

ASX ANNOUNCEMENT

13 OCTOBER 2020

MULTIPLE GOLD STRUCTURES CONFIRMED BY DIAMOND DRILLING AT TOMORROW ZONE, TANDARRA PROJECT, VICTORIA

SUMMARY

TOMORROW DIAMOND DRILLING:

- Results for four diamond drill holes (DDT025 028) confirm extension of a discordant west-dipping fault complex thought to control gold emplacement.
 - Four gold intervals intersected in DDT025, ranging in assay from 2.4 3.5 g/t
 - Highlight intercept of 1m @ 82.3 g/t Au from 261m in DDT026

MACNAUGHTAN AIR CORE DRILLING:

- 1.4km strike length of gold mineralisation confirmed in reconnaissance air core drilling along the southern end of the Macnaughtan Zone.
- · Highlight results include:
 - 13m @ 7.8 g/t Au, including 2m @ 44.8 g/t Au, from 78m in ACT464
 - 2m @ 2.1 g/t Au from 106m in ACT446

LAWRY AIR CORE DRILLING:

- Confirmatory sample analyses enhance Lawry Zone gold mineralisation:
 - 31m @ 1.4 g/t Au from 56m in ACT378, including 1m @ 10.5 g/t Au at blade refusal
 - 2m @ 1.8 g/t Au from 91m in ACT376
- Extensive follow-up drilling programs proposed for the 2020-21 field season

Catalyst Metals Limited (Catalyst) (ASX:CYL) and Navarre Minerals Limited (Navarre) (ASX:NML) are pleased to announce results of a four hole, 1,320m diamond drilling program on the Tomorrow Zone and new confirmatory assay results received for successive reconnaissance air core (AC) drilling programs completed during 2020 on the southern extension of the Macnaughtan gold trend (see ASX announcements of 6 April and 30 June 2020) and at the Lawry Zone (Lawry discovery first reported to ASX on 6 April 2020). All drilling programs are located within the Tandarra Retention Licence RL006660, located 40km north of the historical 22Moz Bendigo Goldfield in Victoria (Figures 1 and 2).

RL006660 is owned in joint venture (JV) by Catalyst (51%) and Navarre (49%), with Catalyst as manager of the JV.

The Tandarra Gold Project is situated along the Whitelaw Fault, about 40 kilometres north of Bendigo (Figure 1). The Whitelaw Fault is considered to be the major structural control of gold mineralisation at Bendigo, extending northwards to the Murray River, concealed beneath a blanket of younger, post-mineralisation sediments of the Murray Basin (Figure 1).

Catalyst Technical Director, Mr Bruce Kay said:

"The continuity of mineralised structures outlined by diamond drilling indicates considerable potential for further extensions and repetitions of Tomorrow Zone gold mineralisation along strike and at depth. The continuity of gold mineralisation newly indicated by reconnaissance-spaced air core drill programs along the southern Macnaughtan line and in the Lawry Zone provide exciting prospects of potential mineralisation awaiting follow up drilling."

TOMORROW ZONE DIAMOND DRILLING

Four step-out diamond drill holes (DDT025 to 028) were completed, testing a further 400m strike extent of a large discordant west-dipping fault, thought to control the emplacement of gold mineralisation at the Tomorrow Zone (Figures 2, 3 and 4). This drilling follows the previously reported discovery of mineralised depth repetitions of the Tomorrow zone reported to the ASX on 14 October 2019.

The schematic cross-section in Figure 2 illustrates the geometry of the discordant west-dipping fault complex and its key geological relationships, each observable in part on individual drill traverse lines and also relatively consistent between adjacent drill lines. The host sediment package comprise alternating sandstone-rich and shale-rich horizons, which respond differently to the regional folding event and also to the influx of gold-bearing fluids.

All interpreted target zones were intersected by the diamond core holes confirming the southern continuity of fertile structures first intersected in the 2019 drilling program. Target zones are characterised by abundant quartz veining associated with the west-dipping faulted zones and the brittle-deformed adjacent sandstone-rich horizons (Figure 2). However, associated gold mineralisation is thinly developed in this setting, as illustrated by the interpretation shown in the longitudinal projection in Figure 3

- · Best intersections recorded included:
 - In DDT025

 1m @ 2.38 g/t Au from 74m

 1m @ 2.52 g/t Au from 80m

 1m @ 3.50 g/t Au from 121m

 1m @ 2.92 g/t Au from 327m
 - In DDT026
 1m @ 82.30 g/t Au from 261m
 1m @ 1.41 g/t Au from 310m

The two southernmost holes, DDT027 and DDT028 did not intersect significant mineralisation, indicating the possible southern limit of gold mineralisation in the targeted zone. Full details of diamond drilling are shown in Appendix 1, Tables 1a and 1b.

AIR CORE DRILLING

MACNAUGHTAN ZONE

Compilation and review have been conducted on the results of reconnaissance AC drilling programs conducted in the first half of 2020 and presented in reports to ASX on 6 April and 30 June of this year. The programs tested the Macnaughtan line of gold mineralisation and its southerly extension on seven traverses spaced 100 to 270 metres apart, over 1,350 metres of strike length (Figures 4 and 5). Gold mineralisation was intersected on almost every traverse, with multiple higher grade intersections.

The alignment of intersections is sympathetic to the orientation previously identified at Tandarra (Figure 5), indicating strong potential for continuity between mineralised intersections, notwithstanding the widely spaced reconnaissance nature of the program. The high grades are most concentrated in a 500-metre interval in the centre of the extension zone.

The mineralisation remains open to the south where basement topography falls away to the south-west increasing the thickness of sedimentary cover beyond the capacity of the AC drill rig being used. The updated details of the full AC drilling program are shown in Appendix 2, Tables 2a and 2b.

- Main intersections include:
 - 13m @ 7.8 g/t Au, including 2 m @ 44.8 g/t Au, from 78m in ACT464
 - 2m @ 2.06 g/t Au from 106m in ACT446
 - 1m @ 2.99 g/t Au from 108m (end of hole)

Initial sampling of holes ACT444 and ACT475 indicated high gold values, which are clearly nuggety in distribution, as these initial assays were unable to be replicated in subsequent check analyses.

LAWRY ZONE

The easterly extensions of the southern reconnaissance AC traverses provided a first test of structures east of Tomorrow Zone mineralisation. This program resulted in the discovery of the Lawry Zone mineralisation reported to ASX on 6 April 2020 (Figures 4 and 5).

- Main intersections have been resampled and confirm the significant mineralisation including:
 - 31m @ 1.40 g/t Au, including 1m @ 9.40 g/t Au and 1m @10.45 g/t Au (at end of hole), from 56m in ACT378
 - 2m @ 1.84 g/t Au from 91m in ACT446

The mineralisation encountered remains open to both north and south (Figure 5).

As reported to ASX on 30 June 2020, the follow-up program designed to test the northern extension of the Lawry trend was mostly ineffective due to the increased thickness of cover sediments encountered (Figure 5). However, from the holes that tested basement, elevated trace arsenic values (typically associated with gold mineralisation) and quartz veining, provide strong indication of the northward continuation of the mineralised structure.

The updated details of the full AC drilling program are shown in Appendix 2, Tables 2a and 2b.

TOMORROW ZONE (SOUTHERN EXTENSION)

Between the Macnaughtan and Lawry Zones the AC drill traverses crossed the southern extension of the Tomorrow Zone (Figures 4 and 5). The fertility of this zone is confirmed by gold intersections on almost every traverse, with narrow intervals of gold mineralisation of modest grade, extending the mineralised

strike length by approximately 1.5 kilometres. Again, the mineralisation remains open to the south but inaccessible to the drill rig used, due to thickened cover sequence (Figure 5).

The updated details of the full AC drilling program are shown in Appendix 2, Tables 2a and 2b.

