

Tesorito Continues to Expand

HIGHLIGHTS

- Step out drilling at Tesorito South continues to grow the dimensions of the Tesorito South porphyry
- Latest drilling results of intercepted zones of higher-grade gold within a broad zone of near surface mineralisation. Results (uncut) include:
 - **176.8m @ 1.02g/t Au** from surface in TS-DH18 **including 54m @ 1.61g/t Au** from surface and **40m @ 1.67g/t Au** from 112m
 - o 209m @ 1.01g/t Au from surface in TS-DH19 including 102m @ 1.33g/t Au from surface
 - 310m @ 0.74g/t Au from surface in TS-DH22 including 10m @ 1.37g/t Au from 4m and 40m
 @ 1.1g/t Au from 128m
 - 367.95m @ 0.57g/t Au from surface in TS-DH23 including 24m @ 0.99g/t Au from 2m and 42.7m @ 0.92g/t Au from 120m and 26.15m @ 0.85g/t Au from 193.5m
- Higher grade shallow gold in hole TS-DH22 demonstrates potential for further shallow higher grade gold in the undrilled gap between Tesorito South and Tesorito North
- Chuscal East drilling intercepts targeted porphyry units and minor zones of mineralisation including:
 - o **32m @ 1.64g/t Au** from 404m in CHDDH13 (uncut)
- Two rigs currently at new Ceibal surface porphyry target. Third rig testing eastern extensions of Tesorito South.

Los Cerros Limited (ASX: LCL) (Los Cerros or the **Company)** is pleased to provide an update on drill results from Tesorito and Chuscal which are part of the Company's 100% owned Quinchia Project in Risaralda - Colombia.

The current phase of the Tesorito South drilling campaign is to extend the lateral dimensions of the known gold mineralisation. Pleasingly, all recent Tesorito results have remained within mineralisation and therefore <u>the system remains open in directions tested</u>, which continues to bode very well for the scale of the project. Drilling at the Chuscal East porphyry target intercepted units of the targeted porphyry suite, including magmatic breccia and diorites <u>recording a 32m wide zone of particular interest.</u>

Tesorito

Tesorito South drill holes covered in this release are part of a larger campaign focussed on expanding the lateral dimensions of modelled gold envelopes to the south and north, including higher grade sub-zones that show remarkable consistency and persistence across much of the drilling campaign.

TS-DH18 and TS-DH19 were drilled fanning out to the SE and NE respectively, from the same pad as TS-DH16 and TS-DH17 (Figure 1). Both recent cores delivered robust results with mineralisation

28 May 2021 ASX Announcement ASX: LCL

starting from surface and continuing until the drill crossed the Marmato Fault, leaving the porphyry system at 176.8m and ~210m respectively.

- **176.8m @ 1.02g/t Au** from surface in TS-DH18 including:
 - 54m @ 1.61g/t Au from surface and
 - **40m @ 1.67g/t Au** from 112m
- **209m @ 1.01g/t Au** from surface in TS-DH19 including:
 - **102m @ 1.33g/t Au** from surface including **18.5m @ 2.03g/t Au** from 56.6m

Of most note in TS-DH18 and TS-DH19 is the at-surface higher grade 1.5-2g/t gold zone interpreted to be the same higher grade zone encountered to the west at 72m downhole in TS-DH17 (52.3m @ 2.1g/t Au from 72m - previously announced¹) which is consistent with the modelled westerly plunge of the porphyry system.

Los Cerros Managing Director, Jason Stirbinskis added:

"The near surface higher grade gold intercepts of holes 18 and 19 suggest the higher grade core of the porphyry system reaches surface to the east of this pad, an area we are currently drilling.

It is becoming more apparent, with every drill hole that grows the potential scale of Tesorito, that our Quinchia Gold Project has great potential to evolve into a multi-million ounce gold project, like many of its neighbours. We already have over 1.3Moz of JORC Resources defined², before we consider what we may be able to delineate in the Tesorito South area and at other earlier stage prospects."

Holes TS-DH22 and TS-DH23 tested the north-eastern and northern limits respectively, of mineralisation with both holes intercepting very broad zones of lower grade gold mineralisation with sub-zones of higher grade:

- **310m @ 0.74g/t Au** from surface in TS-DH22 including:
 - **10m @ 1.37g/t Au** from 4m and
 - **40m @ 1.1g/t Au** from 128m
- **367.95m @ 0.57g/t** from surface in TS-DH23 including:
 - **42.7m @ 0.92g/t Au from 120m.**

The higher grade gold intersection in TS-DH22 expands Tesorito South mineralisation northeast towards Tesorito North revealing a **200+m zone of untested near surface potential** between the two prospects (Figures 1 & 2). If further shallow gold of ~1g/t Au can be delineated in this zone, it has potential to have substantial positive outcomes for future mining economics of the Quinchia Gold Project.

¹ See announcement 19 April 2021. The Company confirms that it is not aware of any new information that affects the information contained in the announcement.

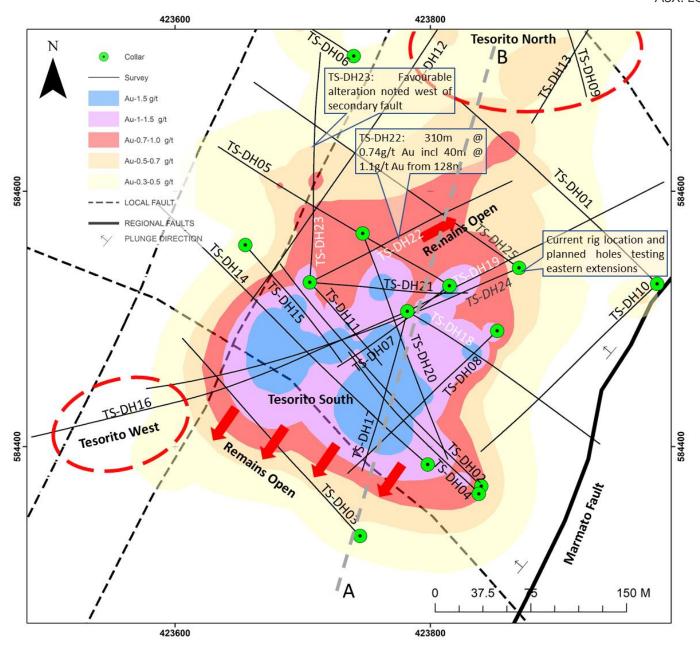
² Includes Inferred Resources and comprises Miraflores and Dosquebradas mineralisation. See tables and statements in this release. The Company confirms that it is not aware of any new information or data that materially affects the information included in the market announcements, and that all material assumptions and technical parameters underpinning the estimates continue to apply.

The Company is currently testing for eastern extensions of Tesorito South mineralisation with a series of drill holes. The intention is to then focus on the western region of Tesorito South with the likelihood of extending drill holes at depth into the region of Tesorito West.

Jason Stirbinskis added:

"The Company has previously announced plans for deep penetrating IP geophysics which will begin shortly. It is expected this program will provide critical additional information for drilling both the western area of the Tesorito South porphyry (Tesorito West) and Tesorito North."

Chuscal


Holes CHDDH12 and CHDDH13 tested the Chuscal East porphyry target zone (Figures 3 & 4). The previously reported visual logging of CHDDH12 intersected a suite of diorite, porphyritic diorite plus a 164m wide zone of magmatic breccia interpreted to represent elements of an underlying causative porphyry partly responsible for the significant extent of the Chuscal gold in soil anomaly. Hole CHDDH13 was sited to test ~200m below the CHDDH12 zone of interest. Whilst most of the core of both holes delivered extensive, but marginally elevated gold values, a 32m wide zone capturing a central diorite surrounded by magmatic breccia produced the following intercept in CHDDH13:

32m @ 1.64g/t Au from 404m in CHDDH13

Jason Stirbinskis commented:

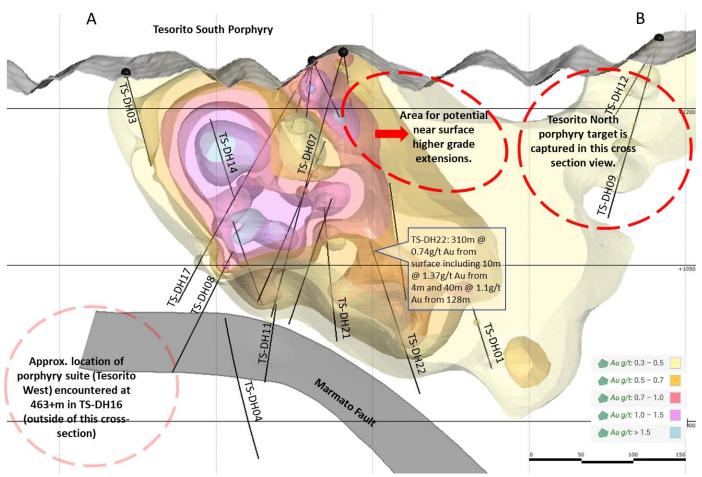

"We remain confident that we are edging closer to the core of an underlying causative porphyry at Chuscal East and we are yet to test the Chuscal West porphyry target. The Chuscal rig is drilling at the Ceibal porphyry target currently and it is intended to return to drilling Chuscal after the completion of pending regional geophysics which should assist in targeting."

Figure 1: Tesorito plan view showing modelled gold envelopes and major controlling structures (faults). Drill trace labels in white are the subject of this release, drill trace labels in italics are planned holes.

Figure 2: Cross Section A-B (looking west) showing Tesorito South modelled gold envelopes in relation to Tesorito North and Tesorito West targets. See Figure 1 for section location.

28 May 2021 ASX Announcement

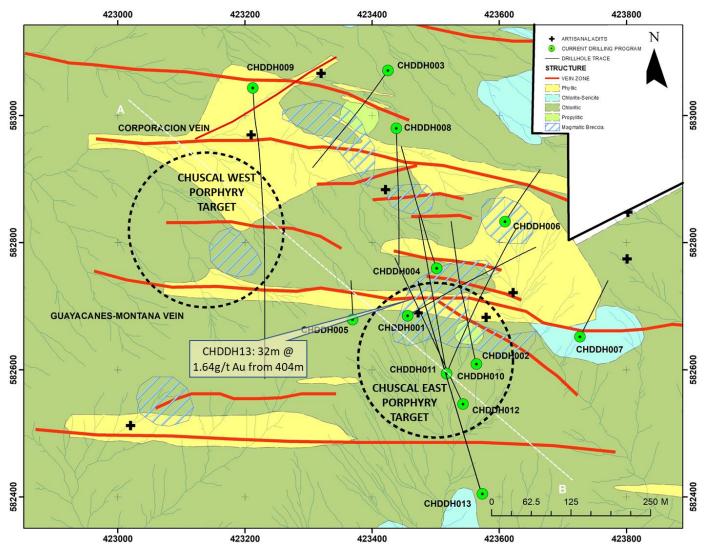
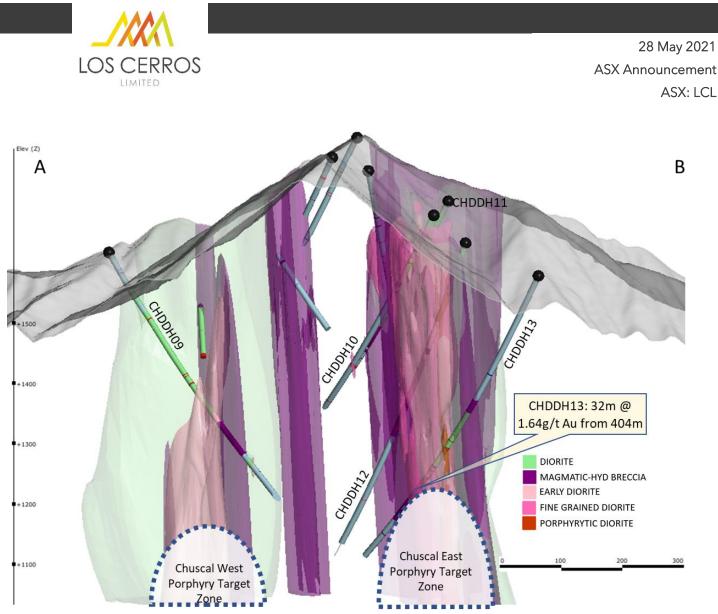



Figure 3: Chuscal plan view and drill program to date.

Figure 4: Chuscal drill lithology logs over modelled geology and porphyry target zones. See Figure 3 for section location.

For the purpose of ASX Listing Rule 15.5, the Board has authorised this announcement to be released.

For further enquiries contact:

Jason Stirbinskis

Managing Director - Los Cerros Limited 12/11 Ventnor Avenue WEST PERTH WA 6005 jason@loscerros.com.au

FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning Los Cerros. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on Los Cerros' beliefs, opinions and estimates of Los Cerros as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among

others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

JORC STATEMENTS - COMPETENT PERSONS STATEMENTS

The technical information related to Los Cerros assets contained in this report that relates to Exploration Results (excluding those pertaining to Mineral Resources and Reserves) is based on information compiled by Mr Cesar Garcia, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by Los Cerros on a full-time basis. Mr Garcia has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Garcia consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

The information presented here that relates to Mineral Resources of the Dosquebradas Project, Quinchia District, Republic of Colombia is based on and fairly represents information and supporting documentation compiled by Mr. Scott E. Wilson of Resource Development Associates Inc, of Highlands Ranch Colorado, USA. Mr Wilson takes overall responsibility for the Resource Estimate. Mr. Wilson is Member of the American Institute of Professionals Geologists, a "Recognised Professional Organisation" as defined by the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Wilson is not an employee or related party of the Company. Mr. Wilson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. Mr. Wilson consents to the inclusion in the news release of the information in the form and context in which it appears

The Company is not aware of any new information or data that materially affects the information included in this release.

TABLE 2 - MIRAFLORES PROJECT RESOURCES AND RESERVES

The Miraflores Project Mineral Resource estimate has been estimated by Metal Mining Consultants in accordance with the JORC Code (2012 Edition) and first publicly reported on 14 March 2017. No material changes have occurred after the reporting of these resource estimates since their first reporting.

Resource Classification	Tonnes (000t)	Au (g/t)	Ag (g/t)	Contained Metal (Koz Au)	Contained Metal (Koz Ag)
Measured	2,958	2.98	2.49	283	237
Indicated	6,311	2.74	2.90	557	588
Measured & Indicated	9,269	2.82	2.77	840	826
Inferred	487	2.36	3.64	37	57

Miraflores Mineral Resource Estimate, as at 14 March 2017 (100% basis)

Notes:

- iii) First publicly released on 14 March 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Mineral Resource estimation.
- iv) These Mineral Resources are inclusive of the Mineral Reserves listed below.
- v) Rounding may result in minor discrepancies.

Miraflores Mineral Reserve Estimate, as at 27 November 2017 (100% basis)

The Miraflores Project Ore Reserve estimate has been estimated by Ausenco in accordance with the JORC Code (2012 Edition) and first publicly reported on 18 October 2017 and updated on 27 November 2017. No material changes have occurred after the reporting of these reserve estimates since their reporting in November 2017.

