

ASX/JSE RELEASE: 16 March 2021

Orion identifies four shallow, high-priority drill targets close to existing Mineral Resources at the Okiep Copper Complex

Ongoing due diligence investigations by Orion Minerals continue to reveal significant upside and prospectivity across the Okiep Copper District

- ► Four high-priority drill targets identified in close proximity to the previously reported Mineral Resources for the Flat Mine North, East and South deposits (refer ASX/JSE release 10 February 2021).
- ▶ The additional targets are clustered around the site of the proposed plant site, as applied for by the project vendor, Southern African Tantalum Mining Proprietary Limited (SAFTA).
- Geological mapping of mineralised outcrop, historical mining plans and drilling data have been digitally captured and are being modelled for initial Mineral Resource estimation.
- Several high-priority targets have been identified with the potential to substantially expand the Mineral Resource at the Flat Mines complex. Exploration programs currently being planned and budgeted, with drilling to commence as soon as permitting is finalised.

Orion's Managing Director and CEO, Errol Smart, commented on the results:

"The Okiep Project continues to deliver pleasant surprises. As we delve into the historical drilling and mining data, we are finding numerous targets with good quality drilling information and outstanding potential to delineate shallow, high-grade mineralisation. From our ongoing due diligence, it is becoming increasingly apparent that there is a clear opportunity both to establish early production and to ramp-up quickly to achieve significant scale across the district. We always expected to find some jewels in the data, but our best expectations for identifying low-hanging fruit are well and truly being exceeded.

"We are currently planning and budgeting our maiden exploration programs for the Okiep Project, and we can't wait to get drill rigs on the ground to test some of these outstanding targets, many of which feature broad zones of strong copper mineralisation in historical drilling. Our new drill programs will be designed to grow our Mineral Resources and to test strike and dip extensions of the known mineralisation."

Orion Minerals Limited (ASX/JSE: ORN) (Orion or Company) is pleased to advise that it has identified a group of new high-priority shallow copper drill targets in close proximity to the existing Mineral Resources at the Flat Mine North, East and South deposits that form part of the Okiep Copper Project (Okiep Project), located 570km north of Cape Town in the Northern Cape Province of South Africa.

The targets were identified during ongoing due diligence investigations being undertaken by Orion on the extensive database recently accessed. Orion has an option to purchase the extensive database owned by O'Okiep Copper Company (refer ASX/JSE release 15 February 2021).

The quality of the targets already identified from the historical data underscores the highly prospective nature of the Okiep Copper District (**OCD**) (refer ASX/JSE release 10 February 2021).

Numerous historical surface drill holes with high-grade intersections are available in the O'Okiep Copper Company database recently accessed by Orion and are now being digitally captured and used to identify priority drill targets for further follow-up. These holes form part of the archive of more than 26,000 drill holes.

Four of the six high-priority drill targets have been extensively drilled but remain open with potential for strike and dip extensions (Figure 1). The four targets – Flat Mine (Nababeep) (Figures 3, 4 and 5), Jan Coetzee Mine (Figures 6 and 7), Nababeep Kloof Mine (Figures 9 and 10) and Franco's Prospect (Figures 2 and 8) – are located in close proximity to current reported Mineral Resources and have been prioritised for drill testing and evaluation for their potential to contribute to early production.

The modelled mineralisation at Flat Mine (Nababeeb), Franco's Prospect and Jan Coetzee Mine is steeply dipping, while the mineralisation at Nababeep Kloof Mine has a generally broad, flat-dipping lens geometry.

The mineralised orebodies generally strike east-west, as is typical for copper mineralisation in the OCD.

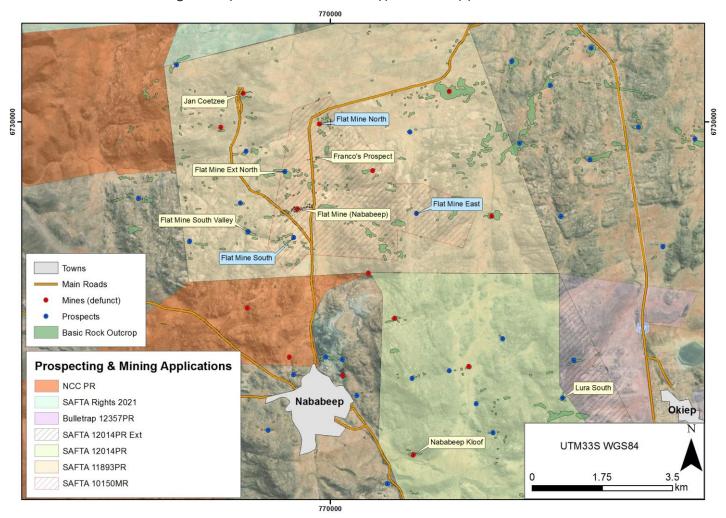


Figure 1: High-priority targets identified (light yellow labels).

The dimensions of the drill targets are described in Table 1 below.

No.	Prospect / Mine	Strike (m)	Depth/Width (m)	Average thickness (m)	Remarks
1	Flat Mine (Nababeep)	223	138	35	Steeply Dipping, Open to West, Open Pit potential
2	Flat Mine Ext North	300	85	20	Flat Dipping
3	Flat Mine South Valley	165	197	10	Steeply Dipping
4	Franco's Prospect	98	85	8	Steeply Dipping, Open to West, Open Pit potential
5	Jan Coetzee Mine	170	205	70	Steeply Dipping, Open to East, Open Pit potential
6	Lura South	131	355	21	Steeply Dipping
7	Nababeep Kloof	192	70	50	Flat Dipping, Open Pit potential

Table 1: High priority drill targets identified.

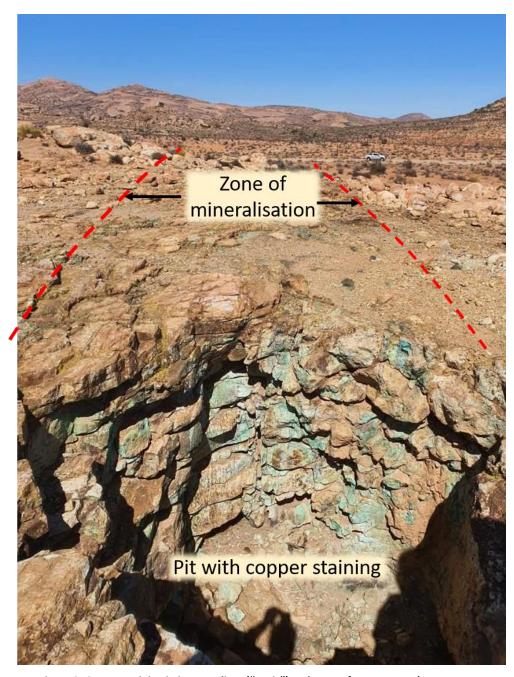


Figure 2: Copper staining in intermediate ("Basic") rock on surface at Franco's Prospect.

Some significant "shallow" historical drill-hole intercepts at Flat Mine (Nababeep), Jan Coetzee Mine, Franco's Prospect and Nababeep Kloof Mine are tabled below. The intercepts were calculated using a 0.5% Cu lower cut-off also allowing for maximum 3m internal waste (dilution).

Flat Mine (Nababeep)				
BHID	From (m)	To (m)	Cu%	Ture width (m)
FM051	13.41	27.13	1.29	13.72
FM052	1.83	12.19	1.72	10.36
FM052	15.24	22.25	1.30	7.01
FM055	19.20	23.77	1.52	4.57
FM055	26.82	30.48	2.43	3.66
FM061	9.75	21.336	1.06	11.58
FM070	23.77	26.52	1.82	2.74
FM136	19.81	26.82	2.15	7.01

Jan Coetzee Mine				
BHID	From (m)	To (m)	Cu%	True width (m)
JCM059	52.43	57.91	1.36	5.49
JCM059	98.76	106.07	1.33	7.31
JCM121	9.14	14.33	1.41	5.18
JCM121	16.76	21.03	1.89	4.27
JCM121	23.77	27.43	1.32	3.66
JCM121	34.75	40.54	3.65	5.79
JCM122	15.24	23.47	1.80	8.23
JCM124	13.72	22.56	1.79	8.84
JCM125	0.00	18.90	2.54	18.90
JCM125	21.03	32.61	2.74	11.58
JCM125	42.67	53.95	1.09	11.28
JCM126	29.57	32.61	2.08	3.05
JCM131	26.518	29.87	1.34	3.35
JCM131	61.87	68.28	1.02	6.40
JCM132	20.42	24.99	1.17	4.57
JCM135	0.00	5.79	1.92	5.79
JCM140	27.43	32.61	2.14	5.18
JCM142	13.41	18.59	1.99	5.18
JCM143	39.93	45.42	1.36	5.49
JCM146	16.15	20.42	1.01	4.27
JCM146	54.25	60.66	1.20	6.40
JCM147	47.85	50.90	1.50	3.05

Franco's Prospect				
BHID	From (m)	To (m)	Cu%	True width (m)
FMN044	12.19	21.34	1.72	9.14
FMN047	27.43	30.18	3.02	2.74
FMN047	45.11	50.60	0.88	5.49

	Nababeep Kloof				
BHID	From (m)	To (m)	Cu%	True width (m)	
NK07	3.96	39.93	1.14	35.97	
NK07	42.98	67.97	1.64	24.99	
NK08	0.00	35.36	1.28	35.36	
NK50	42.67	63.09	1.16	20.42	
NK51	31.09	60.35	2.07	29.26	
NK52	13.72	16.46	1.27	2.74	
NK53	13.72	15.85	1.06	2.13	
NK54	15.24	31.39	1.18	16.15	
NKU01	17.37	21.95	2.07	4.57	
NKU02	15.85	20.12	1.15	4.27	
NKU14	14.94	24.99	1.51	10.06	
NKU15	8.23	35.05	1.20	26.82	
NKU15	36.88	41.76	1.09	4.88	

	Nababeep Kloof				
BHID	From (m)	To (m)	Cu%	True width (m)	
NKU16	6.10	10.97	1.33	4.88	
NKU16	14.02	54.56	1.72	40.54	
NKU17	4.88	9.45	1.18	4.57	
NKU17	20.42	45.72	1.28	25.30	
NKU17	57.91	62.48	2.10	4.57	
NKU25	0.00	26.21	1.03	26.21	
NKU26	17.07	31.09	1.33	14.02	

Table 2: Historical drill holes for Flat Mine (Nababeep), Jan Coetzee Mine, Franco's Prospect and Nababeep Kloof Mine.

