

HIGHLIGHTS

320m @ 1.5g/t gold drilled from surface at **Tesorito**

- Drillhole TS-DH14 records higher grade intercepts within a 320m zone of porphyry style mineralisation grading 1.5g/t¹ Au from just 2m below surface:
 - 102m @ 2.11 g/t Au from 28m
 - 30m @ 2.47g/t Au and 0.12% Cu from 262m within 60m @ 1.75g/t Au and 0.12% Cu from 250m.
- The 480 gram-metre gold intersection² starting from only 2m below surface is Los Cerros' best porphyry intersection and comparable to the strongest gold porphyry intercepts in the Mid-Cauca gold belt which hosts several multi-million-ounce gold and gold-copper deposits.
- Hole TS-DH14 dramatically increases grade and expands the Tesorito South higher-grade envelope closer to surface and at depth.
- Gold mineralisation remains open to the west and at depth below 300m.
- Holes TS-DH12 and TS-DH13 reinforces Tesorito North porphyry potential with TS-DH13 intersecting 238m @ 0.48g/t Au including:
 - 38m @ 0.70g/t Au from 44m, incl 10m @ 1.14g/t Au from 44m
 - 16m @ 1.23g/t Au from 114m, and
 - 30m @ 0.69g/t Au from 208m
- Two diamond rigs currently drilling at Tesorito South porphyry, third diamond rig drilling at the large Chuscal gold target, located 2km south of Tesorito.

Los Cerros Limited (ASX: LCL) (Los Cerros or the Company) is extremely pleased to advise that drilling at the Tesorito South porphyry target, part of the 100% owned Quinchia Project in Colombia, continues to deliver spectacular results, with the latest hole (TS-DH14) returning the strongest porphyry gold intercept ever recorded by Los Cerros.

Drill hole TS-DH14 intercepted **320m @ 1.5g/t Au starting from 2m** including:

- 102m @ 2.11g/t Au from 28m, and
- 30m @ 2.47g/t Au and 0.12% Cu from 262m within 60m @ 1.75g/t Au and 0.12% Cu

The hole intersected mineralised andesites, diorites and magmatic breccias below a thin layer of weathered saprolite and was terminated at 483.05m remaining in the broader porphyry intrusive complex for the entire hole.

There are a number of positive take-aways from hole TS-DH14 to focus on:

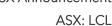
¹ Uncut and includes a 12m internal dilution zone grading 0.26g/ Au and 8m zone grading 0.30g/t Au. All widths quoted are intercept widths, not true widths, as there is insufficient information at this stage of exploration to know the geometries within the system.

² 320m @ 1.5g/t from 2m below surface expressed in gram-meters

- 1. The result suggests that the higher-grade zone has expanded vertically, extending to within 2m of the surface and at depth. This bodes well for driving strong mining economics in the early years of a potential development of Tesorito South given higher grades at surface.
- 2. The grade of +2.0 g/t Au over an interval of more than 100m is a significant uplift in grade compared to previous results, which significantly raises the potential grade of the higher grade zone itself. The intersections of 102m @ 2.11g/t Au and 30m @ 2.47g/t Au are the highest porphyry style grades recorded at Tesorito to date.
- 3. The intercepted zone of elevated copper 60m @ 1.75g/t Au and 0.12% Cu from 250m is interpreted to be related to the deeper elevated copper zone encountered in TS-DH02 (35m @ 0.19% Cu from 365.5m³) raising the possibility of further copper mineralisation at depth.
- 4. The wide higher grade gold intercepts are comparable to some of the best gold porphyry style intercepts of the entire prolific Mid Cauca Porphyry belt.

Los Cerros Managing Director, Jason Stirbinskis added;

"Once again, our Tesorito South prospect has continued to shine, demonstrating remarkably wide and high-grade gold over a zone of 320m, and most importantly, this starts from only 2m below surface - making this a truly spectacular porphyry gold intercept, and upgrading the potential of Tesorito.


TS-DH14 is a step in from drillhole TS-DH02 along a drill fence that includes TS-DH11. The hole also cuts roughly perpendicular to TS-DH07 and TS-DH08. All of these holes generated 230+m (downhole) mineralised intercepts from near surface with zones of higher grade within them.

Even with these strong surrounding intercepts, TS-DH14 has exceeded our expectations in terms of grade and width to deliver the highest porphyry style gold grades at Tesorito to date and is a great start to infill drilling of the southern porphyry".

Previously announced drill results from Tesorito South porphyry include³

- **384m @ 1.01g/t Au from 16m including 29.3m @ 1.9g/t Au from 136.75m** in TS-DH02
- **253.1m @ 1.01g/t Au from 2.9m including 64m @ 1.67g/t Au from 144m** in TS-DH07
- **230m @ 1.0g/t Au from surface including 74m @ 1.6g/t Au from 114m** in TS-DH08
- 262m @ 0.84g/t Au from surface including 32m @ 1.7g/t Au from 144m within 66m at
 1.3g/t Au from 132m in TS-DH11

³ See ASX announcements of 31 July 2018 and 30 August 2018 for the initial reporting of the assays for drill holes TS-DH01 to TS-DH07. See announcement 10 September 2020 for TS-DH08 assays and announcement 10 November 2020 for TS-DH11 assays. The Company confirms that it is not aware of any new information that affects the information contained in the announcements.

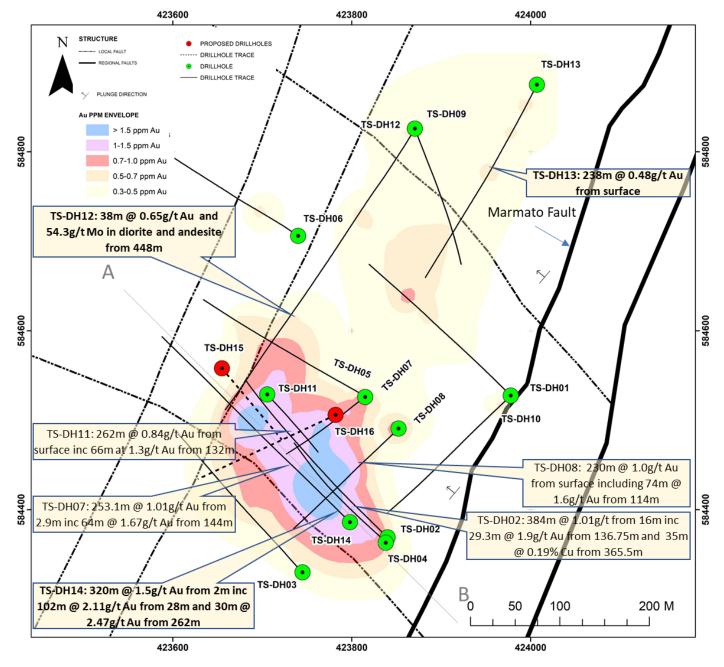
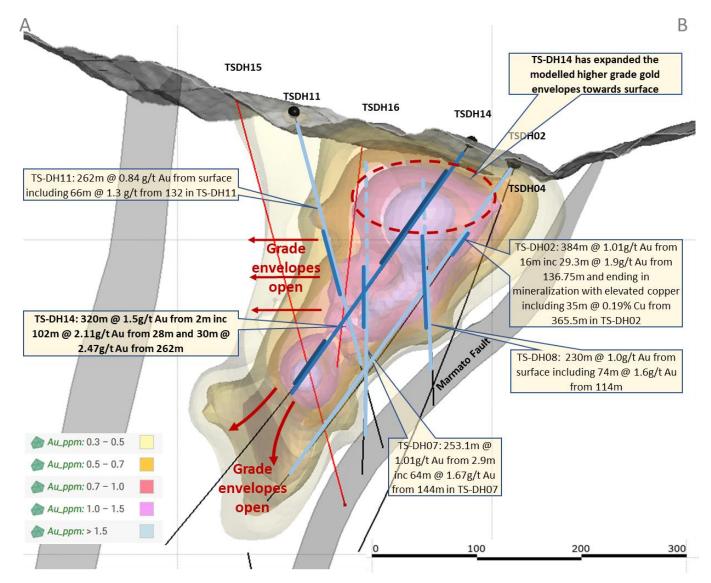



Figure 1: Plan view of Tesorito showing drill intercepts of interest over the modelled gold envelope. Results in bold are new results, others have been previously announced.3

Figure 2: Cross section A-B projection of Tesorito South porphyry. TS-DH14 is 50m further west and runs roughly parallel to TS-DH02, infilling the region of higher grade encountered in surrounding holes. Note: Whilst the image suggests grade envelopes close out to the west and depth, this is a constraint of the modelling software. Mineralisation, including higher grade zones, remain open to the west and depth.