Reserve Classification	Tonnes (Mt)	Au (g/t)	Ag (g/t)	Contained Metal (Koz Au)	Contained Metal (Koz Ag)
Proved	1.70	2.75	2.20	150	120
Probable	2.62	3.64	3.13	307	264
Total	4.32	3.29	2.77	457	385

Notes:

i) Rounding of numbers may result in minor computational errors, which are not deemed to be significant.

ii) These Ore Reserves are included in the Mineral Resources listed in the Table above.

iii) First publicly released on 27 November 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Ore Reserve estimation.

i) Reported at a 1.2 g/t gold cut-off.

ii) Mineral Resource estimated by Metal Mining Consultants Inc.

Source: Ausenco, 2017

Dosquebradas Inferred Mineral Resource Estimate, as at 25 February 2020 (100% basis)

Cut-Off (g/t Au)	Tonnes ('000t)	Au (g/t)	Au (koz)	Ag (g/t)	Ag (koz)	Cu (%)	Cu (pounds)
0.3	57,794	0.50	920.8	0.6	1,036	0.04	56,767
0.4	34,593	0.60	664.1	0.6	683.8	0.05	38,428
0.5	20,206	0.71	459.1	0.7	431.7	0.06	24,867

Notes:

i) No more than 6m internal waste is included in the weighted intervals

ii) Inferred Mineral Resources shown using various cut offs.

Based on gold selling price of US\$1,470/oz.

Mineral Resource estimated by Resource Development Associates Inc.

First publicly released on 25 February 2020. No material change has occurred after that date that may affect the JORC Code (2012 Edition)

Assay results for TSDH18

From (m)	To (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
0	2	0.99	0.298	299	13.85
2	4	1.07	0.222	354	19.25
4	6	1.35	0.505	479	22.6
6	8	1.38	0.583	729	12.85
8	10	1.24	0.367	628	18.95
10	12	1.02	0.317	606	31
12	14	0.88	0.247	440	15.5
14	16	0.56	0.375	677	43.1
16	18	1.03	0.593	803	22.4
18	20	0.98	0.84	727	24.6
20	22	0.38	0.499	651	20.3
22	24	0.64	0.417	570	41.3
24	26	1.39	0.622	924	10.9
26	28	3.54	0.907	787	15.8
28	30	3.25	1.165	1060	7.86
30	32	3.18	1.38	843	9.21
32	34	2.75	1.365	1195	12.65
34	36	1.45	0.901	777	16.95
36	38	1.42	1.045	579	21.1
38	40	1.46	1.1	719	31.5
40	41	2.23	1.27	828	37.8
41	43	0.58	0.368	343	26.8
43	44.5	0.33	0.415	300	17.7
44.5	46	0.34	0.365	253	9.41
46	48	3.88	0.703	616	15.45
48	50	1.12	0.785	375	11.5
50	52	5.42	1.185	860	7.71
52	54	1.01	0.465	416	10.75
54	56	0.54	0.35	216	8.95

28 May 2021 ASX Announcement ASX: LCL

56	58	0.33	0.252	183.5	26.1
58	60	0.28	0.342	207	9.31
60	62	0.31	0.417	342	17.4
62	64	0.27	0.518	471	38.4
64	66	0.23	0.475	352	22.6
66	68	0.18	0.402	305	10.85
68	70	0.07	0.304	252	13.35
70	72	0.17	0.299	253	8.69
72	74	0.29	0.458	334	27.4
74	76	0.32	0.444	352	16.8
76	78	0.64	0.756	775	8.21
78	80	0.57	0.583	634	13.95
80	82	0.33	0.371	303	10.75
82	84	0.28	0.289	266	5.97
84	86	0.06	0.169	166.5	4.12
86	88	0.04	0.249	233	4.6
88	90	0.07	0.171	126	3.38
90	92	0.06	0.094	96.8	5.68
92	94	0.3	0.38	458	6.6
94	96	0.07	0.116	97.3	6.05
96	98	0.18	0.110	163.5	5.64
98	100	0.10	0.169	141.5	6.34
100	100	0.14	0.347	123.5	5.24
100	102	0.09	0.344	75	4.03
102	103.5	0.07	0.148	64.8	8.15
103.5	104.0	0.3	1.505	191.5	10.35
104.0	109.1	0.66	2.57	414	30.5
109.1	110.5	0.44	0.278	276	37.1
110.5	112	0.42	0.147	230	12.05
112	114	0.82	0.339	375	13.55
114	116	1.1	0.336	788	15.45
116	118	1.17	0.696	877	18.1
118	120	3.07	0.923	1760	52.2
120	122	1.45	0.607	1020	10.55
122	124	1.42	0.654	1400	39.7
124	126	0.85	0.518	782	51
126	128	0.87	0.688	941	28.7
128	130	1.36	1.03	1270	41.4
130	132	0.99	0.722	1030	54.7
130	132	1.91	1.43	1480	61.6
132	136	1.05	0.672	938	64.7
134	138	1.63	0.786	1040	60
138	140	2.44	1.385	1950	233
130	140.7	2.44	1.93	2430	719
140.7	140.7	1.89	1.04	1620	149.5
- 10.7	144	2.86	1.86	2110	85.5

144	146	2.93	1.935	2200	107
146	148	2	1.57	1520	61.8
148	150	2.19	1.42	1810	30.2
150	152	1	0.572	730	22.7
152	154	0.55	0.466	459	6.31
154	156	0.52	0.435	344	10.65
156	158	0.4	0.516	297	6.77
158	160	1.01	0.535	453	12.85
160	161.4	0.6	0.526	367	7.31
161.4	162.5	1.14	0.545	592	6.42
162.5	164	0.56	0.405	340	5.69
164	166	0.47	0.549	341	5.46
166	168	0.32	0.604	317	6.19
168	170	0.34	0.426	285	4.49
170	172	0.18	0.495	262	4.8
170	172	0.28	0.597	286	6.98
174	174	0.34	0.6	371	7.22
174	176.8	0.53	0.679	936	6.05
176.8	178.9	0.33	1.02	497	6.36
178.9	178.5	0.4	0.39	194	15.4
178.9	180	0.12	0.39	157.5	7.35
180	182	0.13	0.201	102.5	3.35
			0.143		1.29
184	186	0.11 0.12	1	60.9 134	4.23
186	188.2		0.103		
188.2	190.5	0.11	0.082	34.5	0.57
190.5	192	0.04	0.053	21.6	0.29
192	194	0.06	0.061	10.95	0.17
194	196	0.07	0.051	31.6	0.37
196	198	0.07	0.084	32.2	0.14
198	200	0.07	0.061	29.9	0.27
200	202	0.05	0.067	32.1	0.22
202	204	0.07	0.095	74.2	0.56
204	206	0.09	0.16	141.5	0.35
206	208	0.2	0.174	194	0.57
208	209.4	0.16	0.073	49.2	0.36
209.4	210	0.03	0.047	14.45	2.66
210	212	0.03	0.078	25.8	1.36
212	214.25	0.02	0.115	90.1	0.41
214.3	216	0.04	0.052	6.52	0.13
216	218	0.01	0.098	88.9	0.18
218	220	0.05	0.259	22.4	0.53
220	222	0.06	0.314	26	0.64
222	224	0.07	0.264	61	0.51
224	226.2	0.02	0.288	186.5	0.74
226.2	228	0.03	0.285	163.5	0.61
228	230.1	0.01	0.076	37.3	1.25

230.1	232	0.01	0.048	23.4	0.5
232	234	0.01	0.055	13.65	0.22
234	235.2	0.01	0.062	21.6	0.42
235.2	237.3	0.01	0.067	264	0.85
237.3	238.5	0.01	0.067	231	0.32
238.5	240	0.01	0.123	225	0.17
240	242	0.01	0.202	164	0.18
242	244	0.01	0.16	169.5	0.1
244	246	0.01	0.129	133	0.16
246	248	0.01	0.216	121.5	0.19
248	250	0.01	0.21	97	0.26
250	252	0.01	0.141	111	0.2
252	254	0.01	0.128	112	0.2
254	256	0.01	0.144	98.5	0.15
256	257.8	0.01	0.212	104.5	0.18
257.8	260	0.01	0.382	75.9	0.89
260	262	0.01	0.295	57.5	1.05
262	264	0.01	0.148	27.2	1.25
264	266	0.01	0.491	85.3	1.42
266	268.2	0.01	0.251	53.6	3.1
268.2	270	0.01	0.287	116	0.3
270	272	0.01	0.325	134	0.17
272	274	0.01	0.248	128.5	0.19
274	276	0.01	0.197	123.5	0.2
276	278.05	0.01	0.196	109.5	0.2
278.1	278.9	0.45	7.88	214	0.57
278.9	280	0.01	0.255	113	0.27
280	282	0.01	0.168	106	0.2
282	284	0.01	0.152	102.5	0.18
284	285.55	0.01	0.194	118.5	0.25

Assay results for TS-DH19

From (m)	To (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
0	2	0.95	0.415	542	5.13
2	4	1.11	0.775	579	8.84
4	6	0.78	1.325	674	9.14
6	8	1.23	0.66	758	39
8	10	0.78	0.449	689	13.35
10	12	0.31	0.315	586	17.45
12	14	0.49	0.544	487	65
14	16	0.72	0.976	455	45.6
16	18	1.92	0.703	601	28.3
18	20	1.4	1.27	912	23.6
20	22	1.73	2.06	1155	32.3
22	24	3.82	1.18	950	24.5

24	25.6	0.89	0.716	731	14.45
25.6	26.9	0.46	1.435	808	67.5
26.9	28	2.32	3.18	1635	60
28	30	0.76	1.11	724	48.9
30	32	0.99	1.005	727	34.8
32	34	0.92	1.015	776	95.5
34	36	1.13	0.932	805	48.6
36	38	1.16	1.24	856	34.3
38	40	0.89	0.845	745	32.4
40	42	0.68	0.597	522	39.1
42	44	0.44	0.741	590	21.2
44	46	0.34	0.647	357	27.9
46	47.9	0.87	0.684	685	20.5
47.9	50	1.08	0.639	739	37.5
50	52	1.25	0.982	988	47.4
52	53.25	1.88	0.791	963	31.3
53.25	54.5	0.82	0.533	711	27.8
54.5	56.6	1.22	0.457	797	36.1
56.6	58	2.48	2.18	1625	35.8
58	60	2.07	2.47	1240	18.9
60	60.7	1.69	2.54	934	13.95
60.7	62.5	2.58	1.13	1095	31.9
62.5	64.1	2.07	1.105	775	22.5
64.1	66	2.55	1.33	1090	53.1
66	68	2.06	1.505	1440	85
68	70	1.67	0.936	1125	66.7
70	72	1.49	1.17	924	34.6
72	74	1.81	0.965	770	44.7
74	75.1	1.78	1.11	1030	58.9
75.1	75.5	0.98	3.67	685	32.4
75.5	77	1.43	0.735	804	65
77	78.4	1.28	1.735	923	37.6
78.4	80	1.02	0.568	506	19.7
80	81.8	1.73	1.58	670	22.3
81.8	83	1.91	0.955	1050	23.2
83	85	1.19	0.948	816	62.6
85	87	1.28	0.951	771	39.2
87	89	0.53	0.672	466	30.3
89	90.5	0.79	0.711	528	33.6
90.5	92	1.38	1.56	869	93.6
92	94	2.89	0.883	824	37.8
94	95.4	1.86	5.04	986	55
95.4	97.4	1.21	2.27	625	43
97.4	99.15	0.72	1.735	691	39.4
99.15	100	1.07	8.61	678	31.1
100	102	1.21	0.835	781	28.7
102	104	0.63	0.406	399	20.3
104	106	1.04	0.888	914	28.3

106	108	0.69	0.556	445	16.1
100	100	0.55	0.683	276	7.16
110	110	0.72	0.557	398	12.55
110	112	0.58	0.554	387	41.4
112	114	0.64	0.39	353	57
114	110	0.65	0.462	335	19.4
110	119.8	0.69	0.402	241	19.4
119.8	119.8	0.09	0.471	172	18.6
119.8	121	1.21	1.525	477	43
121	122.7	0.96			18.9
			0.567	369	
124	126	0.5	0.338	245	16.95
126	128	1.33	0.913	954	113.5
128	129.4	0.67	0.732	377	36.6
129.4	131	1.44	2.27	726	29.2
131	132.4	0.72	1.205	339	12.95
132.4	134	0.61	0.509	428	22.3
134	136	0.55	0.391	373	23.8
136	138	0.72	0.581	412	41.8
138	140	0.62	0.528	375	22.1
140	142	0.53	0.428	313	15.6
142	144	0.5	0.496	406	28.8
144	146	0.37	0.399	346	19.2
146	148	0.39	0.407	360	25.2
148	150	0.28	0.357	268	14.7
150	152	0.51	0.465	390	26.2
152	153.8	1.14	0.554	824	26.7
153.8	154.95	4.48	1.915	2320	40.7
154.95	156	0.37	0.296	284	2.57
156	158	2	0.825	1520	17.95
158	159.2	2.04	0.855	1305	38.6
159.2	160.5	1.95	0.774	984	43
160.5	162	0.41	0.302	295	19.15
162	164	0.28	0.252	178	14.8
164	166	0.57	0.443	392	24.4
166	168	0.55	0.426	427	28.3
168	170	0.65	0.422	398	38.5
170	172	0.68	0.494	560	27.4
172	174	0.52	0.635	576	19.15
174	176	0.64	0.534	626	50.2
176	178	0.41	0.407	366	18.65
178	180	0.54	0.375	449	41
180	182	0.27	0.365	237	33.5
182	184	0.33	0.328	309	13.4
184	186	0.51	0.302	396	19.4
186	188	0.63	0.414	510	31.9
188	190	0.74	0.597	715	23.3
190	192	0.5	0.523	539	32.5