Table 2 lists historical drill holes for Flat Mine (Nababeep), Jan Coetzee Mine, Franco's Prospect and Nababeep Kloof Mine.

An exploration program is being designed and budgeted to start as soon as permitting is granted on the Prospecting and Mining Right Applications. Drilling will be designed to upgrade potential targets to Mineral Resource status as well as to drill test potential near-mine extensions and satellite mineralisation.

For and on behalf of the Board.

Errol Smart

Managing Director and CEO

ENQUIRIES

Investors Media JSE Sponsor

Errol Smart – Managing Director & CEO Nicholas Read Monique Martinez

Denis Waddell – Chairman Read Corporate, Australia Merchantec Capital

T: +61 (0) 3 8080 7170 T: +61 (0) 419 929 046 T: +27 (0) 11 325 6363

E: <u>info@orionminerals.com.au</u> E: <u>nicholas@readcorporate.com.au</u> E: <u>monique@merchantec.co.za</u>

Competent Persons Statement

The information in this report that relates to Orion's Exploration Results at the Okiep Project complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (**JORC Code**) and has been compiled and assessed under the supervision of Dr Dion Brandt, Concession Creek Consulting CC. Dr Brandt (Pri. Sci. Nat.) is registered with the South African Council for Natural Scientific Professionals (Registration No. 400024/12), a ROPO for JORC purposes. Dr Brandt has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Dr Brandt consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

This release may include forward-looking statements. Such forward-looking statements may include, among other things, statements regarding targets, estimates and assumptions in respect of metal production and prices, operating costs and results, capital expenditures, mineral reserves and mineral resources and anticipated grades and recovery rates, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. These forward-looking statements are based on management's expectations and beliefs concerning future events. Forward-looking statements inherently involve subjective judgement and analysis and are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Orion. Actual results and developments may vary

materially from those expressed in this release. Given these uncertainties, readers are cautioned not to place undue reliance on such forward-looking statements. Orion makes no undertaking to subsequently update or revise the forward-looking statements made in this release to reflect events or circumstances after the date of this release. All information in respect of Exploration Results and other technical information should be read in conjunction with Competent Person Statements in this release (where applicable). To the maximum extent permitted by law, Orion and any of its related bodies corporate and affiliates and their officers, employees, agents, associates and advisers:

- disclaim any obligations or undertaking to release any updates or revisions to the information to reflect any change in expectations or assumptions;
- do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this release, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and
- disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

Appendix 1: Maps and Figures

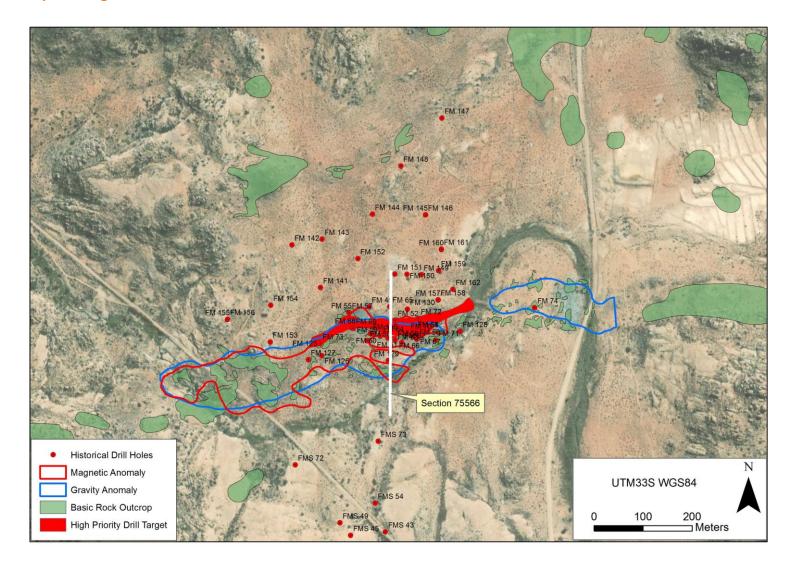


Figure 3: Flat Mine (Nababeep) – plan view showing surface geology, historical drill holes and high priority drill target.

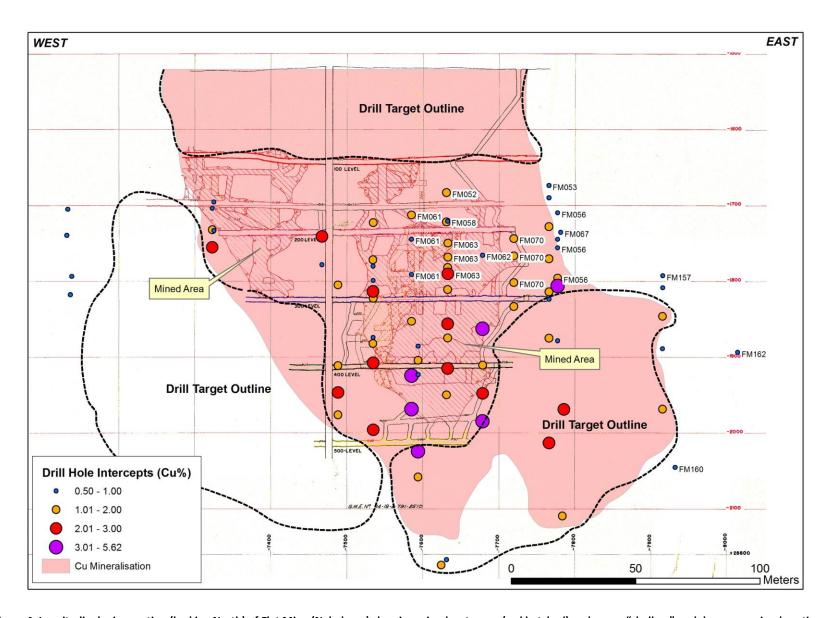


Figure 4: Longitudinal mine section (looking North) of Flat Mine (Nababeep) showing mined-out areas (red hatched) and upper "shallow" and deeper unmined portions.

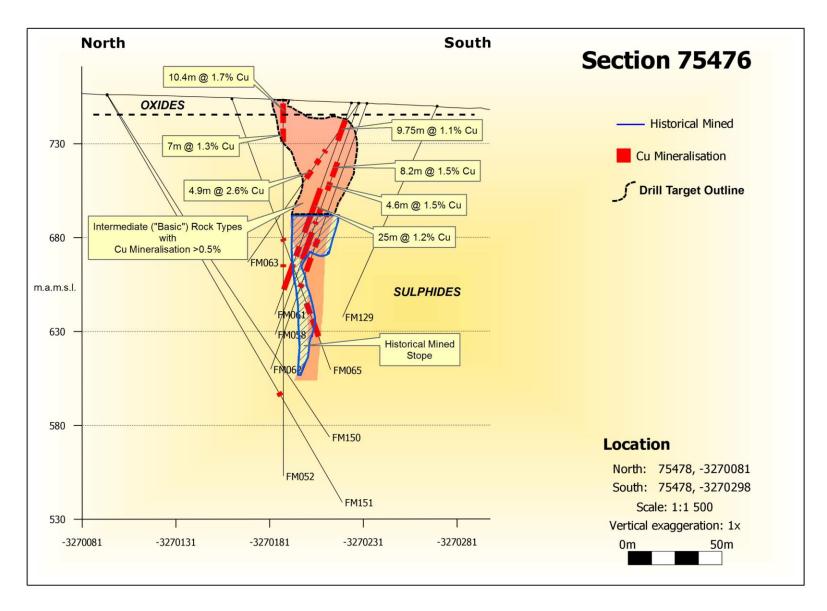


Figure 5: Cross-section (X+75476) Flat Mine (Nababeep) showing drill hole intercepts, mineralisation and drill target.