Next Steps at Tesorito South

Holes TS-DH15 and TS-DH16 are currently being drilled at the Tesorito South porphyry. TS-DH15 will test for western extensions of the higher grade zone (which is shown as dark blue on the drill traces in Figure 2) and also test the dip of the mineralisation in relation to the adjacent Marmato Fault and associated basalts. TS-DH16 will further define the high grade zone and test for southern depth extensions.

Tesorito North Prospect Update

Completed holes TS-DH12 and TS-DH13 were designed to further explore the recently discovered Tesorito North porphyry target. TS-DH12 intercepted a 59.95m zone of elevated porphyry associated

gold grading 0.51g/t and 52.5ppm molybdenum within diorite and associated magmatic breccia from 180.5m, believed to be the source of the magnetic high that TS-DH12 was designed to test.

Interestingly, TS-DH12 also intercepted a deeper 38m zone of elevated gold grading 0.65g/t and 54.3ppm molybdenum in diorite and andesite from 448m. It remains unclear if this mineralisation is attributable to the down plunge extension of the Tesorito South porphyry or a separate northern porphyry pulse (Figure 1).

TS-DH13 recorded an encouraging intercept of 238m grading 0.48g/t gold from surface under a gold/molybdenum surface anomaly east of the above-mentioned magnetic high including:

- 24m @ 0.5g/t Au from surface believed to be attributable to epithermal veining
- 38m @ 0.70g/t Au from 44m inc 10m @ 1.14g/t Au from 44m
- 16m @ 1.23g/t Au from 114m, and
- 30m @ 0.69g/t Au from 208m.

With the exception of the surface intercept, other TS-DH13 intercepts of note occur with elevated copper and molybdenum suggesting a porphyry source of the mineralisation which, in conjunction with previously announced results from TS-DH09 (360m @ 0.39g/t Au from surface⁴) further west, continue to suggest proximity to a higher grade porphyry source within the immediate Tesorito North area.

Mr Stirbinskis added:

"TS-DH12 is the deepest hole drilled at Tesorito, straddling the northern magnetic high and entering the southern porphyry complex at depth and remained in the broader porphyry complex of altered andesites, diorites and breccias for the entire 671m. TS-DH13 remained within the porphyry complex before penetrating the interpreted Marmato Fault and entering basalt country rock at 460m. The abovementioned intercepts reported in TS-DH13, when combined with the results of TS-DH09 and supporting surface work, provides further encouragement for follow up drilling. The Company's current focus is on the Tesorito South target for a series of extension and infill drill holes before returning to further develop the Tesorito North target".

Chuscal Prospect Update

Drilling has resumed at Chuscal hole CHDDH010, which began prior to the Christmas break⁵. Chuscal is a prospect within the cluster of targets that define the Quinchia Project and is located 2kms south of Tesorito. The Company notes that complete laboratory assay turnaround time is currently at 6-8 weeks which will continue to impact on the timing of drill result announcements to the market.

For the purpose of ASX Listing Rule 15.5, the Board has authorised this announcement to be released.

For further enquiries contact:

Jason Stirbinskis

Managing Director Los Cerros Limited 12/11 Ventnor Avenue WEST PERTH WA 6005

⁴ See announcement 9 October 2020. The Company confirms that it is not aware of any new information that affects the information contained in the announcements.

⁵ See announcement 22 December 2020 for further detail.

jason@loscerros.com.au

FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning Los Cerros. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on Los Cerros' beliefs, opinions and estimates of Los Cerros as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

JORC STATEMENTS - COMPETENT PERSONS STATEMENTS

The technical information related to Los Cerros assets contained in this report that relates to Exploration Results (excluding those pertaining to Mineral Resources and Reserves) is based on information compiled by Mr Cesar Garcia, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by Los Cerros on a full-time basis. Mr Garcia has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Garcia consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

The information presented here that relates to Mineral Resources of the Dosquebradas Project, Quinchia District, Republic of Colombia is based on and fairly represents information and supporting documentation compiled by Mr. Scott E. Wilson of Resource Development Associates Inc, of Highlands Ranch Colorado, USA. Mr Wilson takes overall responsibility for the Resource Estimate. Mr. Wilson is Member of the American Institute of Professionals Geologists, a "Recognised Professional Organisation" as defined by the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Wilson is not an employee or related party of the Company. Mr. Wilson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. Mr. Wilson consents to the inclusion in the news release of the information in the form and context in which it appears

The Company is not aware of any new information or data that materially affects the information included in this release.

TABLE 2 - MIRAFLORES PROJECT RESOURCES AND RESERVES

The Miraflores Project Mineral Resource estimate has been estimated by Metal Mining Consultants in accordance with the JORC Code (2012 Edition) and first publicly reported on 14 March 2017. No material changes have occurred after the reporting of these resource estimates since their first reporting.

Miraflores Mineral Resource Estimate, as at 14 March 2017 (100% basis)

Resource Classification	Tonnes (000t)	Au (g/t)	Ag (g/t)	Contained Metal (Koz Au)	Contained Metal (Koz Ag)
Measured	2,958	2.98	2.49	283	237
Indicated	6,311	2.74	2.90	557	588
Measured & Indicated	9,269	2.82	2.77	840	826
Inferred	487	2.36	3.64	37	57

Notes:

- i) Reported at a 1.2 g/t gold cut-off.
- ii) Mineral Resource estimated by Metal Mining Consultants Inc.
- iii) First publicly released on 14 March 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Mineral Resource estimation.
- iv) These Mineral Resources are inclusive of the Mineral Reserves listed below.
- **<u>v</u>**) Rounding may result in minor discrepancies.

Miraflores Mineral Reserve Estimate, as at 27 November 2017 (100% basis)

The Miraflores Project Ore Reserve estimate has been estimated by Ausenco in accordance with the JORC Code (2012 Edition) and first publicly reported on 18 October 2017 and updated on 27 November 2017. No material changes have occurred after the reporting of these reserve estimates since their reporting in November 2017.

Reserve Classification	Tonnes (Mt)	Au (g/t)	Ag (g/t)	Contained Metal (Koz Au)	Contained Metal (Koz Ag)
Proved	1.70	2.75	2.20	150	120
Probable	2.62	3.64	3.13	307	264
Total	4.32	3.29	2.77	457	385

Notes:

i) Rounding of numbers may result in minor computational errors, which are not deemed to be significant.

ii) These Ore Reserves are included in the Mineral Resources listed in the Table above.

First publicly released on 27 November 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Ore Reserve estimation.