GOLD ANALYSES

The gold values initially reported from Macnaughtan, Lawry and Tomorrow southern extension zones were the result of ICPMS (inductively coupled plasma mass spectroscopy) analysis of aqua regia leached 25gm samples taken from composite, 3-metre air core drill samples. Sub-sampling to individual onemetre components of these composites are routinely subjected to confirmatory analysis of larger samples (cyanide extractable gold in 2 kg samples – so-called 'BLEG' assays). Historically, these higher-reliability analyses have generally confirmed, on average, slightly enhanced ICPMS values in Tandarra drill samples. However, occasionally discrepancies are observed. In the current dataset, conspicuous differences were reported between the analyses for drill holes ACT475 (initially reported at 3ms @ 94.9 g/t gold, confirmed at the lower value of 3m @ 0.1 g/t gold) and ACT464 (initially reported as 18m @ 1.6 g/t gold, confirmed at the higher value of 13m @ 7.75 g/t gold). Greater reliance should be placed on the confirmatory results due to their larger and more representative assay charge.

All results cited from the diamond drilling are from confirmatory BLEG analysis.

2020-21 DRILLING PROGRAM

Planning is in progress for drilling programs scheduled to commence before the end of calendar year 2020.

The interpretations made possible by the results of the diamond drilling of the Tomorrow Zone will inform continued evaluation of both the core and depth extensions of that mineralisation, and adjacent parts of the Macnaughtan Zone.

Further south, both AC and reverse circulation drill programs will be undertaken to confirm, infill and extend Macnaughtan and Lawry gold-mineralised zones.

This announcement has been authorised for release by the Board of Directors of Catalyst Metals Limited and Navarre Minerals Limited.

- ENDS -

For further information contact:

Catalyst Metals Limited
Bruce Kay
Technical Director

Telephone: +61 400 613 180

Navarre Minerals Limited Ian Holland Managing Director +61 3 5358 8625

JORC Reporting of Historic Exploration Results

Although Catalyst was not involved in previous exploration at the Tandarra Gold Project, it has elected to update the information to comply with the JORC 2012 Code. The results had been publicly reported by Leviathan Resources Pty Ltd (ASX code LVR) (December 2004 to January 2007), Perseverance Corporation Limited (ASX code PSV) (January 2008 to March 2011) and Navarre Minerals Limited (ASX code NML) (March 2011 to September 2014) in numerous announcements during the stated periods under the JORC 2004 Code. Catalyst has limited knowledge on how the data was collected but has had to make assumptions based on the available historic data generated by these companies.

Full location data on the Tandarra drill holes and a Summary of Sampling Techniques and Reporting of Exploration Results according to the JORC Code 2012 Edition were included in Catalyst's ASX announcements dated 1 September 2014, quarterly report dated 31 July 2014 and 29 July 2015.

Competent person's statement

The information in this report that relates to exploration results is based on information compiled by Mr Bruce Kay, a Competent Person, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Kay is a non-executive director of the Company and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr Kay consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

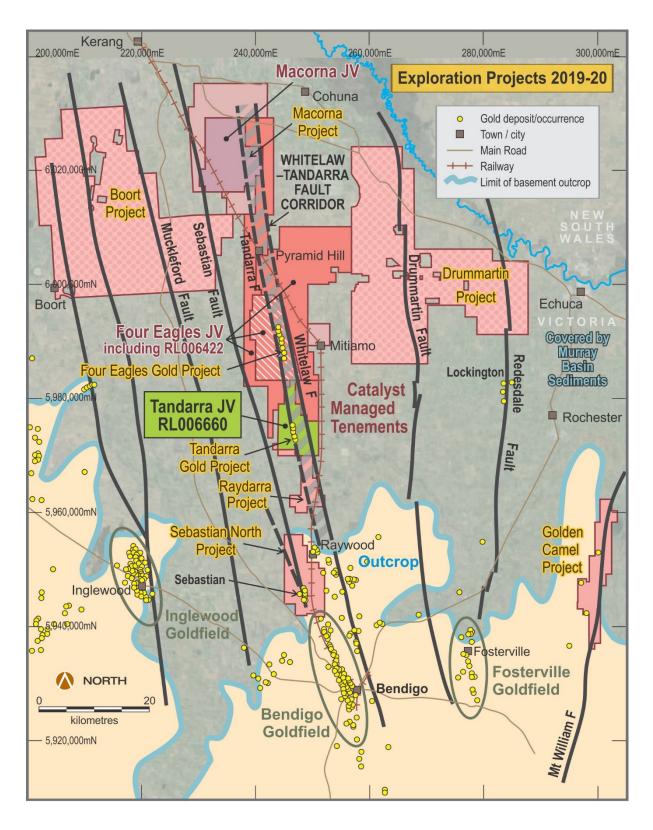


Figure 1: Whitelaw Belt showing the location of Tandarra Project RL006660

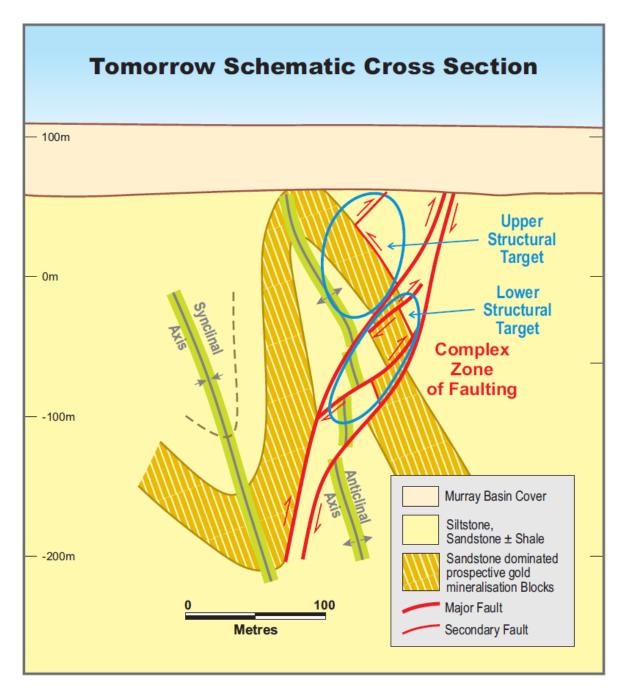


Figure 2: Schematic Cross Section showing major geological elements and inferred relationship to gold mineralisation

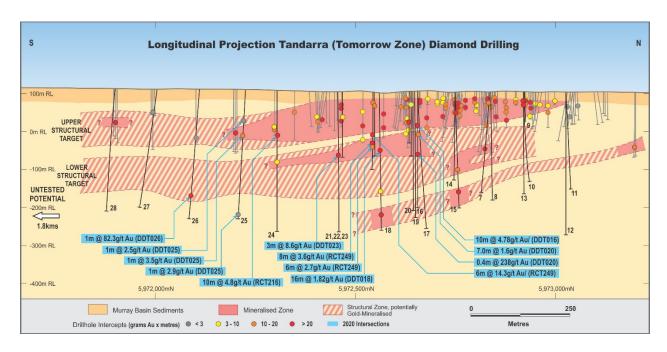


Figure 3: Tomorrow Zone Longitudinal Projection showing the locations of diamond drill holes and significant intersections (2020 holes highlighted in blue)

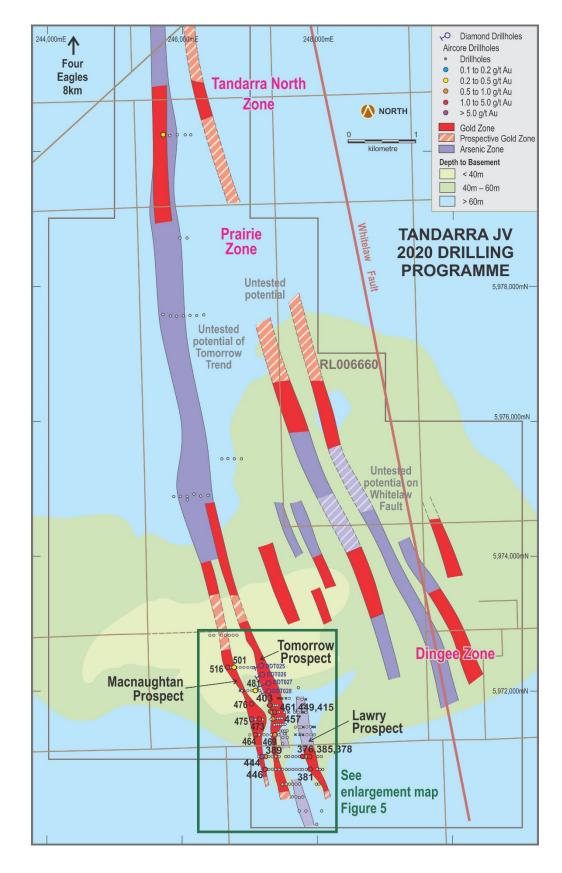


Figure 4: Drilling Plan Tomorrow, Lawry and Macnaughtan gold-mineralised zones showing locations of 2020 diamond and air core drill holes