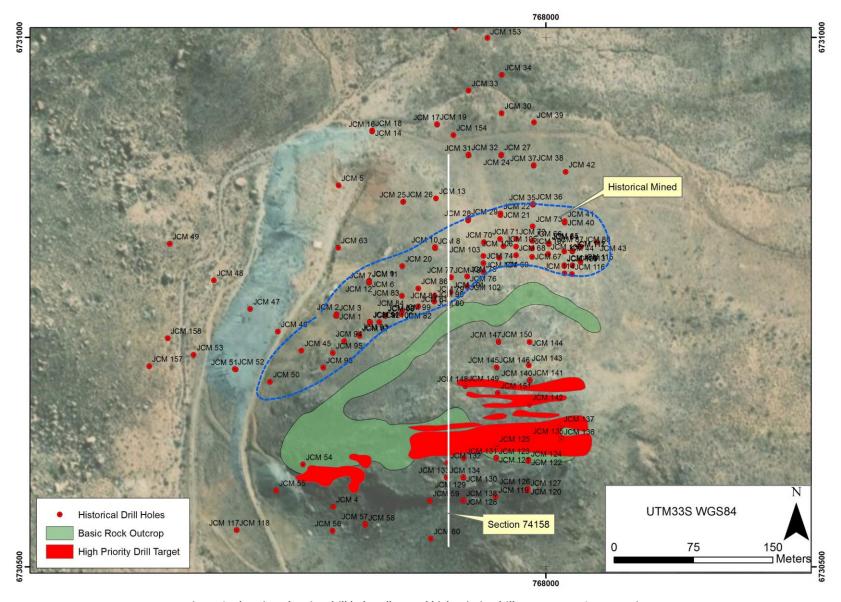


Figure 6: Plan view showing drill hole collars and high priority drill target at Jan Coetzee Mine.

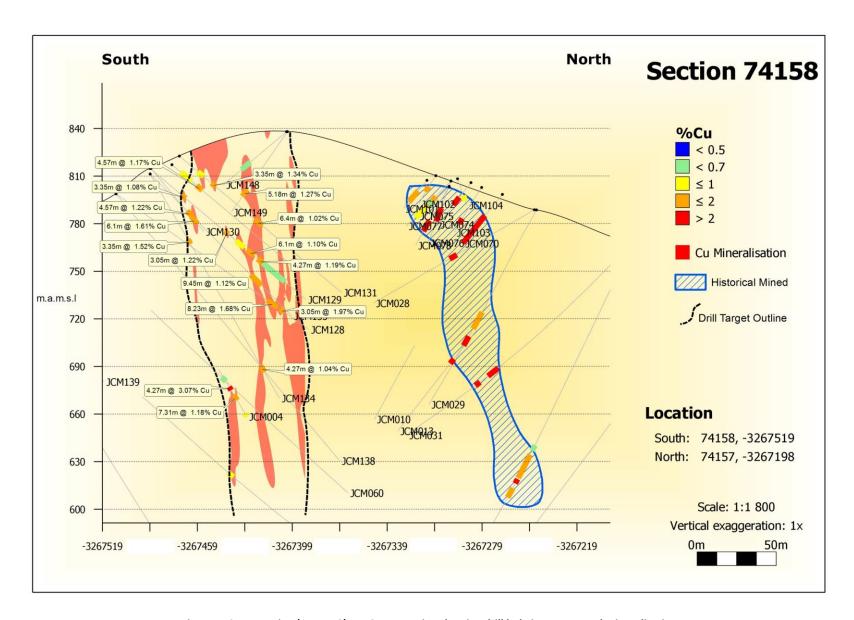


Figure 7: Cross-section (X+74158) Jan Coetzee Mine showing drill hole intercepts and mineralisation.

Figure 8: Plan showing proposed location of Franco's Prospect and historical drill holes.

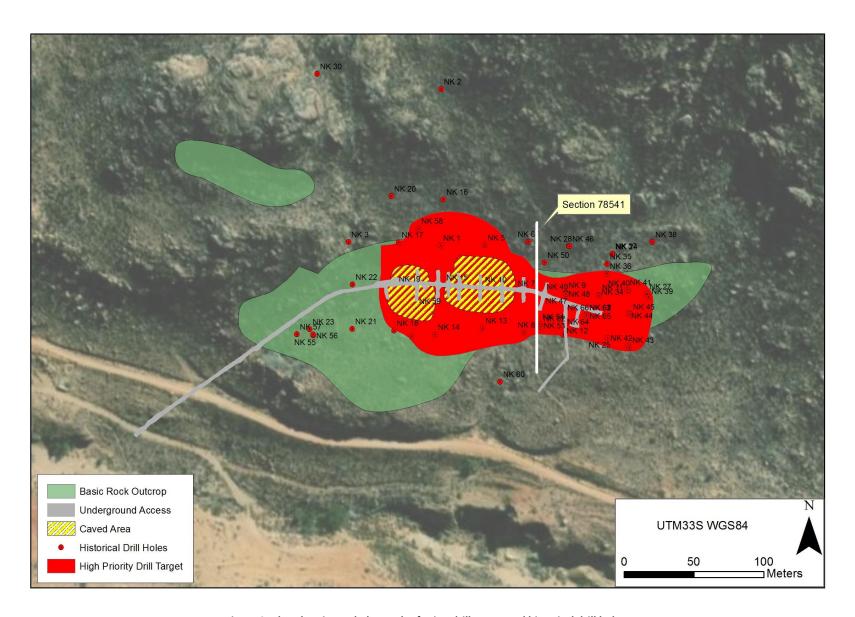


Figure 9: Plan showing Nababeep Kloof Mine drill target and historical drill holes.

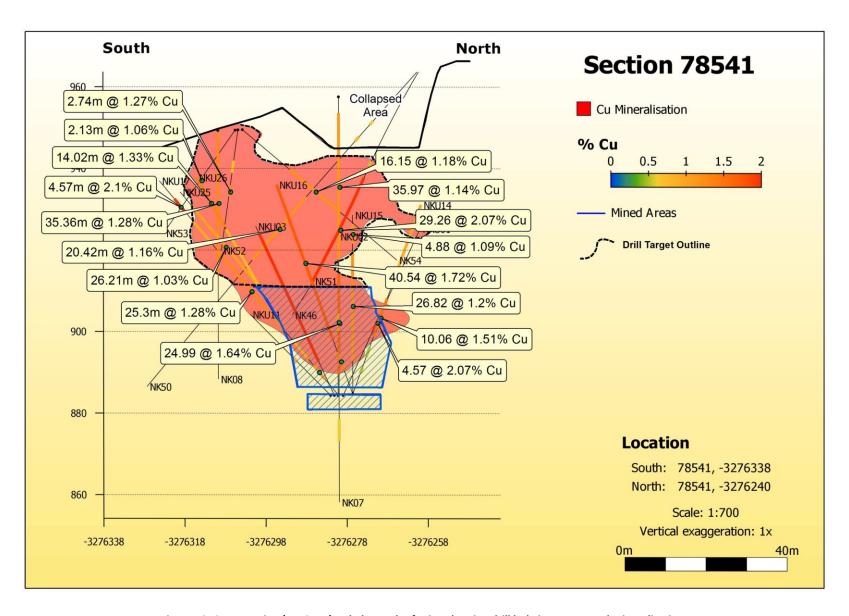


Figure 10: Cross-section (X+78541) Nababeep Kloof Mine showing drill hole intercepts and mineralisation.

Appendix 2: The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of Exploration Results for the Okiep Targets.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Historical drilling and sampling was undertaken during two distinct periods since the initial discovery of mineralisation: Prior to 1984 by O'Okiep Copper Company (OCC). 1984 – 1999 by Goldfields of South Africa (GFSA). For diamond drilling carried out by OCC between 1953 and 1978, there is limited information available on sampling techniques for core. With exploration and resource management being carried out under the supervision of OCC, it is considered by the Competent Person that there were procedures in place to the industry best practice standard at that time. This is based on discussions with personnel employed by OCC. The exploration and resource management were under the supervision of the OCC geology department, recognised as one of the best exploration departments in South Africa at the time. OCC was successful in defining resources which were used as the basis of successful mine development for 33 different mines over an operation over a 45-year period. GFSA is a reputable South African Mining house and owned gold, base metal and platinum mines at the time. Drilling of exploration holes was carried out on a 60m by 30m line spacing. Drill samples from OCC and GFSA drilling were all sent to OCC onmine laboratory in Nababeep. Samples were taken over two-meter intervals adjusted to accommodate geological contacts. OCC whole core was submitted to the lab (AX core size). A ten cm representative core was submitted to the lab (AX core size). A ten cm representative core was archived for each sample. GFSA drilled BQ size core. Core was cut with a core cutter at the core yard and half core submitted over the entire sample interval. No formal QA/QC samples were inserted at the time by the geologists on the exploration site. OCC laboratory developed their own standards, and those were used internally in the laboratory. No

Criteria	JORC Code explanation	Commentary
		record exists on the preparation method of the standards. Duplicate samples were also inserted to check for repeatability. No records exist on the percentage duplicate or standard. • No historical Standard Operating Procedures are available.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All intersections were by core drilling. AX-size core was drilled. No core orientation was carried out. GFSA: All intersections were by core drilling. BQ core size was drilled. No core orientation was carried out.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All mineralised intersections were done with core drilling. Core stick-ups reflecting the depth of the drill hole are recorded at the rig at the end of each core run. A block with the depth of the hole written on it is placed in the core box at the end of each run. Core recoveries were measured for each "run". No records exist for core recoveries on individual samples. Intersections were in hard rock and good recoveries are envisaged through the mineralisation. GFSA: All mineralised intersections are done with core drilling. Core stick-ups reflecting the depth of the drill hole are recorded at the rig at the end of each core run. A block with the depth of the hole written on it is placed in the core box at the end of each run. At the core yard, the length of core in the core box is measured for each run. The measured length of core is subtracted from the length of the run as recorded from the stick-up measured at the rig to determine the core lost. Core recoveries were done for individual samples. Intersections were in hard rock and good recoveries are envisaged

Criteria	JORC Code explanation	Commentary
		through the mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 OCC and GFSA: All relevant intersections for surface holes have been logged by qualified geologists and all of this information is available. No geotechnical information is available for the historic drill holes. Core was not photographed. Logs were recorded in the core yard on standard log sheets. Quantitative estimates of sulphide mineralogy were done by the geologist doing the logging. Core of the entire drill hole length was geologically logged and recorded on standardised log sheets by qualified geologists. No air drilling was carried out.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All sample data is available. Whole core were submitted to the laboratory. The entire sample length was submitted to the laboratory except for a 10cm piece of core left and archived as a reference. Sample preparation was undertaken by the OCC Laboratory. The sampling method was appropriate and representative of the sample interval. No certified reference material, blanks and duplicates were inserted, however the OCC laboratory inserted in house standard reference material with each batch. GFSA: BQ core was cut at a core yard and half core taken as sample. With core samples, the entire sample length is cut and sampled. No Certified Reference Materials (CRM), blanks and duplicates were inserted, however the OCC laboratory inserted in house standard reference material with each batch.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their 	OCC and GFSA: No records exist for laboratory procedures for the OCC laboratory. No modern geophysical tools such as spectrometers or handheld XRF instruments were used. Historical surface and down-hole geophysical work were executed.