Source: Ausenco, 2017

Annexure: Assay Results for Hole TS-DH12, TS-DH13 and TS-DH14

TSDH-12

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
0	2	2	0.76	323	6.86
2	4	2	0.73	243	9.39
4	6	2	0.58	214	8.23
6	8	2	0.24	171.5	5.9
8	10	2	0.53	264	11.5
10	12	2	0.51	487	8.82
12	14	2	0.83	412	4.69
14	16	2	0.53	443	6.89
16	18	2	0.73	461	11.25
18	20	2	0.33	405	6.6
20	22	2	0.91	628	40.4
22	24	2	0.51	565	9.88
24	26	2	0.36	641	6.45
26	28	2	0.27	429	2.35
28	30	2	0.99	454	2.13
30	32	2	0.34	276	2.39
32	34	2	0.18	240	4.16
34	36	2	0.28	375	11.85
36	38	2	0.43	352	9.58
38	40	2	0.3	274	12.55
40	42	2	0.65	642	39.8
42	44	2	0.38	309	17.8
44	46	2	0.29	238	14.95
46	48	2	0.24	140.5	16.25
48	50	2	0.15	89.4	10.2
50	52	2	0.23	158	12.5
52	54	2	0.18	119.5	11.65
54	56	2	0.37	269	7.98

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
56	58	2	0.34	239	5.81
58	60	2	0.38	319	22.2
60	62	2	0.78	499	47.3
62	64	2	0.34	224	13.85
64	66	2	0.2	116.5	8.37
66	68	2	0.22	77.8	30.3
68	70	2	0.19	93	16.7
70	72	2	0.18	69	10.2
72	74	2	0.1	40.7	2.67
74	76	2	0.14	89.8	14.45
76	78	2	0.25	145.5	7.05
78	80	2	0.29	197	21.8
80	82	2	0.26	106	11.75
82	84	2	0.6	303	50.6
84	86	2	0.18	87	9.26
86	88	2	0.17	152.5	23.1
88	90	2	0.09	60.9	16.65
90	92	2	0.56	514	67.2
92	94	2	0.2	158.5	47.1
94	96	2	0.38	310	35.1
96	98	2	0.19	161.5	21.2
98	100	2	0.49	217	36
100	102	2	0.34	193	64.6
102	104	2	0.29	283	26
104	106	2	0.76	601	44.9
106	108	2	0.25	183	21.9
108	110	2	0.69	380	136.5
110	112	2	0.48	443	35.2
112	114	2	0.28	178	11.25
114	116	2	0.18	128	20.5
116	118	2	0.45	237	17.55
118	120	2	0.51	504	73.6
120	122	2	0.34	308	24
122	124	2	0.73	793	42.6
124	126	2	0.42	369	52.6
126	128	2	0.51	365	34
128	130	2	0.34	260	12.05
130	132	2	0.3	291	27
132	134	2	0.26	162.5	15.6
134	136	2	0.21	213	21.7
136	138	2	0.25	185.5	20.6
138	140	2	0.77	606	59.1
140	142	2	0.17	113	10.65
142	144	2	0.16	107	9.9
144	146	2	0.29	181.5	17.95

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
146	148	2	0.2	135	13.7
148	150	2	0.37	174	18.2
150	152	2	0.17	113	11.35
152	154	2	0.54	177	14.55
154	156	2	0.19	99.9	5.7
156	158	2	0.24	131	18.7
158	160	2	0.18	77.2	6.54
160	162	2	0.45	160.5	15.9
162	164	2	0.21	131	11.15
164	166	2	0.37	207	21.7
166	168	2	0.12	64.9	2.44
168	170	2	0.72	470	20.8
170	172	2	0.21	136.5	13.6
172	174	2	0.15	85.1	9.02
174	176	2	0.19	93.1	11.75
176	178	2	0.2	122.5	16.4
178	180.05	2.05	0.25	158	18.35
180.05	182	1.95	1.42	1300	131.5
182	184	2	0.9	934	88.2
184	186	2	0.59	570	50.9
186	188	2	0.2	173.5	35.8
188	190	2	0.25	304	18.45
190	192	2	0.28	287	66.8
192	194	2	0.09	95.9	70
194	196	2	0.23	223	17.9
196	198	2	0.33	407	38.9
198	200	2	0.16	179	16.65
200	202	2	0.16	134	22.3
202	204	2	0.18	198	23.1
204	206	2	0.25	249	28.6
206	208	2	0.37	275	307
208	210	2	0.45	390	28.2
210	212	2	0.78	723	94.4
212	214	2	0.62	553	46.7
214	216	2	0.74	718	68.6
216	218	2	1.14	866	52.7
218	220	2	0.55	554	32.4
220	222	2	0.3	234	30.9
222	224	2	0.67	684	37
224	226	2	0.83	639	49.1
226	228	2	0.54	575	25.2
228	230	2	0.71	633	44.2
230	232	2	0.68	611	31.4
232	234	2	0.45	363	49.8
234	236	2	0.25	255	24.8

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
236	238	2	0.26	228	10.9
238	240	2	0.96	663	34.7
240	242	2	0.34	217	19.75
242	244	2	0.46	354	29.1
244	246	2	0.22	100.5	4.8
246	248	2	0.4	345	18.55
248	250	2	0.37	428	19.45
250	252	2	0.19	170.5	17.25
252	254	2	0.22	267	36.8
254	256	2	0.31	263	19.8
256	258	2	0.39	291	24.6
258	260	2	0.21	181.5	13.9
260	262	2	0.24	258	26.5
262	264	2	0.28	205	14.9
264	266	2	0.21	195.5	14.75
266	268	2	0.26	241	9.37
268	270	2	0.42	337	54.6
270	272	2	0.26	233	21
272	274	2	0.34	223	20.5
274	276	2	0.21	185.5	7.59
276	278	2	0.44	287	10.4
278	280	2	0.32	298	44.3
280	282	2	0.24	193.5	21.2
282	284	2	0.49	488	38.8
284	286	2	0.49	377	23.4
286	288	2	0.72	253	19.3
288	290	2	0.37	159.5	25.4
290	292	2	0.49	221	38.3
292	294	2	0.36	189.5	10.45
294	296	2	0.28	99.5	36.5
296	298	2	0.2	87.7	33.1
298	300	2	0.17	70.6	16.95
300	302	2	0.27	133	20.2
302	304	2	0.37	108.5	18.85
304	306	2	0.2	90.8	16.45
306	308	2	0.29	77.1	13.35
308	310	2	0.12	76	10.25
310	312	2	0.09	57	207
312	314	2	0.18	82.4	11.7
314	316	2	0.13	70.4	15.25
316	318	2	0.12	55.2	5.9
318	320	2	0.12	56.7	20.7
320	322	2	0.15	43.4	30.3
322	324	2	0.2	69	38.6
324	326	2	0.26	73.4	12.8

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
326	328	2	0.29	79.6	9.31
328	330	2	0.17	33.6	18.4
330	332	2	0.1	54	12.8
332	334	2	0.22	115.5	19.8
334	336	2	0.19	118	9.06
336	338	2	0.15	83.5	13.05
338	340	2	0.33	79.9	8.01
340	342	2	0.12	116.5	9.74
342	344	2	0.1	50.1	8.74
344	346	2	0.2	91.2	11.4
346	348	2	0.22	111.5	14.4
348	350	2	0.11	66.2	13.6
350	352	2	0.19	67.2	9.98
352	354	2	1.07	332	8.56
354	356	2	1.99	111	13.7
356	358	2	0.24	172	23.5
358	360	2	0.15	59.2	26.5
360	362	2	0.07	39.4	77.8
362	364	2	0.18	93.6	3.85
364	366	2	0.1	61	5.91
366	368	2	0.07	40.2	27.7
368	370	2	0.12	76	20.3
370	372	2	0.13	88.8	78.5
372	374	2	0.06	23.9	10.4
374	376	2	0.36	96	39.4
376	378	2	0.05	43	12.85
378	380	2	0.08	86.3	19.75
380	382	2	0.37	242	14
382	384	2	0.12	131	15.75
384	386	2	0.15	157.5	30
386	388	2	0.09	129.5	19.6
388	390	2	0.06	86.3	14.6
390	392	2	0.16	199	16.7
392	394	2	0.15	196	14.95
394	396	2	0.15	134	17.95
396	398	2	0.18	141	15.15
398	400	2	0.34	218	34.9
400	402	2	0.36	240	16.95
402	404	2	0.28	194.5	14.95
404	406	2	0.26	239	30.6
406	408	2	0.36	268	22.9
408	410	2	0.15	128	15.4
410	412	2	0.25	171	21.7
412	414	2	0.28	229	29.1
414	416	2	0.54	359	26.6