196 198 0.21 0.235 297 42.8 198 200 0.22 0.267 325 15.9 200 202 0.8 0.644 867 27.1 202 204 0.52 0.519 543 30.7 204 205.2 0.44 0.187 229 27.6 205.2 206.5 0.44 0.397 489 19.85 206.5 208 0.6 0.373 554 18.4 208 209.5 0.96 0.441 702 20 209.5 210.5 0.26 0.383 249 7.06 210.5 212 0.05 0.109 73.1 1.22 214 216 0.01 0.097 40.6 1.1 216 218 0.01 0.269 119.5 2.05 218 219.9 0.03 0.881 201 1.13 219.9 221.5 0.01	194	196	0.47	0.665	828	16.25
200 202 0.8 0.644 867 27.1 202 204 0.52 0.519 543 30.7 204 205.2 0.44 0.187 229 27.6 205.2 206.5 0.44 0.397 489 19.85 206.5 208 0.6 0.373 554 18.4 208 209.5 0.96 0.441 702 20 209.5 210.5 0.26 0.383 249 7.06 210.5 212 0.05 0.109 73.1 1.22 212 214 0.02 0.171 64.9 0.81 214 216 0.01 0.097 40.6 1.1 216 218 0.01 0.335 91.1 2.71 221.5 0.01 0.335 91.1 2.71 221.5 22.5 0.01 0.316 106 2.49 225.5 227.5 0.01 0.396	196	198	0.21	0.235	297	42.8
202 204 0.52 0.519 543 30.7 204 205.2 0.44 0.187 229 27.6 205.2 206.5 0.44 0.397 489 19.85 206.5 208 0.6 0.373 554 18.4 208 209.5 0.96 0.441 702 20 209.5 210.5 0.26 0.383 249 7.06 210.5 212 0.05 0.109 73.1 1.22 212 214 0.02 0.171 64.9 0.81 214 216 0.01 0.097 40.6 1.1 216 218 0.01 0.269 119.5 2.05 218 219.9 0.03 0.881 201 1.13 219.2 221.5 0.01 0.335 91.1 2.71 221.5 223.5 0.01 0.433 122 1.64 223.5 225.5 0.01	198	200	0.22	0.267	325	15.9
204205.20.440.18722927.6205.2206.50.440.39748919.85206.52080.60.37355418.4208209.50.960.44170220209.5210.50.260.3832497.06210.52120.050.10973.11.222122140.020.17164.90.812142160.010.09740.61.12162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.152342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.9324124	200	202	0.8	0.644	867	27.1
205.2206.50.440.39748919.85206.52080.60.37355418.4208209.50.960.44170220209.5210.50.260.3832497.06210.52120.050.10973.11.222122140.020.17164.90.812142160.010.09740.61.12162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5225.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22440.010.232740.432442460.010.16559.51.682462480.010.20867.10.59248250 <td>202</td> <td>204</td> <td>0.52</td> <td>0.519</td> <td>543</td> <td>30.7</td>	202	204	0.52	0.519	543	30.7
206.5 208 0.6 0.373 554 18.4 208 209.5 0.96 0.441 702 20 209.5 210.5 0.26 0.383 249 7.06 210.5 212 0.05 0.109 73.1 1.22 212 214 0.02 0.171 64.9 0.81 214 216 0.01 0.097 40.6 1.1 216 218 0.01 0.269 119.5 2.05 218 219.9 0.03 0.881 201 1.13 219.9 221.5 0.01 0.335 91.1 2.71 221.5 225.5 0.01 0.433 122 1.64 223.5 225.5 0.01 0.316 106 2.49 225.5 227.5 0.01 0.199 22.8 1.31 227.5 229.3 0.02 0.19 20.9 0.58 229.3 230.5 0.01<	204	205.2	0.44	0.187	229	27.6
208209.50.960.44170220209.5210.50.260.3832497.06210.52120.050.10973.11.222122140.020.17164.90.812142160.010.09740.61.12162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.1461.581.56253.3255	205.2	206.5	0.44	0.397	489	19.85
209.5210.50.260.3832497.06210.52120.050.10973.11.222122140.020.17164.90.812142160.010.09740.61.12162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.68246248 <td>206.5</td> <td>208</td> <td>0.6</td> <td>0.373</td> <td>554</td> <td>18.4</td>	206.5	208	0.6	0.373	554	18.4
210.5 212 0.05 0.109 73.1 1.22 212 214 0.02 0.171 64.9 0.81 214 216 0.01 0.097 40.6 1.1 216 218 0.01 0.269 119.5 2.05 218 219.9 0.03 0.881 201 1.13 219.9 221.5 0.01 0.335 91.1 2.71 221.5 223.5 0.01 0.433 122 1.64 223.5 225.5 0.01 0.316 106 2.49 225.5 227.5 0.01 0.199 20.9 0.58 229.3 230.5 0.01 0.111 12.9 0.41 230.5 232 0.01 0.104 19.65 0.23 232.6 0.01 0.396 8.32 0.15 232.6 234 0.01 0.124 6.25 0.23 234 236 0.01 0.	208	209.5	0.96	0.441	702	20
2122140.020.17164.90.812142160.010.09740.61.12162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232.232.60.010.3968.320.152342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432462480.010.11722.30.422502520.010.1461.581.56253.32550.010.13342.92.48	209.5	210.5	0.26	0.383	249	7.06
2142160.010.09740.61.12162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.10419.650.23230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.11722.30.422502520.010.13342.92.48251253.32550.010.13342.92.48	210.5	212	0.05	0.109	73.1	1.22
2162180.010.269119.52.05218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432462480.010.16559.51.682462480.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	212	214	0.02	0.171	64.9	0.81
218219.90.030.8812011.13219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	214	216	0.01	0.097	40.6	1.1
219.9221.50.010.33591.12.71221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.10419.650.23230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.20867.10.592482500.010.11722.30.422502520.010.1461.581.56253.32550.010.13342.92.48	216	218	0.01	0.269	119.5	2.05
221.5223.50.010.4331221.64223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	218	219.9	0.03	0.881	201	1.13
223.5225.50.010.3161062.49225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.11722.30.422482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	219.9	221.5	0.01	0.335	91.1	2.71
225.5227.50.010.09922.81.31227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.17722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	221.5	223.5	0.01	0.433	122	1.64
227.5229.30.020.1920.90.58229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.11722.30.422482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	223.5	225.5	0.01	0.316	106	2.49
229.3230.50.010.11112.90.41230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	225.5	227.5	0.01	0.099	22.8	1.31
230.52320.010.10419.650.23232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.16559.51.682462480.010.10867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	227.5	229.3	0.02	0.19	20.9	0.58
232232.60.010.3968.320.15232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	229.3	230.5	0.01	0.111	12.9	0.41
232.62340.010.1246.250.232342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	230.5	232	0.01	0.104	19.65	0.23
2342360.010.0974.770.152362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	232	232.6	0.01	0.396	8.32	0.15
2362380.020.2264.20.172382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.16559.51.682442460.010.10867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	232.6	234	0.01	0.124	6.25	0.23
2382390.010.0867.70.26239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	234	236	0.01	0.097	4.77	0.15
239240.20.180.3255.420.25240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	236	238	0.02	0.226	4.2	0.17
240.22410.040.1756.690.932412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	238	239	0.01	0.086	7.7	0.26
2412420.010.20429.20.472422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.13342.92.48	239	240.2	0.18	0.325	5.42	0.25
2422440.010.232740.432442460.010.16559.51.682462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.1461.581.56253.32550.010.13342.92.48	240.2	241	0.04	0.175	6.69	0.93
244 246 0.01 0.165 59.5 1.68 246 248 0.01 0.208 67.1 0.59 248 250 0.01 0.117 22.3 0.42 250 252 0.01 0.094 4.69 0.44 252 253.3 0.01 0.133 42.9 2.48	241	242	0.01	0.204	29.2	0.47
2462480.010.20867.10.592482500.010.11722.30.422502520.010.0944.690.44252253.30.010.1461.581.56253.32550.010.13342.92.48	242	244	0.01	0.232	74	0.43
2482500.010.11722.30.422502520.010.0944.690.44252253.30.010.1461.581.56253.32550.010.13342.92.48	244	246	0.01	0.165	59.5	1.68
2502520.010.0944.690.44252253.30.010.1461.581.56253.32550.010.13342.92.48	246	248	0.01	0.208	67.1	0.59
252 253.3 0.01 0.146 1.58 1.56 253.3 255 0.01 0.133 42.9 2.48	248	250	0.01	0.117	22.3	0.42
253.3 255 0.01 0.133 42.9 2.48	250	252	0.01	0.094	4.69	0.44
	252	253.3	0.01	0.146	1.58	1.56
255 256.35 0.01 0.129 1.25 1.65	253.3	255	0.01	0.133	42.9	2.48
	255	256.35	0.01	0.129	1.25	1.65

Assay results for TS-DH22

From (m)	To (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
0	2	0.45	0.317	662	3.35
2	4	0.51	0.341	764	2.35
4	6	0.95	0.536	1210	3.58
6	8	1.07	0.701	1540	5.62
8	10	0.73	0.697	1260	4.95
10	12	1.92	1.2	941	6.71
12	14	2.17	1.395	989	8.82

14	16	0.6	0.959	708	3.69
14	10	0.0	1.245	577	5.26
		-		-	
18	20	0.44	0.491	409	3.34
20	21.7	0.26	0.498	300	9.05
21.7	24	0.25	0.401	242	13.3
24	26	0.48	0.821	391	98.8
26	28	0.57	1.08	678	41.9
28	30	0.47	0.633	455	25.4
30	32	0.26	0.27	189.5	13.25
32	34	0.62	0.61	571	47.4
34	36	0.41	0.57	416	26.3
36	38.3	0.93	1.155	926	90.6
38.3	39.4	1.3	1.16	961	229
39.4	40.5	1.34	0.857	825	93.7
40.5	42	0.25	0.334	252	23.1
42	44	0.48	0.772	508	27
44	46	0.92	1.25	902	58.6
46	48	0.33	0.512	295	17.2
48	50	0.24	0.279	162.5	9.73
50	52	0.2	0.194	96.2	3.81
52	54	0.18	0.186	152	13.7
54	56	0.74	0.4	267	31
56	58	0.58	0.464	436	30
58	60	1.1	0.442	520	20.4
60	62	0.87	0.321	474	10.6
62	64	1.12	0.527	738	55.5
64	66	0.9	0.554	718	21.1
66	68	1.16	0.804	885	101
68	70	0.74	0.687	740	23.6
70	72	0.51	0.289	344	11.05
72	74	0.33	0.285	264	104
74	76	0.45	0.661	445	22.7
76	78	0.76	0.766	570	50.4
78	80	0.45	0.833	395	83.4
80	82	0.46	0.725	444	28.2
80	83.5	0.53	0.601	494	31.5
83.5	83.3	1.29	1.34	1050	54.7
84.7	86	0.45	0.711		
				389	15.6
86	88	1.12	1.135	763	80.9
88	90	1.34	1.155	926	58.8
90	92	0.49	0.914	612	29.9
92	94	0.93	0.708	646	58.8
94	95.5	0.43	0.338	356	25.3
95.5	96.5	0.73	0.586	488	31.5
96.5	98	0.58	0.551	579	22.7
98	100	0.42	0.411	531	25.9
100	102	0.54	0.509	762	28
102	104	1.19	1.06	1535	53.4

104	106	0.32	0.413	545	30.3
106	108	0.86	1.265	1235	23.7
108	110	0.15	0.506	393	23.3
110	112	0.73	0.854	934	137
112	114	0.32	0.523	554	64
114	116	0.18	0.368	393	141.5
116	118	0.22	0.355	383	144
118	120	0.45	1.16	436	179
120	122	0.55	1.3	425	50.1
122	124	0.43	1.025	697	50.4
124	126	0.65	0.948	1095	74.6
126	128	0.82	1.445	1005	119.5
128	130	1.14	1.91	1510	229
130	132	0.37	0.762	637	58.3
132	134	0.65	2.19	1210	125.5
134	136	0.45	2.17	1080	68.3
136	138	3.12	4	3480	99.4
138	139.7	1.14	3.16	4090	49.8
139.7	140.8	0.75	2.79	1295	55.3
140.8	142	1.28	2	1740	212
142	144	4.12	1.61	1780	152.5
144	146	1.07	0.862	848	129
146	148	0.71	0.929	1010	69.4
148	150	0.5	0.614	692	42
150	152.2	0.44	0.363	436	22.8
152.2	154.2	0.76	1.66	968	215
154.2	156.4	1.17	2.46	1125	208
156.4	158	0.94	0.918	856	176
158	160	0.36	0.909	407	34.9
160	162	0.79	1.135	735	137.5
162	162	0.46	0.969	413	30.8
164	166	1.04	1.67	947	76.5
166	168	1.85	1.07	1135	62.4
168	170	0.79	0.621	579	178
170	170	0.15	0.263	150.5	10.2
170	172	0.15	0.203	265	46.4
172	174	0.48	0.273	411	126.5
174	170	0.48	0.383	239	120.5
			0.383		
178	180	0.35		266	45.5
180	182	0.88	0.694	418	78.4
182	184	1.01	0.785	616	125
184	186	0.74	0.446	381	77
186	188	1.38	0.493	565	97.5
188	190	0.36	0.311	168.5	22.3
190	192	1.09	1.06	649	23
192	194	0.43	0.234	205	32.6
194	196	0.31	0.397	231	11.75
196	198	1.21	0.906	735	162

198	200	0.62	0.437	345	44.9
200	200	0.62	0.437	360	24.9
200	202	0.79	0.626	446	44.1
202	204	0.39	0.392	285	17
	200		0.392		10.4
206		0.27		171	
208	210	0.41	0.404	262	27.9
210	212	0.6	0.491	401	18.8
212	214	0.84	0.519	375	28.2
214	216	0.7	1.245	419	25.1
216	218	0.95	0.434	508	35.5
218	220	1.58	0.726	710	27.3
220	221	0.87	0.384	283	35.1
221	221.5	0.54	0.432	325	25.2
221.5	222.5	0.34	0.248	230	28.9
222.5	224	0.91	0.311	265	45.5
224	226	0.84	0.608	682	46.6
226	228	0.53	0.25	363	25.1
228	230	0.69	0.291	473	38.5
230	232	0.85	0.518	705	147
232	234	0.37	0.43	351	54.5
234	236	0.82	1.145	736	46.4
236	238	0.56	0.579	393	24.7
238	240	0.79	0.465	595	38.3
240	242	0.36	0.336	250	17.65
242	244	0.7	0.35	510	22.9
244	245.8	0.74	0.391	396	16.85
245.8	248	0.88	0.486	719	34.5
248	250	1.1	0.614	833	29.5
250	252	1.21	1.56	817	29.4
252	254	1.13	0.452	762	19.6
254	256	0.8	0.572	612	35.9
256	258	0.96	0.646	655	48.5
258	260	0.91	0.657	726	41.5
260	260.85	0.68	0.526	337	23.2
260.9	262	0.78	0.521	599	78.5
262	264	0.52	0.558	527	56.1
264	266	0.37	0.294	361	41.3
266	268	0.47	0.346	400	112
268	270	0.41	0.194	282	37.4
270	270	0.59	0.463	442	110
270	272	0.73	0.453	761	93.2
272	274	0.58	0.332	376	64
274	278	0.66	0.519	522	42.2
270	278	0.54	0.226	339	49.9
278	280	0.34	0.220	535	36.9
280	282	0.7	0.619	750	50.9
282	284	0.87	0.619	513	22.1
				513	
286	288	0.58	0.391	544	19.2

288	290	0.45	0.255	255	12.25
			0.255	355 204	13.25
290	292	0.31	0.165	-	11.3
292	293.9	0.22	0.196	149	7.09
293.9	296	0.78	0.996	950	18.75
296	298	0.44	0.385	303	11.15
298	300	1.02	0.553	488	13.3
300	301.7	0.96	0.517	596	33.3
301.7	302.6	3.71	1.28	1780	50
302.6	304	1.13	0.388	608	20.5
304	306	0.97	0.417	652	21.1
306	308	0.72	0.356	509	52
308	310	0.86	0.486	641	32.2
310	312	0.74	0.497	687	19.95
312	314	0.54	0.379	505	11.45
314	316	0.56	0.353	542	19.5
316	318	0.55	0.501	520	37.9
318	320	0.62	0.78	789	45.8
320	322	0.86	0.77	764	160
322	324	0.56	0.379	442	20.7
324	326	0.45	0.336	468	17.75
326	328	0.38	0.341	412	20.3
328	329	0.36	0.331	400	19.85
329	329.7	0.32	0.273	228	13.7
329.7	332	0.27	0.198	269	18.2
332	334	0.22	0.304	323	18.55
334	336	0.29	0.775	579	29.7
336	337.2	0.25	0.356	392	26.5
337.2	338.8	0.12	0.112	88.6	20.5
338.8	340	0.12	0.222	274	10.25
340	340	0.17	0.222	293	9.41
342	344	0.17	0.529	465	10.7
342	344	0.20	0.752	489	17.45
344				357	i
	347.6	0.34	1.22		14.3
347.6	349.8	0.75	1.01	854	14.5
349.8	352	0.21	0.394	234	7.48
352	354	0.24	0.652	386	16.5
354	356	0.22	0.632	398	13.2
356	358	0.27	0.493	562	11.1
358	359.5	0.17	0.265	282	5.21
359.5	360.55	0.14	0.166	189.5	7.12
360.6	361.7	0.41	1.425	591	21.7
361.7	364	0.01	0.21	44.1	0.79
364	366	0.04	0.325	68.5	0.6
366	368	0.02	0.201	50.4	2.51
368	369.9	0.02	0.144	5.58	0.5
369.9	372	0.01	0.12	54.4	1.07
372	374	0.01	0.303	149	1.97
374	375.5	0.01	0.178	77.2	1.49

