0.0301	ME-ICP89	10.9	ME-MS91	93	ME-MS91	123.5	ME-MS91	3	ME-MS91
203575	MCHWRC002	RC	14	16	COMP2	М	AD19078950	110	0.0237	ME-ICP89	8	ME-MS91	18	ME-MS91	127.0	ME-MS91	1.3	ME-MS91
203576	MCHWRC002	RC	16	18	COMP2	М	AD19078950	110	0.0237	ME-ICP89	8.3	ME-MS91	19	ME-MS91	142.0	ME-MS91	1.3	ME-MS91
203577	MCHWRC002	RC	18	20	COMP2	М	AD19078950	80	0.0172	ME-ICP89	10	ME-MS91	19	ME-MS91	152.5	ME-MS91	1.2	ME-MS91
203580	MCHWRC002	RC	20	22	COMP2	М	AD19078950	90	0.0194	ME-ICP89	9.5	ME-MS91	28	ME-MS91	150.5	ME-MS91	1.2	ME-MS91
203581	MCHWRC002	RC	22	24	COMP2	Μ	AD19078950	110	0.0237	ME-ICP89	9.5	ME-MS91	27	ME-MS91	145.5	ME-MS91	1.5	ME-MS91
203582	MCHWRC002	RC	24	26	COMP2	М	AD19078950	100	0.0215	ME-ICP89	10.2	ME-MS91	20	ME-MS91	150.0	ME-MS91	1.2	ME-MS91
203583	MCHWRC002	RC	26	28	COMP2	М	AD19078950	170	0.0366	ME-ICP89	10.1	ME-MS91	20	ME-MS91	145.0	ME-MS91	1.1	ME-MS91
203584	MCHWRC002	RC	28	30	COMP2	М	AD19078950	260	0.056	ME-ICP89	58.2	ME-MS91	26	ME-MS91	452.0	ME-MS91	6.4	ME-MS91
203585	MCHWRC002	RC	30	32	COMP2	D	AD19078950	70	0.0151	ME-ICP89	21.7	ME-MS91	106	ME-MS91	345.0	ME-MS91	50.7	ME-MS91
203586	MCHWRC002	RC	32	34	COMP2	Μ	AD19078950	180	0.0388	ME-ICP89	72.1	ME-MS91	92	ME-MS91	396.0	ME-MS91	33.3	ME-MS91
203587	MCHWRC002	RC	34	36	COMP2	Μ	AD19078950	300	0.0646	ME-ICP89	88.3	ME-MS91	31	ME-MS91	357.0	ME-MS91	5.8	ME-MS91
203596	MCHWRC002	RC	46	48	COMP2	D	AD19095881	220	0.0474	ME-ICP89	49.2	ME-MS91	18	ME-MS91	276.0	ME-MS91	1.5	ME-MS91
203597	MCHWRC002	RC	48	50	COMP2	D	AD19095881	140	0.0301	ME-ICP89	55.2	ME-MS91	15	ME-MS91	180.0	ME-MS91	1.4	ME-MS91
203598	MCHWRC002	RC	50	52	COMP2	D	AD19095881	140	0.0301	ME-ICP89	66.4	ME-MS91	19	ME-MS91	211.0	ME-MS91	10.7	ME-MS91

203599	MCHWRC002	RC	52	54	COMP2	D	AD19095881	120	0.0258	ME-ICP89	61.2	ME-MS91	14	ME-MS91	161.0	ME-MS91	2.2	ME-MS91
203600	MCHWRC002	RC	54	55	COMP2	D	AD19095881	150	0.0323	ME-ICP89	82.1	ME-MS91	13	ME-MS91	253.0	ME-MS91	2.1	ME-MS91
203601	MCHWRC002	RC	55	56	COMP2	D	AD19095881	120	0.0258	ME-ICP89	60.5	ME-MS91	16	ME-MS91	209.0	ME-MS91	1.9	ME-MS91
203602	MCHWRC002	RC	56	59	COMP3	D	AD19095881	120	0.0258	ME-ICP89	42.1	ME-MS91	12	ME-MS91	221.0	ME-MS91	2.1	ME-MS91
203646	MCHWRC003	RC	58	60	COMP2	D	AD19078950	330	0.071	ME-ICP89	38.2	ME-MS91	56	ME-MS91	212.0	ME-MS91	1.9	ME-MS91
203647	MCHWRC003	RC	60	62	COMP2	D	AD19078950	480	0.1033	ME-ICP89	97.7	ME-MS91	22	ME-MS91	353.0	ME-MS91	2.5	ME-MS91