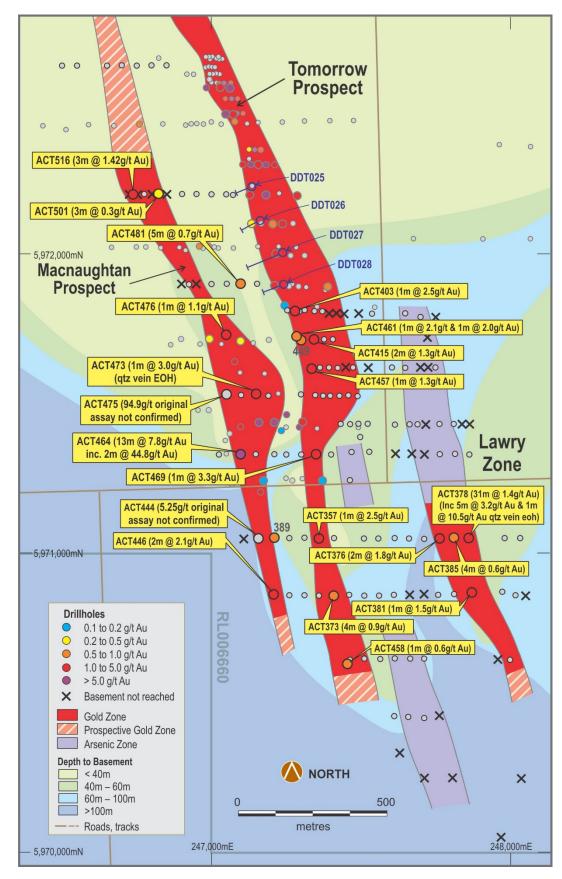


Figure 5: Macnaughtan, Tomorrow and Lawry Zones AC drill plan showing significant results, goldbearing and arsenic enriched zones and thickness of Murray Basin Sediment cover sequence

APPENDIX 1: DIAMOND DRILLING

Table 1a: Diamond Drill Hole Collars

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH
DDT025	DD/RC	Tomorrow	247,134	5,972,224	106.18	250.00	-81	339.6
DDT026	DD/RC	Tomorrow	247,160	5,972,109	106.48	237.69	-80	339.1
DDT027	DD/RC	Tomorrow	247,238	5,972,003	106.02	250.00	-69	326
DDT028	DD/RC	Tomorrow	247,239	5,971,897	105.89	250.00	-79	320.3

Table 1b: Diamond Drill Hole Assay results

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
DDT025	74	75	1	2.38	Tomorrow
DDT025	80	81	1	2.52	Tomorrow
DDT025	86	86.85	0.85	0.09	Tomorrow
DDT025	86.85	88	1.15	0.55	Tomorrow
DDT025	96	97	1	0.95	Tomorrow
DDT025	121	122	1	3.50	Tomorrow
DDT025	327	328	1	2.92	Tomorrow
DDT026	261	262	1	82.30	Tomorrow
DDT026	266	267	1	0.93	Tomorrow
DDT026	280	281	1	0.70	Tomorrow
DDT026	310	311	1	1.41	Tomorrow
DDT027	187	188	1	0.03	Tomorrow
DDT028	162	163	1	0.01	Tomorrow

JORC 2012 Edition, Table 1 Checklist: Diamond Drilling

Diamond Drill Sampling Techniques and Data	
Criteria	Explanation
Sampling techniques	 All basement material collected in commercially available diamond core trays. The cover alluvium is not the subject of resource development and is not sampled Diamond core is cleaned and marked metre-by-metre The geologist determines which metres are to be sampled in consultation with criteria such as quartz vein development, sulphide occurrence, and visible gold occurrence. The selected one-metre intervals for sampling are cut with a diamond impregnated saw, with half being collected in a calico bag for laboratory submission, the remaining half being transferred back to the source core tray for storage

Diamond Drill Sampling Techniques and Data	
Criteria	Explanation
Drilling techniques	 Holes are initiated using 120mm blade drilling, with cuttings lifted by either air or drilling mud to the base of cover. PVC casing is installed to preserve the collar condition for subsequent drilling. Pneumatic precollar drilling utilises a truck-mounted drill rig; 400psi 900cfm compressor and booster; auxiliary compressor where dictated by water in-flows. Mud drilled precollars are achieved by the diamond drill rig. At end-of-precollar depth, the rod string is removed from the hole and steel HWT or PQ casing is installed and shoed into the base-of-hole. PQ3 triple tube barrel and PQ drill rods are installed to precollar depth. Beyond this depth the hole is progressed to final depth with DDH drilling techniques, generally employing a three-metre barrel and rods. Drilling swaps to HQ3 diameter once indurated, fresh basement is encountered. Where ground conditions are poor, 1.5-metre rods are employed to alleviate core loss at tube extraction.
Drill sample recovery	 Core runs are documented by the driller, and recoveries measured by the geologist to ensure recovery is known and strategies implemented to maximise recovery (target being above 85%). The driller is under instruction to monitor recovery and rectify core loss through adjusting drill rig operation. All diamond core is drilled using triple tube equipment to assist in delivering acceptable core recovery
Logging	 Diamond core is geologically logged at intervals down to 5cm for lithology, alteration, quartz veining and to a standard acceptable for subsequent interpretation for use in estimation. Geological logging aspects are qualitative with exception of quartz vein content which is estimated semi-quantitatively Drill core structural measurements are logged prior to cutting/sampling. Drill core orientations are performed on each core run, and where successful are applied to structural measurements to provide known orientations of structures. Where orientations are not successful, the S1 cleavage is exploited as a proxy to orientation; in which case the database is flagged as such.
Sub-sampling techniques and sample preparation	 Lab submission samples collected as described above. No quarter coring is required. Samples dispatched to commercial assay laboratory (Catalyst have used ALS Pty Ltd exclusively); samples are crushed, dried, and pulverised in entirety, with 25g sample split for analysis (laboratory repeat splits historically demonstrate acceptable reproducibility and hence accuracy for this mineralisation)

Diamond Drill Sampling Techniques and Data	
Criteria	Explanation
Quality of assay data and laboratory tests	 Gold assay determined by ICPMS via aqua regia digestion (ALS code AuOG43). Experience has shown this method to be applicable for fine grained gold population of the mineralisation due to the completion of digestion. There is a technical constraint in that coarse-grained gold may not completely enter solution resulting in conservative assay. If the AR_ICPMS assays show significant Au intercepts, selected 1m lab pulps are re-assayed by bulk cyanide leach of >1Kg to minimise any nugget effect. Laboratory and client certified reference materials (3 x standards) are implemented every 20th sample.
Verification of sampling and assaying	 Data management has been performed by an experienced individual and not by several individuals. Apart from the BLEG resampling procedure on higher grades, there has been no verification of significant intersections by independent personnel or alternative laboratories DDH drilling in 2020 was first-pass step-out drilling to the south of known mineralisation hence no holes were twinned for data verification. Drillhole sampling and geological data is logged on hardcopy then imported electronically into the master database. There have been no adjustments to data as provided by the commercial assay laboratory.
Location of data points	 All drillhole location coordinates are measured using differential GPS to MGA94 Zone 55, and AHD estimated from terrain model created from publicly-available land survey data Collar locations measured to within an estimated precision of 10mm horizontally and 20mm vertically, using an independent Registered Surveyor. All drillholes are downhole surveyed. Drilling orientation established prior to collaring with clinometer and compass.
Data spacing and distribution	 DDH drillholes drilled at a section spacing of approximately 100 metres. DDH drillholes were targeted to intersect prospective structural positions on a steep west-dipping fault zone on the eastern limb of the Tomorrow anticline. This spacing is not yet of a sufficient density to be included in the estimation of a resource. For the purpose of the reporting of exploration results, assays are aggregated to reflect continuously sampled zones of significant anomalism for gold.
Orientation of data in relation to geological structure	Diamond drillhole sections were aligned approximately 90 degrees from the strike of mineralisation, i.e. Azimuth Grid 250 degrees. Holes are inclined steeply to the west to provide cross-strike investigation of the eastern limb of the Tomorrow anticline and to determine the location of the axial plane.
Sample security	 All samples are controlled by the responsible geologist and stored in secured facility prior to despatch to the laboratory. Samples are transported directly to laboratory by a commercial transportation contractor with chain-of-custody protocols in place. Sample number receipt information from laboratory cross-referenced and rationalised against sample number dispatch information.