Criteria	JORC Code explanation	Commentary
	 derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	to industry best practices. No record is available on quality control methods.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	OCC and GFSA: No records are available on the verification of data. Exploration was managed by the OCC and GFSA exploration departments, consisting of qualified geologists. No adjustments to assay data were reported.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 OCC and GFSA: Drill hole collars were surveyed by qualified surveyors using a theodolite and documented in a Survey Logbook. The historic mine survey data is in the old national LO 17 Cape system coordinate system. Down-hole surveys were carried using a Eastman survey instrument, documented and filed. Plans and sections were meticulously plotted and signed off by a certified surveyor.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	OCC and GFSA: Original exploration holes were drilled aiming to achieve a 60m by 30m spacing, considered appropriate for mineral resource estimation of this type of mineralisation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 OCC and GFSA: Historical drilling is generally oriented perpendicular, or at a maximum achievable angle to, the attitude of the mineralisation. As a result, most holes intersect the mineralisation at an acceptable angle. No sampling bias is anticipated because of drill hole orientations.
Sample security	The measures taken to ensure sample security.	OCC and GFSA: No details of sample security available. However, during the mining operations, the site was fenced and gated with security personnel employed as part of the staff.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	OCC and GFSA:

Criteria	JORC Code explanation	Commentary
		 No audits and/or review records or documentation are available.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 OCC and GFSA: OCC and GFSA held vast areas under prospecting and mining rights, most of these have been relinquished. Current: The Flat Mines area comprises 8,311.9ha and is covered by two prospecting rights (licences). NC11893PR expired in October 2020 and NC12014PR expired in January 2021. Renewal applications have been submitted for both licences, confirmed from Department of Mineral Resources and Energy correspondence. The prospecting rights were issued for copper and tungsten ore only. An application under Section 102 was made to include additional metals lead, silver, zinc, bismuth, cadmium, cobalt, magnetic minerals, gold and uranium. An application for a mining right (NC10150MR) has been submitted covering a smaller portion (approximately 1,210 ha) of expired right NC11896PR and all three deposits, i.e. FMN, FME and FMS. Only one renewal is allowed and is now covered by prospecting right application NC12755 submitted 5 February 2021.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 OCC and GFSA: Underground and especially surface geological mapping are of high quality and detail. Historical data included in this resource estimation were generated by OCC and GFSA. Later limited follow-up exploration was completed by Metorex. It is evident that the historical data was collected via industry best practices and are considered suitable and acceptable for resource estimation.
Geology	Deposit type, geological setting and style of mineralisation.	Okiep Copper District (OCD): • These Cu deposits are part of the well-known Namaqualand

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Metamorphic Complex which consists primarily of meta-volcanic sedimentary and intrusive rock types. Copper mineralisation is primarily associated with irregular, elongated and steeply dipping Koperberg Suite mafic intrusives. The Koperberg Suite intrusives are mainly restricted to so-called "Steep Structures" of extensive strike lengths and steeply dipping to the north. The Koperberg Suite consists of anorthosite, diorite and norite intermediate to mafic rock types. Mineralisation usually occurs as blebs to disseminated Cu mineral assemblages bornite > chalcopyrite > chalcocite and less pyrite and pyrrhotite. The more mafic and magnetite-rich lithologies generally host the bulk of and higher grade mineralisation. The OCD has a long exploration and mining history, and the geology is well known and understood. OCC and GFSA: All historical grade and density information are incorporated in the database. Historically holes were drilled, most are AQ except for NQ and BQ close to the collars All drill hole collars were surveyed. Down-hole surveys are available for the majority of the historical GFSA holes, a few are missing at FMS. Collar information is reported in the local LO17Cape coordinate system.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 OCC and GFSA: Individual intersections were weighted by sample width. Mineralised sample lengths were erratically standardised at 1.0, 1.5 and 2.0 metres. No truncations have been applied. Recent drill hole intercepts calculations used a lower cut-off of 0.5% Cu and a maximum of 3m internal waste.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 OCC and GFSA: Historical drill holes are generally oriented perpendicular, or at a maximum achievable angle to, the attitude of the mineralisation. Generally, drill hole inclinations ranged between -30° to 90°.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Numerous plans and cross-sections are available in the body of this report and were utilised during the geological and mineralization modelling. All historical data are available as hard copies and is currently being digitised and incorporated into a GIS system.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Drill target identification is based on all available and verified historical drilling data. Historical mine activities such as mined stopes and other infrastructures were considered.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Detailed surface maps and drill sections were extensively consulted and utilised in the understanding of geology and mineralisation. Regional and detailed geophysical maps (magnetic) were also consulted. Historical surface and down-hole geophysical work were executed to industry best practices. Geophysical survey data such as magnetic and gravity were also used in identifying potential drill targets, Figure 3
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 More twinning of historical drill holes is needed in order to improve confidence in the historical data. Possible strike and dip extensions will also be drill tested. Reportedly the oxide "cap" is generally between 5 to 7m thick. Limited data is available on the weathering profile and mineralogical and metallurgical characteristics of the oxides and transitional zones. Future drilling logging and sampling will endeavour to record and investigate these zones. All digital data will be integrated and analysed in GIS and 3D modelling software packages. Hard copies of data will be verified and digitally captured for future interrogation.

Table 3: Historical drill hole information for all four high priority drill targets.