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
416	418	2	0.91	437	30.7
418	420	2	0.5	253	26.5
420	422	2	0.29	331	32.5
422	424	2	0.29	253	28.5
424	426	2	0.5	244	34.6
426	428	2	0.3	157.5	24
428	430	2	0.33	306	19.85
430	432	2	0.37	394	9.36
432	434	2	0.43	335	17.4
434	436	2	0.25	276	13.7
436	438	2	0.37	317	16.15
438	440	2	0.23	234	17.4
440	442	2	0.26	320	18.1
442	444	2	0.35	455	40.8
444	446	2	0.45	396	39.6
446	448	2	0.23	348	42
448	450	2	0.63	271	32.1
450	452	2	0.3	302	39.4
452	454	2	0.88	424	13.3
454	456	2	0.29	379	19
456	458	2	0.21	258	26.2
458	460	2	0.33	211	14.7
460	462	2	0.46	332	17.1
462	464	2	0.79	810	67.1
464	466	2	1.13	1080	76.3
466	468	2	0.47	580	39
468	470	2	0.37	465	23
470	472	2	1.34	798	232
472	474	2	0.41	332	17.95
474	476	2	0.59	575	64.3
476	478	2	0.57	623	72.9
478	480	2	0.97	979	51.7
480	482	2	1.46	1310	162
482	484	2	0.55	704	34.7
484	486	2	0.62	663	28.9
486	488	2	0.36	395	23.1
488	490	2	0.33	409	19.1
490	492	2	0.67	792	39.6
492	494	2	0.38	356	28.5
494	496	2	0.62	715	33
496	498	2	0.35	329	21
498	500	2	0.22	201	9.63
500	502	2	0.51	539	40.5
502	504	2	0.06	66.9	5.19
504	506	2	0.65	591	55.7

506 508 2 0.71 661 41 508 510 2 0.45 399 18. 510 512 2 0.07 51.6 4.4 512 514 2 0.2 257 11 514 516 2 0.14 175.5 9.2 516 518 2 0.21 241 48 518 520 2 0.23 328 18. 520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.25 304 19 536	15 13 .7 21 .4 95 57 17 29 .9 .8 .5 55 .3 25
510 512 2 0.07 51.6 4.4 512 514 2 0.2 257 11 514 516 2 0.14 175.5 9.2 516 518 2 0.21 241 48 518 520 2 0.23 328 18. 520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.25 304 19 534 536 2 0.36 297 15 536	13 .7 .21 .4 .95 .57 .17 .29 .9 .8 .5 .5 .5 .3
512 514 2 0.2 257 11 514 516 2 0.14 175.5 9.2 516 518 2 0.21 241 48 518 520 2 0.23 328 18. 520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 </td <td>.7 21 .4 95 57 17 29 .9 .8 .5 55 .3</td>	.7 21 .4 95 57 17 29 .9 .8 .5 55 .3
514 516 2 0.14 175.5 9.2 516 518 2 0.21 241 48 518 520 2 0.23 328 18. 520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.2 540 542 2 0.21 187.5 7.2	21 .4 .95 .57 .17 .29 .9 .8 .5 .5 .5 .3
516 518 2 0.21 241 48 518 520 2 0.23 328 18. 520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	.4 95 57 17 29 .9 .8 .5 55 .3
518 520 2 0.23 328 18. 520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	95 57 17 29 .9 .8 .5 55 .3
520 522 2 0.09 104.5 7.5 522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	57 17 29 .9 .8 .5 55 .3
522 524 2 0.09 112.5 8.1 524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	17 29 .9 .8 .5 55 .3
524 526 2 0.18 196 6.2 526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	.9 .8 .5 55 .3
526 528 2 0.35 496 34 528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	.9 .8 .5 55 .3
528 530 2 0.14 217 12 530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	.8 .5 55 .3 25
530 532 2 0.25 304 19 532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	.5 55 .3 25
532 534 2 0.2 181.5 10. 534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	55 .3 25
534 536 2 0.36 297 15 536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	.3 25
536 538 2 0.36 439 17. 538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	25
538 540 2 0.16 140.5 7.0 540 542 2 0.21 187.5 7.2	
540 542 2 0.21 187.5 7.2)1
542 544 2 0.25 220 14	27
572 544 4 6.25 325 14.	45
544 546 2 0.23 322 15	.8
546 548 2 0.64 632 33	
548 550 2 0.14 105 5.0	
550 552 2 0.18 217 20	.3
552 554 2 0.18 215 13	
554 556 2 0.1 116.5 4.3	39
556 558 2 0.16 1095 43	.9
558 560 2 0.26 289 15.	45
560 562 2 0.35 413 31	.6
562 564 2 0.61 652 28	.2
564 566 2 0.94 906 36	6
566 568 2 0.41 431 16.	25
568 570 2 0.37 462 18	.9
570 572 2 0.14 174 8.	1
572 574 2 0.78 775 43	7
574 576 2 0.92 560 19	.4
576 578 2 0.38 268 19.	55
578 580 2 0.5 122.5 7.	6
580 582 2 0.59 645 55	.3
582 584 2 0.65 718 68	
584 586 2 0.44 330 30	.2
586 588 2 0.27 249 12.	85
588 590 2 0.36 388 23	.3
590 592 2 0.33 336 34	.4
592 594 2 0.3 399 23	.4
594 596 2 0.14 142.5 9.3	33

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
596	598	2	0.44	358	37.3
598	600	2	0.56	377	18.6
600	602	2	0.1	102	12.2
602	604	2	<0.01	120	5.75
604	606	2	0.17	116.5	35.7
606	608	2	0.68	893	75.7
608	610	2	0.18	141.5	20.5
610	612	2	0.9	887	80.2
612	614	2	0.15	137.5	14.7
614	616	2	0.17	155.5	12.15
616	618	2	0.1	127	8.45
618	620	2	0.32	461	31.4
620	622	2	0.18	213	39
622	624	2	0.12	135	13
624	626	2	0.13	189	38.5
626	628	2	0.21	274	21.9
628	630	2	1	633	55
630	632	2	0.34	466	44.8
632	634	2	0.13	143.5	14.55
634	636	2	0.34	257	21.9
636	638	2	0.17	175.5	13.8
638	640	2	0.3	375	47
640	642	2	0.4	485	30.3
642	644	2	0.09	80.5	7.78
644	646	2	0.13	146.5	8.49
646	648	2	0.33	409	30.3
648	650	2	0.22	234	18.05
650	652	2	0.14	150	9
652	654	2	0.13	189	8.46
654	656	2	0.35	143	9.65
656	658	2	0.18	134.5	6.15
658	660	2	0.23	181.5	11.2
660	662	2	0.27	201	18.45
662	664	2	0.2	193.5	15.5
664	666	2	0.22	336	18.2
666	668	2	0.35	511	27.5
668	670	2	0.38	468	27.4
670	671.2	1.2	0.16	198.5	8.7
	EOH				