203648	MCHWRC003	RC	62	64	COMP2	D	AD19078950	190	0.0409	ME-ICP89	43.7	ME-MS91	81	ME-MS91	508.0	ME-MS91	29.5	ME-MS91
203649	MCHWRC003	RC	64	66	COMP2	D	AD19078950	60	0.0129	ME-ICP89	20.5	ME-MS91	112	ME-MS91	311.0	ME-MS91	42	ME-MS91
203650	MCHWRC003	RC	66	68	COMP2	W	AD19078950	400	0.0861	ME-ICP89	51.1	ME-MS91	54	ME-MS91	611.0	ME-MS91	22.5	ME-MS91
203653	MCHWRC003	RC	68	70	COMP2	D	AD19078950	480	0.1033	ME-ICP89	94.1	ME-MS91	88	ME-MS91	426.0	ME-MS91	4.2	ME-MS91
203659	MCHWRC004	RC	0	2	COMP2	D	AD19078950	170	0.0366	ME-ICP89	42.1	ME-MS91	20	ME-MS91	82.5	ME-MS91	1.3	ME-MS91
203660	MCHWRC004	RC	2	4	COMP2	D	AD19078950	450	0.0969	ME-ICP89	117	ME-MS91	23	ME-MS91	164.5	ME-MS91	1.4	ME-MS91
203670	MCHWRC004	RC	18	20	COMP2	М	AD19078950	680	0.1464	ME-ICP89	95	ME-MS91	24	ME-MS91	297.0	ME-MS91	1.3	ME-MS91
203671	MCHWRC004	RC	20	22	COMP2	D	AD19078950	780	0.1679	ME-ICP89	92.4	ME-MS91	23	ME-MS91	480.0	ME-MS91	1.4	ME-MS91
203672	MCHWRC004	RC	22	24	COMP2	D	AD19078950	370	0.0797	ME-ICP89	69.3	ME-MS91	46	ME-MS91	833.0	ME-MS91	19.8	ME-MS91
203675	MCHWRC004	RC	24	26	COMP2	D	AD19078950	220	0.0474	ME-ICP89	58.9	ME-MS91	68	ME-MS91	1105.0	ME-MS91	31.1	ME-MS91
203676	MCHWRC004	RC	26	28	COMP2	D	AD19078950	60	0.0129	ME-ICP89	22.3	ME-MS91	112	ME-MS91	359.0	ME-MS91	54	ME-MS91
203677	MCHWRC004	RC	28	30	COMP2	D	AD19078950	70	0.0151	ME-ICP89	39.5	ME-MS91	89	ME-MS91	502.0	ME-MS91	48.5	ME-MS91
203678	MCHWRC004	RC	30	32	COMP2	D	AD19078950	310	0.0667	ME-ICP89	97.9	ME-MS91	38	ME-MS91	332.0	ME-MS91	16.7	ME-MS91
203679	MCHWRC004	RC	32	34	COMP2	D	AD19078950	390	0.084	ME-ICP89	156	ME-MS91	22	ME-MS91	314.0	ME-MS91	1.7	ME-MS91
203685	MIEDRC001	RC	6	8	COMP2	D	AD19095881	400	0.0861	ME-ICP89	76.6	ME-MS91	24	ME-MS91	257.0	ME-MS91	6.2	ME-MS91
203686	MIEDRC001	RC	8	10	COMP2	D	AD19095881	400	0.0861	ME-ICP89	127.5	ME-MS91	23	ME-MS91	407.0	ME-MS91	5.3	ME-MS91
203687	MIEDRC001	RC	10	12	COMP2	D	AD19095881	340	0.0732	ME-ICP89	135.5	ME-MS91	43	ME-MS91	665.0	ME-MS91	56.6	ME-MS91
203690	MIEDRC001	RC	12	14	COMP2	D	AD19095881	150	0.0323	ME-ICP89	88.4	ME-MS91	115	ME-MS91	911.0	ME-MS91	223	ME-MS91
203691	MIEDRC001	RC	14	15	1M	М	AD19095881	440	0.0947	ME-ICP89	193	ME-MS91	31	ME-MS91	872.0	ME-MS91	12.7	ME-MS91
203692	MIEDRC001	RC	15	17	COMP2	D	AD19095881	450	0.0969	ME-ICP89	221	ME-MS91	29	ME-MS91	746.0	ME-MS91	12.2	ME-MS91
203693	MIEDRC001	RC	17	18	1M	М	AD19095881	120	0.0258	ME-ICP89	76.7	ME-MS91	113	ME-MS91	423.0	ME-MS91	169	ME-MS91