375.5	376.6	0.01	0.264	106	1.54
376.6	377.3	0.005	0.071	31.7	1.2
377.3	379.2	0.005	0.219	100.5	1.85
379.2	380	0.01	0.097	154	0.42
380	382	0.01	0.106	218	0.16
382	384	0.005	0.156	168.5	0.25
384	386	0.005	0.171	131.5	0.22
386	388	0.03	0.751	128.5	0.32
388	390	0.11	2.09	122	0.4
390	392	0.03	0.542	118	0.17
392	394	0.01	0.223	138.5	0.29
394	396	0.01	0.171	121.5	0.26
396	398	0.01	0.156	114	0.25
398	400	0.01	0.114	101.5	0.28
400	402	0.005	0.104	123	0.21
402	404	0.005	0.05	123	0.23
404	406	0.005	0.078	117.5	0.23
406	408	0.005	0.08	105	0.19
408	410	0.005	0.108	99.7	0.21
410	412	0.005	0.097	131.5	0.18
412	414	0.005	0.065	113	0.16
414	416	0.005	0.081	111.5	0.2
416	418	0.005	0.086	118	0.21
418	420	0.02	0.187	110.5	0.18
420	422	0.005	0.174	125	0.16
422	424	0.005	0.066	107	0.22
424	425.45	0.005	0.097	118	0.19

Assay results for TS-DH23

From (m)	To (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
0	2	0.53	2.18	532	5.07
2	4	0.92	1.75	1040	5.48
4	6	0.82	0.87	951	5.06
6	8	0.66	1.665	730	8.91
8	10	0.77	2.29	772	4.33
10	12	0.46	1.34	1010	2.34
12	14	1.14	0.975	1400	2.78
14	16	0.96	0.799	1150	4.49
16	18	0.49	1.855	1060	4.52
18	20	1.15	1.77	1495	8.54
20	22	1.44	2.29	1580	6.56
22	23.5	1.97	1.575	1425	6.45
23.5	24.6	1.44	1.23	1155	3.65
24.6	26	1.11	1.55	1215	19.5
26	28	0.82	0.846	835	38.8
28	30	0.58	0.559	396	24.4
30	32	0.57	0.736	487	77.3

34	0.25	0.462	258	11.85
36	0.63	0.581	619	39.3
38	0.54	0.481	504	49.7
40	0.42	0.285	301	22.8
42	1.5	0.768	1040	78
44	0.49	0.179	252	175
46	0.12	0.165	117.5	9.9
48	0.15	0.168	134	8.17
49.6	0.23	0.168	261	15.9
49.9	2.39	0.419	140	23.9
51	0.53	0.446	475	35.7
52	0.22	0.248	190.5	9.91
54	0.43	0.428	372	9.71
56	0.35	0.339	332	44.2
58	0.69	0.436	533	115
60	0.49	0.459	418	24.6
62	0.28	0.29	258	19.6
64	0.67	0.552	548	50.9
66	0.44	0.34	419	38
68	0.36	0.292	255	18.6
70	0.1		113	4.66
72	0.52	0.404	396	18.75
74	1.07	1.085	1085	64.3
76	0.97	0.877	1035	62.9
78				32.3
				25.3
				21.2
84		0.274	206	16.5
		0.402		24.9
		0.582		53.7
	0.4	0.407	416	43.2
92	0.48	0.403	398	42.2
				58
				13.15
				29.9
				89.1
				42.5
				26.9
				26
				28.2
				8.71
				16.2
				14.05
				8.81
				10.05
	5	555		_0.00
116.7	0.83	0.662	651	18.65
116.7 118.2	0.83 0.64	0.662 0.775	651 651	18.65 22.2
	36 38 40 42 44 46 48 49.6 49.9 51 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 90	36 0.63 38 0.54 40 0.42 42 1.5 44 0.49 46 0.12 48 0.15 49.6 0.23 49.9 2.39 51 0.53 52 0.22 54 0.43 56 0.35 58 0.69 60 0.49 62 0.28 64 0.67 66 0.44 68 0.36 70 0.1 72 0.52 74 1.07 76 0.97 78 0.51 80 0.38 82 0.21 94 0.46 95 0.54 90 0.4 92 0.48 94 0.46 95 0.51 88 0.54 96	36 0.63 0.581 38 0.54 0.481 40 0.42 0.285 42 1.5 0.768 44 0.49 0.179 46 0.12 0.165 48 0.15 0.168 49.6 0.23 0.168 49.9 2.39 0.419 51 0.53 0.446 52 0.22 0.248 54 0.43 0.428 56 0.35 0.339 58 0.69 0.436 60 0.49 0.459 62 0.28 0.29 64 0.67 0.552 66 0.44 0.34 68 0.36 0.292 70 0.1 0.135 72 0.52 0.404 74 1.07 1.085 76 0.97 0.877 78 0.51 0.652 80	36 0.63 0.581 619 38 0.54 0.481 504 40 0.42 0.285 301 42 1.5 0.768 1040 44 0.49 0.179 252 46 0.12 0.165 117.5 48 0.15 0.168 134 49.6 0.23 0.168 261 49.9 2.39 0.419 140 51 0.53 0.446 475 52 0.22 0.248 190.5 54 0.43 0.428 372 56 0.35 0.339 332 58 0.69 0.436 533 60 0.49 0.459 418 62 0.28 0.29 255 70 0.1 0.135 113 72 0.52 0.404 396 74 1.07 1.085 1085 76 0

120	122	1.29	1.255	1055	30.6
122	124	1.38	0.843	881	41.2
124	126	0.4	0.352	245	33
126	128	1	0.761	524	24.5
128	130	0.77	0.493	422	28.2
130	132	1.09	0.398	310	25.6
132	134	0.75	0.549	352	7.53
134	136	1.5	0.606	528	18.35
136	138	0.72	0.722	433	9.85
138	140	0.88	0.67	534	24
140	142	0.57	0.397	312	8.97
142	144	0.86	0.504	598	8.93
144	145.4	0.55	0.334	288	11
145.4	146.5	0.81	0.415	495	15.1
146.5	148	1.91	0.615	807	32.3
140:5	150	0.98	0.542	659	33.5
140	150	0.79	0.484	573	30
150	152	0.79	0.495	489	50.2
152	154	0.91	0.85	763	41.9
154	150	1.42	0.618	743	58.1
158	160	0.4	0.633	401	36.6
158	161.5	0.4	0.713	564	95.6
161.5	161.3	0.84	0.642	426	32.7
161.5	162.7	0.52	0.665	390	13.2
162.7	165.2	0.31	1.195	475	9.27
164	165.8	0.31	5.93		
165.2		0.29	2.2	208 441	2.38 23
165.8	166.5 168	0.75	0.752	184.5	11.65
168	170	0.37	0.944	392 405	11.35
170	172	0.49	1.09 0.906	365	17.35
172	174	0.34			29.7
174	176	0.45	1.05	296	30.7
176	178	0.23	0.523	172.5	13.2
178	180	0.2	0.511	232	11.45
180	182	0.32	1.035	351	13.6
182	184	0.19	0.449	344	15.05
184	186	0.24	0.37	154.5	10.3
186	188	0.34	0.467	211	12.75
188	190	0.7	1.025	351	66.9
190	192	0.44	0.725	326	26.2
192	193.5	0.21	0.484	224	8.51
193.5	195.5	1.02	1.325	747	21.6
195.5	197.41	1.34	1.975	1070	33.5
197.41	199	1.6	1.835	1030	21.4
199	201	0.28	0.574	351	12.15
201	203	0.66	0.763	539	17.1
203	204.75	0.54	0.923	460	14.3
204.75	206.5	0.79	1.495	541	16.8

206.5	208.5	0.73	2	724	20.3
208.85	210.85	0.83	1.05	720	25.9
210.85	212	1.03	1.895	803	20.5
212	214	0.73	1.47	623	21.2
214	216	0.65	1.035	461	24.2
216	218	0.64	1.125	526	15.4
218	220	0.85	1.27	635	20.9
220	220	0.42	0.85	483	20.5
220	222	0.42	1.135	653	31.6
224	224	0.57	1.135	596	35.6
224	220	0.74	1.175	607	15.2
228	230	0.47	1.05	445	11.1
					18.85
230	231.4 233	0.63	0.903	616 389	23.6
233	234.35	0.5	0.576	353	15.7
234.35	236	0.49	1.67	497	40
236	238	0.31	0.686	307	25.5
238	240	0.39	0.881	372	16.45
240	242	0.36	0.715	373	22.8
242	244	0.58	1.015	724	25.9
244	246	0.39	1.08	508	20.9
246	248	0.46	1.04	448	22.4
248	250	0.57	0.677	561	23.2
250	252	0.58	0.821	567	22.6
252	254	0.75	1.035	694	33
254	256	1	1.18	826	17.2
256	258	0.43	0.667	441	18.55
258	258.7	0.48	0.743	485	15.6
258.7	260	0.25	0.556	345	14.65
260	261.95	0.2	0.599	222	13.55
261.95	263.5	0.5	0.512	507	51.8
263.5	264.5	0.33	0.468	357	16.95
264.5	266	0.17	0.407	224	12.5
266	268	0.28	0.528	253	15.85
268	270	0.54	0.68	406	16
270	272	0.34	0.425	206	14.9
272	274	0.26	0.37	164.5	8.35
274	275.5	0.88	1.015	423	9.03
275.5	277	0.63	0.988	367	12
277	278.2	0.69	1.105	491	12.3
278.2	279.5	1.61	3.61	1120	22.5
279.5	280.8	2.28	1.29	771	17.3
280.8	282.5	0.33	0.529	272	15.8
282.5	284.5	0.28	0.995	273	13.5
284.5	286.5	0.41	0.962	302	16.3
286.5	288.5	0.38	1.325	327	24.7
				405	
290.5					
288.5	290.5 291.8	0.38 0.48	1.595 0.845	405 264	15.9 12.3

291.8	293.8	0.27	0.49	279	10.6
291.8	295.8	0.54	0.45	447	10.05
295.8	297.8	0.35	0.626	341	10.05
295.8	297.8	0.18	0.429	200	15.75
297.8		0.18		81.4	4.97
	301.8		0.22		
301.8	303.8	0.38	0.52	433	78.5
303.8	305.8	0.09	0.207	97.6	14.65
305.8	307.8	0.14	0.303	103.5	10.3
307.8	309.8	0.07	0.178	73.5	7.32
309.8	311.2	0.25	0.485	289	20.6
311.2	313	0.23	0.583	280	10.4
313	314	0.26	0.704	303	32.5
314	316	0.12	0.319	140	16.5
316	318	0.45	0.5	367	26.6
318	320	0.27	0.201	123.5	9.91
320	321.15	0.23	0.286	125	4.43
321.15	323.15	0.3	0.412	155.5	10.2
323.15	325.15	0.13	0.242	66.6	6.92
325.15	326.6	0.26	0.243	123	13.9
326.6	328	0.19	0.196	156.5	7.94
328	330	0.31	0.213	176	6.18
330	332	0.25	0.323	244	12.45
332	334	0.34	0.418	341	25.6
334	335.55	0.96	0.582	656	67.8
335.55	337.55	0.61	3.12	757	73.8
337.55	339.22	0.36	2.41	690	94
339.22	341	2.12	0.764	909	74.4
341	342	0.2	2.26	159	8.09
342	344	0.37	0.436	171.5	34.7
344	346	0.24	0.342	301	10.85
346	347.2	0.16	0.192	140.5	5.5
	347.2			140.5	
347.2		0.14	0.178		3.81
349	351	0.5	0.478	310	41.5
351	353.25	0.38	0.245	237	7.49
353.25	355.55	0.36	0.243	250	27.4
355.25	357	0.21	0.229	208	16.9
357	358	0.12	0.145	98.8	4.8
358	360	0.93	0.394	495	427
360	362	0.37	0.438	344	18.1
362	364	0.18	0.222	133	12.2
364	366	0.16	0.248	176.5	8.97
366	368	0.39	0.418	313	30.4
368	370	0.24	0.213	163.5	9.56
370	372	0.16	0.187	151	7.94
372	374	0.22	0.293	186.5	15.2
	076	0.40	0 25 4	129	4.85
374	376	0.16	0.254	129	4.05
374 376	376 378	0.16	0.234	123	5.27

380	382	0.3	0.193	297	12.35
382	384	0.18	0.193	134.5	10.35
384	386	0.17	0.208	115.5	10.5
386	388	0.14	0.118	57.4	6.33
388	390	0.27	0.199	210	7.99
390	392	1.26	1.135	792	49.5
392	394	0.42	0.299	347	15.15
394	396	0.2	0.251	210	8.37
396	398	0.14	0.163	78.4	10.5
398	400	0.13	0.162	61.5	4.73
400	402	0.1	0.206	44.8	5.74
402	404	0.07	0.172	38.8	2.53
404	406	0.08	0.194	50.6	4.21
406	408	0.16	0.302	123.5	6.53
408	410	0.13	0.162	81.6	9.31
410	412	0.17	0.18	89.1	9.32
412	414	0.16	0.206	84.6	4.81
414	416	0.1	0.104	50.7	2.83
416	418	0.11	0.184	106	1.72
418	420	0.07	0.067	42.8	0.88
420	422	0.06	0.08	52.2	1
422	424	0.14	0.16	105	15.25
424	426	0.14	0.141	74.7	1.13
426	428	0.13	0.232	77.2	1.86
428	430	0.09	0.191	35.4	1.17
430	432	0.2	0.347	184.5	10.1
432	434	0.17	0.203	109	1.04
434	436	0.13	0.258	76.4	6.38
436	438	0.15	0.229	130.5	5.7
438	440.65	0.15	0.165	112	11.1
440.65	442.7	0.11	0.169	79.4	3.97
442.7	444	0.08	0.057	37.9	0.69
444	446	0.14	0.148	99.8	8.55
446	448	0.26	0.242	131	1.87
448	450	0.47	0.24	158.5	6.17
450	452	0.11	0.166	79.1	1.81
452	454	0.12	0.195	51.9	0.95
454	456	0.23	3.21	158	9.4
456	458	0.06	0.338	31.5	0.78
458	460	0.12	0.134	39.1	1.02
460	462	0.07	0.166	63.8	1.13
462	464	0.04	0.198	21.9	0.54
464	466	0.04	0.118	32.5	0.71
466	468	0.1	0.176	47.5	0.61
468	470	0.08	0.149	44	1.7
470	472	0.05	0.105	41.7	9.45
472	473.6	0.05	0.174	48.7	0.48

