

ASX RELEASE 18 August 2021

Zero Emission Tiris Uranium Project Definitive Feasibility Study - Updated Capital Estimate

KEY PROJECT OUTCOMES OF THE STUDY:

- Low capital cost of US\$74.8 million
- Low C1 cash cost of US\$25.43/lb U₃O₈
- All-In Sustaining Cost (AISC) of US\$29.81/lb U₃O₈
- Production is 12.4 Mlbs U₃O₈ over 15 years
- Payback period is 4 years
- Maiden Ore Reserve Estimate for Tiris is 10.9 Mt @ 336 ppm U₃O₈

KEY FINANCIAL OUTCOMES OF THE STUDY:

- Total project After Tax cash flow is US\$214 million (A\$305 million)
- Average After Tax cash flow of US\$17.1 million pa (A\$24.4 million)
- Project IRR of 22%

PROJECT UPSIDE

- Potential for Reserve addition via conversion from Global Resource
- Potential for Resource addition in known mineralised areas
- Exploration of known targets in project area
- Vanadium production from leach solution
- 3 Mlb U₃O₈ pa expansion case potential
- Optimisation of reagent use
- Optimisation of beneficiation in production to increase throughput
- Production optimisation of current Reserve Estimation

IMPLEMENTATION

Fully Permitted for development¹

- Exploitation Licence granted
- Environment Approval granted

-

¹ Minor operating permits will be required.

- Competitive uranium off-take contract in place
- Export Credit Agency Finance achieving a very promising response
- Mincore Engineering acted as overall Project Engineer
- Simulus Engineering performed Leach Plant Engineering
- Adelaide Control Engineering (ACE) U₃O₈ recovery and packaging

PEER COMPARISON

- Tiris has one of the lowest uranium development capital costs of the current uranium projects
- Robust capital development estimate with 85% of cost estimated from direct supplier quotes
- Development capital cost very competitive versus LOM capital cost for in-situle leach projects with repeat development capital
- Low development cost enables rapid development relative to peers
- Tiris' AISC is among the lowest in the world
- Many peer companies quote Pre-Tax project financials

Aura Energy Limited (AEE; ASX, AURA; AIM) ("Aura", the Company") is pleased to advise that the Tiris Uranium Definitive Feasibility Study (DFS) capital update has been completed (ASX Release: Capital Estimate Update - Zero Emission Tiris Uranium Project, 18 August 2021) and has confirmed the Tiris Uranium Project as a low capital cost development opportunity.

Since completion of the DFS in 2019, global economic conditions have changed, with increases in steel, freight and other project development costs. Subsequently, Aura has updated the estimated capital costs for the DFS, to ensure that in the two years since completion, the input costs along with currency assumptions remain valid.

Aura Energy, Managing Director and CEO, Peter Reeve, commented: "With the updated capital estimate recently completed for the zero emission Tiris Uranium Project, we are pleased to present the updated Definitive Feasibility Study. Tiris remains as a highly robust uranium project, which the company aims to capitalise on as the uranium market continues to recover. With the DFS now updated with 2021 capital figures, Aura is well positioned to continue its discussions with global financiers in relation to both debt and equity funding arrangements. We now look forward to fast tracking Tiris into production, as the world shifts towards a decarbonised energy system."

"In the current uranium market environment, a key attribute of any uranium development project is the capital cost of development. Aura has strived through the entire DFS to maintain this cost at the lowest level possible whilst retaining a robust development design. With the \$US74.8 million capital defined, with 85% of the capital estimate from supplier

quotes, Aura now stands among its peers as having one of the lowest, if not the lowest, all in life of mine capital of any of the currently proposed uranium development projects".

"A number of very good in-situ leach projects state low upfront capital, however, the 'repeat development capital' required in many of these projects in their early years needs to be considered as development capital. Aura in many instances competes very well with these projects".

"The capital figure is exceptionally important as in tough markets it can impact upon the investability of the project and Tiris' small footprint and low capital cost makes this project poised for quick development when financing can be achieved. Aura has spoken of the 'building blocks to cashflow' and the completion of the DFS sets another of those building blocks in place and puts Aura on a path for producer status and cashflow."

"Additionally, the All-In Sustaining Cash Cost of $US29.81/lb\ U_3O_8$ is extremely competitive when compared to our uranium development peers. The benefits of shallow mining and the beneficiation stage in the process, which leads to a small project footprint, have shown to being positive for the projects operating cost".

Capital Cost

The updated Tiris Project capital cost is US\$74.8 million.

Engineering company, Mincore, provided the updated capital cost estimate for the Tiris Project as specified in ASX Release: Capital Estimate Update - Zero Emission Tiris Uranium Project, 18 August 2021. This includes the scope of facilities and services required to design, purchase and construct the entire project, up to practical completion and handover to operations.

Table 1: Tiris Project Capital Cost Summary

Description	Cost (U\$M)
Mining (contract mining assumed)	0.00
Process Plant	\$45.10
Infrastructure	\$8.58
EPCM	\$6.57
Owner's cost	\$3.00
Contingency	\$4.92
Total Capital Cost	\$74.80

An exhaustive in-country engineering review was conducted including all infrastructure needs, particularly the road infrastructure to site. Of the 680 km road from Zouerate to Tiris, only 2km will require substantial roadworks.

ZERO EMISSION URANIUM

ASX:AEE

Significantly, 85% of the capital cost for the Tiris Project has been sourced from **direct supplier quotes**. As a result of this thorough estimating approach, Aura is confident that the capital cost estimate for Tiris Uranium Project is robust.

No direct mining capital costs are outlined as infrastructure to support the mining operations is included in the infrastructure numbers, and there is no pre-strip required and mining costs are based direct supplier quotes from a number of mining contractors with all mobile equipment costs all included in the operating cost estimation received.

Operating Cost

The operating cost estimate is summarised in the table below.

Table 2: Tiris Project Operating Cost Summary

Category	US\$/lb U₃O ₈
Contract Mining	7.16
Labour	3.68
Power	4.57
Reagents	3.95
Maintenance	2.28
G&A	3.80
Total cash cost (C1)	25.43
All In Sustaining Cost (AISC)	29.81

The C1 cash cost will be US\$25.43/lb U₃O₈.

The All-In Sustaining Cost (AISC) will be US\$29.81/lb U₃O₈.

The AISC is inclusive of royalties, Life of Mine (LOM) sustaining capital, insurances and product transport. These costs have been estimated as an average of annualised expenditure.

Project Outcomes Summary

Table 3: Project Outcomes Summary

	Key Metric	DFS
Resource	Life of Mine (LOM)	15 Years
	Beneficiation Plant ore throughput (Design)	1.25 Mtpa
	Process Plant ore throughput	0.16 Mtpa
	ROM uranium grade (LOM)	364 ppm U ₃ O ₈
Production	Uranium Metallurgical Recovery	86.1%
	Average Annual uranium production	823,000 lb U ₃ O ₈
	LOM uranium production	12.35 Mlb U₃O ₈

Financial Outcomes Summary

Table 4: Financial Outcomes Summary

	Key Metric	US\$	A\$
Capital	Process, plant, infrastructure, indirects	70.1 M	100.1 M
	Contingency	4.7 M	6.8 M
	Total Capital	74.8 M	106.9 M
Operations	Exchange rate (USD:AUD)	0.70	
	C1 Cash operating cost (\$/lb U₃O ₈)	25.43	36.33
	AISC operating cost (\$/lb U₃O ₈)	29.81	42.56
Project	Assumed price (baseline) (\$/lb U₃O ₈)	60	86
Financials	Project NPV ₈ (incl Royalties and tax)	79.9 M	114 M
	Project IRR (incl Royalties and tax)	22	2%
	Cashflow – Total (after-tax)	214 M	305 M
	Cashflow – Annual (after-tax)	17.1 M pa	24.4 M pa
	Project NPV8 (incl Royalties, pre-tax)	106 M	151 M
	Project Cashflow – Total (pre-tax)	275 M	393 M
	Project Cashflow – Annual (pre-tax)	24.5 M pa	33 M pa
	Project payback from start-up	4 ye	ears

Uranium Price Sensitivity

The table below outlines the project financials at both US\$60/lb U₃O₈ and US\$50/lb U₃O₈.

Table 5: Project Financials

	Uraniur	n Price
ltem	US\$60/lb U₃O ₈	US\$50/lb U₃O ₈
Project cashflow total (pre-tax)	US\$275 M	US\$169 M
	A\$393 M	A\$241 M
Project cashflow – per annum (pre-tax)	US\$24.5 M	US\$17.4 M
	A\$33.4 M	A\$24.9 M
Project cashflow total (after-tax)	US\$214 M	US\$132 M
	A\$305 M	A\$189 M
Project cashflow – per annum (after-tax)	US\$18.6 M	US\$13.4 M
	A\$27.4 M	A\$19.4 M
NPV ₈ (including royalties, pre-tax)	US\$106 M	US\$56 M
	A\$151 M	A\$80 M
NPV ₈ (including royalties, after-tax)	US\$79.9 M	US\$36 M
	A\$114 M	A\$51.4 M

Water

Of four water sourcing options identified by hydrological consultants, Aura's water search and development activities have focussed on the closest source, the Oued El Foule Depression, an extensive drainage system, the central axis of which is less than 20 km from the Tiris plant site.