Diamond Drill Sampling Techniques and Data Criteria	Explanation
Audits or reviews	 No processes or data used in developing the release of exploration results have been subject to audit or review by non-company personnel or contractors so as to reduce costs and timelines for reporting. Catalyst Metals Limited currently reserves this process for release of Mineral Resource and Ore Reserve estimates.

Reporting of Exploration	
Results	
Criteria	Explanation
Mineral tenement and land tenure status	The Tandarra gold prospect is located within RL6660 (51% Catalyst Metals Ltd and 49% Navarre Minerals Ltd situated 45 km north of Bendigo (Figure 1)
Exploration done by other parties	 Minor first-pass exploration drilling has been carried out by JV partner Navarre Minerals prior to the Catalyst JV. This data is incorporated into the JV database.
Geology	The targets are hosted by NNW-striking Ordovician sediments considered to be northern extensions of the Bendigo goldfield. The gold mineralisation discovered below the cover in RL006660 at Tomorrow and Macnaughtan Zones (Figures 2 and 3), occur in a structural zone of folds and faults which parallel the Whitelaw Fault (Figure 2). The features tested are extensions of known Au-As mineralised trends defined by earlier exploration drilling.
Drill hole Information	 Appendix 1 Table 1a: Collar location coordinates, downhole depths, azimuths, declinations. Appendix 1, Table 1b. Downhole intervals of significant gold grades.
Data aggregation methods	 RC and DDH assay samples are collected at 1m intervals in the first instance. No top-cutting applied to assay data. Significant intersections in first-pass exploration are reported as those with assays in excess of 0.2g/t Au (with internal dilution of two consecutive assays or less). Infill or higher grade intercepts are reported at a lower cut-off of 0.5g/t including 2m of internal waste. Reported zones are continuous, with no sample or assay gaps. Holes without zones of significance are tabulated detailing the greatest assay value achieved.
Relationship between mineralisation widths and intercept lengths	 The dip of mineralisation is expected to be both east-dipping and west-dipping as was the case in the Bendigo Goldfield and elsewhere at Tandarra. The dip of mineralisation has not been definitively proven, and the true width of mineralisation has not been resolved. As such, significant mineralised intersections have been reported as downhole intervals.
Diagrams	 Figure 1 shows the position of the Tandarra Project. Figure 3 shows the diamond drill holes in longitudinal projection
Balanced reporting	All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b
Other substantive exploration data	No other exploration results that have not previously been reported, are material to this report.
Further work	Further drilling is warranted to test deep structural targets at Tomorrow, Macnaughtan and Lawry zones using diamond drilling or deep RC methods.

APPENDIX 2: AIR CORE DRILLING DATA

Table 2a: Air Core Drill Hole Collars

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH	Basement Comment
ACT357	AC	Tomorrow Sth	247,360	5,971,050	105	270	-70	123	
ACT358	AC	Tomorrow Sth	247,410	5,971,050	105	270	-70	45	
ACT359	AC	Tomorrow Sth	247,562	5,970,648	105	270	-70	105	
ACT360	AC	Tomorrow Sth	247,760	5,970,457	105	270	-70	92	Basement_Not_Hit
ACT361	AC	Tomorrow Sth	247,805	5,970,250	105	0	-90	135	Basement_Not_Hit
ACT362	AC	Tomorrow Sth	247,460	5,970,862	105	0	-90	100	
ACT363	AC	Tomorrow Sth	248,035	5,970,250	105	270	-70	120	Basement_Not_Hit
ACT364	AC	Tomorrow Sth	247,460	5,971,244	105	270	-70	127	
ACT365	AC	Tomorrow Sth	247,510	5,971,050	105	270	-70	146	
ACT366	AC	Tomorrow Sth	247,510	5,970,860	105	270	-70	130	
ACT367	AC	Tomorrow Sth	247,560	5,970,860	105	270	-70	111	
ACT368	AC	Tomorrow Sth	247,966	5,970,050	105	0	-90	129	Basement_Not_Hit
ACT369	AC	Tomorrow Sth	247,657	5,970,455	105	270	-70	140	
ACT370	AC	Tomorrow Sth	247,610	5,970,860	105	270	-70	120	
ACT371	AC	Tomorrow Sth	247,310	5,971,050	105	270	-70	150	
ACT372	AC	Tomorrow Sth	247,660	5,971,050	105	270	-70	107	
ACT373	AC	Tomorrow Sth	247,410	5,970,860	105	270	-70	141	
ACT374	AC	Tomorrow Sth	247,710	5,971,050	105	270	-70	130	
ACT375	AC	Tomorrow Sth	247,557	5,971,049	105	270	-70	114	
ACT376	AC	Lawry	247,760	5,971,050	105	270	-70	145	
ACT377	AC	Tomorrow Sth	247,612	5,971,050	105	270	-70	114	
ACT378	AC	Lawry	247,859	5,971,050	105	270	-70	87	
ACT379	AC	Tomorrow Sth	247,758	5,970,863	105	270	-70	150	
ACT380	AC	Tomorrow Sth	247,810	5,970,865	105	270	-70	150	
ACT381	AC	Lawry	247,868	5,970,870	105	270	-70	72	
ACT382	AC	Tomorrow Sth	247,970	5,970,869	105	270	-70	108	
ACT383	AC	Tomorrow Sth	247,360	5,970,859	105	270	-70	144	
ACT384	AC	Tomorrow North	245,701	5,980,237	105	0	-90	135	
ACT385	AC	Lawry	247,810	5,971,050	105	270	-70	123	

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH	Basement Comment
ACT386	AC	Tomorrow North	246,102	5,980,239	105	0	-90	93	Basement_Not_Hit
ACT387	AC	Tomorrow Sth	247,260	5,971,050	105	270	-70	127	
ACT388	AC	Tomorrow North	246,020	5,980,235	105	0	-90	156	
ACT389	AC	Tomorrow Sth	247,210	5,971,050	105	270	-70	97	
ACT390	AC	Tomorrow Sth	247,260	5,970,860	105	270	-70	112	
ACT391	AC	Tomorrow North	245,900	5,980,238	105	0	-90	150	
ACT392	AC	Tomorrow North	245,798	5,980,230	105	0	-90	144	
ACT393	AC	Tomorrow Sth	247,310	5,970,860	105	270	-70	115	
ACT394	AC	Tomorrow North	245,947	5,978,718	105	0	-90	153	
ACT395	AC	Tomorrow Sth	247,660	5,970,860	105	270	-70	27	Basement_Not_Hit
ACT396	AC	Tomorrow Sth	247,661	5,970,650	105	270	-70	117	
ACT397	AC	Tomorrow Sth	247,710	5,970,863	105	270	-70	66	Basement_Not_Hit
ACT398	AC	Tomorrow Sth	247,710	5,970,650	105	270	-70	120	
ACT399	AC	Tomorrow Sth	247,710	5,970,450	105	270	-70	108	Basement_Not_Hit
ACT400	AC	Tomorrow Sth	247,466	5,971,338	105	270	-70	143	
ACT401	AC	Tomorrow Sth	247,496	5,971,388	105	270	-70	150	
ACT402	AC	Tomorrow Sth	247,526	5,971,338	105	270	-70	127	
ACT403	AC	Tomorrow Sth	247,279	5,971,808	105	270	-70	132	
ACT404	AC	Tomorrow Sth	247,369	5,971,808	105	270	-70	117	
ACT405	AC	Tomorrow Sth	247,404	5,971,714	105	270	-70	105	
ACT406	AC	Tomorrow North	246,048	5,978,717	105	0	-90	129	
ACT407	AC	Tomorrow North	245,893	5,977,565	105	0	-90	102	
ACT408	AC	Tomorrow North	245,990	5,977,565	105	0	-90	99	
ACT409	AC	Tomorrow North	246,092	5,977,570	105	0	-90	144	
ACT410	AC	Tomorrow North	246,190	5,977,573	105	0	-90	114	
ACT411	AC	Tomorrow North	246,293	5,977,575	105	0	-90	126	
ACT412	AC	Tomorrow North	245,803	5,977,565	105	0	-90	108	
ACT413	AC	Tomorrow Sth	247,374	5,971,714	105	270	-70	105	