EOH

TS_DH13

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
0	2	2	0.31	142	19.85
2	4	2	0.54	164.5	23.3
4	6	2	0.42	167	13.35
6	8	2	0.33	117	10.2
8	10	2	0.7	152	21
10	12	2	0.48	260	10.55
12	14	2	0.48	358	29
14	16	2	0.62	258	16.15
16	18	2	0.65	244	12.5
18	20	2	0.68	249	15.65
20	22	2	0.44	156	21.6
22	24	2	0.4	174	13.15
24	26	2	0.27	208	13.3
26	28	2	0.29	236	20.3
28	30	2	0.31	181.5	14.35
30	32	2	0.34	250	15.85
32	34	2	0.21	108	8.55
34	36	2	0.14	143	6.75
36	38	2	0.17	116.5	8.86
38	40	2	0.17	127	4.99
40	42	2	0.79	636	44.8
42	44	2	0.29	224	10.95
44	46	2	0.51	251	33.1
46	48	2	0.91	358	55.4
48	50	2	0.74	371	103.5
50	52	2	2.09	1265	115.5
52	54	2	1.48	1335	95
54	56	2	0.29	192.5	16
56	58	2	0.48	482	24.3
58	60	2	0.18	96	5.47
60	62	2	0.64	389	33.6
62	64	2	0.33	205	42.8
64	66	2	0.25	167	13.3
66	68	2	0.68	537	43.6
68	70	2	0.29	176	27.1
70	72	2	0.77	760	121.5
72	74	2	1.04	1045	20.1
74	76	2	0.25	162.5	8.24
76	78	2	0.59	384	11.85
78	80	2	1.06	717	175
80	82	2	0.75	668	93.9
82	84	2	0.25	279	9.49
84	86	2	0.08	47.9	1.74

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
86	88	2	0.09	36.4	3.78
88	90	2	0.24	110	5.42
90	92	2	0.13	48.5	2.35
92	94	2	0.19	86.8	3.09
94	96	2	0.46	250	22.7
96	98	2	0.24	141.5	1.91
98	100	2	0.24	160.5	3.73
100	102	2	0.21	87.6	2.41
102	104	2	0.23	65.5	5.54
104	106	2	0.15	29.8	1.38
106	108	2	0.2	68.9	1.59
108	110	2	0.25	48.8	5.15
110	112	2	0.11	32.3	1.11
112	114	2	0.09	28.9	2.15
114	116	2	1.09	625	70.7
116	118	2	1.37	562	262
118	120	2	0.73	516	131.5
120	122	2	0.49	218	37
122	124	2	1.61	647	460
124	126	2	1.06	597	204
126	128	2	1.78	850	32.4
128	130	2	1.68	1050	66.7
130	132	2	0.12	75.8	3.97
132	134	2	0.19	90.8	8.73
134	136	2	0.53	229	8.14
136	138	2	0.13	106	8.3
138	140	2	0.22	184	6.19
140	142	2	0.13	97.8	5.09
142	144	2	0.27	210	16.35
144	146	2	0.29	234	13
146	148	2	0.39	237	9.72
148	150	2	0.17	113.5	5.13
150	152	2	0.3	218	9.21
152	154	2	0.11	99.6	6.07
154	156	2	0.2	92.1	5.53
156	158	2	0.21	174.5	11.2
158	160	2	0.12	69.9	4.05
160	162	2	0.16	116	4.28
162	164	2	0.18	114.5	6.52
164	166	2	0.16	100.5	11.4
166	168	2	0.28	142	4.98
168	170	2	0.20	169.5	9.53
170	172	2	0.22	109.5	7.43
172	174	2	0.10	231	11.45
174	176	2	0.29	237	33.3
1/4	1/0		0.32	231	აა.ა

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
176	178	2	0.34	208	18.95
178	180	2	0.54	322	39
180	182	2	0.33	270	22.3
182	184	2	0.57	334	23.8
184	186	2	0.63	481	36.3
186	188	2	0.17	156.5	21.2
188	190	2	0.68	635	40.7
190	192	2	0.49	294	24.6
192	194	2	0.64	543	44.8
194	196	2	0.3	264	21.7
196	198	2	0.21	173.5	15.8
198	200	2	0.42	396	26.2
200	202	2	0.7	660	38.9
202	204	2	0.2	190	10.8
204	206	2	0.19	183.5	6.95
206	208	2	0.28	274	28.5
208	210	2	1.01	986	100
210	212	2	0.53	625	53.8
212	214	2	1.06	885	86
214	216	2	0.61	582	39
216	218	2	1.22	918	54.8
218	220	2	0.82	733	43.5
220	222	2	0.9	852	66.6
222	224	2	0.78	903	59.7
224	226	2	0.43	461	44.8
226	228	2	0.5	513	30.1
228	230	2	0.35	344	14.3
230	232	2	0.61	716	32.9
232	234	2	0.19	219	16.9
234	236	2	0.44	501	44.4
236	238	2	0.92	1520	65.3
238	240	2	0.14	112.5	8.83
240	242	2	0.21	211	8.98
242	244	2	0.28	294	25.2
244	246	2	0.2	165	13.6
246	248	2	0.25	238	15.6
248	250	2	0.08	62.4	5.99
250	252	2	0.2	139	37.4
252	254	2	0.16	116.5	7.1
254	256	2	0.46	436	31.5
256	258	2	0.25	150.5	40.3
258	260	2	0.42	302	27.6
260	262	2	0.16	134.5	6.62
262	264	2	0.43	381	45.1

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
264	266	2	0.36	332	8.33
266	268	2	0.33	376	35.8
268	270	2	0.67	535	53.5
270	272	2	0.41	425	17.9
272	274	2	0.28	282	21.8
274	276	2	5.13	393	28.9
276	278	2	0.32	348	26.6
278	280	2	0.21	191	13.4
280	282	2	0.55	507	36.7
282	284	2	0.38	443	16.9
284	286	2	0.12	123.5	2.99
286	288	2	0.43	460	13.7
288	290	2	0.1	60.7	3.79
290	292	2	0.71	653	26.3
292	294	2	0.19	153	5.23
294	296	2	0.05	58.3	3.16
296	298	2	0.09	75	7.34
298	300	2	0.1	87	3.22
300	302	2	0.08	44.5	3.69
302	304	2	0.3	180.5	8.72
304	306	2	0.16	105	3.36
306	308	2	0.17	108	4.11
308	310	2	0.12	61.8	2.52
310	312	2	0.17	153.5	9.24
312	314	2	0.28	212	5.48
314	316	2	0.34	322	10.75
316	318	2	0.27	271	3.76
318	320	2	0.54	467	14.4
320	322	2	0.13	147	3.32
322	324	2	0.14	126	4.44
324	326	2	0.18	170.5	4.34
326	328	2	0.09	82.5	3.37
328	330	2	0.1	82.9	4.52
330	332	2	0.54	499	18.55
332	334	2	0.1	57.8	3.54
334	336	2	0.19	128.5	5.48
336	338	2	0.09	65.4	2.91
338	340	2	0.06	70.5	1.58
340	342	2	0.24	281	6.46
342	344	2	0.31	345	19.9
344	346	2	0.25	197.5	7.35
346	348	2	0.34	326	9.34
348	349.2	1.2	0.21	184	8.29
349.2	350.5	1.3	0.71	630	19.7
350.5	352	1.5	0.34	286	11.5