Aura has undertaken a significant program of water study and review which identified a number of major structures likely to host water and included a program of ground geophysics over 24 structural targets within 50 km of the proposed plant. 15 of the most promising targets have been selected for drilling and testing is underway.

On one of these structures identified by Aura, drilling successfully located water in two bores. Of four holes drilled in the area, two successfully located good volumes of water, with one producing 15,000 litres per hour. The 50% strike rate in drilling bodes well for the location of additional water sources in the same geology and indicates a strong likelihood that the current drilling program will locate additional water supply for the relatively low water requirement of the Tiris Project.

The water testing and development program will continue for a period of time beyond the completion of the DFS and during construction.

Reserve Estimate

The Ore Reserve estimate was generated by Mining Plus. The overall project financial model was prepared by Aura using inputs from the mining schedule physicals and the cost model. Detailed processing, tailings disposal, power, water, camp infrastructure and logistics, and other costs were also developed as part of the Feasibility Study. Mining Plus reviewed the cash flow model with Aura to ensure that the project has a positive cash flow outcome, and this has been confirmed.

The declared Ore Reserve, at a 175 ppm U₃O₈ cut off is shown in **Error! Reference source not** found.6.

Table 6: Ore Reserve

Description	Mt	U₃O ₈ (ppm)	U ₃ O ₈ (Mlb)
	Lazare North		
Proved	0.7	354	0.6
Probable	4.4	332	3.2
	Lazare South		
Proved	1.5	342	1.1
Probable	0.7	340	0.5
	Hippolyte		
Proved	1.9	331	1.4
Probable	1.7	334	1.3
	Total		
Proved	4.1	339	3.1
Probable	6.8	333	5.0
Total	10.9	336	8.1

The Ore Reserve was generated from the Mineral Resource Estimate produced by H&S Consultants (Sydney) with the appropriate modifying factors to apply for mining dilution. This Resource model was used in an open pit optimisation process to produce a range of pit areas using operating costs and other inputs derived from previous studies. Mining costs were built up from estimates derived from equipment supplier and mining contractor submissions and applied to a detailed mine schedule.

The Ore Reserve is based on information complied by the following:

- Revenue prices, based on historical averages and forward estimates, based on Offtake Agreement with Curzon Resources provided by Aura.
- Processing recoveries based on the geometallurgical model developed by Aura.
- Mineral Resource estimate, H&S Consultants, 1May 2018.
- Pit optimisation and mine design completed by Mining Plus.
- Capital costs, Mining Plus, Mincore, Simulus Engineers, Adelaide Control Engineers (ACE) and Aura.
- Operating costs, Mining Plus, Mincore, Simulus Engineers, ACE and Aura.

Vanadium Potential

Vanadium occurs with uranium in carnotite, the host mineral for uranium in the Tiris Project as potassium uranium vanadate ($K_2(UO_2)_2(VO_4)_2 \cdot 3H_2O$). Vanadium hosted with carnotite is leached alongside uranium in the Tiris extraction circuit. Aura has conducted preliminary evaluation on the feasibility of vanadium recovery from solution. The Tiris project value, which is driven by low operating and development capital costs, would benefit further with vanadium recovery which is considered technically achievable.

Vanadium occurs in the Tiris ore at a grade of 330 ppm $V_2O_5{}^2$, a similar concentration to that of U_3O_8 . Approximately half of this vanadium occurs within the uranium host mineral carnotite

Uranium Market

Aura continues to monitor the uranium market with the assistance of its advisors.

Aura has long maintained that the return to the Long-Term Contracting market by utilities will be a key driver in sentiment for uranium and strongly impact the uranium price. Our UK based advisors note an increasing focus from utilities on the low level of contract coverage in both 2021 and 2022. There is potential for near term improved market conditions should this level of contracting be increased.

Comparison with 2019 Definitive Feasibility Study

In 2019 Aura released a Definitive Feasibility Study on the Tiris Uranium Project. In general, the results of the DFS remain unchanged and the current update reflects the price inflation between 2019 and 2021. In this time significant global economic upheaval due to the COVID-19 pandemic has occurred and Aura determined that it was relevant to fully understand the potential impact of these changed conditions on project implementation.

The comparison of the 2021 DFS Capital cost estimate with the 2019 DFS showed an increase of 19% on a USD basis. This is a good result given it remains within both the estimate accuracy levels and base sensitivity levels used in project evaluation.

Table 7: Comparison of DFS 2019 and 2021 CAPEX estimate.

Description	DFS 2019	DFS update 2021	Variation
	US\$/M	US\$/M	%
Mining	0.00	0.00	0.00
Process Plant	26.3	39.1	39%
Infrastructure	18.9	17.6	-7%
EPCM	4.45	4.9	10%
Owner's cost	8.2	9.9	21%
Contingency	4.30	4.8	11%
Total Capital Cost	62.94	74.8	19%

Cautionary Statement

This report may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although Aura believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved.

They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein.

This ASX Release was authorised by the Aura Energy Board of Directors.

For further information, please contact:

Peter Reeve	Jane Morgan
Managing Director & CEO	JMM
Aura Energy Limited	Investor & Media Relations
preeve@auraee.com	jm@janemorganmanagement.com.au
	+61 405 555 618

Appendix

Glossary of terms

Set out below are key terms referred to in the ASX announcement for the Resource Estimate

Carnotite is a hydrated uranium, vanadium and potassium

oxide with the mineral formula $K_2(UO_2)_2(VO_4)_2 \cdot 3H_2O$ and approximately 53% of carnotite by weight is

uranium.

Competent Person is a minerals industry professional who is a Member

or Fellow of The Australasian Institute of Mining and Metallurgy, or of the Australian Institute of Geoscientists or of a Recognised Professional Organisation, as included in a list on the JORC and ASX websites. A Competent Person must have a minimum of five years relevant experience in the style of mineralisation or type of deposit under consideration and in the activity which that person

is undertaking;

Cut-off grade the lowest grade, or quality, of mineralised material

that qualifies at economically mineable and

available in a given deposit;

Gamma logging a method of estimating uranium concentration in a

drill hole by measuring radioactivity emitted by the

mineralisation

Grade any physical or chemical measurement of the

characteristics of the material of interest in samples

or product;

g/t grams per tonne (where 1 gram per tonne = 1 ppm)

Indicated Resource is that part of a Mineral resource for which quantity,

grade (or quality), densities, shape and physical characteristics are estimated with sufficient confidence and detail to support mine planning and evaluation of economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and

testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes and is sufficient to assume geological and grade (or quality) continuity between points of observation where data and samples are gathered;

Inferred Resource

that part of a Mineral Resource for which quantity and grade (or quality) are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade (or quality) continuity. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes:

JORC

the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves, as published by the Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia;

IORC 2012

the 2012 edition of the JORC Code

LBS

pounds (where 2.2046 pounds = 1 kilogram)

Measured Resource

is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape and physical characteristics are estimated which confidence sufficient to support detailed

mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable

exploration, sampling and testing gathered through appropriate techniques from locations

such as outcrops, trenches, pits, workings and drill holes and is sufficient to confirm geological and grade (or quality) continuity between points of observation where data and samples are gathered;

Mineral Resource

a concentration or occurrence of material of economic interest in or on the earth's crust in such form and quantity that there are reasonable and realistic prospects for eventual economic extraction. The location, quantity, grade, continuity and other geological characteristics of a Mineral Resource are known, estimated from specific geological evidence and knowledge, or interpreted from a well-constrained and portrayed geological model;

Mlb

million pounds avoirdupois;

Mt

Million tonnes;

pmm

parts per million by weight;

Radioactive equilibrium

is the condition in which a radioactive substance and its radioactive decay products have attained such proportions that they all disintegrate at the same numerical rate and therefore maintain constant proportions. In geologically young uranium deposits, radioactive decay products may not have

attained equilibrium concentrations.

In this situation gamma radiation used to measure uranium concentration, which is emitted principally by the radioactive daughter products rather than by uranium itself, will underestimate uranium concentration;

U₃O₈

uranium oxide.