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH	Basement Comment
ACT414	AC	Tomorrow North	245,695	5,977,590	105	0	-90	123	
ACT415	AC	Tomorrow Sth	247,344	5,971,714	105	270	-70	96	
ACT416	AC	Tomorrow North	246,563	5,975,448	105	270	-70	120	
ACT417	AC	Tomorrow Sth	247,449	5,971,620	105	270	-70	72	Basement_Not_Hit
ACT418	AC	Tomorrow North	246,647	5,975,451	105	270	-70	111	
ACT419	AC	Tomorrow Sth	247,359	5,971,620	105	270	-70	124	
ACT420	AC	Tomorrow North	246,750	5,975,448	105	270	-70	114	
ACT421	AC	Tomorrow Sth	247,389	5,971,620	105	270	-70	148	
ACT422	AC	Tomorrow North	246,851	5,975,449	105	270	-70	105	
ACT423	AC	Tomorrow Sth	247,419	5,971,620	105	270	-70	135	
ACT424	AC	Tomorrow North	245,850	5,974,895	105	270	-70	108	
ACT425	AC	Tomorrow Sth	247,397	5,971,526	105	270	-70	135	
ACT426	AC	Tomorrow North	245,949	5,974,898	105	270	-70	126	
ACT427	AC	Tomorrow Sth	247,427	5,971,526	105	270	-70	138	
ACT428	AC	Tomorrow Sth	247,457	5,971,526	105	270	-70	129	
ACT429	AC	Tomorrow Sth	247,487	5,971,526	105	270	-70	150	
ACT430	AC	Tomorrow Sth	247,431	5,971,432	105	270	-70	92	
ACT431	AC	Tomorrow Sth	247,461	5,971,432	105	270	-70	111	
ACT432	AC	Tomorrow North	246,051	5,974,897	105	270	-70	96	Basement_Not_Hit
ACT433	AC	Tomorrow North	246,150	5,974,930	105	270	-70	118	
ACT434	AC	Tomorrow North	246,249	5,974,905	105	270	-70	117	
ACT435	AC	Tomorrow North	246,358	5,974,910	105	270	-70	93	
ACT436	AC	Tomorrow North	246,049	5,974,849	105	270	-70	69	Basement_Not_Hit
ACT437	AC	Tomorrow Sth	247,610	5,970,650	105	270	-70	123	
ACT438	AC	Tomorrow Sth	247,980	5,971,050	105	270	-70	108	
ACT439	AC	Tomorrow Sth	247,490	5,971,432	105	270	-70	138	
ACT440	AC	Tomorrow Sth	248,030	5,971,050	105	270	-70	108	
ACT441	AC	Tomorrow Sth	248,016	5,970,860	105	270	-70	105	
ACT442	AC	Tomorrow Sth	247,110	5,971,049	105	270	-70	72	Basement_Not_Hit

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH	Basement Comment
ACT443	AC	Tomorrow Sth	247,521	5,971,432	105	270	-70	121	
ACT444	AC	Tomorrow Sth	247,160	5,971,050	105	270	-70	123	
ACT445	AC	Tomorrow Sth	247,253	5,971,809	105	270	-70	108	
ACT446	AC	Tomorrow Sth	247,210	5,970,860	105	270	-70	119	
ACT447	AC	Tomorrow Sth	247,294	5,971,808	105	0	-90	54	
ACT448	AC	Tomorrow Sth	248,050	5,970,860	105	270	-70	69	Basement_Not_Hit
ACT449	AC	Tomorrow Sth	247,299	5,971,714	105	270	-70	124	
ACT450	AC	Tomorrow Sth	247,995	5,970,645	105	270	-70	116	
ACT451	AC	Tomorrow Sth	247,342	5,971,807	105	270	-70	139	
ACT452	AC	Tomorrow Sth	247,957	5,970,645	105	270	-70	66	Basement_Not_Hit
ACT453	AC	Tomorrow Sth	247,372	5,971,526	105	270	-70	96	
ACT454	AC	Tomorrow Sth	247,608	5,970,455	105	270	-70	131	
ACT455	AC	Tomorrow Sth	247,346	5,971,525	105	270	-70	125	
ACT456	AC	Tomorrow Sth	247,461	5,970,646	105	90	-70	120	
ACT457	AC	Tomorrow Sth	247,333	5,971,617	105	270	-70	138	
ACT458	AC	Tomorrow Sth	247,457	5,970,635	105	270	-70	126	
ACT459	AC	Tomorrow Sth	247,308	5,971,810	105	270	-70	126	
ACT460	AC	Tomorrow Sth	247,512	5,970,649	105	270	-70	125	
ACT461	AC	Tomorrow Sth	247,287	5,971,718	105	270	-70	141	
ACT462	AC	Tomorrow Sth	247,710	5,970,250	105	270	-70	93	Basement_Not_Hit
ACT463	AC	Macnaughtan Sth	247,050	5,971,330	105	270	-70	48	Basement_Not_Hit
ACT464	AC	Macnaughtan Sth	247,100	5,971,330	105	270	-70	120	
ACT465	AC	Macnaughtan Sth	247,150	5,971,330	105	270	-70	116	
ACT466	AC	Macnaughtan Sth	247,212	5,971,330	105	270	-70	135	
ACT467	AC	Macnaughtan Sth	247,250	5,971,330	105	270	-70	138	
ACT468	AC	Macnaughtan Sth	247,301	5,971,330	105	270	-70	120	
ACT469	AC	Macnaughtan Sth	247,350	5,971,330	105	270	-70	111	
ACT470	AC	Macnaughtan Sth	247,400	5,971,330	105	270	-70	129	
ACT471	AC	Macnaughtan Sth	247,300	5,971,530	105	270	-70	120	

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH	Basement Comment
ACT472	AC	Macnaughtan Sth	247,191	5,971,526	105	0	-90	129	
ACT473	AC	Macnaughtan Sth	247,150	5,971,530	105	270	-70	109	
ACT474	AC	Macnaughtan Sth	247,100	5,971,530	105	270	-70	96	
ACT475	AC	Macnaughtan Sth	247,050	5,971,530	105	270	-70	129	
ACT476	AC	Macnaughtan Sth	247,050	5,971,730	105	270	-70	72	
ACT477	AC	Macnaughtan Sth	246,900	5,971,900	105	270	-70	24	Basement_Not_Hit
ACT478	AC	Macnaughtan Sth	246,950	5,971,900	105	270	-70	24	Basement_Not_Hit
ACT479	AC	Macnaughtan Sth	247,000	5,971,900	105	270	-70	132	
ACT480	AC	Macnaughtan Sth	247,050	5,971,900	105	270	-70	106	
ACT481	AC	Macnaughtan Sth	247,100	5,971,900	105	270	-70	75	
ACT482	AC	Macnaughtan Sth	247,150	5,971,900	105	270	-70	120	
ACT483	AC	Macnaughtan Cent.	246,750	5,972,200	105	270	-70	40	Basement_Not_Hit
ACT484	AC	Macnaughtan Cent.	246,500	5,972,630	105	270	-70	120	
ACT485	AC	Macnaughtan Cent.	246,800	5,972,200	105	270	-70	40	Basement_Not_Hit
ACT486	AC	Macnaughtan Cent.	246,550	5,972,630	105	270	-70	144	
ACT487	AC	Macnaughtan Cent.	246,850	5,972,200	105	270	-70	50	Basement_Not_Hit
ACT488	AC	Macnaughtan Cent.	246,650	5,972,630	105	270	-70	115	
ACT489	AC	Macnaughtan Cent.	246,950	5,972,200	105	270	-70	130	
ACT490	AC	Macnaughtan Cent.	246,700	5,972,630	105	270	-70	120	
ACT491	AC	Macnaughtan Cent.	247,000	5,972,200	105	270	-70	100	
ACT492	AC	Macnaughtan Cent.	246,750	5,972,630	105	270	-70	120	
ACT493	AC	Macnaughtan Cent.	247,050	5,972,200	105	270	-70	50	
ACT494	AC	Macnaughtan Cent.	246,800	5,972,630	105	270	-70	114	
ACT495	AC	Macnaughtan Cent.	247,075	5,972,200	105	270	-70	130	
ACT496	AC	Macnaughtan Cent.	246,850	5,972,630	105	270	-70	120	
ACT497	AC	Macnaughtan Cent.	246,900	5,972,200	105	270	-70	115	
ACT498	AC	Lawry	247,475	5,971,620	105	270	-70	120	
ACT499	AC	Macnaughtan Cent.	246,775	5,972,200	105	270	-70	65	
ACT500	AC	Lawry	247,525	5,971,620	105	270	-70	69	Basement_Not_Hit