									- ··· -
Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Flat Mine (Nababeep)	FM049	-3270161.67	75424.77	755.38	-90.0	0	504.75	OCC	Diamond
Flat Mine (Nababeep)	FM050	-3270230.47	75422.55	752.65	-65.0	360	154.23	OCC	Diamond
Flat Mine (Nababeep)	FM051	-3270210.61	75519.36	752.97	-75.0	360	169.77	OCC	Diamond
Flat Mine (Nababeep)	FM052	-3270188.05	75478.14	754.42	-90.0	0	200.25	OCC	Diamond
Flat Mine (Nababeep)	FM053	-3270210.40	75519.33	752.97	-90.0	0	184.71	OCC	Diamond
Flat Mine (Nababeep)	FM054	-3270210.16	75519.27	752.92	-60.0	338	153.62	OCC	Diamond
Flat Mine (Nababeep)	FM055	-3270174.21	75384.03	753.60	-90.0	0	82.60	OCC	Diamond
Flat Mine (Nababeep)	FM056	-3270225.39	75522.85	750.98	-90.0	0	91.44	OCC	Diamond
Flat Mine (Nababeep)	FM057	-3270174.54	75384.74	753.57	-60.0	180	119.18	OCC	Diamond
Flat Mine (Nababeep)	FM058	-3270228.51	75478.65	752.33	-70.0	360	131.06	OCC	Diamond
Flat Mine (Nababeep)	FM059	-3270220.57	75448.67	753.14	-70.0	360	148.74	occ	Diamond
Flat Mine (Nababeep)	FM060	-3270216.64	75434.58	752.88	-70.0	360	114.00	occ	Diamond
Flat Mine (Nababeep)	FM061	-3270224.57	75464.09	752.52	-70.0	360	119.79	occ	Diamond
Flat Mine (Nababeep)	FM062	-3270232.75	75492.68	751.51	-70.0	360	150.57	occ	Diamond
Flat Mine (Nababeep)	FM063	-3270228.31	75478.73	752.34	-55.0	360	103.33	OCC	Diamond
Flat Mine (Nababeep)	FM064	-3270220.30	75448.62	753.13	-60.0	360	94.18	OCC	Diamond
Flat Mine (Nababeep)	FM065	-3270160.79	75466.78	756.11	-70.0	180	153.62	occ	Diamond
Flat Mine (Nababeep)	FM066	-3270225.57	75522.89	750.95	-75.0	360	73.15	OCC	Diamond
Flat Mine (Nababeep)	FM067	-3270224.86	75524.08	751.04	-75.0	180	129.54	OCC	Diamond
Flat Mine (Nababeep)	FM068	-3270204.81	75390.30	753.25	-75.0	360	57.61	occ	Diamond
Flat Mine (Nababeep)	FM069	-3270205.77	75393.06	753.21	-80.0	360	131.98	OCC	Diamond
Flat Mine (Nababeep)	FM070	-3270213.79	75505.15	752.73	-75.0	360	152.40	OCC	Diamond
Flat Mine (Nababeep)	FM071	-3270227.13	75561.57	750.76	-90.0	0	102.72	OCC	Diamond
Flat Mine (Nababeep)	FM072	-3270183.84	75525.32	754.33	-90.0	0	123.14	OCC	Diamond
Flat Mine (Nababeep)	FM073	-3270238.74	75326.39	751.24	-90.0	0	438.91	OCC	Diamond
Flat Mine (Nababeep)	FM074	-3270157.82	75761.97	758.14	-90.0	0	153.31	occ	Diamond
Flat Mine (Nababeep)	FM125	-3270238.71	75326.33	751.22	-75.0	352	69.19	OCC	Diamond
Flat Mine (Nababeep)	FM126	-3270262.70	75330.45	750.40	-60.0	352	80.47	OCC	Diamond
Flat Mine (Nababeep)	FM127	-3270271.39	75302.87	748.56	-60.0	348	76.81	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Flat Mine (Nababeep)	FM128	-3270208.36	75611.29	750.81	-60.0	337	99.36	occ	Diamond
Flat Mine (Nababeep)	FM129	-3270270.29	75465.33	750.12	-65.0	345	211.84	OCC	Diamond
Flat Mine (Nababeep)	FM130	-3270165.41	75503.13	755.49	-70.0	162	108.81	occ	Diamond
Flat Mine (Nababeep)	FM136	-3270216.09	75428.10	753.06	-90.0	0	550.16	OCC	Diamond
Flat Mine (Nababeep)	FM141	-3270124.14	75325.43	753.02	-80.0	180	533.70	OCC	Diamond
Flat Mine (Nababeep)	FM142	-3270038.40	75265.57	755.80	-60.0	180	516.64	OCC	Diamond
Flat Mine (Nababeep)	FM143	-3270025.42	75326.58	757.49	-90.0	0	1534.67	OCC	Diamond
Flat Mine (Nababeep)	FM144	-3269972.97	75428.25	758.78	-72.5	180	621.18	OCC	Diamond
Flat Mine (Nababeep)	FM145	-3269972.41	75536.39	761.36	-72.0	180	737.62	OCC	Diamond
Flat Mine (Nababeep)	FM146	-3269972.41	75536.39	761.36	-60.0	180	615.70	OCC	Diamond
Flat Mine (Nababeep)	FM147	-3269774.39	75566.60	767.78	-72.5	180	1068.02	OCC	Diamond
Flat Mine (Nababeep)	FM148	-3269873.59	75484.67	765.66	-72.0	180	712.62	OCC	Diamond
Flat Mine (Nababeep)	FM149	-3270094.65	75530.06	757.02	-60.0	180	247.40	OCC	Diamond
Flat Mine (Nababeep)	FM150	-3270094.14	75500.89	757.93	-58.0	180	217.80	OCC	Diamond
Flat Mine (Nababeep)	FM151	-3270094.20	75476.04	757.63	-60.0	180	250.50	OCC	Diamond
Flat Mine (Nababeep)	FM152	-3270063.77	75400.14	755.25	-50.0	180	353.40	OCC	Diamond
Flat Mine (Nababeep)	FM153	-3270236.79	75224.81	748.59	-45.0	180	242.60	OCC	Diamond
Flat Mine (Nababeep)	FM154	-3270162.09	75224.46	749.12	-60.0	180	387.40	OCC	Diamond
Flat Mine (Nababeep)	FM155	-3270192.23	75136.99	748.63	-50.0	180	306.50	OCC	Diamond
Flat Mine (Nababeep)	FM156	-3270191.59	75137.04	748.67	-70.0	180	537.10	OCC	Diamond
Flat Mine (Nababeep)	FM157	-3270145.29	75565.11	754.91	-50.0	180	201.20	OCC	Diamond
Flat Mine (Nababeep)	FM158	-3270144.62	75565.02	754.99	-65.0	180	106.00	OCC	Diamond
Flat Mine (Nababeep)	FM159	-3270085.43	75565.01	757.62	-50.0	180	163.00	OCC	Diamond
Flat Mine (Nababeep)	FM160	-3270042.33	75570.07	759.36	-45.0	180	252.00	OCC	Diamond
Flat Mine (Nababeep)	FM161	-3270041.72	75570.06	759.46	-52.0	180	278.80	OCC	Diamond
Flat Mine (Nababeep)	FM162	-3270122.90	75595.19	755.16	-50.0	180	144.00	OCC	Diamond
Jan Coetzee Mine	JCM001	-3267338.20	74034.46	775.34	-30.0	180	173.13	OCC	Diamond
Jan Coetzee Mine	JCM002	-3267336.83	74034.46	775.40	-42.0	180	290.17	OCC	Diamond
Jan Coetzee Mine	JCM003	-3267337.47	74034.43	775.40	-60.0	180	193.55	OCC	Diamond
Jan Coetzee Mine	JCM004	-3267518.52	74034.65	761.38	-30.0	44	224.33	OCC	Diamond
Jan Coetzee Mine	JCM005	-3267215.03	74034.34	762.45	-40.0	180	274.32	OCC	Diamond
Jan Coetzee Mine	JCM006	-3267306.26	74064.79	781.80	-30.0	180	245.67	OCC	Diamond
Jan Coetzee Mine	JCM007	-3267306.38	74064.82	781.44	-55.0	180	236.53	OCC	Diamond
Jan Coetzee Mine	JCM008	-3267272.76	74126.51	792.08	-30.0	180	131.37	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Jan Coetzee Mine	JCM009	-3267304.61	74064.79	782.20	-75.0	180	265.18	OCC	Diamond
Jan Coetzee Mine	JCM010	-3267271.67	74126.51	792.05	-60.0	180	155.75	OCC	Diamond
Jan Coetzee Mine	JCM011	-3267305.01	74064.82	781.65	-65.0	180	151.18	OCC	Diamond
Jan Coetzee Mine	JCM012	-3267305.68	74064.85	781.56	-43.0	180	104.55	OCC	Diamond
Jan Coetzee Mine	JCM013	-3267225.64	74126.54	782.05	-50.0	180	172.21	OCC	Diamond
Jan Coetzee Mine	JCM014	-3267163.52	74065.19	756.14	-45.0	180	253.29	OCC	Diamond
Jan Coetzee Mine	JCM015	-3267163.52	74065.19	756.14	-65.0	180	199.03	OCC	Diamond
Jan Coetzee Mine	JCM016	-3267163.52	74065.19	756.14	-55.0	180	297.18	OCC	Diamond
Jan Coetzee Mine	JCM017	-3267156.09	74126.39	759.49	-52.0	180	213.06	OCC	Diamond
Jan Coetzee Mine	JCM018	-3267162.61	74065.22	756.29	-70.0	180	317.91	OCC	Diamond
Jan Coetzee Mine	JCM019	-3267155.66	74126.36	759.65	-65.0	180	289.87	OCC	Diamond
Jan Coetzee Mine	JCM020	-3267290.11	74095.82	787.63	-30.0	180	181.05	OCC	Diamond
Jan Coetzee Mine	JCM021	-3267240.39	74187.72	790.43	-30.0	180	177.09	OCC	Diamond
Jan Coetzee Mine	JCM022	-3267238.90	74187.68	790.46	-60.0	180	178.92	OCC	Diamond
Jan Coetzee Mine	JCM023	-3267290.11	74095.82	787.63	-60.0	180	139.90	OCC	Diamond
Jan Coetzee Mine	JCM024	-3267183.91	74187.41	772.60	-50.0	180	261.82	OCC	Diamond
Jan Coetzee Mine	JCM025	-3267229.60	74095.67	777.72	-50.0	180	203.61	OCC	Diamond
Jan Coetzee Mine	JCM026	-3267229.36	74095.70	777.42	-62.0	180	235.31	OCC	Diamond
Jan Coetzee Mine	JCM027	-3267183.24	74187.47	772.97	-65.0	180	274.93	OCC	Diamond
Jan Coetzee Mine	JCM028	-3267245.94	74157.24	788.69	-30.0	180	117.35	OCC	Diamond
Jan Coetzee Mine	JCM029	-3267244.57	74157.27	788.60	-60.0	180	140.21	OCC	Diamond
Jan Coetzee Mine	JCM030	-3267144.20	74187.14	770.41	-60.0	180	288.34	OCC	Diamond
Jan Coetzee Mine	JCM031	-3267184.49	74156.50	767.94	-47.0	180	188.06	OCC	Diamond
Jan Coetzee Mine	JCM032	-3267183.94	74156.50	767.81	-65.0	180	245.97	OCC	Diamond
Jan Coetzee Mine	JCM033	-3267123.41	74155.56	767.66	-60.0	180	301.14	OCC	Diamond
Jan Coetzee Mine	JCM034	-3267108.05	74186.77	772.05	-63.0	180	312.42	OCC	Diamond
Jan Coetzee Mine	JCM035	-3267230.03	74218.16	790.49	-30.0	180	134.72	OCC	Diamond
Jan Coetzee Mine	JCM036	-3267229.36	74218.13	790.15	-50.0	180	180.14	OCC	Diamond
Jan Coetzee Mine	JCM037	-3267193.15	74218.32	779.15	-50.0	180	198.12	OCC	Diamond
Jan Coetzee Mine	JCM038	-3267192.66	74218.32	779.15	-65.0	180	229.51	OCC	Diamond
Jan Coetzee Mine	JCM039	-3267152.28	74217.77	774.98	-65.0	180	217.02	OCC	Diamond
Jan Coetzee Mine	JCM040	-3267246.43	74248.28	799.06	-30.0	180	136.86	OCC	Diamond
Jan Coetzee Mine	JCM041	-3267245.18	74248.31	799.06	-55.0	180	132.59	OCC	Diamond
Jan Coetzee Mine	JCM042	-3267198.51	74248.34	785.19	-47.0	180	185.62	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Jan Coetzee Mine	JCM043	-3267264.44	74279.15	807.59	-40.0	180	117.35	OCC	Diamond