Competent Persons

The Competent Person for the information in this report that relates to Tiris Mineral Reserves is based on information compiled and reviewed by Mr Andrew Hutson, a Competent Person who is a Fellow of the Australian Institute of Mining and Metallurgy (AusIMM) and a full-time employee of Mining Plus Pty Ltd. Mr Hutson has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the JORC Code 2012. Mr Hutson has no economic, financial or pecuniary interest in the company and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The Competent Person for drill hole data and for aggregating the 2018 and 2011 resource estimates is Mr Neil Clifford. The information in the report to which this statement is attached that relates to drill hole data and to aggregation of the resource estimates is based on information compiled by Mr Neil Clifford. Mr Clifford has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking. This qualifies Mr Clifford as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford is an independent consultant to Aura Energy. Mr Clifford is a Member of the Australasian Institute of Mining and Metallurgy (AuslMM). Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Competent Person for the Tiris Metallurgical Testwork is Dr Will Goodall. The information in the report to which this statement is attached that relates to the testwork is based on information compiled by Dr Will Goodall. Dr Goodall has sufficient experience that is relevant to the testwork program and to the activity which he is undertaking. This qualifies Dr Goodall as a Competent Personas defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Goodall is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM). Dr Goodall consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

1.1 Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	 The Lazare and Hippolyte Mineral Resource was provided to the ASX 30th April 2018 for the Tiri Project and forms the basis of this Ore Reserve. The Mineral Resource update was reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, (JORC Code 2012) and validated by H&S Consultants Pty Ltd. The Mineral Resources are inclusive of the Ore Reserves.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Andrew Hutson of Mining Plus (Competent Person) has not visited the site. Due to the small scale of the project, the low complexity of mining and the time required to visit the site within the timeframe of the project a site visit was not warranted. Andrew Hutson as worked for a number of uranium mining operations including one of similar mineralogy, mining and processing methodologies.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	 The Ore Reserve estimate was based on the Feasibility Study (FS) for the Tiris Project on data built from the PFS and updated from the Definitive Feasibility Study (DFS) due for completion in the July 2019. Financial modelling completed to support this Ore Reserve estimate is based on the FS and this modelling shows that the Ore Reserve is economically viable at U3O8 metal prices supported by consensus long term contract uranium price scenarios in the range of US\$40-50/lb U3O8.

Criteria	JORC Code explanation	Commentary
Cut-off parameters	 The basis of the cut-off grade(s) or quality parameters applied. 	• The cut off grade used to determine ore tonnes is 175 ppm U3O8
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and preproduction drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	 Aura Energy proposes to use conventional mining methods employing backhoe excavators and dump trucks to expose and recover the ore. The mining method proposed is utilised world wide and is low risk. No drilling and blasting of the ore over overlying materials is planned due to the unconsolidated nature of the materials. Due to the shallow nature (<5m) and the short time which the mining voids are open before backfilling no pit slope geotechnical work was required. Only Proved and Probable Ore Reserves are used as ore within the mine production schedule and financial modelling. Inferred Mineral Resource for the purpose of the Ore Reserve estimate is treated as waste which has been economically carried by the Ore. The mine production schedule assumes effective operation of the mining fleet and is based on realistic utilisation estimates The geological block models used as basis for Ore Reserve are MIK recoverable resource models and as such no additional mining dilution or recovery factors have been added Pit optimisations were carried out using Daussalt Whittle software. Whittle was also used to analyse the sensitivity of the resource models over variations of -30% to +30% to the following parameters in order to define the effects on project ore tonnage, total tonnes mined, contained metal and undiscounted cash flow; Mining cost Uranium price Processing cost Plant recovery

		the second control of
Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	 conventional beneficiation with heated alkaline uranium leach and ion exchange. All metallurgical processes proposed are well tested technology and appropriate for the styles of mineralisation. Extensive metallurgical test work has been undertaken and included: Material characterisation

based on uranium upgrade factor at target screen cut size of 150um and Sulphate mineral rejection factor. • Uranium recovery between 84.6% and 86.6% was achieved, dependent on geometallurgical domain. • Deleterious minerals were identified as gypsum (CaSO ₄ .2H ₂ O) and Celestine (SrSO ₄). These minerals were monitored in geometallurgical domaining and included in domain definition parameters to manage impact on process. Clay minerals were
also identified as potentially deleterious and monitored through inclusion of particle size distribution definitions in geometallurgical domaining. Results of metallurgical domaining. Results of metallurgical test work were undertaken in a staged approach with a focus on assessment of process variability. Bulk bench scale assessment of beneficiation and leaching was undertaken on 120-150kg composite samples representative of geometallurgical domains scheduled for the first 6 years of operation. undertaken in a staged approach with a focus on assessment of process variability. Bulk bench scale assessment of beneficiation and leaching was undertaken on 120-150kg composite samples representative of geometallurgical domains scheduled for the first 6 years of operation The geometallurgical domain scheduled for the first 6 years of operation The geometallurgical domain composite samples on which these metallurgical results are based is from Aura's trench sampling program completed in 2018

Criteria **JORC Code explanation** Commentary across the Lazare North and Lazare South Resources. (ASX release: Quarterly report June 2018 and Appendix 5B, 31st July 2018). Trench locations were selected to correspond to diamond drill (DD) locations from 2017 drilling program (ASX Release: Tiris Resource upgrade success, 30 April 2018) as reported in ASX release: Quarterly report June 2018 and Appendix 5B, 31st July 2018. A total of 11 trenches were excavated (8 Lazare South and 3 Lazare North) to a depth of 4m. Trenches were oriented west to east and sampling was undertaken by channel sampling of north and south walls at 0.5m depth intervals. Interval samples were not split on site. Trench interval samples were split at Aura Energy's Nouakchott laboratory by rotary splitter divider (RSD). minimum 2kg sub sample was collected for assay, a 1kg sub sample was collected for geometallurgical test work, a 2kg sample was collected for reference and the remainder was stored as inputs for bulk metallurgical composite preparation. Given the fine-grained nature of the uranium minerals these sample sizes are appropriate. Sub samples for assay were sent to ALS Minerals, Nouakchott where they were crushed by jaw crusher to -12mm and 1kg was riffle

XRF.

split for pulverising to +85% passing 75 microns. An c. 100g split was bagged and sent for analysis by pressed pellet

Criteria	JORC Code explanation	Commentary
		Previous analysis comparing different
		analytical methods (XRF, ICP, DNC) had
		indicated that XRF is an accurate
		method on this material, if an x-ray
		band is selected for measurement that
		is not affected by the presence of
		strontium, and this was done. This
		method will measure total uranium. A
		sub-split of assay samples was
		prepared by ALS Laboratories
		Nouakchott by Method Prep 22 (Crush
		to 70% less than 6mm, pulverize entire
		sample to better than 85% passing 75
		microns). An c. 100g sample of pulp
		was split off using mini-riffle splitter,
		placed in sample envelope and
		forwarded by air to ALS in Ireland for
		uranium analysis by ALS Method U-
		MS62 (U by ICP-MS after 4 acid
		digestion). 4 acid digestion provides
		near total extraction. Geometallurgical
		samples for each interval were
		screened at 1mm, 300µm, 150µm and
		75µm and fractions weighed and
		assayed by portable XRF. A split of the
		-75µm fraction for each interval was
		collected by RSD and sent to ALS
		Minerals for uranium analysis by ALS
		Method U-MS62 (U by ICP-MS after 4
		acid digestion). 4 acid digestion
		provides near total extraction. The
		results of assay and geometallurgical
		analysis were analysed to define
		process behaviour based
		geometallurgical domains. Three
		domains were identified (2 x Lazare

South and 1 x Lazare North).

Criteria	JORC Code explanation	Commentary
		 These formed the basis for generation of bulk composite samples for metallurgical test work. Interval samples were sent to Australian MinMet Metallurgical Laboratories (AMML), Gosford, Australia where they were combined based on composite definitions and mixed by rolling barrel. Composited samples were assayed by Direct Neutron Activation and pressed pellet XRF by Australian Nuclear Science and Technology Organisation (ANSTO Minerals), Lucas Heights, Australia. Composite sample head assays were well reconciled with weighted average grade calculated from input interval samples. Aura's UOC product complies with ASTM standards for commercial sale to uranium converters. Analysis of the UOC falls within sales specifications provided by the major uranium conversion facilities. Therefore, no allowance is made for deleterious elements.
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	Environmental Impact Report (RIMA) included the following: o Archaeology and Cultural Heritage o Ecology and Biodiversity o Meteorology, Air Quality, Noise and Vibration

Water

Criteria	JORC Code explanation	Commentary
		Waste rock, beneficiation reject, and
		process plant tailings are inert and will
		disposed of in mined out pits. The final
		location for all waste products is
		backfilled into the mining voids,
		however some stockpiling will be
		required until pit voids become
		available. It is planned that the process
		plant tailings will be preferentially
		placed into the mining voids followed
		by the coarser screening plant rejects
		and finally the mine waste and
		overburden. The processing plant
		tailings are a filtered product at a 63%
		solids density and will be transported
		from the plant to the mine by truck at
		an average rate of 20 dry tonnes per
		hour.
		 The ESIA has been approved by the
		Mauritanian government and
		exploitation licence has been granted
		(ASX release: 5 th October 2017)

Criteria	JORC Code explanation	Commentary
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	 The Tiris site is a remote site located 700km from the closest settlement of Zouerate and 1400km from the Mauritanian Capital, Nouakchott. Access to all land required as been granted as part of the Exploitation Licence (ASX release: TIRIS URANIUM PROJECT EXPLOITATION LICENCE GRANTED, 18/12/2018). Transportation will be by access road to Zouerate, maintained by the operation. A uranium transport plan has been

Criteria	JORC Code explanation	Commentary
		 developed for safe transport of uranium product based on IAEA guidelines. Power will be supplied by series of diesel generator power plants at key process sites. The power supply for the main processing plant and camp will be supplemented by 50% solar generation capacity. Water will be sourced and pumped from remote bores and pumping station within a 30km radius of the main processing facility. A camp for accommodation of up to 120 personnel will be provided at the operation.
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. 	infrastructure capital cost estimate for a 1.25Mtpa operation was prepared by MinCore Engineers from information developed in-house by Aura Energy. The basic key information package provided by Aura included block