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
352	354	2	0.35	357	15.7
354	356	2	0.53	808	32.6
356	358	2	0.3	278	14.35
358	360	2	0.57	467	13.8
360	362	2	0.51	372	11.1
362	364	2	0.14	83.7	2.55
364	366	2	0.38	354	14.15
366	368	2	0.57	477	22.1
368	370	2	0.35	244	6.38
370	372	2	0.43	258	9.42
372	374	2	0.65	373	12.25
374	376	2	0.39	247	4.82
376	378	2	0.39	220	12
378	380	2	0.8	280	34.1
380	382	2	0.24	165	14
382	384	2	0.6	503	89.5
384	386	2	0.39	287	38.5
386	388	2	1.73	862	36.2
388	390	2	0.22	152.5	6.09
390	392	2	0.46	485	28.6
392	394	2	0.43	406	133.5
394	396	2	0.24	182.5	7.28
396	398	2	0.14	125	7.48
398	400	2	0.15	97.8	2.84
400	402	2	0.12	111.5	12.7
402	404	2	0.1	93.9	4.86
404	406	2	0.18	185.5	7.78
406	408	2	0.38	354	12.4
408	410	2	0.23	212	11
410	412	2	0.21	159.5	25.3
412	414	2	0.36	430	12.75
414	416	2	0.73	866	57.5
416	418	2	0.63	649	39.6
418	420	2	0.54	467	21.4
420	422	2	0.13	136	7.87
422	424	2	0.23	118	3.87
424	426	2	0.28	281	8.81
426	428	2	0.23	164	12.9
428	430	2	0.37	161	6.22
430	432	2	0.21	174.5	6.78
432	434	2	0.42	386	12.2
434	436	2	0.33	388	6.29
436	438	2	0.09	99.7	2.14
438	440	2	0.17	155.5	11.35

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
440	442	2	0.29	167	3.55
442	443	1	0.39	138	1.28
443	444	1	0.08	67.5	1.14
444	446	2	0.15	135	4.55
446	448	2	0.25	204	6.26
448	450	2	0.88	861	33.4
450	452	2	1.06	1135	71.7
452	454	2	0.49	550	9.31
454	456	2	0.45	482	43.6
456	457	1	0.63	707	5.87
457	458	1	0.29	272	9.64
458	460	2	0.26	165	9.83
460	461.5	1.5	0.02	22.3	0.56
461.5	463.5	2	0.01	178.5	1.14
463.5	464.5	1	0.02	445	0.32
464.5	466	1.5	0.01	196.5	0.3
466	467.45	1.45	0.01	128	0.16
	ЕОН				

TS-DH14 Note - some assays for Cu and Mo remain pending (blank cells) at time of release. It is unlikely that pending results will have any material affect on results or interpretation.

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
0	2	2	0.09	304	7.16
2	4	2	1.04	468	19.1
4	6	2	0.76	409	23.1
6	8	2	1.17	486	13.2
8	10	2	1.32	445	12.4
10	12	2	0.94	477	7.11
12	14	2	0.44	442	7.37
14	16	2	0.35	358	8.72
16	18	2	0.13		
18	20	2	0.17	210	21.9
20	22	2	0.23	196	33.2
22	24	2	0.24	212	21.4
24	25.4	1.4	0.71	312	27.1
25.4	26.3	0.9	0.88	448	124
26.3	28	1.7	0.65	312	68.8
28	30	2	0.9	305	24.6
30	32	2	1.81	274	22.4
32	33	1	2.82	488	23.6
33	34.2	1.2	0.2	112.5	14.6
34.2	36	1.8	1.49	587	63.3
36	38	2	1.64	830	47.3
38	40	2	1.63	618	83.2
40	42	2	0.42	220	14.4

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
42	44	2	0.9	358	27.8
44	46	2	2.36	652	28.7
46	48	2	1.45	465	23
48	50	2	1.99	1165	62.5
50	52	2	0.97	804	111
52	54	2	0.94	575	37.4
54	56	2	0.98	467	45.7
56	58	2	1.06	651	56.5
58	60	2	1.34	672	618
60	62	2	1.7	872	189
62	64	2	1.97	857	97.4
64	66	2	3.32	1185	55.1
66	68	2	2.43	1070	60.9
68	70	2	2.16	967	75.5
70	72	2	3.89	1870	90.5
72	74	2	1.92	1360	85
74	76	2	1.91	872	77.5
76	78	2	5.09	1470	105
78	80	2	2.26	1095	119
80	82	2	2.5	1550	94.2
82	84	2	1.47	1325	95
84	86	2	2.58	1465	78.4
86	88	2	1.71	1120	67.9
88	90	2	1.37	710	84.1
90	92	2	2.56	1080	86.6
92	94	2	2.9	1350	89.1
94	96	2	1.27	648	59.1
96	98	2	2.1	821	61.4
98	100	2	2.13	826	61
100	102	2	3.31	1020	52.7
102	104	2	3.18	632	50.8
104	106	2	4.83	884	65
106	108	2	4.23	985	71.2
108	110	2	1.22	529	33
110	112	2	1.57	579	63
112	114	2	2.17	984	118
114	116	2	2.99	1250	140
116	118	2	2.19	813	80.7
118	120	2	1.47	455	39.5
120	122	2	5.62	1315	68.8
122	124	2	1.7	815	65
124	126	2	0.98	779	57.2
126	128	2	1.89	1400	42.3
128	130	2	1.65	975	24.1
130	132	2	0.73	459	23.7

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
132	134	2	0.76	422	16.8
134	136	2	0.32	227	9.2
136	138	2	1.06	746	32.4
138	140	2	1.05	507	21.2
140	142	2	0.55	386	14.6
142	144	2	1.02	897	45.1
144	146	2	0.72	512	36.1
146	148	2	0.25	179	19.7
148	150	2	0.35	247	17.6
150	152	2	0.92	503	20.8
152	154	2	0.37	341	30.7
154	156	2	1.16	499	48.2
156	158	2	2.66	1430	40.8
158	160	2	0.97	556	16.1
160	162	2	1.01	722	24.5
162	164	2	1	656	44
164	164.9	0.9	0.47	284	9.72
164.9	166	1.1	0.58	436	82.6
166	168	2	0.52	306	65.4
168	170	2	1.92	992	9.45
170	172	2	2.99	1585	29.3
172	174.3	2.3	3.58	1780	29.9
174.3	175.4	1.1	0.63	416	13
175.4	177.5	2.1	0.79	750	31
177.5	178.9	1.4	0.84	873	51.4
178.9	180	1.1	1.18	943	28.6
180	182	2	1.25	768	19.05
182	183.5	1.5	2.01	1620	28.6
183.5	184.15	0.65	2.1	1265	19.75
184.15	186	1.85	1.37	704	33
186	188	2	0.65	390	9.37
188	190	2	0.26	199.5	70.9
190	192	2	0.84	483	17.7
192	193.2	1.2	0.86	361	17.45
193.2	194.3	1.1	0.65	391	11.75
194.3	196	1.7	1.54	441	17.1
196	198	2	1.18	529	18.1
198	200	2	2.07	555	14.85
200	202	2	1.18	473	18.75
202	202	2	0.54	317	17.9
202	204	2	1.15	590	27.3
206	208	2	1.52	917	26.7
208	210	2	0.66	425	23.5
210	212	2	0.7	344	10.2
210	212	2	4.24	1375	13.65
212	214	2	7.24	13/3	13.03

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
214	216	2	2.11	568	14.75
216	218	2	1.06	718	20
218	220	2	2.05	956	23.1
220	222	2	0.9	519	20.2
222	224	2	0.98	484	23.9
224	226	2	0.86	463	22
226	228	2	0.89	484	22.9
228	230	2	0.71	356	16.8
230	232	2	0.84	497	18.7
232	234	2	0.43	397	22.1
234	236	2	0.76	574	20.4
236	238	2	1.48	871	33.3
238	240	2	2.74	1290	27.6
240	242	2	1.81	1460	72.7
242	244	2	0.8	605	69
244	246	2	1.01	585	215
246	248	2	0.9	718	21.3
248	250	2	0.55	378	16.5
250	252	2	2.25	1155	22.8
252	254	2	1.55	1200	15.9
254	256	2	1.59	1395	55.6
256	258	2	1.57	1435	142
258	260	2	1.06	799	182
260	262	2	0.82	749	84.8
262	264	2	2.67	1180	130
264	266	2	4.81	1940	210
266	268	2	3.86	1525	111
268	270	2	2.45	1365	110
270	272	2	1.53	1025	89.7
272	274	2	1.86	837	62.9
274	276	2	2.29	931	64.4
276	278	2	1.27	663	35
278	280	2	2.35	846	55
280	282	2	2.68	1605	80.1
282	284	2	2.5	1570	112
284	286	2	1.9	910	41.3
286	288	2	3.32	1365	133
288	290	2	2.08	1345	112
290	292	2	1.43	1140	87.4
292	294	2	1.16	1000	52.4
294	296	2	1.19	1290	133.5
296	298	2	0.28	506	110.5
298	300	2	0.81	1235	541
300	302	2	0.72	791	107
302	304	2	0.69	1360	445