Jan Coetzee Mine	JCM044	-3267273.71	74248.46	811.46	-30.0	180	90.53	OCC	Diamond
Jan Coetzee Mine	JCM045	-3267371.67	74002.06	767.02	-40.0	128	129.24	OCC	Diamond
Jan Coetzee Mine	JCM046	-3267353.87	73979.51	757.51	-40.0	128	136.55	OCC	Diamond
Jan Coetzee Mine	JCM047	-3267333.05	73953.02	749.50	-40.0	128	167.64	OCC	Diamond
Jan Coetzee Mine	JCM048	-3267306.53	73918.15	745.81	-40.0	128	270.66	OCC	Diamond
Jan Coetzee Mine	JCM049	-3267272.85	73875.85	754.10	-40.0	128	351.43	OCC	Diamond
Jan Coetzee Mine	JCM050	-3267401.48	73972.86	757.24	-40.0	87	174.65	OCC	Diamond
Jan Coetzee Mine	JCM051	-3267390.41	73940.37	746.45	-40.0	87	172.21	OCC	Diamond
Jan Coetzee Mine	JCM052	-3267390.08	73939.43	746.72	-60.0	109	206.35	OCC	Diamond
Jan Coetzee Mine	JCM053	-3267377.28	73900.35	743.52	-60.0	109	240.79	OCC	Diamond
Jan Coetzee Mine	JCM054	-3267478.93	74005.26	761.48	-45.0	114	73.76	OCC	Diamond
Jan Coetzee Mine	JCM055	-3267503.95	73980.42	749.13	-46.0	114	111.86	OCC	Diamond
Jan Coetzee Mine	JCM056	-3267541.14	74034.43	753.18	-40.0	0	96.01	OCC	Diamond
Jan Coetzee Mine	JCM057	-3267533.94	74065.06	764.95	-30.0	0	125.88	OCC	Diamond
Jan Coetzee Mine	JCM058	-3267535.16	74065.06	764.80	-57.0	0	136.25	OCC	Diamond
Jan Coetzee Mine	JCM059	-3267511.27	74125.63	793.42	-40.0	0	182.27	OCC	Diamond
Jan Coetzee Mine	JCM060	-3267547.05	74127.15	778.30	-40.0	0	249.02	OCC	Diamond
Jan Coetzee Mine	JCM061	-3267598.93	74129.38	763.09	-40.0	0	298.40	OCC	Diamond
Jan Coetzee Mine	JCM062	-3267599.66	74129.41	763.18	-55.0	0	274.63	OCC	Diamond
Jan Coetzee Mine	JCM063	-3267273.92	74035.01	767.57	-90.0	0	252.68	OCC	Diamond
Jan Coetzee Mine	JCM064	-3267266.85	74233.80	807.41	-35.5	180	54.86	OCC	Diamond
Jan Coetzee Mine	JCM065	-3267266.08	74233.89	807.47	-56.0	180	58.22	OCC	Diamond
Jan Coetzee Mine	JCM066	-3267264.23	74218.10	804.65	-48.0	180	30.79	OCC	Diamond
Jan Coetzee Mine	JCM067	-3267279.36	74218.20	811.55	-45.0	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM068	-3267278.00	74203.01	808.96	-45.0	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM069	-3267280.70	74187.23	807.26	-40.0	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM070	-3267266.12	74172.50	798.39	-50.0	180	39.62	OCC	Diamond
Jan Coetzee Mine	JCM071	-3267262.82	74187.50	799.67	-47.0	180	36.88	OCC	Diamond
Jan Coetzee Mine	JCM072	-3267262.70	74202.85	801.95	-45.0	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM073	-3267250.57	74218.19	798.87	-41.5	180	32.00	OCC	Diamond
Jan Coetzee Mine	JCM074	-3267285.98	74172.40	805.82	-51.0	180	33.53	OCC	Diamond
Jan Coetzee Mine	JCM075	-3267298.68	74157.18	806.83	-46.0	180	30.48	OCC	Diamond
Jan Coetzee Mine	JCM076	-3267298.68	74157.18	806.83	-70.0	180	41.45	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Jan Coetzee Mine	JCM077	-3267299.83	74142.02	803.08	-42.0	179	36.58	OCC	Diamond
Jan Coetzee Mine	JCM078	-3267299.83	74142.02	803.48	-60.0	180	42.67	OCC	Diamond
Jan Coetzee Mine	JCM079	-3267318.03	74126.78	804.12	-40.0	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM080	-3267318.03	74126.78	804.12	-70.0	180	36.58	OCC	Diamond
Jan Coetzee Mine	JCM081	-3267327.95	74111.52	801.10	-40.0	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM082	-3267332.29	74096.48	793.91	-41.5	180	27.43	OCC	Diamond
Jan Coetzee Mine	JCM083	-3267318.38	74096.03	796.28	-36.0	180	39.62	OCC	Diamond
Jan Coetzee Mine	JCM084	-3267318.38	74096.03	796.28	-52.5	180	45.72	OCC	Diamond
Jan Coetzee Mine	JCM085	-3267310.99	74111.27	797.33	-35.0	180	42.67	OCC	Diamond
Jan Coetzee Mine	JCM086	-3267310.99	74111.27	797.33	-59.0	180	48.77	OCC	Diamond
Jan Coetzee Mine	JCM087	-3267268.91	74264.14	810.29	-35.0	180	84.13	occ	Diamond
Jan Coetzee Mine	JCM088	-3267268.91	74264.14	810.29	-56.0	180	79.86	OCC	Diamond
Jan Coetzee Mine	JCM089	-3267336.76	74080.39	792.64	-60.0	137	43.28	OCC	Diamond
Jan Coetzee Mine	JCM090	-3267337.38	74080.30	792.64	-36.0	137	27.43	occ	Diamond
Jan Coetzee Mine	JCM091	-3267343.12	74065.99	787.22	-50.0	137	42.98	OCC	Diamond
Jan Coetzee Mine	JCM092	-3267343.64	74066.47	787.22	-32.5	137	39.62	OCC	Diamond
Jan Coetzee Mine	JCM093	-3267355.18	74055.97	786.08	-60.0	137	33.53	OCC	Diamond
Jan Coetzee Mine	JCM094	-3267361.89	74042.34	781.79	-40.0	137	28.65	OCC	Diamond
Jan Coetzee Mine	JCM095	-3267373.15	74031.76	779.25	-40.0	115	27.43	OCC	Diamond
Jan Coetzee Mine	JCM096	-3267387.23	74022.88	777.22	-40.0	137	24.99	OCC	Diamond
Jan Coetzee Mine	JCM097	-3267356.56	74056.62	786.43	-35.0	137	21.34	OCC	Diamond
Jan Coetzee Mine	JCM098	-3267323.13	74126.59	805.32	-35.0	180	18.29	OCC	Diamond
Jan Coetzee Mine	JCM099	-3267335.67	74095.58	797.51	-35.0	180	18.90	OCC	Diamond
Jan Coetzee Mine	JCM100	-3267343.60	74075.02	791.97	-35.0	137	23.17	OCC	Diamond
Jan Coetzee Mine	JCM101	-3267313.90	74141.90	807.28	-50.0	180	23.17	OCC	Diamond
Jan Coetzee Mine	JCM102	-3267308.18	74157.37	810.20	-55.0	180	21.34	OCC	Diamond
Jan Coetzee Mine	JCM103	-3267279.22	74172.28	802.77	-55.0	180	33.53	OCC	Diamond
Jan Coetzee Mine	JCM104	-3267294.45	74172.45	808.25	-55.0	60	21.64	OCC	Diamond
Jan Coetzee Mine	JCM105	-3267269.71	74191.07	802.81	-40.0	180	23.17	OCC	Diamond
Jan Coetzee Mine	JCM106	-3267269.83	74202.88	804.54	-50.0	180	25.30	OCC	Diamond
Jan Coetzee Mine	JCM107	-3267271.43	74218.07	807.53	-45.0	180	33.53	OCC	Diamond
Jan Coetzee Mine	JCM108	-3267276.48	74233.21	811.47	-35.0	180	36.58	OCC	Diamond
Jan Coetzee Mine	JCM109	-3267287.34	74248.61	818.37	-35.0	180	45.72	OCC	Diamond
Jan Coetzee Mine	JCM110	-3267286.58	74248.61	818.37	-55.0	180	55.47	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Jan Coetzee Mine	JCM111	-3267273.63	74256.09	811.89	-35.0	180	55.17	OCC	Diamond
Jan Coetzee Mine	JCM112	-3267273.06	74256.04	811.74	-55.0	180	68.28	OCC	Diamond
Jan Coetzee Mine	JCM113	-3267286.73	74256.29	818.16	-38.5	180	42.67	OCC	Diamond
Jan Coetzee Mine	JCM114	-3267294.46	74248.91	822.11	-35.0	180	51.82	OCC	Diamond
Jan Coetzee Mine	JCM115	-3267283.36	74263.90	816.81	-40.0	180	39.62	OCC	Diamond
Jan Coetzee Mine	JCM116	-3267294.98	74256.11	822.76	-40.0	180	51.82	OCC	Diamond
Jan Coetzee Mine	JCM117	-3267541.91	73943.80	735.13	-45.0	44	234.39	OCC	Diamond
Jan Coetzee Mine	JCM118	-3267541.91	73943.80	735.13	-60.0	44	276.76	OCC	Diamond
Jan Coetzee Mine	JCM119	-3267506.12	74187.65	807.81	-35.0	0	146.30	OCC	Diamond
Jan Coetzee Mine	JCM120	-3267499.06	74217.78	817.17	-35.0	0	151.79	OCC	Diamond
Jan Coetzee Mine	JCM121	-3267469.37	74187.62	828.47	-40.0	0	121.92	OCC	Diamond
Jan Coetzee Mine	JCM122	-3267471.03	74218.12	832.60	-35.0	0	103.94	OCC	Diamond
Jan Coetzee Mine	JCM123	-3267470.17	74187.57	828.47	-60.0	0	81.69	OCC	Diamond
Jan Coetzee Mine	JCM124	-3267472.07	74217.84	832.58	-60.0	0	50.90	OCC	Diamond
Jan Coetzee Mine	JCM125	-3267458.75	74187.75	833.92	-35.0	0	53.95	OCC	Diamond
Jan Coetzee Mine	JCM126	-3267498.17	74217.78	817.17	-55.0	0	60.35	OCC	Diamond
Jan Coetzee Mine	JCM127	-3267499.67	74217.78	817.17	-80.0	0	75.29	OCC	Diamond
Jan Coetzee Mine	JCM128	-3267510.42	74157.44	798.81	-35.0	0	149.96	OCC	Diamond
Jan Coetzee Mine	JCM129	-3267488.90	74156.95	814.83	-40.0	0	128.32	OCC	Diamond
Jan Coetzee Mine	JCM130	-3267488.31	74156.95	814.83	-50.0	0	51.82	OCC	Diamond
Jan Coetzee Mine	JCM131	-3267470.35	74157.03	822.59	-40.0	0	133.50	OCC	Diamond
Jan Coetzee Mine	JCM132	-3267475.10	74141.61	817.16	-40.0	0	97.54	OCC	Diamond
Jan Coetzee Mine	JCM133	-3267488.86	74141.23	811.31	-45.0	0	126.49	OCC	Diamond
Jan Coetzee Mine	JCM134	-3267488.86	74141.25	811.31	-60.0	0	163.07	OCC	Diamond
Jan Coetzee Mine	JCM135	-3267450.21	74248.56	842.41	-40.0	0	91.44	OCC	Diamond
Jan Coetzee Mine	JCM136	-3267450.82	74248.56	842.40	-55.0	0	76.81	OCC	Diamond
Jan Coetzee Mine	JCM137	-3267438.82	74247.96	845.23	-40.0	0	76.20	OCC	Diamond
Jan Coetzee Mine	JCM138	-3267510.42	74157.44	798.82	-50.0	0	219.46	OCC	Diamond
Jan Coetzee Mine	JCM139	-3267647.48	74157.44	798.81	-42.5	0	175.26	OCC	Diamond
Jan Coetzee Mine	JCM140	-3267395.92	74217.96	859.16	-60.0	180	82.60	OCC	Diamond
Jan Coetzee Mine	JCM141	-3267395.53	74217.96	859.16	-80.0	180	75.29	OCC	Diamond
Jan Coetzee Mine	JCM142	-3267418.90	74218.01	856.21	-70.0	180	60.96	OCC	Diamond
Jan Coetzee Mine	JCM143	-3267381.69	74216.89	858.00	-80.0	180	85.34	OCC	Diamond