Criteria	JORC Code explanation	Commentary
	 Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	extension of the design by others. Based upon this package of information, external consultants were employed to further develop sufficient engineering to allow preparation of scope of work, lists, datasheets specifications and bill of quantities relevant to the scope. Much of the engineering and the preparation of the capital cost estimate was performed by Mincore Pty Ltd. The scope for the facilities also consists of two specialised

Criteria	JORC Code explanation	Commentary
		plant areas and these were separately engineered for both quantities and prices.
		o Fluid Bed Precipitation, Calcining and Drum Packing Plant developed by Adelaide Control Engineering.
		 Leach and Uranium Recovery plant developed by Simulus Engineers. Cost estimate was prepared for the Feasibility Study and the cost estimate is compliant to Australasian Institute of Mining & Metallurgy (AusIMM) Class 3 estimate with an accuracy -15% to +20%. Capital costs included the process facilities, site infrastructure, utilities and support facilities and a contingency and for the DFS totalled USD74.8M DFS operating costs for mining, treatment and G&A were derived from first principles by MiningPlus Consultants (mining), Simulus Engineers, Adelaide Control Engineering and Aura Energy (treatment and services) and Aura Energy (G&A), with input in all areas

from MinCore Engineers. For the DFS the average mining cost was estimated at (\$3.45/t) and the average mill throughput cost (processing plus G&A) was US\$15.51/t milled. • As the revenue from uranium sales is effectively received in US\$ exchange rates for the Mauritanian Ouguiya and to a much lesser extent other currencies have been used at the prevailing public mid-rate when costs have been estimated. • Transportation and local freight costs have been provided by international and local suppliers as part of the estimation of capital and operating costs and are well established for projects in Mauritania. • The royalty paid to the Mauritanian government will be 3.5% of net sales revenue at uranium price up to US\$42/lb U ₃ O ₈ and 4.9% of net sales revenue at uranium price greater than	Criteria	JORC Code explanation	Commentary
US\$42/lb U₃O ₈ .			the average mining cost was estimated at (\$3.45/t) and the average mill throughput cost (processing plus G&A) was US\$15.51/t milled. • As the revenue from uranium sales is effectively received in US\$ exchange rates for the Mauritanian Ouguiya and to a much lesser extent other currencies have been used at the prevailing public mid-rate when costs have been estimated. • Transportation and local freight costs have been provided by international and local suppliers as part of the estimation of capital and operating costs and are well established for projects in Mauritania. • The royalty paid to the Mauritanian government will be 3.5% of net sales revenue at uranium price up to US\$42/lb U ₃ O ₈ and 4.9% of net sales revenue at uranium price greater than

head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. • The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and coproducts. • The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and coproducts. • The quantity of ore and head grade delivered to the mill each year is estimated using the optimised block model over the life-of-mine. • Metallurgical recoveries are therefore applied to the mine schedule to calculate final yearly production volumes. • Fixed and variable unit costs for mining on an A\$/t waste or ore and A\$/t RON for processing have been applied to generate the annual operating cost for	Criteria	JORC Code explanation	Commentary
 Uranium price is based on the long term consensus incentive price to stimulate development of new uranium projects sufficient to meet a range of marked demand forecasts. Revenues for Ore Reserve calculations have been based on the US\$ uranium price (per pound U₃O₈) from offtaked agreement signed with Curzon Resources. This provides an average price of US\$44/lb U₃O₈ for 30% or 		regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. • The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-	Project has been developed by Aura Energy for the DFS. The quantity of ore and head grade delivered to the mill each year is estimated using the optimised block model over the life-of-mine. Metallurgical recoveries are then applied to the mine schedule to calculate final yearly production volumes. Fixed and variable unit costs for mining on an A\$/t waste or ore and A\$/t ROM for processing have been applied to generate the annual operating cost for the Project. Uranium price is based on the long term consensus incentive price to stimulate development of new uranium projects sufficient to meet a range of market demand forecasts. Revenues for Ore Reserve calculations have been based on the US\$ uranium price (per pound U ₃ O ₈) from offtake agreement signed with Curzon Resources. This provides an average price of US\$44/lb U ₃ O ₈ for 30% of annual production over 7 years. (ASX

Criteria JORC Code explanation

- The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.
- A customer and competitor analysis along with the identification of likely
 market windows for the product.
- Price and volume forecasts and the basis for these forecasts.
- For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.

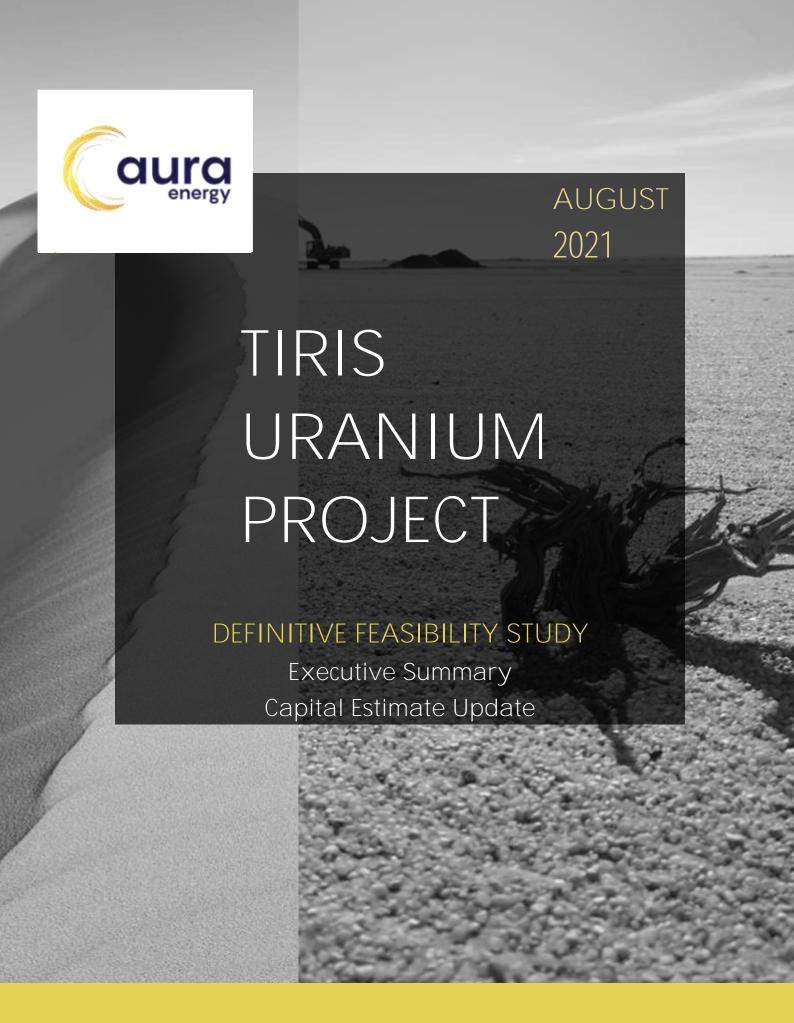
Commentary

- The uranium market is currently in a surplus position largely as a result of strong low cost production growth from Kazakhstan coupled with the significant global demand shock following the Fukushima reactor incident in March 2011.
- A significant future increase in nuclear generation capacity is expected to be driven by China with production targets for an increase from current operational capacity (22GW) to 58GW by 2020 with a further >30GW under construction at that time. The increase in Chinese capacity is consistent with growing Chinese energy demand and a recently stated emissions target for 20% of energy to be generated from non-fossil fuel sources by 2030 from 9.8% in 2013.
- The increase in nuclear generation capacity will require a significant increase in uranium mine production. Under current uranium prices (spot US\$31/lb and term US\$38/lb) there is a lack of identifiable projects with the returns sufficient to justify new mine investment. As such, post the ramp up of Cigar Lake and Husab there is minimal new production growth expected in primary mine supply. Leading industry participants are highlighting around US\$65/lb as a potential floor price for development of their higher quality projects in more stable jurisdictions.

Criteria	JORC Code explanation	Commentary
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	 Aura Energy performed an economic and financial review of the Tiris Uranium Project using a range of uranium price scenarios and spot base metal prices as described above. A discounted cash flow model has been developed with a valuation date of June 2019. NPV₈ range from US\$36M at sales price of US\$50/lb U₃O₈ to US\$102M at sales price of US\$65/lb U₃O₈
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	 The Tiris Uranium Project Exploration and Exploitation licences are located on unallocated crown land. No native title claims cover the Tiris Uranium Project The nearest population centre is Zouerate, 700km to the West.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. 	 Water drilling within a 30km radius of the central process facility is underway. Recent water drilling by the Mauritanian government was successful 57km from the Tiris Project, resulting in 2 operating bores with flow of 15m3/hr each. There are reasonable prospects for Aura to locate water on the same geological structure within the target 30km radius. Project commissioning is targeted for 2020/21There are very reasonable grounds to expect that all necessary Government secondary project approvals will be received within the timeframes required for commencement of construction.