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
304	306	2	0.66	1170	270
306	308	2	0.72	1165	235
308	310	2	0.5	2090	403
310	312	2	0.34	853	108
312	314	2	0.22	515	65.7
314	316	2	0.32	814	89.6
316	318	2	0.32	543	78.1
318	320	2	0.41	615	37.2
320	322	2	0.58	468	42.6
322	324	2	0.6	486	52
324	326	2	0.67	503	72.2
326	328	2	0.21	151.5	20.5
328	330	2	0.2	83.4	9.82
330	332	2	0.2	86.1	8.74
332	334	2	0.43	344	62.9
334	336	2	0.14	103.5	11.5
336	338	2	0.26	126.5	10.6
338	340	2	0.12	73.2	34.2
340	341.1	1.1	0.11	101	5.3
341.1	342.1	1	0.27	236	10.45
342.1	344.2	2.1	0.71	666	50.4
344.2	344.7	0.5	0.53	64.6	44.7
344.7	346	1.3	0.11	152.5	5.87
346	348	2	0.33	177.5	15.5
348	350	2	0.1	32.2	3.75
350	351.6	1.6	0.19	176.5	18.05
351.6	352.3	0.7	0.26	266	26.7
352.3	354	1.7	0.16	81	11.25
354	356	2	0.07	67.6	2.46
356	358	2	0.07	93.1	11.3
358	360	2	0.04	21.3	0.67
360	362	2	0.04	17.95	1.53
362	364	2	0.04	14.9	1.05
364	366	2	0.05	27.2	0.81
366	368	2	0.03	17.75	0.5
368	370	2	0.01		
370	372	2	0.02		
372	374	2	0.02	22.5	0.72
374	376	2	0.03		
376	378	2	0.05		
378	380	2	0.07	70.1	3.55
380	382	2	0.5		
382	384	2	0.12	100.5	5.6
384	386	2	0.06	40.6	3.37
386	388	2	0.01	11.15	0.58

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
388	390	2	0.01	9.6	0.48
390	391.5	1.5	0.02	26.4	0.79
391.5	392.3	0.8	0.09	113.5	18.15
392.3	394	1.7	0.08		
394	396	2	0.05		
396	398.1	2.1	0.08	21.5	0.44
398.1	398.7	0.6	0.24	202	39.1
398.7	400	1.3	0.06	39.9	0.88
400	402	2	0.03	16.8	0.47
402	403	1	0.04	17.1	0.27
403	404.4	1.4	0.08	17.25	0.27
404.4	405.8	1.4	0.02	13.95	0.3
405.8	407.1	1.3	0.05	22.7	0.72
407.1	408	0.9	0.03	33.2	0.49
408	410	2	0.01	15.1	0.31
410	412	2	0.01	4.22	0.24
412	412.9	0.9	0.04	11.85	0.23
412.9	415	2.1	0.08	26.8	0.44
415	416	1	0.02		
416	418	2	0.03		
418	420	2	0.02		
420	422	2	0.12	81	3.76
422	424	2	0.18	102	21.3
424	426	2	0.16		
426	428	2	0.23	145.5	12.2
428	430	2	0.11	75.9	6.68
430	432	2	0.04	56.3	3.77
432	434	2	0.14	57.4	5.34
434	436	2	0.1	16.95	12.35
436	438	2	0.63		
438	440	2	0.24	141.5	15.85
440	442	2	0.28	239	27.4
442	444	2	0.21	247	31.7
444	446	2	0.19	178	24.9
446	446.6	0.6	0.37	264	57.7
446.6	447.9	1.3	0.06		
447.9	450	2.1	0.26	206	16.1
450	452	2	0.29	181	13.8
452	454	2	0.28	222	16.9
454	456	2	0.33	282	12.4
456	458	2	0.09	102	8.47
458	460	2	0.17	252	15.2
460	462	2	0.4	340	16.75
462	464	2	0.28	255	34.2
464	466	2	0.55	437	96.8

From	То	Int (m)	Au g/t	Cu ppm	Mo ppm
466	468	2	0.34	281	23.9
468	470	2	0.23	209	25.4
470	472	2	0.14	209	10.15
472	474	2	0.36	348	54.9
474	476	2	0.48	610	35.3
476	478	2	0.31	355	15.25
478	480	2	0.15	149	22.2
480	482	2	0.25	425	33.1
482	483.05	1.05	0.17	344	33.9
	ЕОН				

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling is carried out to produce HQ and NQ core. Following verification of the integrity of sealed core boxes and the core within them at the Company's core shed in Quinchia, the core is 'quick logged' by a Project Geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QA/QC samples, the core is cut by employees in the company's facility within the coreshed. Nominally core is cut in half and sampled on 2m intervals, however the interval may be reduced by the Project Geologist based on the visual 'quick log'. Samples are bagged in numbered calico sacks and these placed in heavy duty plastic bags with the sample tag. Groups of 5 samples are bagged in a hessian sack, labelled and sealed, for transport. Sample preparation is carried out by ALS' Laboratory in Medellin where the whole sample is crushed to -2mm and then 1kg split for pulverising to -75micron. Splits are then generated for fire assay (Au-AA26) and analyses for an additional 48 elements using multi-acid (four acid) digest with ICP finish (MEMS61) at ALS' laboratory in Lima, Peru.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The Tesorito drilling program is a diamond drilling program using HQ diameter core. In the case of operational necessity this will be reduced to NQ core. Where ground conditions permit, core orientation is conducted on a regular basis.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The drillers are required to meet a minimum recovery rate of 95%. On site, a Company employee is responsible for labelling (wood spacer block) the beginning and end depth of each drill run plus actual and expected recovery in meters. This and other field processes are audited on a daily basis. On receipt the core is visually verified for inconsistencies including depth labels, degree of fracturing (core breakage versus natural), lithology progression etc. If the core meets the required conditions it is cleaned, core pieces are orientated and joined, lengths and labelling are verified, and

ASX: LCL

0.10.1	IODO Os la sentes effer	ASX: L
Criteria	JORC Code explanation	Commentary
		 geotechnical observations made. The core box is then photographed. Orientated sections of core are aligned, and a geology log prepared. Following logging, sample intervals are determined and marked up and the cutting line transferred to the core. Core quality is, in general, high and far exceeding minimum recovery conditions.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging is carried out visually by the Project Geologists focusing on lithology, structure, alteration and mineralization characteristics. Initially a 'quick log' is carried out to guide sampling and this is then followed by detailed logging. The level of logging is appropriate for exploration and initial resource estimation evaluation. All core is photographed following the initial verification on receipt of the core boxes and then again after the 'quick log', cutting and sampling. le half core. All core is logged and sampled, nominally on 2m intervals respectively but in areas of interest more dense logging and sampling may be undertaken. On receipt of the multi-element geochemical data this is interpreted for consistency with the geologic logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site. All core is cut and sampled. The standard sample interval is 2m but may be varied by the geologist to reflect lithology, alteration or mineralization variations. As appropriate, all half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as a physical archive. The large size (4-8kg) of individual samples and continuous sampling of the drill hole, provides representative samples for exploration activities. Through the use of QA/QC sample procedure in this phase of drilling, any special sample preparation requirements eg due to unexpectedly coarse gold, will be identified and addressed prior to the resource drilling phase.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading 	 Gold assays will be obtained using a lead collection fire assay technique (AuAA26) and analyses for an additional 48 elements obtained using multi-acid (four acid) digest with ICP finish (ME-MS61) at ALS' laboratory in Lima, Peru. Fire assay for gold is considered a "total" assay technique. An acid (4 acid) digest is considered a total digestion technique. However, for