Jan Coetzee Mine	JCM144	-3267359.65	74217.09	850.24	-65.0	180	66.45	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Jan Coetzee Mine	JCM145	-3267384.23	74186.56	844.82	-60.0	180	73.46	OCC	Diamond
Jan Coetzee Mine	JCM146	-3267383.89	74186.29	844.82	-45.0	180	88.39	OCC	Diamond
Jan Coetzee Mine	JCM147	-3267360.15	74187.97	838.44	-50.0	180	82.30	OCC	Diamond
Jan Coetzee Mine	JCM148	-3267402.58	74157.32	837.97	-40.0	180	51.82	OCC	Diamond
Jan Coetzee Mine	JCM149	-3267402.00	74157.32	837.97	-55.0	180	61.87	OCC	Diamond
Jan Coetzee Mine	JCM150	-3267359.73	74187.97	838.44	-60.0	180	85.04	OCC	Diamond
Jan Coetzee Mine	JCM151	-3267408.35	74187.90	850.87	-55.0	180	54.86	OCC	Diamond
Jan Coetzee Mine	JCM152	-3267589.17	73899.73	734.13	-60.0	44	322.78	OCC	Diamond
Jan Coetzee Mine	JCM153	-3267073.34	74172.54	771.49	-60.0	180	575.16	OCC	Diamond
Jan Coetzee Mine	JCM154	-3267165.65	74141.98	762.88	-65.0	180	517.55	OCC	Diamond
Jan Coetzee Mine	JCM155	-3267063.74	74141.92	769.56	-65.0	180	609.91	OCC	Diamond
Jan Coetzee Mine	JCM156	-3266954.04	74141.76	779.71	-65.0	180	729.69	OCC	Diamond
Jan Coetzee Mine	JCM157	-3267388.85	73858.71	751.36	-65.0	137	167.03	OCC	Diamond
Jan Coetzee Mine	JCM158	-3267362.03	73875.72	750.45	-60.0	125	363.63	OCC	Diamond
Franco's Pit	FMN001	-3268984.31	75974.47	786.15	-90.0	0	164.90	OCC	Diamond
Franco's Pit	FMN044	-3268876.99	75911.95	789.74	-50.0	150	174.65	OCC	Diamond
Franco's Pit	FMN045	-3268851.16	75898.60	789.32	-60.0	150	93.57	OCC	Diamond
Franco's Pit	FMN046	-3268801.94	75870.32	789.47	-60.0	150	110.64	OCC	Diamond
Franco's Pit	FMN047	-3268887.86	75884.70	788.34	-60.0	150	78.03	OCC	Diamond
Franco's Pit	FMN048	-3268858.18	75869.30	787.94	-60.0	150	106.99	OCC	Diamond
Franco's Pit	FMN049	-3268829.31	75854.36	788.47	-60.0	150	128.32	OCC	Diamond
Franco's Pit	FMN050	-3268889.70	75850.68	786.71	-55.0	150	137.16	OCC	Diamond
Franco's Pit	FMN051	-3268962.77	75964.84	787.13	-55.0	150	178.31	OCC	Diamond
Franco's Pit	FMN052	-3268926.99	75958.37	789.66	-58.0	150	173.13	OCC	Diamond
Franco's Pit	FMN053	-3268831.42	76100.43	799.92	-55.0	150	137.47	OCC	Diamond
Franco's Pit	FMN054	-3268773.18	76070.25	800.50	-65.0	150	199.95	OCC	Diamond
Franco's Pit	FMN055	-3268804.23	75943.72	791.90	-45.0	150	92.96	OCC	Diamond
Franco's Pit	FMN056	-3268860.01	75835.23	787.05	-60.0	150	186.23	OCC	Diamond
Franco's Pit	FMN228	-3268840.21	75922.49	822.63	-80.0	180	236.60	OCC	Diamond
Nababeep Kloof Mine	NK01	-3276248.53	78480.61	959.40	-90.0	0	76.81	OCC	Diamond
Nababeep Kloof Mine	NK02	-3276136.64	78479.20	1006.42	-90.0	0	107.29	occ	Diamond
Nababeep Kloof Mine	NK03	-3276247.13	78414.88	964.23	-90.0	0	64.92	OCC	Diamond
Nababeep Kloof Mine	NK04	-3276232.72	78385.36	970.50	-90.0	0	108.51	OCC	Diamond
Nababeep Kloof Mine	NK05	-3276247.61	78512.15	963.89	-90.0	0	78.94	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Nababeep Kloof Mine	NK06	-3276244.49	78543.36	959.52	-90.0	0	87.48	OCC	Diamond
Nababeep Kloof Mine	NK07	-3276279.95	78540.08	957.59	-90.0	0	99.36	OCC	Diamond
Nababeep Kloof Mine	NK08	-3276309.70	78541.32	949.32	-90.0	0	60.96	OCC	Diamond
Nababeep Kloof Mine	NK09	-3276280.70	78570.57	958.33	-90.0	0	59.44	OCC	Diamond
Nababeep Kloof Mine	NK10	-3276277.72	78510.93	954.98	-90.0	0	104.55	OCC	Diamond
Nababeep Kloof Mine	NK11	-3276281.89	78594.68	963.82	-90.0	0	96.93	OCC	Diamond
Nababeep Kloof Mine	NK12	-3276310.91	78569.69	951.33	-90.0	0	44.81	OCC	Diamond
Nababeep Kloof Mine	NK13	-3276306.97	78511.67	947.06	-90.0	0	65.84	OCC	Diamond
Nababeep Kloof Mine	NK14	-3276312.12	78477.85	942.17	-90.0	0	66.45	OCC	Diamond
Nababeep Kloof Mine	NK15	-3276276.67	78483.20	952.40	-90.0	0	97.54	OCC	Diamond
Nababeep Kloof Mine	NK16	-3276215.53	78482.16	973.32	-90.0	0	63.70	OCC	Diamond
Nababeep Kloof Mine	NK17	-3276246.77	78450.75	958.37	-90.0	0	84.12	OCC	Diamond
Nababeep Kloof Mine	NK18	-3276310.04	78448.44	941.15	-90.0	0	50.60	OCC	Diamond
Nababeep Kloof Mine	NK19	-3276278.17	78449.22	947.25	-90.0	0	69.19	OCC	Diamond
Nababeep Kloof Mine	NK20	-3276213.74	78444.79	970.06	-90.0	0	117.96	OCC	Diamond
Nababeep Kloof Mine	NK21	-3276309.22	78418.69	937.92	-90.0	0	40.54	OCC	Diamond
Nababeep Kloof Mine	NK22	-3276277.47	78418.41	947.53	-90.0	0	42.06	OCC	Diamond
Nababeep Kloof Mine	NK23	-3276309.90	78388.18	935.64	-90.0	0	34.14	OCC	Diamond
Nababeep Kloof Mine	NK24	-3276252.47	78604.14	973.32	-90.0	0	91.44	OCC	Diamond
Nababeep Kloof Mine	NK25	-3276312.38	78601.46	958.00	-90.0	0	55.47	OCC	Diamond
Nababeep Kloof Mine	NK26	-3276307.27	78359.04	930.00	-90.0	0	41.76	OCC	Diamond
Nababeep Kloof Mine	NK27	-3276280.72	78628.80	973.71	-90.0	0	64.62	OCC	Diamond
Nababeep Kloof Mine	NK28	-3276247.32	78572.53	972.48	-90.0	0	73.15	OCC	Diamond
Nababeep Kloof Mine	NK29	-3276164.88	78405.48	1003.00	-90.0	0	124.05	OCC	Diamond
Nababeep Kloof Mine	NK30	-3276127.35	78390.34	1002.08	-90.0	0	131.06	OCC	Diamond
Nababeep Kloof Mine	NK31	-3276124.04	78320.12	990.60	-90.0	0	111.25	OCC	Diamond
Nababeep Kloof Mine	NK32	-3276047.59	78268.66	991.00	-90.0	0	149.05	OCC	Diamond
Nababeep Kloof Mine	NK33	-3276047.92	78513.39	1030.00	-90.0	0	144.78	OCC	Diamond
Nababeep Kloof Mine	NK34	-3276282.54	78594.55	963.88	-54.0	158	48.77	OCC	Diamond
Nababeep Kloof Mine	NK35	-3276259.53	78600.03	970.57	-67.5	180	79.25	OCC	Diamond
Nababeep Kloof Mine	NK36	-3276266.43	78600.16	968.15	-60.0	180	110.03	OCC	Diamond
Nababeep Kloof Mine	NK37	-3276252.28	78603.62	973.41	-75.0	180	83.82	OCC	Diamond
Nababeep Kloof Mine	NK38	-3276243.21	78632.15	978.85	-44.5	180	108.20	OCC	Diamond
Nababeep Kloof Mine	NK39	-3276282.62	78629.96	975.10	-46.0	171	66.45	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Nababeep Kloof Mine	NK40	-3276278.45	78615.53	971.29	-59.0	180	48.77	OCC	Diamond
Nababeep Kloof Mine	NK41	-3276277.90	78614.59	971.23	-71.5	0	48.77	OCC	Diamond
Nababeep Kloof Mine	NK42	-3276317.73	78616.05	958.41	-38.0	0	66.14	OCC	Diamond
Nababeep Kloof Mine	NK43	-3276319.29	78617.06	958.10	-70.0	180	18.29	OCC	Diamond
Nababeep Kloof Mine	NK44	-3276294.65	78615.70	965.41	-59.5	0	35.36	OCC	Diamond
Nababeep Kloof Mine	NK45	-3276295.37	78617.18	965.64	-56.0	180	26.82	OCC	Diamond
Nababeep Kloof Mine	NK46	-3276247.43	78572.76	971.82	-59.0	184	81.08	OCC	Diamond
Nababeep Kloof Mine	NK47	-3276281.44	78571.30	958.33	-75.0	360	56.39	OCC	Diamond
Nababeep Kloof Mine	NK48	-3276281.39	78570.68	958.20	-65.0	180	56.69	OCC	Diamond
Nababeep Kloof Mine	NK49	-3276281.73	78570.73	958.20	-50.0	180	39.01	OCC	Diamond
Nababeep Kloof Mine	NK50	-3276259.50	78555.26	964.85	-48.0	180	103.63	occ	Diamond
Nababeep Kloof Mine	NK51	-3276259.50	78555.26	964.85	-59.0	180	60.35	OCC	Diamond
Nababeep Kloof Mine	NK52	-3276304.71	78553.26	949.47	-82.0	180	29.87	occ	Diamond
Nababeep Kloof Mine	NK53	-3276305.42	78553.21	949.39	-55.0	180	30.78	occ	Diamond
Nababeep Kloof Mine	NK54	-3276303.63	78552.43	949.52	-40.0	360	49.68	occ	Diamond
Nababeep Kloof Mine	NK55	-3276314.19	78390.86	935.18	-46.5	180	54.25	OCC	Diamond
Nababeep Kloof Mine	NK56	-3276313.63	78390.82	935.18	-65.0	180	49.38	occ	Diamond
Nababeep Kloof Mine	NK57	-3276313.62	78379.16	932.52	-50.0	180	50.29	occ	Diamond
Nababeep Kloof Mine	NK58	-3276236.68	78464.60	962.87	-85.0	180	107.29	OCC	Diamond
Nababeep Kloof Mine	NK59	-3276293.91	78464.02	946.08	-46.5	180	78.33	OCC	Diamond
Nababeep Kloof Mine	NK60	-3276345.05	78524.92	937.00	-60.0	0	181.36	OCC	Diamond
Nababeep Kloof Mine	NK61	-3276296.29	78585.88	957.98	-35.0	360	38.40	OCC	Diamond
Nababeep Kloof Mine	NK62	-3276296.29	78585.88	957.98	-60.0	0	59.74	OCC	Diamond
Nababeep Kloof Mine	NK63	-3276296.29	78585.88	957.98	-90.0	0	33.53	OCC	Diamond
Nababeep Kloof Mine	NK64	-3276296.29	78585.88	957.98	-51.5	0	53.95	OCC	Diamond
Nababeep Kloof Mine	NK65	-3276296.29	78585.88	957.98	-72.5	0	76.50	OCC	Diamond
Nababeep Kloof Mine	NK66	-3276296.29	78585.88	957.98	-67.5	180	32.92	OCC	Diamond
Nababeep Kloof Mine	NK67	-3276296.29	78585.88	957.98	-40.0	180	33.53	OCC	Diamond
Nababeep Kloof Mine	NKU01	-3276278.91	78555.40	884.40	65.0	0	45.11	OCC	Diamond
Nababeep Kloof Mine	NKU02	-3276280.13	78555.40	884.40	90.0	0	39.01	OCC	Diamond
Nababeep Kloof Mine	NKU03	-3276281.05	78555.40	884.40	65.0	180	45.72	OCC	Diamond
Nababeep Kloof Mine	NKU04	-3276266.18	78464.66	882.72	0.0	0	20.73	OCC	Diamond
Nababeep Kloof Mine	NKU05	-3276266.18	78464.66	883.72	35.0	0	36.27	OCC	Diamond
Nababeep Kloof Mine	NKU06	-3276267.50	78464.66	881.70	-60.0	0	9.14	OCC	Diamond