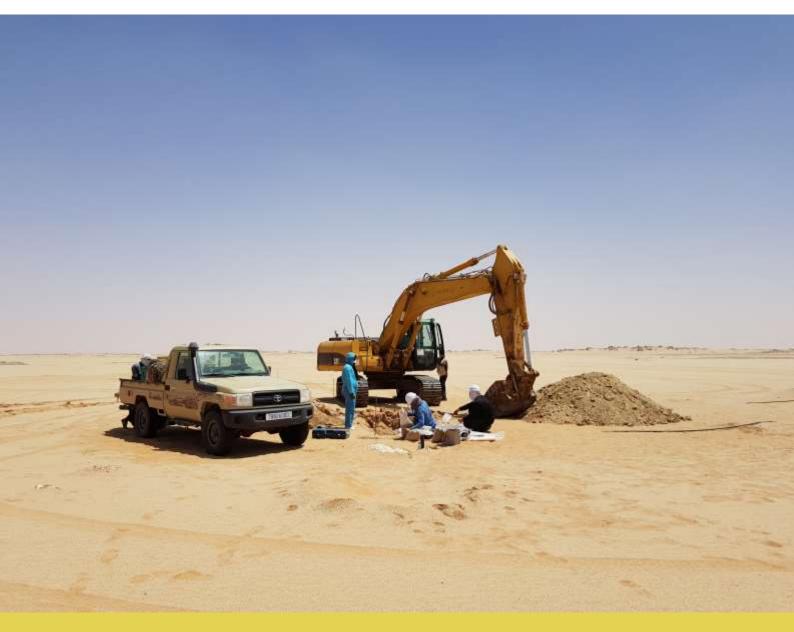
Criteria	JORC Code explanation	Commentary	
	Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.		
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	 Ore Reserves reported here are classified as both Proved and Probable as they are derived from Measured and Indicated Mineral Resources in accordance with the JORC Code (2012). The results of the Ore Reserve estimate reflect the Competent Person's view of the deposit. 	
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.		
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic 	 Reporting of the project Ore Reserve considers; the Mineral Resources compliant with the JORC Code 2012 Edition, the conversion of these resources into an Ore Reserves, and the costed mining plan capable of delivering ore from a mine production schedule Dilution of the Mineral Resource model and an allowance for ore loss was included in the Ore Reserve estimate. All the Mineral Resources intersected by the open pit mine designs classified as Measured and Indicated Resource has been converted to Proved and Probable Ore Reserves 	

Criteria JORC Code explanation


As part of the FS works, the project team have engaged with potential contractors in country to confirm construction, mining and logistics costs.

- Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.
- It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Commentary


estimate. All the Mineral Resources intersected by the open pit mine designs classified as Measured and Indicated Resource has been converted to Proved and Probable Ore Reserves after consideration of all mining, metallurgical, social, environmental, statutory and financial aspects of the Project.

- The mine planning and scheduling assumptions are based on current industry practice, which are seen as globally correct at this level of study; which further work in the next level of study to understand any periodic cost fluctuations.
- The project team has estimated the cost estimates and financial evaluation with specialist consultants and team members, which are considered sufficient to support this level of study. The accuracy of the cost estimate is +/-15%.
- As part of the FS works, the project team have engaged with potential contractors in country to confirm construction, mining and logistics costs.

PROJECT HIGHLIGHTS

The Tiris Project is a greenfield calcrete uranium project first discovered by Aura Energy in 2008. It represents the first development in a significant new global uranium province in Mauritania with 52Mlbs U_3O_8 in JORC Resources and considerable exploration upside. The mineralisation is naturally suited to low capital cost development and low operating cost extraction of uranium, presenting an opportunity for near term development of the Project.

Tiris Project

Definitive Feasibility Study

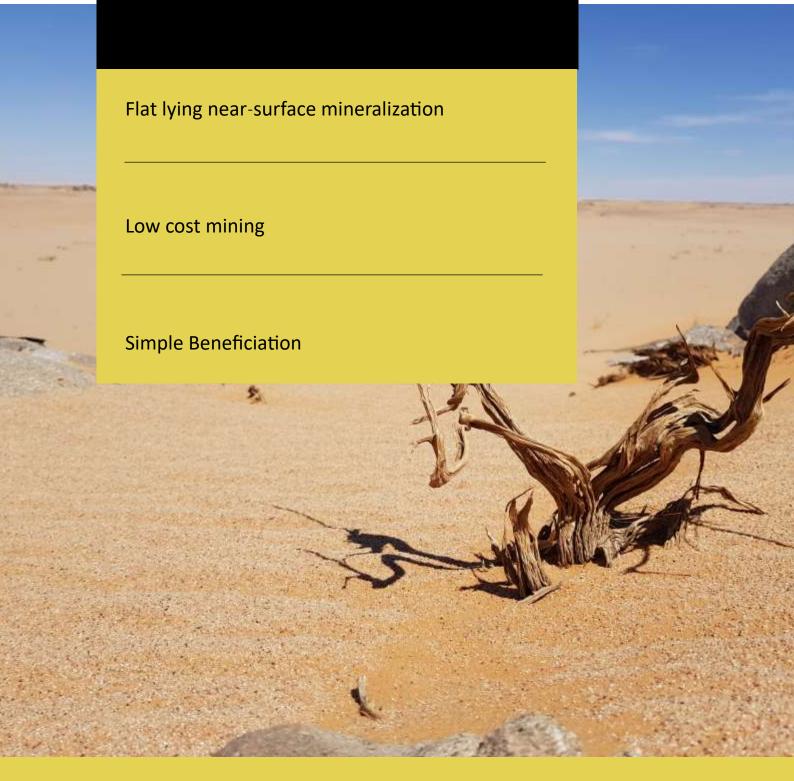
www.auraenergy.com.au Twitter: @aee_auraenergy

KEY METRICS

	Life of Mine (LOM)	15 Years
	Beneficiation Plant ore throughput—Design	1.25Mtpa
	Process Plant ore through—Design	0.16Mtpa
Resource	ROM uranium grade—LOM	364ppm U₃O ₈
	Uranium Metallurgical Recovery—LOM	86.1%
	Average annual uranium production	823,000lb U ₃ O ₈
Production	LOM uranium production	12.4Mlb U ₃ O ₈
	Mining, plant, infrastructure and indirects	US\$68.2M
	Contingency	US\$6.6M
Capital	Total Capital	US\$74.8M
	Exchange Rate (AUD:USD)	0.70
	Uranium cash operating cost (C1) ¹	US\$25.43 /lb U₃O ₈
Operations	Uranium AISC operating cost ²	US\$29.81 /lb U ₃ O ₈
	Contract uranium price (baseline)	US\$60 /lb U₃O ₈
	Project NPV ₈ (incl Royalties and tax)	US\$79.7M
	Project IRR (incl Royalties and tax)	22%
	Cashflow—Total ³	US\$214M
	Cashflow—Annual ³	US\$19.2M
Project Financials	Project payback from startup	4 years

¹ Cash operating costs include all mining, processing, maintenance, administration costs, but exclude royalties

² All In Sustaining Cost—Includes Sustaining Capital, Royalties, Insurances and Product Transport


³ After tax cashflow

TIRIS URANIUM PROJECT MAURITANIA

DEFINITIVE FEASIBILITY STUDY
EXECUTIVE SUMMARY
JULY 2019

Project Highlights	2
Introduction	5
Tenure and Land Access	10
Geology	12
Resources and Reserves	15
Mining	24
Process Facilities	34
Process Test work	45
Infrastructure	51
Environment	57
Project Implementation Plan	64
Capital Cost Estimate	67
Operating Cost Estimate	72
Uranium Market	80
Financial Analysis	84
Risk Analysis	87

INTRODUCTION

Tiris Project

Definitive Feasibility Study

www.auraenergy.com.au Twitter: @aee_auraenergy

The project has several natural attributes which will allow low capital cost development and low operating cost extraction. These attributes are:

1/ FLAT-LYING NEAR SURFACE MINERALIZATION

Typically easy digging, first gravelly sand then moderately compacted gravel

2/ LOW COST MINING

No blasting and minimal overburden

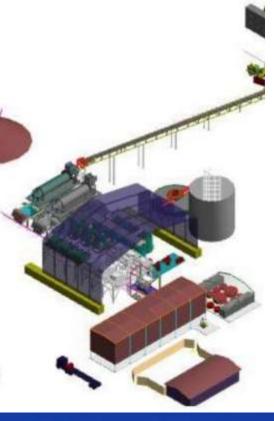
3/ SIMPLE BENEFICIATION

Up to 700% uranium upgrade by simple screening.

4/ VERY SMALL LEACHING CAPACITY

20.2 tph leach throughput, due to beneficiation

5/ HIGH LEACH FEED GRADES


Typically, 1500—2500 ppm U₃O₈

The Tiris Project is a greenfield calcrete uranium project first discovered by Aura Energy in 2008. Located in the Sahara Desert in northeast Mauritania it represents the first major calcrete uranium discovery in the region.