		ASX: L
Criteria	JORC Code explanation	Commentary
	 times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 some resistant minerals, not considered of economic value at this time, the digestion may be partial e.g. Zr, Ti etc. No field non-assay analysis instruments were used in the analyses reported. Los Cerros uses certified reference material and sample blanks and field duplicates inserted into the sample sequence. Geochemistry results are reviewed by the Company for indications of any significant analytical bias or preparation errors in the reported analyses. Internal laboratory QAQC checks are also reported by the laboratory and are reviewed as part of the Company's QAQC analysis. The geochemical data is only accepted where the analyses are performed within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All digital data received is verified and validated by the Company's Competent Person before loading into the assay database. Over limit gold or base metal samples are re-analysed using appropriate, alternative analytical techniques. (Au-Grav22 50g and OG46) Reported results are compiled by the Company's geologists and verified by the Company's database administrator and exploration manager. No adjustments to assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drill hole is located using a handheld GPS and Lider DTM. This has an approximate accuracy of 3-5m considered sufficient at this stage of exploration. On completion of the drilling program the collars of all holes will be surveyed using high precision survey equipment. Downhole deviations of the drill hole are evaluated on a regular basis and recorded in a drill hole survey file to allow plotting in 3D. The grid system is WGS84 UTM Z18N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The interpretation of surface mapping and sampling relies on correlating isolated points of information that are influenced by factors such as weathering, accessibility and sample representivity. This impacts on the reliability of interpretations which are strongly influenced by the experience of the geologic team. Structures, lithologic and alteration boundaries based on surficial information are interpretations based on the available data and will be refined as more data becomes available during the exploration program. It is only with drilling, that provides information in the third dimension, that the geologic model can be refined.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this	 Drill hole is preferentially located in prospective area. All drillholes are planned to best test the lithologies and structures as known

LOS CERROS

Criteria	JORC Code explanation	Commentary
relation to geological structure	 is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 taking into account that steep topography limits alternatives for locating holes. Drill holes are oriented to determine underlying lithologies and porphyry vectors and to intercept the two principal sets of veining.
Sample security	The measures taken to ensure sample security.	 All core boxes are nailed closed and sealed at the drill platform. On receipt at the Quinchia core shed the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened and the core is evaluated for consistency and integrity. Only then is receipt of the core formally signed off. The core shed and all core boxes, samples and pulps are secured in a closed Company facility at Quinchia secured by armed guard on a 24/7 basis. Each batch of samples are transferred in a locked vehicle and driven 165 km to ALS laboratories for sample preparation in Medellin. The transfer is accompanied by a company employee.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	At this stage no audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Exploration Titles were validly issued as Concession Agreements pursuant to the Mining Code. The Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement. There are no outstanding encumbrances or charges registered against the Exploration Title at the National Registry.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Artisanal gold production was most significant from the Miraflores mines during the 1950s. Interest was renewed in the area in the late 1970s. In the 1980s the artisanal mining cooperative "Asociación de Mineros de Miraflores" (AMM) was formed. In 2000, the Colombian government's geological division, INGEOMINAS, with

Criteria	JORC Code explanation	Commentary
		 the permission of the AMM, undertook a series of technical studies at Miraflores, which included geological mapping, geochemical and geophysical studies, and non-JORC compliant resource estimations. In 2005, Sociedad Kedahda S.A. (Kedahda), now called AngloGold Ashanti de Colombia S.A., a subsidiary of AngloGold Ashanti Ltd., entered into an exploration agreement with the AMM, and carried out exploration including diamond drilling in 2005 to 2007 at Miraflores, completing 1,414.75m. In 2007 Kedahda optioned the project to B2Gold Corp. (B2Gold), which carried out exploration including additional diamond drilling from 2007 to 2009. B2Gold made a NI 43-101 technical study of the Miraflores Project in 2007. On 24 March 2009, B2Gold advised the AMM that it had decided not to make further option payments and the property reverted to AMM under the terms of the option agreement. Seafield signed a sale-purchase contract with AMM to acquire a 100% interest in the Mining Contract on 16 April 2010. Seafield completed the payments to acquire 100% of rights and obligations on the Miraflores property in 30 November 2012. AMM stopped the artisanal exploitation activities in the La Cruzada tunnel on the same date, 30 November 2012 and transferred control of the mine to Seafield. Since June 2010, Seafield drilled 63 drillholes for a total of 22,259m on the Miraflores Project adjacent to Tesorito. The initial exploration undertaken by Seafield at Tesorito in 2012 and 2013 included systematic geological mapping, rock and soil sampling, followed by trenching within the area of anomalous Au and Cu in soils. Seafield commissioned an Induced Polarisation (IP) survey over the Tesorito Prospect in August 2012 and undertook a three-hole diamond drilling program for a total of 1,150.5m in 2013.
Geology	Deposit type, geological setting and style of mineralisation.	• The Tesorito area is underlain mainly by fine to coarse grained, intrusive porphyritic rocks of granodioritic to dioritic composition, which intrude an andesite porphyry body of the Miocene Combia formation, Tertiary sandstones and mudstones of the Amaga Formation, as well as basaltic rocks of the Barroso Formation of Cretaceous age. The intrusives suite show variable intensities of hydrothermal alteration, including potassic alteration overprinted by quartz-sericite and sericite-chlorite alteration. NNE to EW faulting controls the intrusive emplacement and mineralization, including faulting of contacts between the rock units. The depth of sulphide oxidation observed in the drill holes is approximately 20m.

Criteria	JORC Code explanation	Commentary ASX:
		 Gold, copper and molybdenite observed in the intrusive rocks is typical of Au- Cu-Mo rich porphyry deposit; mineralisation occurs as sulphides and magnetite in disseminations as well as in veinlets and stockworks of quartz. Pyrite, chalcopyrite and molybdenite have been recognised.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	HOLE EASTING NORTHING RL(m) AZIMUTH DIP EOH(m) TSDH12 423870.6 584825.9 1267 210 60 671.2 TSDH13 424007 584874.9 1259 207 61 467.45 TSDH14 423798 584386 1230 315 55 483.05
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No metal equivalent values have been stated. Quoted intervals use a weighted average compositing method of all assays within the interval. Uncut intervals include values below 0.1 g/t Au No cut of high grades has been done. All widths quoted are intercept widths, not true widths, as there is insufficient information at this stage of exploration to know the geometries within the system.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. 	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact number, orientation and extent of mineralised structures are not yet determined.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery 	 Geological maps showing the location of drill holes and exploration results including drilling over the Tesorito Prospect is shown in the body of the

Criteria	JORC Code explanation	Commentary
	being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Reporting is considered balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A ground magnetic survey that covered the Chuscal and Tesorito Prospects was performed in 2019 and presented two magnetic high anomalies that are spatially related to the soil gold and molybdenum anomalies. The magnetic high anomalies appear associated with the presence of potassic alteration and quartz-magnetite veining and stockworks.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling is required to systematically test the nature and extent of mineralisation. The objective of the Tesorito drill program is to test two anomalous zones, the southern and northern Tesorito targets.

LOS CERROS