203694	MIEDRC001	RC	18	20	COMP2	D	AD19095881	310	0.0667	ME-ICP89	136	ME-MS91	46	ME-MS91	369.0	ME-MS91	60.6	ME-MS91
203697	MIEDRC001	RC	20	22	COMP2	D	AD19095881	320	0.0689	ME-ICP89	147	ME-MS91	68	ME-MS91	466.0	ME-MS91	59.2	ME-MS91

203698	MIEDRC001	RC	22	24	COMP2	D	AD19095881	360	0.0775	ME-ICP89	97.3	ME-MS91	11	ME-MS91	296.0	ME-MS91	2.3	ME-MS91
203731	MIEDRC001	RC	84	86	COMP2	D	AD19095881	390	0.084	ME-ICP89	62.2	ME-MS91	67	ME-MS91	254.0	ME-MS91	279	ME-MS91
203732	MIEDRC001	RC	86	88	COMP2	D	AD19095881	280	0.0603	ME-ICP89	32.7	ME-MS91	68	ME-MS91	385.0	ME-MS91	229	ME-MS91
203733	MIEDRC001	RC	88	90	COMP2	D	AD19095881	240	0.0517	ME-ICP89	44.2	ME-MS91	25	ME-MS91	397.0	ME-MS91	14.8	ME-MS91
203734	MIEDRC001	RC	90	92	COMP2	D	AD19095881	320	0.0689	ME-ICP89	54.8	ME-MS91	12	ME-MS91	394.0	ME-MS91	4.8	ME-MS91
203735	MIEDRC001	RC	92	94	COMP2	D	AD19095881	630	0.1356	ME-ICP89	94.1	ME-MS91	63	ME-MS91	417.0	ME-MS91	293	ME-MS91
203736	MIEDRC001	RC	94	96	COMP2	D	AD19095881	340	0.0732	ME-ICP89	32.5	ME-MS91	99	ME-MS91	656.0	ME-MS91	420	ME-MS91
203737	MIEDRC001	RC	96	98	COMP2	D	AD19095881	530	0.1141	ME-ICP89	25.8	ME-MS91	87	ME-MS91	420.0	ME-MS91	313	ME-MS91
203738	MIEDRC001	RC	98	100	COMP2	D	AD19095881	510	0.1098	ME-ICP89	29	ME-MS91	64	ME-MS91	502.0	ME-MS91	7.9	ME-MS91
203741	MIEDRC001	RC	100	102	COMP2	D	AD19095881	660	0.1421	ME-ICP89	29	ME-MS91	35	ME-MS91	517.0	ME-MS91	11.8	ME-MS91
203742	MIEDRC001	RC	102	104	COMP2	D	AD19095881	790	0.1701	ME-ICP89	56.9	ME-MS91	38	ME-MS91	660.0	ME-MS91	17	ME-MS91
203743	MIEDRC001	RC	104	106	COMP2	D	AD19095881	730	0.1572	ME-ICP89	68.4	ME-MS91	12	ME-MS91	279.0	ME-MS91	1.7	ME-MS91
203782	MIEDRC002	RC	42	44	COMP2	D	AD19095881	630	0.1356	ME-ICP89	73.8	ME-MS91	8	ME-MS91	229.0	ME-MS91	0.7	ME-MS91
203783	MIEDRC002	RC	44	46	COMP2	D	AD19095881	750	0.1615	ME-ICP89	64.5	ME-MS91	10	ME-MS91	268.0	ME-MS91	1	ME-MS91
203784	MIEDRC002	RC	46	48	COMP2	D	AD19095881	750	0.1615	ME-ICP89	82.6	ME-MS91	9	ME-MS91	296.0	ME-MS91	0.9	ME-MS91
203785	MIEDRC002	RC	48	50	COMP2	D	AD19095881	260	0.056	ME-ICP89	43.3	ME-MS91	48	ME-MS91	482.0	ME-MS91	30.1	ME-MS91
203786	MIEDRC002	RC	50	52	COMP2	D	AD19095881	990	0.2131	ME-ICP89	70.6	ME-MS91	44	ME-MS91	849.0	ME-MS91	25.3	ME-MS91
203787	MIEDRC002	RC	52	54	COMP2	D	AD19095881	750	0.1615	ME-ICP89	51.4	ME-MS91	36	ME-MS91	927.0	ME-MS91	10.5	ME-MS91