HoleID	Drill Type	Prospect	East MGA	North MGA	Elev AHD m	Azim Grid	Dip	Depth EOH	Basement Comment
ACT501	AC	Macnaughtan Cent.	246,825	5,972,200	105	270	-70	115	
ACT502	AC	Lawry	247,394	5,971,800	105	270	-70	54	Basement_Not_Hit
ACT503	AC	Macnaughtan Sth	249,250	5,971,530	105	270	-70	58	Basement_Not_Hit
ACT504	AC	Lawry	247,538	5,971,800	105	270	-70	144	
ACT505	AC	Lawry	247,615	5,971,330	105	270	-70	30	Basement_Not_Hit
ACT506	AC	Lawry	247,494	5,971,800	105	270	-70	21	Basement_Not_Hit
ACT507	AC	Lawry	247,420	5,971,800	105	270	-70	33	Basement_Not_Hit
ACT508	AC	Lawry	247,444	5,971,800	105	270	-70	30	Basement_Not_Hit
ACT509	AC	Lawry	247,700	5,971,790	105	270	-70	119	
ACT510	AC	Macnaughtan Sth	247,025	5,971,330	105	0	-90	144	
ACT511	AC	Lawry	247,750	5,971,790	105	270	-70	20	Basement_Not_Hit
ACT512	AC	Macnaughtan Sth	246,925	5,971,900	105	0	-90	79	
ACT513	AC	Lawry	247,750	5,971,620	105	0	-90	122	
ACT514	AC	Macnaughtan Sth	246,725	5,972,200	105	0	-90	12	Basement_Not_Hit
ACT515	AC	Lawry	247,700	5,971,620	105	0	-90	28	Basement_Not_Hit
ACT516	AC	Macnaughtan Sth	246,740	5,972,200	105	0	-90	120	
ACT517	AC	Lawry	247,725	5,971,620	105	0	-90	36	Basement_Not_Hit
ACT518	AC	Lawry	247,620	5,971,330	105	0	-90	144	
ACT519	AC	Lawry	247,722	5,971,722	105	0	-90	69	Basement_Not_Hit
ACT520	AC	Lawry	247,670	5,971,330	105	0	-90	24	Basement_Not_Hit
ACT521	AC	Lawry	247,715	5,971,430	105	0	-90	15	Basement_Not_Hit
ACT522	AC	Lawry	247,715	5,971,330	105	0	-90	82	Basement_Not_Hit
ACT523	AC	Lawry	247,665	5,971,430	105	0	-90	140	
ACT524	AC	Lawry	247,765	5,971,330	105	0	-90	98	
ACT525	AC	Lawry	247,615	5,971,430	105	0	-90	105	
ACT526	AC	Lawry	247,815	5,971,330	105	0	-90	120	
ACT527	AC	Lawry	247,765	5,971,430	105	0	-90	144	
ACT528	AC	Lawry	247,865	5,971,330	105	0	-90	120	
ACT529	AC	Lawry	247,815	5,971,430	105	0	-90	144	
ACT530	AC	Lawry	247,865	5,971,430	105	0	-90	30	Basement_Not_Hit
ACT531	AC	Lawry	247,840	5,971,430	105	0	-90	63	Basement_Not_Hit
ACT532	AC	Lawry	247,690	5,971,430	105	0	-90	137	
ACT533	AC	Lawry	247,605	5,971,620	105	0	-90	123	
ACT534	AC	Lawry	247,650	5,971,620	105	0	-90	123	
ACT535	AC	Lawry	247,650	5,971,800	105	0	-90	120	

Table 2b: Aircore Drill Hole Assay results

Significant intersections reported above 0.5 g/t average grade. Holes with no significant intersection are reported with maximum down hole assay.

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
ACT357	68	69	1	0.58	Tomorrow Sth
ACT357	69	70	1	2.02	Tomorrow Sth
ACT358	39	42	3	0.01	Tomorrow Sth
ACT359	45	48	3	0.01	Tomorrow Sth
ACT360	48	51	3	-	Tomorrow Sth
ACT361	51	54	3	0.01	Tomorrow Sth
ACT362	54	57	3	0.01	Tomorrow Sth
ACT363	57	60	3	- 0.00	Tomorrow Sth
ACT364	60	63	3	0.03	Tomorrow Sth
ACT365	63	66	3	0.01	Tomorrow Sth
ACT366	66	69	3	0.03	Tomorrow Sth
ACT367	69	72	3	0.01	Tomorrow Sth
ACT368	72	75	3	- 0.00	Tomorrow Sth
ACT369	75	78	3	0.02	Tomorrow Sth
ACT370	78	81	3	0.01	Tomorrow Sth
ACT371	81	84	3	0.02	Tomorrow Sth
ACT372	84	87	3	0.01	Tomorrow Sth
ACT373	67	68	1	0.56	Tomorrow Sth
ACT373	69	70	1	0.66	Tomorrow Sth
ACT373	70	71	1	2.54	Tomorrow Sth
ACT373	88	89	1	0.78	Tomorrow Sth
ACT373	99	100	1	1.75	Tomorrow Sth
ACT373	125	126	1	1.51	Tomorrow Sth
ACT373	126	127	1	5.11	Tomorrow Sth
ACT373	133	134	1	2.24	Tomorrow Sth
ACT373	134	135	1	0.60	Tomorrow Sth
ACT374	120	123	3	0.01	Tomorrow Sth
ACT375	54	57	3	0.01	Tomorrow Sth
ACT376	91	93	2	1.84	Lawry
ACT377	63	66	3	0.01	Tomorrow Sth
ACT378	56	87	31	1.40	Lawry
ACT378 incl	65	66	1	9.40	Lawry
ACT378 incl	86	87	1	10.45	Lawry
ACT379	84	87	3	0.26	Tomorrow Sth
ACT380	69	70	1	0.18	Tomorrow Sth
ACT381	71	72	1	1.48	Lawry
ACT382	63	66	3	0.03	Tomorrow Sth
ACT383	143	144	1	1.18	Tomorrow Sth