Assay results for CHDDH12

From (m)	To (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
0.00	2.00	0.13	0.496	48.3	2.8
2.00	4.00	0.06	0.156	37.2	1.6
4.00	6.00	0.04	0.162	38.2	2.68
6.00	8.00	0.17	0.208	81.4	17.5
8.00	10.00	0.08	0.151	37.7	8.93
10.00	11.00	0.12	0.137	39.6	9.03
11.00	12.20	0.25	0.183	67.4	17.35
12.20	14.00	0.67	0.345	97.1	49.5
14.00	16.00	0.1	0.177	47	9.15
16.00	18.00	0.33	0.692	91.2	12.85
18.00	20.00	0.51	2.04	133	14.4
20.00	22.00	0.07	0.176	47.7	7.73
22.00	24.00	0.09	0.22	80	8.61
24.00	26.00	0.22	0.201	48.6	6.17
26.00	28.00	0.19	0.483	63	7.21
28.00	30.00	0.15	0.235	81.6	9.27
30.00	32.00	0.19	0.228	67.2	9.2
32.00	34.00	0.2	0.256	95.3	9.77
34.00	36.00	0.23	0.397	130	13.55
36.00	38.00	0.15	0.279	98.8	9.31
38.00	40.00	0.29	0.259	98.8	10.35
40.00	42.00	0.62	0.519	194	8.64
42.00	44.00	0.2	0.401	77.7	8.05
44.00	46.00	0.3	0.25	139	8.6
46.00	47.50	0.21	0.268	79.3	6.82
47.50	48.90	0.2	0.396	131.5	7.51
48.90	50.00	0.2	0.331	142.5	6.4
50.00	52.00	0.5	0.491	186.5	7.31
52.00	54.00	0.28	0.338	162	7.41
54.00	56.00	0.1	0.212	87.6	5.37
56.00	57.10	0.25	1.815	200	9.4
57.10	58.50	0.13	0.217	129	8.27
58.50	60.00	0.34	0.551	409	12.45
60.00	62.00	0.22	0.645	197.5	8.01
62.00	64.00	0.33	0.673	294	8.24
64.00	66.00	0.25	0.401	214	7.49
66.00	68.00	0.08	0.204	101	8.85
68.00	70.00	0.16	0.316	163	7.14
70.00	72.00	0.2	0.283	187.5	5.76
72.00	74.00	0.38	0.64	507	6.12
74.00	76.00	0.08	0.236	147.5	5.64
76.00	78.00	0.16	0.416	154	7.66
78.00	80.00	0.04	0.131	54.2	6.1
80.00	81.50	0.02	0.069	11.65	4.45
81.50	82.80	0.24	0.336	221	9.91

28 May 2021 ASX Announcement ASX: LCL

82.80	83.50	1.47	0.721	135.5	6.62
83.50	85.80	0.14	0.153	96.9	5.96
85.80	88.00	0.05	0.133	61	11.3
88.00	88.40	0.11	0.319	176	19.05
88.40	90.00	0.07	0.23	85.3	6.17
90.00	92.00	0.07	0.164	64	12.2
92.00	94.00	0.13	0.259	103.5	4.54
94.00	96.00	0.13	3.83	200	4.95
96.00	98.00	1.01	1.68	66.4	4.58
98.00	100.00	0.08	0.187	42.2	4.61
100.00	100.00	0.06	0.209	57.1	15.85
102.00	102.00	0.07	0.142	49	5.36
102.00	104.00	0.06	0.142	42.4	6.4
104.00	108.00	0.2	0.218	56.3	22.7
108.00	110.00				4.41
108.00	110.00	0.05	0.252	67.3 224	8.92
110.00	112.00	0.16	0.403	89.3	6.26
112.00	114.00 116.00	0.15	0.222		6.09
114.00	116.00	0.05	0.168	28.9 35.3	4.5
118.00	120.00	0.12	0.274	88.6	13.8
120.00	122.00	0.21	0.341	32.3	10.4
122.00	124.00	0.85	0.689	44.1	7.56
124.00	126.00	0.11	0.155	26.8	6.16
126.00	128.00	0.33	0.298	47.9	8.35
128.00	130.00	0.17	0.336	130.5	11.1
130.00	132.00	0.12	0.259	84.6	7.91
132.00	134.00	0.06	0.189	35	5.64
134.00	136.00	0.06	0.242	58.5	17.4
136.00	138.00	0.06	0.197	36.2	17.25
138.00	140.00	0.05	0.169	29.1	12.25
140.00	141.50	0.07	0.239	27.8	16.95
141.50	142.80	0.11	0.288	90	37.4
142.80	144.00	0.02	0.12	37.6	8.68
144.00	146.00	0.26	0.369	49.5	11.35
146.00	148.00	0.09	0.244	101.5	27.5
148.00	150.00	0.19	0.422	115	50.3
150.00	152.00	0.04	0.171	64.2	10.55
152.00	154.00	0.02	0.103	21.7	14.2
154.00	156.00	0.03	0.135	42.9	13.9
156.00	158.00	0.05	0.152	56.8	8.92
158.00	160.00	0.06	0.195	69.2	14.8
160.00	162.00	0.53	1.425	599	12
162.00	164.00	0.09	0.245	85.4	10.85
164.00	166.00	0.02	0.152	37.4	6.93
166.00	168.00	0.02	0.112	39.7	5.44
168.00	169.80	0.05	0.144	49	11.45
169.80	170.20	3.41	2.35	34.5	5.18
170.20	172.00	0.09	0.192	48.2	9.45

172.00	174.00	0.21	0.251	66.7	15.3
174.00	176.00	0.05	0.175	46.6	7.12
176.00	178.00	0.17	0.225	45.4	6.61
178.00	180.00	0.02	0.051	14.1	4.13
180.00	182.00	0.12	0.118	66.6	23.6
182.00	184.00	0.12	0.285	115	13.35
182.00	186.00	0.13	0.235	47.2	10.5
184.00	188.00	0.04	0.087	20.6	5.81
188.00	190.00	0.01	0.087	28.2	5.37
190.00	190.00	0.03	0.073	35.1	5.28
190.00	191.00	0.03	0.15	33.4	8.52
191.00	192.00	0.24	0.314	28.5	6.91
192.00				40	
	196.00	0.06	0.226	26.8	13.55
196.00	198.00 200.00		0.186		15.85
198.00		0.38	2.64	111.5	14.2
200.00	201.50	0.55	1.155	116.5	11.45
201.50	202.80	0.1	3	92.3	11.6
202.80	204.00	0.04	0.151	50.9	7.59
204.00	206.00	0.03	0.107	16.7	3.37
206.00	208.00	0.04	0.134	12.75	13.75
208.00	210.00	0.11	0.353	45.1	30.2
210.00	211.20	0.16	0.517	274	12.75
211.20	212.50	0.07	0.228	68.9	9.16
212.50	214.00	0.08	0.241	65.2	12.45
214.00	216.00	0.13	0.265	73.2	12.85
216.00	218.00	0.13	0.241	90.3	14.7
218.00	220.00	0.15	0.242	43.4	17.1
220.00	222.00	0.08	0.175	40.8	9.79
222.00	224.00	0.12	0.216	74.2	12.55
224.00	226.00	0.13	0.192	70.1	12.25
226.00	228.00	0.07	0.204	60.2	17.5
228.00	230.00	0.1	0.223	64	18.7
230.00	232.00	0.09	0.217	65.4	14.9
232.00	234.00	0.12	0.263	67.5	17.55
234.00	236.00	0.09	0.189	54.5	8.63
236.00	238.00	0.15	0.243	102	28.5
238.00	240.00	0.12	0.241	61.7	6.02
240.00	242.00	0.09	0.194	75.6	9.65
242.00	244.00	0.16	0.239	137	30.6
244.00	246.00	0.14	0.161	75.7	10.15
246.00	248.00	0.08	0.285	55.7	17.35
248.00	250.00	0.07	0.382	92.4	12.25
250.00	252.00	0.17	0.278	130	20.9
252.00	254.00	0.1	0.299	92.5	15.45
254.00	256.00	0.26	0.42	167.5	11.35
256.00	258.00	0.26	0.308	183.5	10.6
258.00	260.00	0.23	0.258	129.5	11.3

264.00266.000.170.65166.41266.00268.000.140.45456.61268.00270.000.360.786134.513270.00272.000.110.25475.11	
266.00 268.00 0.14 0.454 56.6 1 268.00 270.00 0.36 0.786 134.5 13 270.00 272.00 0.11 0.254 75.1 1	4.7 5.4
268.00 270.00 0.36 0.786 134.5 1333 270.00 272.00 0.11 0.254 75.1 1	5.8
270.00 272.00 0.11 0.254 75.1 1	3.45
	6.6
272.00 274.00 0.07 0.181 61.2 1	1.6
	2.5
	9.2
	5.4
	0.9
	2.9
	1.3
	2.3
	5.35
	0.75 8.3
	5.55
	6.4 5.45
	8.3
	1.8
	2.65
	12
	1.95
	4.2
	.96
	1.3
	5.7
	21
	6.3
	2.6
324.00 326.00 0.04 0.152 25.6 2	1.4
	0.4
328.00 330.00 0.08 0.219 36.2 3	4.9
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1	0.4
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1	0.4 7.9
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1	0.4 7.9 7.7
328.00330.000.080.21936.23330.00332.000.110.26935.81332.00334.000.160.29140.81334.00336.000.10.20448.41336.00338.000.080.21871.52	0.4 7.9 7.7 1.9
328.00330.000.080.21936.23330.00332.000.110.26935.81332.00334.000.160.29140.81334.00336.000.10.20448.41336.00338.000.080.21871.52338.00340.000.090.23451.413	0.4 7.9 7.7 1.9 3.95
328.00330.000.080.21936.23330.00332.000.110.26935.81332.00334.000.160.29140.81334.00336.000.10.20448.41336.00338.000.080.21871.52338.00340.000.090.23451.413340.00342.000.10.2764.713	0.4 7.9 7.7 1.9 3.95 3.95
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 342.00 343.60 0.09 0.255 57.4 13	0.4 7.9 7.7 1.9 3.95 3.95 3.35
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 340.00 342.00 0.1 0.27 64.7 13 343.60 346.00 0.09 0.255 57.4 13	0.4 7.9 7.7 1.9 3.95 3.95 3.35 2.5
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 340.00 342.00 0.1 0.27 64.7 13 343.60 346.00 0.06 0.243 53.3 1	0.4 7.9 7.7 1.9 3.95 3.95 3.35
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 340.00 342.00 0.1 0.277 64.7 13 343.60 346.00 0.06 0.243 53.3 1 343.60 346.00 0.08 0.275 49.4 1 348.00 350.00 0.08 0.271 69.8 12	0.4 7.9 7.7 1.9 3.95 3.95 3.35 2.5
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 340.00 342.00 0.1 0.27 64.7 13 342.00 343.60 0.09 0.255 57.4 13 343.60 346.00 0.06 0.243 53.3 1 348.00 350.00 0.08 0.275 49.4 1	0.4 7.9 7.7 3.95 3.95 3.35 2.5 11
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 340.00 342.00 0.1 0.27 64.7 13 343.60 346.00 0.06 0.243 53.3 1 343.60 346.00 0.08 0.275 49.4 1 348.00 350.00 0.08 0.271 69.8 12 350.00 352.00 0.1 0.18 70.2 1	0.4 7.9 7.7 1.9 3.95 3.95 3.35 2.5 11 2.45
328.00 330.00 0.08 0.219 36.2 3 330.00 332.00 0.11 0.269 35.8 1 332.00 334.00 0.16 0.291 40.8 1 334.00 336.00 0.1 0.204 48.4 1 336.00 338.00 0.08 0.218 71.5 2 338.00 340.00 0.09 0.234 51.4 13 340.00 342.00 0.1 0.27 64.7 13 342.00 343.60 0.09 0.255 57.4 13 343.60 346.00 0.06 0.243 53.3 1 343.60 346.00 0.08 0.275 49.4 1 348.00 350.00 0.08 0.271 69.8 12 350.00 352.00 0.1 0.18 70.2 1 352.00 354.00 0.13 0.265 85.8 18	0.4 7.9 7.7 1.9 3.95 3.95 3.35 2.5 11 2.45 8.2

Т					
357.30	358.50	0.18	0.413	156.5	16.9
358.50	360.00	0.21	0.389	91.7	11.65
360.00	362.00	0.14	0.321	78.9	19.9
362.00	364.00	0.08	0.436	33.4	7.95
364.00	366.00	0.09	0.338	29.4	5.9
366.00	368.00	0.27	0.977	74.3	9.04
368.00	370.00	0.17	0.411	44.6	8.68
370.00	372.00	0.1	0.337	52.6	10.4
372.00	374.00	0.14	0.606	102	22.7
374.00	376.00	0.06	0.305	33.5	24.1
376.00	378.00	0.07	0.292	48.6	11.6
378.00	380.00	0.04	0.257	15.95	3.47
380.00	382.00	0.08	0.26	35.6	7.18
382.00	384.00	0.11	0.259	37.6	13.25
384.00	386.00	0.28	0.436	51	12.05
386.00	388.00	0.09	0.269	34.4	12.35
388.00	389.40	0.08	0.225	32	8.67
389.40	389.90	0.71	0.568	24.8	10.75
389.90	392.00	0.08	0.233	42	8.07
392.00	394.00	0.08	0.2	41.9	27.6
394.00	396.00	0.16	0.268	64.2	134.5
396.00	398.00	0.1	0.183	25.2	17.85
398.00	400.00	0.05	0.169	22.2	6.74
400.00	402.00	0.09	0.206	44.4	10.75
402.00	404.00	0.16	0.232	63.5	41.7
404.00	406.00	0.14	0.225	59.2	10.65
406.00	408.00	0.17	0.277	89.3	34.7
408.00	410.00	0.05	0.201	20.2	5.1
410.00	412.00	0.05	0.151	33.6	7.53
412.00	414.00	0.11	0.21	68.7	12.55
414.00	416.00	0.13	0.227	72.5	14.9
416.00	418.00	0.13	0.265	77.2	9.56
418.00	420.00	0.04	0.197	39.1	5.7
420.00	422.00	0.04	0.161	31	4.48
422.00	424.00	0.06	0.212	58.7	14.1
424.00	426.00	0.05	0.273	82.7	9.29
426.00	428.00	0.16	0.325	231	17.7
428.00	430.00	0.14	0.238	122.5	20.7
430.00	432.00	0.14	0.319	135	25.1
432.00	433.25	1.61	0.226	93.5	15.95
433.25	434.50	0.17	0.220	112.5	22.5
434.50	435.00	0.09	0.192	46	17.95
435.00	436.50	0.03	0.152	37.6	4.54
436.50	438.00	1	6.96	37.0	56
438.00	438.00	0.22	1.125	78.9	11.35
438.00	440.00	0.22	0.481	51.2	5.4
440.00	442.00	0.19	0.481	36.3	6.42
442.00					
444.00	446.00	0.04	0.152	42.4	3.74