203788	MIEDRC002	RC	54	56	COMP2	D	AD19095881	500	0.1077	ME-ICP89	23.8	ME-MS91	39	ME-MS91	432.0	ME-MS91	13.1	ME-MS91
203789	MIEDRC002	RC	56	58	COMP2	D	AD19095881	480	0.1033	ME-ICP89	26.7	ME-MS91	37	ME-MS91	502.0	ME-MS91	8.6	ME-MS91
203790	MIEDRC002	RC	58	60	COMP2	D	AD19095881	450	0.0969	ME-ICP89	58.1	ME-MS91	38	ME-MS91	823.0	ME-MS91	13.3	ME-MS91
203795	MIEDRC002	RC	60	62	COMP2	D	AD19095881	920	0.1981	ME-ICP89	143	ME-MS91	22	ME-MS91	570.0	ME-MS91	3.4	ME-MS91
203796	MIEDRC002	RC	62	64	COMP2	D	AD19095881	840	0.1809	ME-ICP89	67	ME-MS91	18	ME-MS91	323.0	ME-MS91	1.6	ME-MS91
203797	MIEDRC002	RC	64	66	COMP2	D	AD19095881	810	0.1744	ME-ICP89	49	ME-MS91	17	ME-MS91	283.0	ME-MS91	1.4	ME-MS91
203798	MIEDRC002	RC	66	68	COMP2	D	AD19095881	720	0.155	ME-ICP89	44.8	ME-MS91	19	ME-MS91	295.0	ME-MS91	1.5	ME-MS91
203805	MIEDRC003	RC	0	2	COMP2	D	AD19095881	1300	0.2799	ME-ICP89	166	ME-MS91	29	ME-MS91	900	ME-MS91	13.4	ME-MS91
203806	MIEDRC003	RC	2	4	COMP2	D	AD19095881	320	0.0689	ME-ICP89	43.3	ME-MS91	51	ME-MS91	578	ME-MS91	23.1	ME-MS91
203809	MIEDRC003	RC	4	6	COMP2	М	AD19095881	420	0.0904	ME-ICP89	53.2	ME-MS91	56	ME-MS91	870	ME-MS91	15.3	ME-MS91
203810	MIEDRC003	RC	6	8	COMP2	М	AD19095881	460	0.099	ME-ICP89	89	ME-MS91	40	ME-MS91	1200	ME-MS91	17.7	ME-MS91

203811	MIEDRC003	RC	8	10	COMP2	М	AD19095881	1440	0.31	ME-ICP89	81.6	ME-MS91	38	ME-MS91	1265	ME-MS91	12	ME-MS91
203812	MIEDRC003	RC	10	12	COMP2	D	AD19095881	5380	1.1583	ME-ICP89	57.3	ME-MS91	35	ME-MS91	743	ME-MS91	5.5	ME-MS91
203813	MIEDRC003	RC	12	14	COMP2	D	AD19095881	1020	0.2196	ME-ICP89	35.2	ME-MS91	45	ME-MS91	430	ME-MS91	12.8	ME-MS91
203814	MIEDRC003	RC	14	16	COMP2	D	AD19095881	610	0.1313	ME-ICP89	41.2	ME-MS91	42	ME-MS91	616	ME-MS91	10.7	ME-MS91
203815	MIEDRC003	RC	16	18	COMP2	D	AD19095881	1680	0.3617	ME-ICP89	53.2	ME-MS91	33	ME-MS91	670	ME-MS91	7.8	ME-MS91
203816	MIEDRC003	RC	18	20	COMP2	D	AD19095881	680	0.1464	ME-ICP89	42.1	ME-MS91	41	ME-MS91	694	ME-MS91	10.6	ME-MS91
203819	MIEDRC003	RC	20	22	COMP2	D	AD19095881	3390	0.7299	ME-ICP89	38.7	ME-MS91	34	ME-MS91	592	ME-MS91	12.3	ME-MS91
203820	MIEDRC003	RC	22	24	COMP2	D	AD19095881	460	0.099	ME-ICP89	39.1	ME-MS91	72	ME-MS91	575	ME-MS91	34	ME-MS91
203821	MIEDRC003	RC	24	26	COMP2	D	AD19095881	1340	0.2885	ME-ICP89	181	ME-MS91	34	ME-MS91	724	ME-MS91	11.8	ME-MS91
203822	MIEDRC003	RC	26	28	COMP2	D	AD19095881	910	0.1959	ME-ICP89	153	ME-MS91	16	ME-MS91	406	ME-MS91	1.8	ME-MS91