A Scoping Study was completed in 2014. This was updated into a Feasibility Study (FS) document in May 2017, to support an application for exploitation licences. The FS and an extensive Environmental and Social Impact Assessment (ESIA) were submitted on 24th May 2017 to the Mauritanian Ministry of Petroleum, Energy and MInes, and formally approved by the Mauritanian Government on 5th October 2017.

The 1.25 Mtpa mine and process plant described in this feasibility study has been designed to take full advantage of these unusual characteristics, whilst providing a low capital cost and rapid project development and construction.

www.auraenergy.com.au Twitter: @aee_auraenergy

DEFINITIVE FEASIBILITY STUDY

Aura Energy as the client organisation, has authorised the preparation of this feasibility study with major assistance from:

- Mincore, an Australian consulting engineering and estimating company with broad African experience.
- Simulus, a specialist process consulting engineering company specialising in leaching and lon Exchange.
- Adelaide Control Engineering, a specialist consulting engineering and fabrication company in uranium production and drumming.

This 2019 Feasibility Study incorporates the considerable geological, process and engineering development that has taken place since the 2017 Feasibility Study. This Feasibility Study includes a cost estimate complying with the American Association of Cost Engineers (AACE) Class 3 level, accurate to -15% to +20%.

85%

BUDGET PRICING

-15% +20%

AACE CLASS
3 LEVEL
ACCURACY

15 YEARS

LOM

PROJECT LOCATION

Tiris uranium project located 680km from Zouerat and 1,400km from Nouakchott, Mauritania's Capital

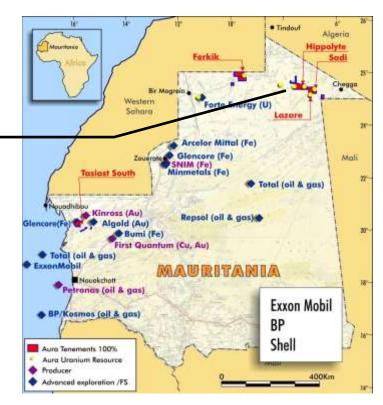


Figure 1.1 Project Location

Mauritania is a country with a well-established and sizeable mining industry and a favourable and well-administered Mining Act. The Government is stable, democratic, based on the French civil law system and supportive of foreign investment. It has an established reputation for maintaining stability and security within its borders.

The predominant spoken languages in Mauritania are Hassaniya, Arabic, Pulaar, Soninke, Wolof and French (widely used in the media and among educated classes). Modern Standard Arabic is the official language.

As of 2018, Mauritania had a population of approximately 4.5 million.

The local population is divided into three main ethnic groups: Bidhan, Haratin, and West Africans.

Mauritania is nearly 100% Muslim with most inhabitants adhering to the Sunni denomination. The Sufi orders, the Tijaniyah and the Qadiriyyah have great influence in the country.

Mauritania gained its independence from France on 28 November 1960, after 59 years of French colonialism. Mauritania held its first democratic presidential elections in 2007 and again in 2009 after a coup. The outgoing president, Abdel Aziz, held power from 2009 for the regulatory two terms, and gained widespread international and internal support. Abdel Aziz's Defence Minister has just been elected as the new President in June 2019.

Feasibility Study Team

Consultant company name	Consultant function	Home location	
Mincore Pty Ltd	Engineering Consultant	Melbourne, Australia	
Simulus Group	Leaching/IX Engineering consultant	Perth, Australia	
Adelaide Control Engineering Pty Ltd.	Uranium Processing Engineering consultant	Adelaide, Australia	
Mining Plus	Mining design consultant	Melbourne, Australia	
General Studies and Achieve- ments in Africa Sarl (GERA SARL)	Geotechnical consultant	Dakar, Senegal.	
PhotoSat	Satellite Surveying	Vancouver, Canada	
H&S Consultants Pty Ltd	Resource Estimation	Sydney, Australia	
3D Exploration Pty Ltd	Grade determination by gamma logging	Mt Pleasant, WA, Australia	
Poseidon Geophysics (Pty) Ltd	Downhole gamma logging	Gabarones, Botswana	
Australian Nuclear Science & Technology Organisation	Metallurgical test work, Steady state simulation, Uranium disequilibrium	Lucas Heights, NSW, Australia	
Australian MinMet Metallurgical Laboratories (AMML)	Metallurgical test work	Gosford, NSW, Australia	
Mintek Laboratories	Metallurgical test work	Johannesburg, South Africa	
CSIRO Minerals	Mineralogy	Clayton, VIC, Australia	
The University of SA	Mineralogy	Adelaide, SA, Australia	
Pontifex and Associates	Mineralogy	Adelaide, SA, Australia	
Activation Laboratories Ltd	Uranium determination	Ancaster, Ontario, Canada	
Geoterra Pty Ltd	Hydrogeological consulting	Newtown, NSW, Australia	
SES sarl	Water geophysics	Nouakchott, Mauritania	
ALS Global	Chemical analysis	Nouakchott, Mauritania	
Wallis Drilling	Air-core drilling	Midvale WA, Australia	
Capital Drilling	Diamond Drilling	Mauritius	
Earth Systems	Environmental & ESIA Consultants	Melbourne, Australia	
METS Engineering	Operating Cost review	Perth, WA, Australia	
Golders Associates	Groundwater supply review	Perth, WA, Australia	

Tiris Project

TENURE AND LAND ACCESS

Fully permitted for development with only minor operations permits required

Tiris Project

Definitive Feasibility Study

The project is 85% owned by Tiris Ressources SA, a subsidiary of Aura Energy Limited (Aura), and 15% owned by the Mauritanian Government through its agency Societe Mauritanienne des Hydrocarbons et de Patrimone Minier (SMH-PH). Aura is an Australian-based resources company listed on the Australian Stock Exchange (ASX) in 2006 and on the London Stock Exchange (AIM) in 2016. Aura's registered office is located in Windsor, Victoria, Australia.

Table 1.2: Tenement summary

Permit Number	Tenement Name	Area km²
561 B4	Oum Ferkik (application)	38
2492 C4	Oued El Foule	190
2491 C4	Ain Sder	207

The key approvals provided for the Tiris project to date are:-

- Mining Exploitation licences granted for the two Eastern Resource zones at Oued El Foule and Ain Sder on February 8th, 2019¹
- Environmental and Social Impact Assessment (ESIA), approved on 5th October, 2017².

Once the project go-ahead is given and design is resolved, additional approvals will include:-

- Construction permit for any construction work outside Aura's mining leases.
- Water approval permit to draw water.
- Road usage permit for any roads to be constructed outside Aura's mining leases.
- Import permit for relief of Customs and import duties on all imported materials.
- Re-certification of existing Shield airstrip
- Power permit to establish three power generation plants.
- Health permit to establish a first aid clinic on site.
- Labour permit to approve Aura's Mauritanisation plan to train local personnel, and replace expatriates.

GEOLOGY

Mineralised gravels and weathered granite occur at surface, or under a very thin (<30cm) veneer of wind-blown sand.

Uranium mineralisation occurs principally as carnotite $K_2(UO_2)_2(VO_4)_2.3H_2O$.

Carnotite occurs as fine dustings and coatings on granite or granite mineral fragments.

Tiris Project

Definitive Feasibility Study

GEOLOGY

The Tiris resources lie in the north-eastern part of the Reguibat Craton, an Archaean (>2.5 Ga) and Lower Proterozoic (1.6-2.5 Ga) aged complex composed principally of granitoids, meta-sediments and meta-volcanics. The resources lie within Proterozoic portions of the craton. This part of the craton generally consists of intrusive and high-grade metamorphic rocks of amphibolite facies grade.

Several small uranium vein deposits were known in the Reguibat Craton from exploration during the 1950's pointing to the existence of a poorly explored uranium province.

Economically significant calcrete-type uranium deposits had not been reported in Mauritania prior to Aura's discoveries.

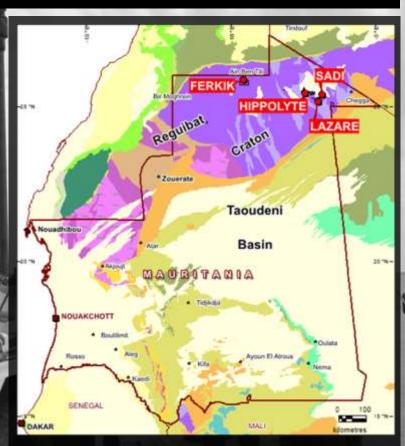


Figure 2.1: Regional geology of Mauritania; red dots are Aura uranium resources

LOCAL GEOLOGY

In Aura's resource zones, the underlying rocks are pre-dominantly granitic and of two main types:

 Pale grey medium-grained granite and granodiorite with coarse phenocrysts of plagioclase, generally unfoliated and forming low smooth outcrops. The uranium content is low, typically 1 to 2 ppm Finer-grained red to pink porphyritic granite, less abundant than the grey granite. This granite typically has higher uranium content in the range 5 to 20 ppm and is therefore a moderately 'hot' granite. The red granite is typically fractured and foliated and is believed to have formed by alteration of the grey granites in zones of deformation.

All the resource zones lie beneath very flat land surfaces covered by surficial hamada and thin aeolian sand deposits. These largely cover the basement rocks, which appear only as scattered outcrops.