446.00	448.00	0.06	0.17	47.6	10.7
448.00	450.00	0.13	0.17	46.9	15.8
450.00	451.90	0.25	1.905	79.8	13.6
451.90	452.80	0.04	0.23	94.2	11.0
452.80	454.70	0.04	0.159	16.7	7.56
454.70	455.15	0.1	0.211	62.1	9.14
455.15	456.60	0.04	0.153	27	6.29
456.60					
	458.10	0.08	0.232	76.8	18
458.10	459.40	0.11	0.233	94.2	36.3
459.40	459.80	0.12	0.085	47.3	9.15
459.80	462.00	0.12	0.245	107.5	19.5
462.00	464.00	0.2	0.277	180.5	14.5
464.00	466.00	0.05	0.194	92.8	16.35
466.00	468.00	0.06	0.163	91.5	26
468.00	470.00	0.03	0.109	58.3	13.05
470.00	472.00	0.06	0.09	44	11.2
472.00	474.00	0.12	0.145	26.6	5.56
474.00	476.00	0.04	0.134	30.4	6.26
476.00	478.00	0.06	0.085	22.6	8.21
478.00	479.50	0.11	0.092	29.2	8.35
479.50	480.70	0.13	0.142	78.5	16.05
480.70	482.00	1.04	0.267	217	52.8
482.00	483.30	0.49	0.147	99.9	45.8
483.30	484.50	1.16	0.116	51.3	15.05
484.50	486.00	0.1	0.134	60.2	8.7
486.00	488.00	0.06	0.112	37.1	12.75
488.00	490.00	0.18	0.178	93.5	10.8
490.00	492.00	0.08	0.12	42.1	6.06
492.00	494.00	0.04	0.092	16	2.34
494.00	496.00	0.39	3.26	92.4	3.17
496.00	498.00	0.09	0.413	64.8	6.98
498.00	500.00	0.46	6.81	181.5	9.1
500.00	502.00	0.44	3.17	122.5	3.98
502.00	504.00	0.08	0.241	26.3	4.07
504.00	506.00	0.08	0.272	46.6	8.33
506.00	508.00	0.16	0.172	97	26.3
508.00	510.00	0.07	0.197	42.1	21.1
510.00	512.00	0.02	0.098	25.2	3.77
512.00	514.00	0.11	0.55	69.6	4.2
514.00	516.00	0.03	0.085	31.2	4.67
516.00	518.00	0.12	0.175	113	12.65
518.00	520.00	0.09	0.113	46.8	62.8
520.00	522.00	0.04	0.09	37.2	12.3
522.00	524.00	0.02	0.082	33	3.54
524.00	526.00	0.02	0.068	28.6	3.92
526.00	528.00	0.02	0.034	11.45	2.19
528.00	530.00	0.03	0.072	26.5	2.43
530.00	532.00	0.03	0.058	28.5	2.43
330.00	332.00	5.05	5.050	20.5	2.77

28 May 2021 ASX Announcement ASX: LCL

532.00	534.00	0.02	0.129	23.6	3.19		
534.00	536.00	0.01	0.031	7.59	5.83		
536.00	538.00	0.04	0.104	61.9	5.51		
538.00	540.00	0.02	0.062	17.7	1.94		
540.00	542.00	0.01	0.036	12.6	2.1		
542.00	544.00	0.04	0.065	13.05	26.3		
544.00	546.00	0.01	0.044	6.64	1.34		
546.00	548.00	0.08	0.111	48.6	3.23		
548.00	550.00	0.03	0.096	32.3	1.81		
550.00	552.00	0.01	0.055	9.72	1.33		
552.00	554.00	0.07	0.085	19	1.9		
554.00	556.00	0.04	0.087	22.2	2.5		
556.00	558.00	0.05	0.086	12.1	1.76		
558.00	560.00	0.04	0.122	36.7	3.32		
560.00	562.00	0.04	0.092	27.2	1.38		
562.00	564.00	0.08	0.171	46	4.77		
564.00	566.00	0.3	0.303	150.5	9.67		
566.00	568.00	0.05	0.118	28	1.41		
568.00	570.00	0.19	0.37	73.2	6.85		
570.00	572.00	0.6	0.327	172.5	14		
572.00	572.80	0.37	0.216	119.5	11.15		
Assav results for CHDDH13							

Assay results for CHDDH13

From (m)	To (m)	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
0.00	2.00	0.15	4.78	103.5	3.43
2.00	4.00	0.14	0.769	56.5	1.78
4.00	6.00	0.04	0.166	33.3	0.94
6.00	8.00	0.06	0.164	46.9	1.22
8.00	10.00	0.09	0.213	59.2	1.74
10.00	12.00	0.05	0.189	24.7	1.19
12.00	14.00	0.07	0.203	50.3	1.92
14.00	16.00	0.04	0.115	33.5	0.98
16.00	18.00	0.12	0.279	76.9	2.03
18.00	20.00	0.15	0.259	91	2.45
20.00	22.00	0.18	0.275	112.5	2.77
22.00	24.00	0.08	0.164	74.3	3.11
24.00	26.00	0.17	0.215	111	4.78
26.00	28.00	0.42	0.463	178.5	3.43
28.00	30.00	0.19	0.235	140	2.73
30.00	32.00	0.27	0.221	128.5	2.92
32.00	34.00	0.3	0.182	121.5	4.65
34.00	36.00	0.25	0.147	78.1	3.01
36.00	38.00	0.38	0.212	88.7	6.35
38.00	40.00	0.16	0.131	42.4	1.98
40.00	41.50	0.15	0.277	40.7	2.42
41.50	42.60	0.59	0.354	101	4.76
42.60	44.00	0.22	0.218	102	3.3
44.00	44.85	0.12	0.332	152	5.2

1	1 1		1	I	I
44.85	46.00	0.18	0.247	96.3	2.59
46.00	47.30	0.3	0.404	134	4.01
47.30	48.50	0.43	0.572	347	4.77
48.50	50.00	0.47	0.474	175	3.44
50.00	52.00	0.35	0.418	120	3.76
52.00	54.00	0.3	0.484	150.5	5.12
54.00	56.00	0.11	0.201	109	6.25
56.00	58.00	0.12	0.344	88.5	5.72
58.00	60.00	0.13	0.353	164.5	11.1
60.00	62.00	0.08	0.864	56.6	9.8
62.00	64.00	0.18	0.392	65	7.76
64.00	66.00	0.23	0.235	117	27.4
66.00	66.80	0.12	0.187	80.1	22.8
66.80	68.40	0.07	0.149	51.4	8.43
68.40	70.00	0.04	0.125	40.6	17.85
70.00	72.00	0.11	0.2	80.6	17.25
72.00	74.00	0.07	0.19	37.2	54
74.00	76.00	0.2	0.477	53.4	28.3
76.00	78.00	0.46	2.43	169.5	20
78.00	80.00	0.4	0.89	232	25.5
80.00	82.00	0.23	0.829	98.9	29.5
82.00	84.00	0.25	0.48	50.8	28
84.00	86.00	0.06	0.139	34.9	2.7
86.00	88.00	0.31	0.174	54.1	3.74
88.00	90.00	0.08	0.178	39.2	5.29
90.00	92.00	0.04	0.188	14.9	2.56
92.00	94.30	0.07	0.189	57	10.5
94.30	95.80	0.06	0.161	34.5	10.75
95.80	98.00	0.16	0.185	58.4	4.37
98.00	100.00	0.6	0.756	240	28.5
100.00	102.00	0.34	0.372	210	10.5
102.00	104.00	0.06	0.134	27.6	18.75
104.00	106.00	0.02	0.088	13.2	10.5
106.00	108.00	0.08	0.151	18.15	2.61
108.00	110.00	0.05	0.134	29.3	5.27
110.00	112.00	0.04	0.125	33.5	3.43
112.00	114.00	0.08	0.123	42	3.45
114.00	116.00	0.24	0.314	183.5	14.6
116.00	118.00	0.24	0.288	183.5	14.0
118.00	120.00	0.34	0.288	39.2	2.96
120.00	120.00	0.14	0.14	72	14.15
120.00	122.00	0.09	0.18	30.9	22.3
122.00	124.00	0.07	0.149	41.5	22.5
126.00	128.00	0.24	0.242	144	15.5
128.00	130.00	0.08	0.138	24.9	7.47
130.00	132.00	0.02	0.09	6.45	1.39
132.00	134.00	0.02	0.087	12.5	2.99
134.00	136.00	0.03	0.112	11.5	2.56

136.00	138.00	0.14	0.213	59.9	5.64
138.00	138.30	0.34	2.31	84.8	16.2
138.30	138.65	0.45	1.63	107.5	15.95
138.65	140.00	0.06	0.15	35.2	5.38
140.00	142.00	0.1	0.182	74.5	25.2
142.00	144.00	0.19	0.188	82.4	9.57
144.00	146.00	0.12	0.154	57.3	3.36
146.00	148.00	0.05	0.12	17.3	1.59
148.00	150.00	0.04	0.137	36.3	2.97
150.00	152.00	0.18	0.176	95.6	3.95
152.00	154.00	0.04	0.111	31.6	8.06
154.00	156.00	0.19	0.233	146	7.95
156.00	158.00	0.1	0.151	93.6	12.4
158.00	160.00	0.05	0.208	32.9	3.17
160.00	162.00	0.08	0.172	33.4	4.55
162.00	164.00	0.11	0.172	67	5.08
164.00	166.00	0.06	0.159	58	7.61
166.00	168.00	0.06	0.159	71.2	4.49
168.00	170.00	0.29	0.337	292	41.6
170.00	172.00	0.43	0.649	155	20.7
170.00	172.00	0.43	0.137	36.1	3.7
172.00	173.30	0.14	0.137	31	2.1
173.30	174.40	0.32	0.129	35.1	6.67
174.40	176.00	0.32	0.146	31.7	5.03
174.70	178.00	0.1	0.140	71.8	19.65
178.00	178.00	0.19	0.208	71.8	19.05
178.00	180.00	0.19	0.208	78.4	40.9
180.00	182.00	0.07	0.174	52	10.05
182.00	184.00	0.07	0.251	32.5	3.6
184.00	188.00	0.04	0.127	40.9	7.09
188.00	190.00	0.04	0.127	35.4	8.11
190.00	191.60	0.07	0.152	20.7	2.98
190.00	191.00	0.97	21.1	20.7	13.2
193.30 194.50	194.50 196.00	0.07	0.228	13.9 20.8	3.79 3.85
194.50	198.00	0.08	0.187	13.15	2.54
198.00	200.00	0.29	0.225	13.15	2.54
200.00	200.00	0.08	0.123	15.05	4.79
200.00	202.00	0.08	0.137	10.8	3.27
202.00	203.80	0.05	0.124	33.2	9.38
203.80	205.30	0.21	0.802	33.2	9.38
205.30					
	208.00	0.15	0.186	57.8	19 5.9
208.00	210.00	0.11	0.244	46.3	
210.00	212.00	0.04	0.121	16.5	3.95
212.00	214.00	0.03	0.153	11.75	15.25
214.00	216.00	0.01	0.126	12.65	3.76
216.00	218.00	0.02	0.137	14.9	3.51
218.00	220.00	0.03	0.139	12.85	3.61

220.00	222.00	0.12	0.171	44.9	9.79
222.00	222.00	0.03	0.171	27.7	6.19
222.00	224.00	0.03	0.138	49.4	10.95
224.00	1	0.08	0.139	37.5	10.95
	228.00				
228.00	229.80	0.04	0.159	17.1	5.04
229.80	230.30	0.07	0.195	18.65	16.2
230.30	232.00	0.15	0.168	33	4.56
232.00	234.00	0.05	0.182	36.3	7.69
234.00	236.00	0.05	0.212	40.9	15.95
236.00	238.00	0.06	0.211	45.6	11.45
238.00	240.00	0.03	0.157	26.8	7.05
240.00	242.00	0.06	0.221	57.3	11.95
242.00	243.50	0.11	0.231	62.9	13.35
243.50	244.60	0.07	0.182	31.3	9.9
244.60	246.00	0.07	0.19	23.1	12.9
246.00	248.00	0.08	0.191	24	5.99
248.00	250.00	0.08	0.207	53.5	6.68
250.00	252.00	0.09	0.221	64.9	7.52
252.00	254.20	0.06	0.137	13.1	5.04
254.20	256.00	0.12	0.121	19.5	7.22
256.00	258.00	1.28	0.159	60	9.06
258.00	260.00	0.16	0.153	24.6	5.21
260.00	262.00	0.005	0.139	16.5	6.48
262.00	264.00	0.04	0.115	10.45	2.11
264.00	266.00	0.08	0.119	14.45	2.35
266.00	268.00	0.12	0.159	35.7	2.66
268.00	270.00	0.39	0.2	26.1	4.62
270.00	272.00	0.21	0.182	28	5.11
272.00	274.00	0.17	0.348	24.4	5.41
274.00	276.00	0.16	0.181	39.1	3.88
276.00	278.00	0.06	0.119	21.5	2.12
278.00	280.00	0.12	0.157	25.7	2.21
280.00	282.00	0.17	0.138	27.3	1.8
282.00	284.00	0.25	0.157	15.8	2.21
284.00	286.00	0.22	0.69	31.4	2.42
286.00	288.00	0.18	0.264	31.3	3.11
288.00	290.00	0.11	0.194	30.3	4.91
290.00	292.00	0.22	0.199	30.7	4.61
292.00	294.00	0.1	0.223	30.2	3.69
294.00	296.00	0.07	0.136	23	3.08
296.00	298.00	0.12	0.150	30.1	2.87
298.00	300.00	0.12	0.229	55.3	7.1
300.00	302.00	0.14	0.229	48.9	6.32
	302.00				
302.00		0.33	0.287	57.2	7.53
304.00	306.00	0.25	0.797	59.3	5.58
306.00	308.00	0.09	0.237	32.4	4.41
308.00	310.00	0.14	0.246	65	5.69
310.00	312.00	0.08	0.262	78.9	10.35

1			I		I I
312.00	314.00	0.21	0.24	50.8	5.89
314.00	316.00	0.26	0.254	31.7	5.28
316.00	317.80	0.07	0.201	32.3	4.21
317.80	318.50	0.39	0.403	56	6.88
318.50	320.80	0.2	0.245	36.5	4.54
320.80	322.00	0.07	0.188	50.7	8.01
322.00	324.00	0.16	0.283	93.7	6.98
324.00	326.00	0.39	2.31	286	2.95
326.00	328.00	0.07	0.201	47.6	5.07
328.00	329.00	0.05	0.178	54.2	3.48
329.00	330.80	0.08	0.152	56.3	6.11
330.80	332.00	0.09	0.176	37.2	3.29
332.00	334.00	0.17	0.335	47.4	3.23
334.00	336.00	0.07	0.197	30.4	2.47
336.00	338.00	0.06	0.205	48.1	4.15
338.00	340.00	0.05	0.196	48.9	2.76
340.00	342.00	0.21	0.18	35.4	2.52
342.00	342.80	0.43	0.684	33.8	2.48
342.80	344.00	0.15	0.307	25.7	2.76
344.00	346.00	0.05	0.229	31.8	2.67
346.00	348.00	0.07	0.216	28.4	2.26
348.00	350.00	0.05	0.233	74	2.74
350.00	352.00	0.15	0.206	34.1	3.45
352.00	354.00	0.08	0.166	28.6	4.68
354.00	356.00	0.48	1.105	43.4	3.36
356.00	358.00	0.11	0.224	18.8	2.42
358.00	360.00	0.03	0.335	15.2	1.6
360.00	362.00	0.04	0.202	31.6	2.3
362.00	364.00	0.03	0.174	18.45	3.58
364.00	366.00	0.25	1.805	93.1	6.31
366.00	368.00	0.08	0.132	91.8	9.87
368.00	370.00	0.07	0.252	42.6	4.47
370.00	372.00	0.08	0.221	25	2.19
372.00	374.00	0.05	0.224	26.8	2.16
374.00	376.00	0.13	0.22	21.9	2.14
376.00	378.00	0.05	0.304	24.8	2.46
378.00	380.00	0.2	0.21	18.25	2.26
380.00	382.00	0.13	0.237	31.7	4.35
382.00	383.30	0.05	0.231	28.8	2.43
383.30	385.00	0.19	0.246	27.2	4.67
385.00	386.60	0.8	0.194	45.8	13.8
386.60	388.00	0.12	0.105	38.9	6.67
388.00	390.00	0.3	0.093	44.6	8.67
390.00	392.00	0.14	0.107	39.8	5.71
392.00	393.40	0.15	0.08	24	1.7
393.40	395.10	0.17	0.169	31.9	3.03
395.10	396.50	0.06	0.091	19.85	2.52
396.50	398.00	0.08	0.109	46.9	2.81
				2.5	