Prospect	Hole ID	Northing	Easting	RL	Dip	Azimuth	Hole Length	Company	Drill Type
Nababeep Kloof Mine	NKU07	-3276267.50	78464.66	884.72	55.0	0	51.82	occ	Diamond
Nababeep Kloof Mine	NKU08	-3276267.50	78464.66	884.72	90.0	0	29.57	OCC	Diamond
Nababeep Kloof Mine	NKU09	-3276267.50	78464.66	884.72	50.0	0	37.80	OCC	Diamond
Nababeep Kloof Mine	NKU10	-3276276.00	78495.14	884.72	50.0	0	62.79	OCC	Diamond
Nababeep Kloof Mine	NKU11	-3276281.96	78555.40	884.40	45.0	180	28.04	OCC	Diamond
Nababeep Kloof Mine	NKU12	-3276276.00	78495.14	884.72	90.0	0	46.33	OCC	Diamond
Nababeep Kloof Mine	NKU13	-3276275.00	78495.14	884.72	50.0	180	64.01	OCC	Diamond
Nababeep Kloof Mine	NKU14	-3276276.60	78525.62	884.72	70.0	0	49.38	OCC	Diamond
Nababeep Kloof Mine	NKU15	-3276276.60	78525.62	884.72	90.0	0	43.89	OCC	Diamond
Nababeep Kloof Mine	NKU16	-3276276.60	78525.62	884.72	70.0	180	54.56	OCC	Diamond
Nababeep Kloof Mine	NKU17	-3276280.30	78525.62	884.64	50.0	180	68.28	OCC	Diamond
Nababeep Kloof Mine	NKU18	-3276275.00	78495.14	884.72	70.0	180	45.72	OCC	Diamond
Nababeep Kloof Mine	NKU19	-3276270.10	78510.38	884.72	90.0	0	38.71	OCC	Diamond
Nababeep Kloof Mine	NKU20	-3276270.10	78510.38	884.72	60.0	0	34.75	OCC	Diamond
Nababeep Kloof Mine	NKU21	-3276270.10	78510.38	884.72	55.0	180	51.82	OCC	Diamond
Nababeep Kloof Mine	NKU22	-3276271.52	78449.42	884.35	55.0	0	43.28	OCC	Diamond
Nababeep Kloof Mine	NKU23	-3276272.52	78449.42	884.35	90.0	0	39.62	OCC	Diamond
Nababeep Kloof Mine	NKU24	-3276297.64	78510.38	910.86	60.0	180	23.77	OCC	Diamond
Nababeep Kloof Mine	NKU25	-3276299.47	78525.62	910.86	50.0	180	30.48	OCC	Diamond
Nababeep Kloof Mine	NKU26	-3276299.47	78540.87	910.86	60.0	180	31.09	occ	Diamond