Tiris Project

www.auraenergy.com.au Twitter: @aee_auraenergy

Definitive Feasibility Study

MINERALIZATION

The uranium resources lie predominantly within either weathered, partially decomposed red granite or in colluvial gravels developed on or near to red granites. The resources are believed to have developed within shallow depressions or basins, where colluvial material has accumulated in desert sheet wash events.

The mineralised gravels and weathered granite occur at surface, or under a very thin (<30cm) veneer of wind-blown sand. These form laterally continuous, single, thin sheets overlying fresh rock, usually granite. This offers the opportunity for easy, low cost mining and little or no crushing.

The uranium mineralisation occurs principally as carnotite $K_2(UO_2)_2(VO_4)_2.3H_2O$. The carnotite occurs as fine dustings and coatings on granite or granite mineral fragments, usually mixed with white powdery calcium carbonate. The carnotite grain size is mostly ultrafine micron scale.

This mineralised veneer of relatively unconsolidated material is typically less than 5 metres in thickness, although locally it can occur up to 12 m depth.

Figure 2.2: Carnotite mineralization in the Tiris Resources

The deposits appear to have formed by near -surface leaching of uranium from the uraniferous red granites by saline groundwaters during the wet Saharan "pluvial" periods. There have been many of these periods over the past 2.5 million years, the most recent ending only 5,900 years ago. Evaporation during the subsequent arid periods caused the precipitation of the uranium vanadates, along with calcium, sodium and strontium carbonates, sulphates and chlorides.

RESOURCES AND RESERVES

The Tiris Project has a total Mineral Resource of 51.8Mlb U_3O_8 being 92Mt at 255ppm U_3O_8 .

The Maiden Ore Reserve for the Tiris Project is $8.1 \text{Mlb } \text{U}_3 \text{O}_8$ being 10.9Mt at 336ppm $\text{U}_3 \text{O}_8$.

Tiris Project

Definitive Feasibility Study

The global resource estimate for the Tiris Uranium Project, at 3 different lower cut-off grades is presented in Table 3.1.

Table 3.1: Global Tiris Resource summary 1, 2

Cut-off U₃O ₈ ppm	Class	Tonnes (Mt)	U₃O ₈ ppm	U ₃ O ₈ (Mlb)
	Measured	10.2	236	5.3
	Indicated	24.5	218	11.8
100	Total M+I	34.7	224	17.1
	Inferred	57.4	274	34.7
	Total Resource	92.1	255	51.8
200	Measured	4.6	355	3.6
	Indicated	9.5	334	7.0
	Total M+I	14.1	341	10.6
	Inferred	36.8	344	27.9
	Total Resource	50.9	345	38.5
300	Measured	2.1	497	2.3
	Indicated	4.0	465	4.1
	Total M+I	6.1	476	6.4
	Inferred	18.0	446	17.7
	Total Resource	24.1	455	24.1

¹The information in this announcement is extracted from ASX announcement entitled "Tiris Resource Upgrade Success" released on 30th April 2018 and available to download from asx.com.au ASX:AEE. The Company is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

² This Tiris Resource Inventory aggregates the 2018 Resource Estimates by H&S Consultants Pty Ltd on the Lazare North, Lazare South, Hippolyte, and Hippolyte South deposits and the 2011 Resource Estimates by Coffey Mining on the Sadi, Ferkik West, Ferkik East, Hippolyte West and Agouyame deposits. The 2011 Resource Estimate was the subject of Aura ASX announcement dated 19 July, 2011 "First Uranium Resource in Mauritania". The 2011 Resource Estimate was produced in compliance with the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Aura confirms that all material assumptions and technical parameters underpinning the 2011 estimates in the relevant market announcement continue to apply and have not materially changed.

Table 3.2: Tiris Resource by Resource Zone (combined 2018 & 2011 Resource Estimates) 1, 2 (p16)

ut-off U₃O₃ g/t	Resource Zone	Class	Tonnes (Mt)	U108 (g/t)	U ₃ O ₈ (Mkg)	U ₃ O ₈ (MI
	MAN COLUMN TO SERVICE AND ADDRESS OF THE PARTY OF THE PAR	Measured	5.7	225	1.3	2.8
	Hippolyte	Indicated	6.5	217	1.4	3.1
		Inferred	7,4	281	2.1	4.6
	Hippolyte South	Indicated	4.8	192	0.9	2.0
		Inferred	3.1	176	0.5	1.2
	Lazare North	Measured	1.1	284	0.3	0.7
		Indicated	10.6	229	2.4	5.4
100		Inferred	3.9	210	0.8	1.8
		Measured	3.4	239	0.8	1.8
	Lazare South	Indicated	2.6	219	0.6	1.3
		Inferred	9.1	214	2.0	4.3
	Sadi	Inferred	8.6	330	2.8	6.2
	Ferkik West	Inferred	11.9	330	4.0	8.8
	Ferkik East	Inferred	4.5	240	1.1	2.4
					1.9	
	Hippolyte West	Inferred	6.3	300	77.00	4.2
	Agouyame	Inferred	2.6	210	0.5	1.2
		Total	92.1	255	23.5	51.8
	Hippolyte	Measured	2.3	345	0.8	1.8
	nippolyte	Indicated	2.4 3.5	344 441	0.8 1.5	1.8
	Hippolyte South	Indicated	1.6	290	0.5	1.0
		Inferred	0.7	293	0.2	0.5
		Measured	0.7	372	0.3	0.6
	Lazare North	Indicated	4.5	348	1.5	3.4
200		Inferred	1.3	354	0.5	1.0
200		Measured	1.6	352	0.5	1.2
	Lazare South	Indicated	1.0	350	0.4	0.8
		Inferred	3.1	364	1.1	2.5
	Sadi	Inferred	7.3	350	2.6	5.7
	Ferkik West	Inferred	11.2	340	3.9	8.5
	Ferkik East	Inferred	2.8	280	0.8	1.7
	Hippolyte West	Inferred	5.5	320	1.8	3.9
	Agouyame	Inferred	1.4	240	0.3	0.7
		Total	50.9	343 469	17.5 0.5	38.5
	Hippolyte	Measured Indicated	1.0	471	0.5	1.1
		Inferred	1.9	596	1.1	2.5
	1	Indicated	0.5	402	0.2	0.4
	Hippolyte South	Inferred	0.2	419	0.1	0.2
300	Lazare North	Measured	0.4	481	0.2	0.4
		Indicated	2.0	475	1.0	2.1
		Inferred	0.6	495	0.3	0.6
	, n	Measured	0.7	478	0.4	0.8
		Indicated	0.4	482	0.2	0.5
		Inferred	1.4	511	0.7	1.6
	Sadi	Inferred	4.1	430	1.8	3.9
	Ferkik West	Inferred	6.7	400	2.7	6.0
	Ferkik East	Inferred	0.9	370	0.4	0.8
	Hippolyte West	Inferred	2.2	430	1.0	2.1
		Total	24.1	454	10.9	24.1

Total resources of **51.8Mlb** U_3O_8 at 100ppm cut-off.

17.1Mlbs U₃O₈ of resource in Measured and Indicated categories

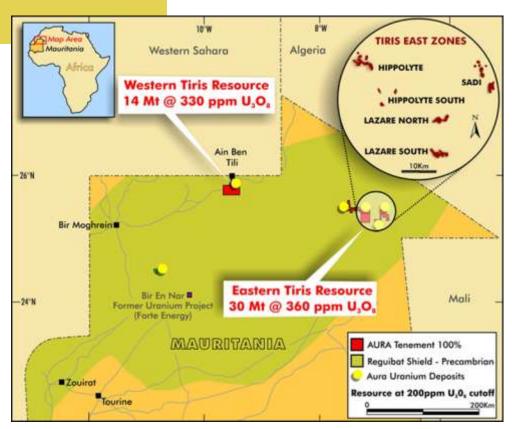


Figure 3.1: Tiris Global Resources at 200 ppm U₃O₈ cutoff

Three resource estimation exercises have been carried out on Aura's Tiris uranium resources.

The initial exercise was carried out in 2011/2012 by Coffey Mining, an Australian based consulting firm with extensive experience in resource estimation of calcrete uranium mineralisation. This study resulted in an Inferred Resource of 50.3 Mlbs U_3O_8 at an average grade of 332 ppm U_3O_8 , based on a lower cut-off grade of 100 ppm U_3O_8 . The exercise included a site visit by the Coffey resource consultant.

In 2014, a second resource estimate to upgrade a portion of the resource to Indicated Resource status, was carried out on the Lazare North zone.

Both of these resource exercises were based on vertical air-core drilling, conducted by Australian contractor Wallis Drilling. An NQ size bit was used, resulting in a hole diameter of approximately 80 mm. A 100m x 200m drill pattern was employed for Inferred Resources, and a 100m x 100m pattern for Indicated Resources. Uranium grades were determined from drill chip samples on 0.5m or 1.0m intervals, by chemical analysis at ALS Laboratories in Ireland. Industry standard Quality Assurance/Quality Control analyses were carried out on sample duplicates, blanks, certified reference material and by extensive referee analyses.