208.00	400.00	0.24	0.205	20.0	C 4C
398.00	400.00	0.34	0.305	38.8	6.46
400.00	402.00	0.19	0.092	25	3.73 4.01
402.00	404.00	0.33	0.093		
404.00	406.00	1.52	0.195	79.9	4.4
406.00	407.80	1.57	0.148	48.7	7.26
407.80	409.00	1.9	0.356	53.2	3.83
409.00	410.50	0.19	0.224	58.6	5.48
410.50	412.00	0.27	0.262	94.7	6.26
412.00	414.00	0.42	0.357	48.8	5.81
414.00	415.50	0.51	0.373	134.5	4.77
415.50	416.60	0.37	0.236	49	5.61
416.60	418.00	0.28	0.164	62.1	1.18
418.00	419.50	0.34	0.273	124.5	1.15
419.50	420.80	0.47	0.29	95.9	0.64
420.80	422.00	0.1	0.167	65.9	10.05
422.00	424.00	0.26	0.304	93.3	8.81
424.00	426.00	0.14	0.345	57.5	5.32
426.00	428.00	0.21	0.363	49	6.3
428.00	430.00	0.74	0.388	85.8	7.99
430.00	432.00	4.47	0.842	141	14.25
432.00	434.00	13	0.712	48.9	9.65
434.00	436.00	1.19	0.374	93.5	9.65
436.00	438.00	0.18	0.287	76.5	23
438.00	440.00	0.29	0.276	87.6	16.3
440.00	442.00	0.98	0.152	38.5	8.89
442.00	444.00	0.12	0.227	56.3	13.1
444.00	446.00	0.09	0.206	31.7	8.9
446.00	448.00	0.3	0.306	40.2	8.09
448.00	450.00	0.09	0.254	34	12.3
450.00	452.00	0.05	0.25	21.1	7.23
452.00	454.00	0.1	0.48	36.3	10.1
454.00	456.00	0.41	0.373	43.7	7.32
456.00	458.00	0.16	0.37	34.2	8.66
458.00	460.00	0.16	0.244	51.9	8.48
460.00	462.00	0.10	0.244	42.1	10.5
460.00	462.00	0.31	0.222	56.7	10.5
462.00	464.00				
		0.11	0.287	46.5	9.22
466.00	468.00	0.13	0.404	57.4	11.4
468.00	470.00	0.23	0.578	73.3	9.56
470.00	472.00	0.12	0.417	44.6	22.8
472.00	474.00	0.11	0.258	45.7	10.5
474.00	476.00	0.11	0.245	59.5	12.2
476.00	478.00	0.07	0.206	38.7	10.7
478.00	480.00	0.06	0.219	33.8	11.7
480.00	482.00	0.17	0.236	42	7.75
482.00	484.00	0.04	0.174	28.2	7.03
484.00	486.00	0.18	0.469	27.1	9.43
486.00	488.00	0.09	0.282	49.3	16.9

488.00	490.00	0.22	0.643	61	11.25	
490.00	492.00	0.09	0.241	78.1	9.96	
492.00	494.00	0.08	0.277	100.5	9.4	
494.00	496.00	0.12	0.244	76.3	16.6	
496.00	498.00	0.16	0.219	76	10	
498.00	500.00	0.06	0.219	34.9	12.2	
500.00	502.00	0.07	0.139	32.8	16.3	
502.00	504.00	0.1	0.183	68.5	13.7	
504.00	506.00	0.07	0.169	44.9	17.7	
506.00	508.00	0.08	0.115	46.5	9.57	
508.00	509.50	0.13	0.126	64.7	12.7	
509.50	510.50	0.07	0.336	50.8	10.35	
510.50	512.00	0.08	0.319	61.1	22.4	
512.00	514.00	0.24	1.1	50.3	10.25	
514.00	516.00	0.09	0.3	37.7	6.06	
516.00	518.00	0.15	0.578	35.5	5.53	
518.00	520.00	0.16	0.355	52.7	10.75	
520.00	522.00	0.18	0.348	40.4	14.15	
522.00	524.00	0.13	0.415	33.2	11.5	
524.00	526.00	0.54	2.88	68	15.9	
526.00	528.00	0.07	0.33	26.6	7.59	
528.00	530.00	0.07	0.284	27.1	8.48	
530.00	532.00	0.14	0.405	50.3	5.39	
532.00	534.00	0.12	0.339	60.3	5.63	
534.00	536.00	0.16	0.332	43.2	5.87	
536.00	538.00	0.26	0.517	45.3	7.9	
538.00	540.00	1.34	7.02	166.5	7.97	
540.00	541.50	0.2	0.686	49	5.65	
541.50	542.60	0.42	1.99	89.4	6.26	
542.60	544.60	0.16	0.324	77.2	9.65	
544.60	546.00	0.37	0.748	103.5	9.83	
546.00	548.00	0.23	0.362	122.5	10.2	
548.00	550.00	0.15	0.232	59.8	3.22	
550.00	552.00	0.15	0.286	23.8	12.95	
552.00	554.00	0.13	0.285	23.8	10.25	
554.00	556.00	0.11	0.437	24.5	4.85	
556.00	558.00	0.13	0.302	25.5	4.85	
558.00	560.00	0.29	0.302	25.3	3.66	
560.00	562.00	0.49	0.198	17.9	3.35	
562.00	564.00	3.19	29.6	122.5	38.7	
564.00	566.00	0.1	0.222	30.4	5.29	
566.00	568.00	0.06	0.169	21.2	2.74	
568.00	570.00	0.13	0.314	41.4	5.91	
570.00	571.80	1.14	1.14	76	4.63	
571.80	572.50	0.18	0.178	20.1	4.85	
572.50	574.00	0.11	0.168	27.7	5.35	
574.00	576.00	0.15	0.621	31.3	7.2	
576.00	578.00	0.1	0.111	26.6	3.39	

28 May 2021 ASX Announcement ASX: LCL

578.00	580.00	0.28	0.157	45.6	7
580.00	582.00	0.22	0.194	46.5	3.69
582.00	583.40	0.37	0.239	79.3	6.31
583.40	585.25	0.51	0.252	101	10.7
585.25	586.50	0.48	0.239	105	9.03
586.50	588.00	0.24	0.205	68.1	6.41
588.00	590.00	0.13	0.161	49.5	5.71
590.00	592.00	0.14	0.132	42.1	11.25
592.00	594.00	0.05	0.109	37	11.65
594.00	596.00	0.21	0.162	96.4	14
596.00	598.00	0.16	0.138	103.5	55.5
598.00	600.10	0.17	0.122	64.6	11.75

TESORITO SOUTH JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut channels, random	 Diamond drilling is carried out to produce HQ and NQ core.
techniques	chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	• Following verification of the integrity of sealed core boxes and the core within them at the Company's core shed in Quinchia, the core is 'quick logged' by a Project Geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QAQC samples, the core is cut by employees in the company's facility within the core-shed.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Nominally core is cut in half and sampled on 2m intervals, however the interval may be reduced by the Project Geologist based on the visual 'quick log'.
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	 Samples are bagged in numbered calico sacks and these placed in heavy duty plastic bags with the sample tag. Groups of 5 samples are bagged in a hessian sack, labelled and sealed, for transport.
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sample preparation is carried out by ALS' Laboratory in Medellin where the whole sample is crushed to -2mm and then 1kg split for pulverising to - 75micron.
		 Splits are then generated for fire assay (Au-AA26) and analyses for an additional 48 elements using multi-acid (four acid) digest with ICP finish (MEMS61) at ALS' laboratory in Lima, Peru.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The Tesorito drilling program is a diamond drilling program using HQ diameter core. In the case of operational necessity this will be reduced to NQ core. Where ground conditions permit, core orientation is conducted on a regular basis.
Drill sample	Method of recording and assessing core and chip sample	• The drillers are required to meet a minimum recovery rate of 95%.
recovery	recoveries and results assessed.	On site, a Company employee is responsible for labelling (wood spacer block)

Criteria	IORC Code explanation	ASX: L
Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	the beginning and end depth of each drill run plus actual and expected recovery in meters. This and other field processes are audited on a daily basis.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• On receipt the core is visually verified for inconsistencies including depth labels, degree of fracturing (core breakage versus natural), lithology progression etc. If the core meets the required conditions it is cleaned, core pieces are orientated and joined, lengths and labelling are verified, and geotechnical observations made. The core box is then photographed.
		 Orientated sections of core are aligned, and a geology log prepared.
		 Following logging, sample intervals are determined and marked up and the cutting line transferred to the core.
		 Core quality is, in general, high and far exceeding minimum recovery conditions.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• Logging is carried out visually by the Project Geologists focusing on lithology, structure, alteration and mineralization characteristics. Initially a 'quick log' is carried out to guide sampling and this is then followed by detailed logging. The level of logging is appropriate for exploration and initial resource estimation evaluation.
	Whether logging is qualitative or quantitative in nature. Core (ar sectors) photography	
	(or costean, channel, etc) photography.	 All core is photographed following the initial verification on receipt of the core boxes and then again after the 'quick log', cutting and sampling. Ie half core.
	 The total length and percentage of the relevant intersections logged. 	 All core is logged and sampled, nominally on 2m intervals respectively but in areas of interest more dense logging and sampling may be undertaken.
		 On receipt of the multi-element geochemical data this is interpreted for consistency with the geologic logging.
Sub-sampling techniques	• If core, whether cut or sawn and whether quarter, half or all core taken.	• After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site.
and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	All core is cut and sampled. The standard sample interval is 2m but may be varied by the geologist to reflect lithology, alteration or mineralization variations.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 As appropriate, all half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as
	Quality control procedures adopted for all sub-sampling	a physical archive.

Criteria	JORC Code explanation	Commentary
	stages to maximise representivity of samples.Measures taken to ensure that the sampling is	• The large size (4-8kg) of individual samples and continuous sampling of the drill hole, provides representative samples for exploration activities.
	representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Through the use of QAQC sample procedure in this phase of drilling, any special sample preparation requirements eg due to unexpectedly coarse gold,
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	will be identified and addressed prior to the resource drilling phase.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Gold assays will be obtained using a lead collection fire assay technique (AuAA26) and analyses for an additional 48 elements obtained using multi-acid (four acid) digest with ICP finish (ME-MS61) at ALS' laboratory in Lima, Peru.
laboratory tests	• For geophysical tools, spectrometers, handheld XRF	• Fire assay for gold is considered a "total" assay technique.
	instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 An acid (4 acid) digest is considered a total digestion technique. However, for some resistant minerals, not considered of economic value at this time, the digestion may be partial e.g. Zr, Ti etc.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	• No field non-assay analysis instruments were used in the analyses reported.
	acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Los Cerros uses certified reference material and sample blanks and field duplicates inserted into the sample sequence.
		 Geochemistry results are reviewed by the Company for indications of any significant analytical bias or preparation errors in the reported analyses.
		 Internal laboratory QAQC checks are also reported by the laboratory and are reviewed as part of the Company's QAQC analysis. The geochemical data is only accepted where the analyses are performed within acceptable limits.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	• All digital data received is verified and validated by the Company's Competent Person before loading into the assay database.
assaying	The use of twinned holes.	• Over limit gold or base metal samples are re-analysed using appropriate,
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 alternative analytical techniques (Au-Grav22 50g and OG46). Reported results are compiled by the Company's geologists and verified by the
	 Discuss any adjustment to assay data. 	Company's database administrator and exploration manager.
		No adjustments to assay data were made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings	• The drill hole is located using a handheld GPS and Lider DTM. This has an approximate accuracy of 3-5m considered sufficient at this stage of

Criteria	JORC Code explanation	Commentary
	and other locations used in Mineral Resource estimation.	exploration.
	Specification of the grid system used.Quality and adequacy of topographic control.	 On completion of the drilling program the collars of all holes will be surveyed using high precision survey equipment.
		 Downhole deviations of the drill hole are evaluated on a regular basis and recorded in a drill hole survey file to allow plotting in 3D.
		The grid system is WGS84 UTM Z18N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• The interpretation of surface mapping and sampling relies on correlating isolated points of information that are influenced by factors such as weathering, accessibility and sample representivity. This impacts on the reliability of interpretations which are strongly influenced by the experience of the geologic team. Structures, lithologic and alteration boundaries based on surficial information are interpretations based on the available data and will be refined as more data becomes available during the exploration program.
		 It is only with drilling, that provides information in the third dimension, that the geologic model can be refined.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole is preferentially located in prospective area. All drillholes are planned to best test the lithologies and structures as known taking into account that steep topography limits alternatives for locating holes. Drill holes are oriented to determine underlying lithologies and porphyry vectors and to intercept the two principal sets of veining.
Sample security	• The measures taken to ensure sample security.	 All core boxes are nailed closed and sealed at the drill platform. On receipt at the Quinchia core shed the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened and the core is evaluated for consistency and integrity. Only then is receipt of the core formally signed off. The core shed and all core boxes, samples and pulps are secured in a closed Company facility at Quinchia secured by armed guard on a 24/7 basis. Each batch of samples are transferred in a locked vehicle and driven 165 km to ALS laboratories for sample preparation in Medellin. The transfer is

ASX Announcement

ASX: LCL

Criteria	JORC Code explanation	Commentary		
		accompanied by a company employee.		
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	At this stage no audits have been undertaken.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	tenement and including agreements or material issues with third parties	 The Exploration Titles were validly issued as Concession Agreements pursuant to the Mining Code.
land tenure status	such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 There are no outstanding encumbrances or charges registered against the Exploration Title at the National Registry.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Artisanal gold production was most significant from the Miraflores mines during the 1950s. Interest was renewed in the area in the late 1970s. In the 1980s the artisanal mining cooperative "Asociación de Mineros de Miraflores" (AMM) was formed.
		 In 2000, the Colombian government's geological division, INGEOMINAS, with the permission of the AMM, undertook a series of technical studies at Miraflores, which included geological mapping, geochemical and geophysical studies, and non-JORC compliant resource estimations.
		 In 2005, Sociedad Kedahda S.A. (Kedahda), now called AngloGold Ashanti Colombia S.A., a subsidiary of AngloGold Ashanti Ltd., entered into an exploration agreement with the AMM, and carried out exploration including diamond drilling in 2005 to 2007 at Miraflores, completing 1,414.75m.
		 In 2007 Kedahda optioned the project to B2Gold Corp. (B2Gold), which carried out exploration including additional diamond drilling from 2007 to 2009. B2Gold made a NI 43-101 technical study of the Miraflores Project in 2007.
		 On 24 March 2009, B2Gold advised the AMM that it had decided to not make further option payments and the property reverted to AMM under the terms of