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
ACT384	99	102	3	0.24	Tomorrow North
ACT385	69	73	4	0.62	Lawry
ACT386	44	45	1	NS	Tomorrow North
ACT387	57	58	1	0.02	Tomorrow Sth
ACT388	134	135	1	0.11	Tomorrow North
ACT389	93	96	3	0.88	Tomorrow Sth
ACT390	108	111	3	0.07	Tomorrow Sth
ACT391	141	142	1	0.01	Tomorrow North
ACT392	141	144	3	0.05	Tomorrow North
ACT393	67	68	1	0.03	Tomorrow Sth
ACT394	138	141	3	0.00	Tomorrow North
ACT395	141	144	3	-	Tomorrow Sth
ACT396	144	147	3	0.03	Tomorrow Sth
ACT397	147	150	3	-	Tomorrow Sth
ACT398	150	153	3	0.02	Tomorrow Sth
ACT399	51	54	3	-	Tomorrow Sth
ACT400	54	57	3	0.02	Tomorrow Sth
ACT401	57	60	3	0.04	Tomorrow Sth
ACT402	60	63	3	0.07	Tomorrow Sth
ACT403	45	46	1	2.51	Tomorrow Sth
ACT403	77	78	1	0.78	Tomorrow Sth
ACT404	63	66	3	0.01	Tomorrow Sth
ACT405	66	69	3	0.25	Tomorrow Sth
ACT406	69	72	3	0.18	Tomorrow North
ACT407	72	75	3	0.00	Tomorrow North
ACT408	58	59	1	0.94	Tomorrow North
ACT408	61	62	1	0.82	Tomorrow North
ACT408	64	65	1	0.58	Tomorrow North
ACT409	138	141	3	0.02	Tomorrow North
ACT410	45	48	3	0.00	Tomorrow North
ACT411	75	78	3	0.01	Tomorrow North
ACT412	99	102	3	0.09	Tomorrow North
ACT413	69	72	3	0.05	Tomorrow Sth
ACT414	95	96	1	0.02	Tomorrow North
ACT415	56	57	1	1.27	Tomorrow Sth
ACT415	66	68	2	0.59	Tomorrow North
ACT416	84	87	3	0.02	Tomorrow Sth
ACT417					Tomorrow North
ACT418	59	60	1	0.00	Tomorrow Sth

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
ACT419	83	84	1	0.44	Tomorrow North
ACT420	99	102	3	0.03	Tomorrow Sth
ACT421	123	124	1	0.07	Tomorrow North
ACT422	71	72	1	0.03	Tomorrow Sth
ACT423	83	84	1	0.06	Tomorrow North
ACT424	77	78	1	0.07	Tomorrow Sth
ACT425	73	74	1	0.18	Tomorrow North
ACT426	90	93	3	0.08	Tomorrow Sth
ACT427	69	72	3	0.12	Tomorrow Sth
ACT428	75	78	3	0.08	Tomorrow Sth
ACT429	92	93	1	0.11	Tomorrow Sth
ACT430	66	69	3	0.09	Tomorrow Sth
ACT431	54	57	3	0.02	Tomorrow Sth
ACT432			0	NS	Tomorrow North
ACT433	117	118	1	0.02	Tomorrow North
ACT434	69	72	3	0.01	Tomorrow North
ACT435	57	60	3	0.00	Tomorrow North
ACT436			0	NS	Tomorrow North
ACT437	48	51	3	0.01	Tomorrow Sth
ACT438	72	75	3	0.03	Tomorrow Sth
ACT439	54	57	3	0.06	Tomorrow Sth
ACT440	63	66	3	0.02	Tomorrow Sth
ACT441	66	69	3	0.02	Tomorrow Sth
ACT442				NS	Tomorrow Sth
ACT443	63	66	3	0.02	Tomorrow Sth
ACT444	102	103	1	0.13	Tomorrow Sth
ACT445	63	66	3	0.04	Tomorrow Sth
ACT446	106	108	2	2.06	Tomorrow Sth
ACT447	51	54	3	0.01	Tomorrow Sth
ACT448			0	NS	Tomorrow Sth
ACT449	51	52	1	1.47	Tomorrow Sth
ACT450	96	99	3	0.13	Tomorrow Sth
ACT451	54	57	3	0.04	Tomorrow Sth
ACT452			0	NS	Tomorrow Sth
ACT453	72	75	3	0.09	Tomorrow Sth
ACT454	96	99	3	0.01	Tomorrow Sth
ACT455	99	102	3	0.16	Tomorrow Sth

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
ACT456	84	87	3	0.07	Tomorrow Sth
ACT457	76	77	1	1.33	Tomorrow Sth
ACT458	79	80	1	0.60	Tomorrow Sth
ACT459	63	66	3	0.05	Tomorrow Sth
ACT460	93	96	3	0.05	Tomorrow Sth
ACT461	62	63	1	2.13	Tomorrow Sth
ACT461	74	75	1	0.86	Tomorrow Sth
ACT461	79	80	1	0.63	Tomorrow Sth
ACT461	86	87	1	2.02	Tomorrow Sth
ACT462				NS	Tomorrow Sth
ACT463				NS	Macnaughtan Sth
ACT464	54	55	1	0.81	Macnaughtan Sth
ACT464	78	91	13	7.75	Macnaughtan Sth
ACT464 incl	79	81	2	44.80	Macnaughtan Sth
ACT464	100	101	1	0.66	Macnaughtan Sth
ACT465	90	92	2	0.62	Macnaughtan Sth
ACT466	108	111	3	0.06	Macnaughtan Sth
ACT467	51	52	1	1.10	Macnaughtan Sth
ACT468	57	60	3	0.04	Macnaughtan Sth
ACT469	47	48	1	0.50	Macnaughtan Sth
ACT469	61	62	1	3.26	Macnaughtan Sth
ACT470	108	111	3	0.08	Macnaughtan Sth
ACT471	87	90	3	0.00	Macnaughtan Sth
ACT472	120	123	3	0.13	Macnaughtan Sth
ACT473	108	109	1	2.99	Macnaughtan Sth
ACT474	94	95	1	0.61	Macnaughtan Sth
ACT475	90	91	1	0.14	Macnaughtan Sth
ACT476	59	60	1	0.84	Macnaughtan Sth
ACT476	68	69	1	1.09	Macnaughtan Sth
ACT476	71	72	1	0.62	Macnaughtan Sth
ACT477				NS	Macnaughtan Sth
ACT478				NS	Macnaughtan Sth
ACT479	66	69	3	0.06	Macnaughtan Sth
ACT480	33	36	3	0.04	Macnaughtan Sth
ACT481	67	72	5	0.74	Macnaughtan Sth
ACT482	46	47	1		Macnaughtan Sth
ACT483	24	27	3	0.00	Macnaughtan Central
ACT484	60	63	3		Macnaughtan Central
ACT485	24	27	3	0.00	Macnaughtan Central

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
ACT486	123	126	3	0.06	Macnaughtan Central
ACT487	49	50	1	0.01	Macnaughtan Central
ACT488	66	69	3	0.03	Macnaughtan Central
ACT489	30	33	3	0.01	Macnaughtan Central
ACT490	64	65	1	0.23	Macnaughtan Central
ACT491	57	60	3	0.02	Macnaughtan Central
ACT492	72	75	3	0.05	Macnaughtan Central
ACT493	45	46	1	1.03	Macnaughtan Central
ACT493	49	50	1	1.05	Macnaughtan Central
ACT494	63	66	3	0.01	Macnaughtan Central
ACT495	122	123	1	1.21	Macnaughtan Central
ACT496	54	57	3	0.02	Macnaughtan Central
ACT497	54	57	3	0.03	Macnaughtan Central
ACT498	113	114	1	0.23	Lawry
ACT499	64	65		0.06	Macnaughtan Central
ACT500			0	NS	Lawry
ACT501	90	91	1	0.37	Macnaughtan Central
ACT502			0	NS	Lawry
ACT503			0	NS	Macnaughtan South
ACT504	123	126	3	0.01	Lawry
ACT505			0	NS	Lawry
ACT506			0	NS	Lawry
ACT507			0		Lawry
ACT508			0	NS	Lawry
ACT509	99	102	3	0.04	Lawry
ACT510	57	60	3	0.01	Macnaughtan South
ACT511			0	NS	Lawry
ACT512	57	60	3	0.04	Macnaughtan South
ACT513	42	45	3	0.01	Lawry
ACT514	111	114	3	0.00	Macnaughtan South
ACT515	114	117	3	0.00	Lawry
ACT516	69	72	3	1.42	Macnaughtan South
ACT517	117	120	3	0.00	Lawry
ACT518	72	75	3	0.02	Lawry
ACT519			0		Lawry
ACT520			0		Lawry
ACT521			0		Lawry
ACT522			0		Lawry
ACT523	87	90	3	0.03	Lawry

HoleID	DepthFrom	DepthTo	Interval	Au_ppm	Prospect
ACT524	84	87	3	0.02	Lawry
ACT525			0	NS	Lawry
ACT526	57	60	3	0.00	Lawry
ACT527	81	84	3	0.04	Lawry
ACT528	51	54	3	0.01	Lawry
ACT529	81	84	3	0.01	Lawry
ACT530			0	NS	Lawry
ACT531			0	NS	Lawry
ACT532	84	87	3	0.01	Lawry
ACT533	72	75	3	0.01	Lawry
ACT534	63	66	3	0.03	Lawry
ACT535	63	66	3	0.06	Lawry

JORC 2012 Edition, Table 1 Checklist: Aircore Drilling

Aircore Sampling	
Techniques and Data	
Criteria	Explanation
Sampling techniques	 Samples collected at cyclone at one-metre intervals Sampling commences in Murray Basin cover sequence nominally from 6m above basement in individual numbered polyweave cyclone bags at 1m intervals. Chip trays collected by hand from cyclone and bags at 1m intervals for full length of hole (uncomposited) Assay laboratory samples collected by hand from cyclone bags into calico sample bags to a mass of <3kg (composited to three-metre intervals corresponding with drill rods). 1 kg subsamples taken at 1m intervals in plastic bags from 0-6m and then from beginning of laboratory sampling to end of hole for inhouse Niton XRF analysis Cover sequence is understood to potentially contain alluvial gold immediately above the basement, and thus such cover samples are submitted for assay.
Drilling techniques	 Three-inch diameter AC blade drill bit; three-metre RC drill rods; truck-mounted drill rig; 300psi 700cfm compressor and 350psi 1000cfm auxiliary compressor All holes are uncased Penetration into basement to depth of bit refusal against quartz or fresh rock.
Drill sample recovery	 AC drilling provides a high variability in sample recovery, due to low pressures of equipment and common groundwater effects. Sample water content assessed by rig geologist as being dry/moist/wet Calico bag masses recorded by commercial laboratory Geological control is maintained at the drill site at all times, to ensure drilling and sampling standards maintained.
Logging	 Chip samples are geologically logged at 1m intervals for lithology, alteration, quartz veining and to a standard acceptable for subsequent interpretation for use in estimation. Logging aspects are qualitative with exception of quartz vein content which is estimated semi-quantitatively All logged intervals represent entire one-metre sample segregation intervals

Aircore Sampling	
Techniques and Data	
Criteria	Explanation
Sub-sampling techniques and sample preparation	 Three metre samples selected (composited) by hand-grab at drill site when materials were dry, moist, or wet. Samples dispatched to commercial laboratory (Catalyst have used ALS Pty Ltd exclusively); samples dried and pulverised in entirety, with 25g aliquot split for analysis (laboratory repeat splits historically demonstrate acceptable reproducibility and hence accuracy for this mineralisation) A Certified Reference Material (low-level gold standard) from OREAS is inserted in the sample series for each drillhole, resulting in a CRM density of >1:20. In addition to laboratory assays, 1-metre grab samples are collected in plastic snap-lock bags from 0-6m downhole, and from nominally 6m above the basement contact to the end of the hole and assayed inhouse using a portable Niton XRF analyser. Arsenic in particular is used as a pathfinder to guide ongoing exploration.
Quality of assay data and laboratory tests	 Gold assay determined by ICPMS via aqua regia digestion, 25gm sample with a 1ppb lower limit of detection (ALS code Au-TL43). Experience has shown this method to be applicable for fine grained gold mineralisation due to near-complete digestion. There is a technical constraint in that coarse-grained gold may not completely enter solution resulting in conservative assay. Where the 3m composite samples are anomalous in Au and/or As, 1-metre resamples are taken from the bulk cyclone bags and resubmitted to ALS for Au by method AuTL-43 as above. If the 1m resamples show high variance for gold against the 3m composites, selected 1m lab pulps are re-assayed by bulk cyanide leach to minimise any nugget effect.
Verification of sampling and assaying	 Data management is done in-house and has been performed by an experienced individual and not by several individuals. Apart from ICPMS and BLEG resampling of 3m composite samples to 1m, there has been no verification of significant intersections by independent or alternative company personnel or alternative laboratories. There has been no drillhole twinning to verify results. Drillhole sampling and geological data are logged onto paper in preparation for database data entry. There have been no adjustments to data as provided by the commercial assay laboratory.
Location of data points Data spacing and distribution	 Drillhole collars are surveyed by 12-channel GPS to MGA94 Zone 55 and AHD estimated from terrain model created from publicly available land survey data Collar locations to within an estimated precision of 5m at worst. No drillholes were downhole surveyed, as such holes are assumed to be angled at the specified dip and azimuth Air core drilling was completed within open farmland providing first-
	pass traverses generally 200m apart with hole spacings at 50 metre centres on the traverse. Infill lines in areas of interest are generally at 100m x 25-50m centres. One-metre cyclone samples were composited to three-metre sub samples for the purpose of submission to the laboratory. For the purpose of reporting, assays have been aggregated at selected lower cut-offs to reflect continuously sampled zones of significant anomalism for gold.

Aircore Sampling Techniques and Data	
•	- Frankrica
Criteria Orientation of data in relation to geological structure	AC drillhole traverses are grid east-west. The lithology and regional antiforms and fault structures strike approx. 330 degrees, hence the drilling intersects the assumed strike of the mineralisation about 30 degrees from orthogonal. Holes are angled -70 degrees to the west to achieve penetration across the prospective eastern limbs and fold axes of the anticlines. In areas with wet cover sediments and difficult drilling conditions, some holes are drilled vertical to give a better chance of reaching basement.
Sample security	 All samples are controlled by the responsible geologist and stored in a secured facility prior to despatch to laboratory. Samples are plastic wrapped on pallets and transported directly to laboratory by a commercial transportation contractor with chain-of-custody protocols in place. Sample number receipt information from laboratory is cross-referenced and rationalised against sample number dispatch information.
Audits or reviews	 No processes or data used in developing the release of exploration results have been subject to audit or review by non-company personnel or contractors so as to reduce costs and timelines for reporting. Catalyst Metals Limited currently reserves this process for release of Mineral Resource and Ore Reserve estimates.

Reporting of Exploration	
Results Criteria	Explanation
Mineral tenement and land tenure status	The Tandarra gold prospect is located within RL6660 (51% Catalyst Metals Ltd and 49% Navarre Minerals Ltd situated 45 km north of Bendigo (Figure 1).
Exploration done by other parties	Minor first-pass exploration drilling has been carried out by JV partner Navarre Minerals prior to the Catalyst JV. This data is incorporated into the JV database.
Geology	The targets are hosted by NNW-striking Ordovician sediments considered to be northern extensions of the Bendigo goldfield. The gold mineralisation discovered below the cover in RL006660 at Tomorrow and Macnaughtan Zones (Figures 2 and 3), occur in a structural zone of folds and faults which parallel the Whitelaw Fault (Figure 2). The features tested are extensions of known Au-As mineralised trends defined by earlier exploration drilling.
Drill hole Information	Appendix 2 Table 2a: Collar location coordinates, downhole depths, azimuths, declinations. Appendix 2, Tables 2b: Downhole intervals of significant gold grades.
Data aggregation methods	 AC drill hole samples are composited to three metres in the first instance. Subsequent resampling of anomalous composites is performed on a onemetre sample interval basis. No top-cutting applied to assay data. Significant intersections in first-pass exploration are reported as those with assays in excess of 0.2g/t Au (with internal dilution of two consecutive assays or less). Infill or higher-grade intercepts are reported at a lower cut-off of 0.5g/t including 2m of internal waste. Reported zones are continuous, with no sample or assay gaps. Holes without zones of significance are tabulated detailing the greatest assay value achieved.
Relationship between mineralisation widths and intercept lengths	 The dip of mineralisation is expected to be both east-dipping and west-dipping as was the case in the Bendigo Goldfield and elsewhere at Tandarra. The dip of mineralisation has not been definitively proven, and the true width of mineralisation has not been resolved. As such, significant mineralised intersections have been reported as downhole intervals.
Diagrams	 Figure 1 shows the position of the Tandarra Project. Figures 4 and 5 show the locations of the drilling programs and main intersections
Balanced reporting	All drilling inclusive of holes which did not contain significant intersections are included in Tables 2a &2b
Other substantive exploration data	No other exploration results that have not previously been reported, are material to this report.
Further work	Further drilling is warranted to infill and extend the delineated gold zones where open along strike at Macnaughtan and Lawry trends by air core and reverse circulation drilling methods.