Criteria	JORC Code explanation	ASX Commentary							
		the option agreement.							
		 Seafield Resources Ltd. (Seafield) signed a sale-purchase contract with AMM to acquire a 100% interest in the Mining Contract on 16 April 2010. 							
		 Seafield completed the payments to acquire 100% of rights and obligations o the Miraflores property in 30 November 2012. AMM stopped the artisanal exploitation activities in the La Cruzada tunnel on the same date, and transferred control of the mine to Seafield. 							
		 Since June 2010, Seafield drilled 63 drillholes for a total of 22,259m on the Miraflores Project adjacent to Tesorito. 							
		 The initial exploration undertaken by Seafield at Tesorito in 2012 and 2013 included systematic geological mapping, rock and soil sampling, followed by trenching within the area of anomalous Au and Cu in soils. 							
		 Seafield commissioned an Induced Polarisation (IP) survey over the Tesorito Prospect in August 2012 and undertook a three-hole diamond drilling program for a total of 1,150.5m in 2013. 							
Geology	Deposit type, geological setting and style of mineralisation.	• The Tesorito area is underlain mainly by fine to coarse grained, intrusive porphyritic rocks of granodioritic to dioritic composition, which intrude an andesite porphyry body of the Miocene Combia formation, Tertiary sandstones and mudstones of the Amaga Formation, as well as basaltic rocks of the Barroso Formation of Cretaceous age. The intrusives suite show variable intensities of hydrothermal alteration, including potassic alteration overprinted by quartz-sericite and sericite-chlorite alteration. NNE to EW faulting controls the intrusive emplacement and mineralization, including faulting of contacts between the rock units. The depth of sulphide oxidation observed in the drill holes is approximately 20m.							
		 Gold, copper and molybdenite observed in the intrusive rocks is typical of Au- Cu-Mo rich porphyry deposit; mineralisation occurs as sulphides and magnetit in disseminations as well as in veinlets and stockworks of quartz. Pyrite, chalcopyrite and molybdenite have been recognised. 							
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the								
nionnauon	of the exploration results including a tabulation of the following information for all Material drill holes:	HOLE EASTING NORTHING RL (m) AZIMUTH DIP EOH (m)							
	TSDH18 423782 584506 1245.653 125 60 285.55								

ASX Announcement

Criteria	JORC Code explanation	Comment	ary					
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	TSDH19 TSDH22 TSDH23	423782 423705.5 423705.5	584506 584528.7 584528.7	1245.653 1258 1258	65 65 0	50 65 65	256.35 425.45 473.6
Data aggregation nethods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (egcutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Quoted within th No cut c All width 	intervals us e interval. I of high grade is quoted ar	e a weighted Jncut interva es has been e intercept v	e been stated l average con als include va done. widths, not tru oration to kno	npositing n lues below ie widths, a	v 0.1 g/t Au as there is	insufficient
Relationship between mineralisation widths and intercept engths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	stage ir • Mineral	n the exploration geor	ation of the p netry is not a	ouncement a project. accurately kn alised structur	own as the	e exact nur	nber,
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a 	includir			ocation of dri rito Prospect			

ASX: LCL

Criteria	JORC Code explanation	Commentary
	plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reporting is considered balanced.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A ground magnetic survey that covered the Chuscal and Tesorito Prospects was performed in 2019 and presented two magnetic high anomalies that are spatially related to the soil gold and molybdenum anomalies. The magnetic high anomalies appear associated with the presence of potassic alteration and quartz-magnetite veining and stockworks.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). 	Additional drilling is required to systematically test the nature and extent of mineralisation.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 The objective of the Tesorito drill program is to test two anomalous zones, the southern and northern Tesorito targets.

CHUSCAL

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

28 May 2021 ASX Announcement ASX: LCL

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 JORC Code explanation Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Commentary Diamond drilling is carried out to produce HQ and NQ core. Following verification of the integrity of sealed core boxes and the core within them at the Company's core shed in Quinchia, the core is 'quick logged' by a Project Geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QA/QC samples, the core is cut by employees in the company's facility within the coreshed. Nominally core is cut in half and sampled on 2m intervals, however the interval may be reduced by the Project Geologist based on the visual 'quick log'. Samples are bagged in numbered calico sacks and these are placed in heavy duty plastic bags with the sample tag. Groups of 5 samples are bagged in a hessian sack, labelled and sealed, for transport. Sample preparation is carried out by ALS' Laboratory in Medellin where the whole sample is crushed to -2mm and then 1kg split for pulverising to – 75micron. Splits are then generated for fire assay (Au-AA26) and analyses for an additional 48 elements using multi-acid (four acid) digest with ICP finish (MEMS61) at ALS' laboratory in Lima, Peru.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The Chuscal drilling program is a diamond drilling program using HQ diameter core. In the case of operational necessity this will be reduced to NQ core. Where ground conditions permit, core orientation is conducted on a regular basis.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The drillers are required to meet a minimum recovery rate of 95%. On site, a Company employee is responsible for labelling (wood spacer block) the beginning and end depth of each drill run plus actual and expected recovery in meters. This and other field processes are audited on a daily basis. On receipt the core is visually verified for inconsistencies including depth labels, degree of fracturing (core breakage versus natural), lithology progression etc. If the core meets the required conditions it is cleaned, core pieces are orientated and joined, lengths and labelling are verified, and geotechnical observations made. The core box is then photographed.

Criteria	JORC Code explanation	Commentary
		 Orientated sections of core are aligned, and a geology log prepared.
		 Following logging, sample intervals are determined and marked up and the cutting line transferred to the core.
		 Core quality is, in general, high and far exceeding minimum recovery conditions.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections 	• Logging is carried out visually by the Project Geologists focusing on lithology, structure, alteration and mineralization characteristics. Initially a 'quick log' is carried out to guide sampling and this is then followed by detailed logging. The level of logging is appropriate for exploration and initial resource estimation evaluation.
		 All core is photographed following the initial verification on receipt of the core boxes and then again after the 'quick log', cutting and sampling. Ie on the half core.
	logged.	 All core is logged and sampled, nominally on 2m intervals but in areas of interest more dense logging and sampling may be undertaken.
		 On receipt of the multi-element geochemical data this is interpreted for consistency with the geologic logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site. All core is cut and sampled. The standard sample interval is 2m but may be varied by the geologist to reflect lithology, alteration or mineralization variations.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 As appropriate, all half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	a physical archive.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	• The large size (4-8kg) of individual samples and continuous sampling of the drill hole, provides representative samples for exploration activities.
		 Through the use of QA/QC sample procedure in this phase of drilling, any special sample preparation requirements eg due to unexpectedly coarse gold,
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	will be identified and addressed prior to the resource drilling phase.

Criteria	JORC Code explanation	Commentary
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Gold assays are obtained using a lead collection fire assay technique (AuAA26) and analyses for an additional 48 elements obtained using multi-acid (four acid) digest with ICP finish (ME-MS61) at ALS' laboratory in Lima, Peru.
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Fire assay for gold is considered a "total" assay technique. An acid (4 acid) digest is considered a total digestion technique. However, for some resistant minerals, not considered of economic value at this time, the digestion may be partial e.g. Zr, Ti etc. No field non-assay analysis instruments were used in the analyses reported. Los Cerros uses certified reference material and sample blanks and field duplicates inserted into the sample sequence. Geochemistry results are reviewed by the Company for indications of any significant analytical bias or preparation errors in the reported analyses. Internal laboratory QA/QC checks are also reported by the laboratory and are reviewed as part of the Company's QA/QC analysis. The geochemical data is only accepted where the analyses are performed within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All digital data received is verified and validated by the Company's Competent Person before loading into the assay database. Over limit gold or base metal samples are re-analysed using appropriate, alternative analytical techniques. (Au-Grav22 50g and OG46). Reported results are compiled by the Company's geologists and verified by the Company's database administrator and exploration manager. No adjustments to assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drill hole is located using a handheld GPS and Lider DTM. This has an approximate accuracy of 3-5m, considered sufficient at this stage of exploration. On completion of the drilling program the collars of all holes will be surveyed using high precision survey equipment. Downhole deviations of the drill hole are evaluated on a regular basis and recorded in a drill hole survey file to allow plotting in 3D. The grid system is WGS84 UTM Z18N.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• The interpretation of surface mapping and sampling relies on correlating isolated points of information that are influenced by factors such as weathering, accessibility and sample representivity. This impacts on the reliability of interpretations which are strongly influenced by the experience of the geologic team. Structures, lithologic and alteration boundaries based on surficial information are interpretations based on the available data and will be refined as more data becomes available during the exploration program.
		 It is only with drilling, that provides information in the third dimension, that the geologic model can be refined.
Orientation of	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Drill hole is preferentially located in the prospective area.
data in relation to		 All drillholes are planned to best test the lithologies and structures as known taking into account that steep topography limits alternatives for locating holes.
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are oriented to determine underlying lithologies and porphyry vectors and to intercept the two principal sets of veining.
Sample	• The measures taken to ensure sample security.	All core boxes are nailed closed and sealed at the drill platform.
security		 On receipt at the Quinchia core shed, the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened and the core is evaluated for consistency and integrity. Only then is receipt of the core formally signed off.
		 The core shed and all core boxes, samples and pulps are secured in a closed Company facility at Quinchia secured by armed guard on a 24/7 basis.
		 Each batch of samples are transferred in a locked vehicle and driven 165km to ALS laboratories for sample preparation in Medellin. The transfer is accompanied by a company employee.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	At this stage no audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Exploration Titles were validly issued as Concession Agreements pursuant to the Mining Code. The Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement. The concessions are registered to AngloGold Ashanti Colombia SAS (AGAC). Los Cerros has a 100% beneficial interest in these tenements which are in the process of transfer to Los Cerros. There are no outstanding encumbrances or charges registered against the Exploration Title at the National Registry.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The first prospecting work that refers to the Chuscal prospect was recorded in 1986 by the author Michael GA Hill who reported an average of 4ppm to 5ppm gold in the sector "Loma El Guerrero", which today is known as Chuscal Alto. There was no detailed geological description or geological map produced. The effects of hydrothermal brecciation in dioritic intrusive rocks was noted. In 1995, a Canadian TVX listed company, Minera de Colombia S.A., conducted a study in the Quinchia district, focusing on the prospects known at the time (Miraflores, La Cumbre, Chuscal and a locality that today is Tesorito). For the Chuscal area, three locations with gold mineralization being worked by artisanal miners were described, which comprise quartz+ limonite veins within pyritic argillic alteration zones. AGAC commissioned a brief reconnaissance survey in 2004 from which their geologist reported that the types of alteration and mineralization were similar to AGAC's model of "Gold-Rich Porphyry Deposits". AGAC conducted another prospect assessment in March 2005 from which it was reported that artisanal miners were working auriferous quartz-pyrite stockwork veins, some within porphyritic andesites, that had intruded into the Ira Monzonite. The mineralized veins had a strong structural control trending NW-SE. AGAC commissioned various reconnaissance exploration campaigns from 2005 to 2006 principally focusing on the assessment of the geology exposed in the shallow underground openings being developed by artisanal miners. In 2012, Seafield Resources Ltd undertook a grid-based C-horizon soil geochemical survey and conducted underground rock-chip channel sampling

Criteria	JORC Code explanation	Commentary
		 over the Chuscal area and within the Guayacanes artisanal workings respectively. In 2013, AGAC commissioned a systematic saprolite and rock-chip sampling and mapping program from which it was concluded that the mineralization at Chuscal had both porphyry (Au-Cu-Mo) and epithermal (As-Sb) affinities, with phyllic alteration overprinting earlier potassic alteration of porphyritic rocks that had intruded an older Monzonite. In 2015, AGAC conducted additional mapping, saprolite and rock-chip sampling detailing the area previously mapped and sampled. In 2019, on completion of the JV Agreement with AGAC, Los Cerros compiled all available historical data with the AGAC database and carried out a detailed reinterpretation of the integrated geochemistry and geophysical data generating an exploration model used to propose the current drilling program.
Geology	Deposit type, geological setting and style of mineralisation.	 The Chuscal gold zone is associated with intrusive stocks and breccias of dioritic composition and probably of Miocene age, that have intruded into the large, Cretaceous-age Irra Monzonite. At Chuscal the formation and emplacement of the stocks and breccias are associated with significant gold rich hydrothermal events, that together produced a NW orientated, 900m by 500m zone. (+100ppb Au in soils). The target is within a zone within which anomalous rock samples have been collected by AGAC (refer Figure 2 in Los Cerros ASX release dated 6 December 2018). The rock chip sampling defined a Central Zone of 600m by 240m (183 samples) where the average grade of samples is 2.66g/t Au (uncut) or 1.94g/t Au (Note 2, below). This is incorporated within a broader area (Main Zone) of 900m by 530m (289 samples) where the average grade of samples is 1.79g/t Au (uncut) or 1.33g/t Au (Note 2). Note 2: The cut samples were capped at 20g/t Au which affected 6 samples including one assaying 54 g/t Au. In neither case was a lower cut applied. For the Central & Main zones respectively, the average includes 53 and 115 samples at > 0.2 g/t Au. The underground artisanal workings occur within the Central Zone, at a depth of approximately 70m below the ridge, indicating the continuation of mineralisation at shallow depths. The multi-element rock-chip underground channel sample results indicate two dominant styles of mineralization. A probable early-stage stockwork-disseminated porphyry-style mineralization and a late stage high grade vein style (possible epithermal overprint). The porphyry style returned average grades of 1.5g/t Au and the epithermal-style veins

ASX Announcement

Criteria	JORC Code explanation	Commentary
		 average 8g/t Au (Note 3). Note 3: The cut underground rock-chip channel samples were capped 20g/t Au.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	HOLEEASTNORTHRL (m)AzimuthDipEOH (m)CHDDH0124235435825461203.833565572.8CHDDH013423573.44582404.711164.8934560600.1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No metal equivalent values have been stated. Quoted intervals use a weighted average compositing method of all assays within the interval. No cut of high grades has been done. All widths quoted are intercept widths, not true widths, as there is insufficien information at this stage of exploration to know the geometries within the system.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact number, orientation and extent of mineralised structures are not yet determined.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery 	Geological maps showing the location of drill holes and exploration results including drilling over the Chuscal Prospect is shown in the body of the

Criteria	JORC Code explanation	Commentary
	being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Reporting is considered balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A ground magnetic survey that covered the Chuscal and Tesorito Prospects was performed in 2019 and presented two magnetic high anomalies that are spatially related to the soil gold and molybdenum anomalies. The magnetic high anomalies appear associated with the presence of potassic alteration and quartz-magnetite veining and stockworks.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling is required to systematically test the nature and extent of mineralisation. The objective of the program is to provide a guide to the mineralization potential of the system, both in terms of potential grade and volume, to guide resource targeted drilling in a third phase drilling program.