In 2017, a major drilling program was undertaken to upgrade a substantial portion of the resources to Measured and Indicated status. Air-core drilling was again conducted by Wallis Drilling. Holes were drilled vertically on a 50m x 50m pattern in the Hippolyte, Lazare North and Lazare South resource zones. To test short range variability and provide geostatistical information, three 100m x 100m squares were drilled out at 12.5 m drillhole spacing. Uranium grade in this program was estimated by downhole gamma logging, carried

out by consultants Poseidon Geophysics.

In total, 1,691 drill holes were logged with the total gamma logging system between June 2017 and November 2017. These total count gamma logs were converted to equivalent uranium grades (eU₃O₈) by applying calibration information, an air correction and minor smoothing. A check was also done on the disequilibrium between U-238 and its gamma emitting daughter products. A disequilibrium factor was determined in order to adjust all eU₃O₈ grades to their true U₃O₈ grades.

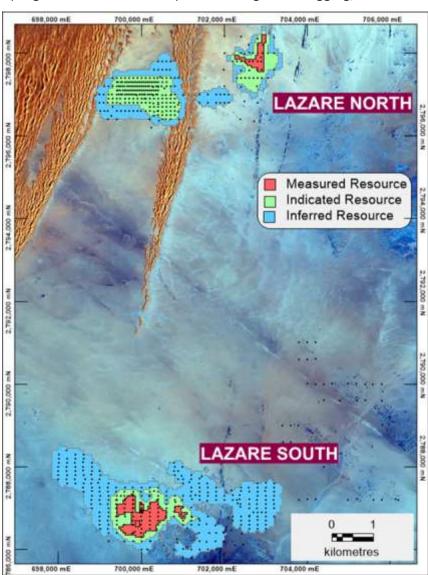


Figure 3.2: Lazare resources—2018 resource estimate

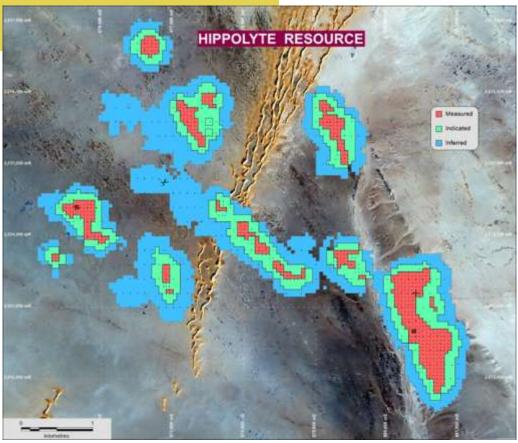


Figure 3.3: Hippolyte resources—2018 resource estimate

Large diameter (PQ) triple tube diamond drilling was carried in 56 holes, to validate grade estimation by gamma logging and to provide density information.

Extensive quality assurance procedures were employed involving:-

- regular logging of reference holes,
- repeat logging of 1 in 20 holes,
- comparison of assayed diamond drill core with grades determined by downhole gamma logging,
- and referee analysis of drillcore analyses.

Downhole gamma logging results were compiled and interpreted by Australian consultants 3D Exploration Pty Ltd, who have extensive experience in this field and in calcrete uranium deposits.

Resource estimation on the Lazare and Hippolyte Zones (see Figures 1.4 & 1.5) was carried out in 2018 by specialist resource consultants, H&S Consultants, based in Sydney.

ADDITIONAL RESOURCE POTENTIAL

Excellent potential exists to add to the resource base during the life of the operation.

Aura's exploration to date in the region has largely focussed on radiometric uranium channel anomalies defined by regional airborne radiometric survey data. The current resources correlate well with airborne anomalies. Strong uranium anomalies exist elsewhere in the district, similar in anomaly strength to those occurring over Aura's known resources. Most of these zones have had only limited evaluation by Aura and other companies. Potential clearly exists to locate additional mineralised and resource zones, within these untested and lightly tested anomalous areas.

Additionally airborne radiometric data does not extend further east than 7°W or further north than 26°N, and does not fully cover all parts of the Tiris Resource. Over 20,000 km² of similar geological setting lying to the east and north of the current Tiris Resources within Mauritania, is not covered by the airborne survey data. Parts of this area have had some ground radiometric surveying over broadly spaced lines (1 to 2 km), locating some uranium anomalous zones which have not been followed up as yet. Excellent potential therefore exists, to locate additional mineralised zones in this large area which has not had good quality radiometric coverage.

Potential also exists in the immediate vicinity of the currently known resources. In the Sadi zone, drilling has demonstrated that mineralisation extends at least 1.5 km south of the current resource boundary. This has not yet been closed off by drilling, or included in the resource. Additionally the surface radiometric response of mineralisation that has been used to guide exploration and drilling, can be shielded by a shallow cover (20 cm) of unmineralized material. As the southern extension of the Sadi mineralisation has in places no surface radiometric response, potential clearly exists to expand the resource in this area. There are also other current resource zones in the vicinity, where extensions to the mineralisation may not have a surface radiometric response.

The delineation of Measured and Indicated Resources has been limited for cost reasons only, to portions of the Lazare and Hippolyte deposits. Additional Measured/Indicated Resources will be able to be established within the currently defined Inferred Resources zones, and within further resource zones yet to be outlined.

The overall project financial model was prepared by Aura using inputs from the mining schedule cost model. Detailed processing, tailings disposal, power, water, camp infrastructure and logistics, and other costs were also developed as part of the Feasibility Study. Mining Plus reviewed the cash flow model with Aura to ensure that the project has a positive cash flow outcome, and this has been confirmed.

The declared Ore Reserve, at a 175 ppm $\rm U_3O_8$ cut off is shown in Table 3.2.

Table 3.2: Ore Reserve estimate

Description	Mt	U ₃ O ₈ (ppm)	U ₃ O ₈ (Mlb)	
	Lazare North			
Proved	0.7	354	0.6	
Probable	4.4	332	3.2	
Lazare South				
Proved	1.5	342	1.1	
Probable	0.7	340	0.5	
Hippolyte				
Proved	1.9	331	1.4	
Probable	1.7	334	1.3	
Total				
Proved	4.1	339	3.1	
Probable	6.8	333	5.0	
Total	10.9	336	8.1	

ORE

RESERVES

The Ore Reserve was generated from the Mineral Resource Estimate produced by H&S Consultants (Sydney) with the appropriate modifying factors to apply for mining dilution. This Resource model was used in an open pit optimisation process, to produce a range of pit areas using operating costs and other inputs derived from previous studies. Mining costs were built up from estimates derived from equipment supplier and mining contractor submissions and applied to a detailed mine schedule.

The Ore Reserve is based on information complied by the following:

- Revenue prices, based on historical averages and forward estimates, based on Offtake agreement with Curzon Resources provided by Aura.
- Processing recoveries based on the geometallurgical model developed by Aura.
- Mineral Resource estimate, H&S Consultants, 1st May 2018.
- Pit optimisation and mine design, Mining Plus.
- Capital costs, Mining Plus, Mincore, Simulus Engineers, Adelaide Control Engineers (ACE) and Aura.
- Operating costs, Mining Plus, Mincore, Simulus Engineers, ACE and Aura.

86%

CONVERSION OF MEASURED RESOURCES

71%

CONVERSION OF INDICATED RESOURCES

76%

TOTAL RESOURCE CONVERSION

92%

FIRST 10 YEARS
PRODUCTION IN
PROVEN AND
PROBABLE RESERVE

MINING

The DFS mine schedule supports 15 years production at 0.82Mlb of U_3O_8 per annum average.

Mining is free-digging and at surface.

Contract mining employed.

Tiris Project

Definitive Feasibility Study

MINING

Mining Plus (MP) was commissioned by Aura Energy in November 2018, to complete the mining design for the project, including Ore Reserve estimation in accordance with JORC (2012 Edition) requirements.

The detailed tasks undertaken were:

- Preliminary mine planning for preparation of information pack to obtain Mining Contractor Pricing.
- Obtain Mining Contractor pricing and review submissions.
- Complete pit optimisation including Measured, Indicated and Inferred (MII) mineral resources for the Lazare North, Lazare South, Hippolyte, Hippolyte South and Sadi Resources as potential mineral inventory.
- Define mining method and cycle based on optimised pit designs.
- Develop life-of-mine and mill production schedules including backfilling of beneficiation circuit reject and process tailings.
- Develop mining cost model.
- Estimate Ore Reserves and report in accordance with JORC (2012 Edition).

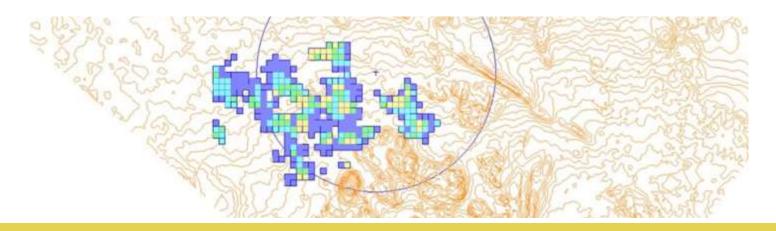
The uranium mineralisation largely lies within 3 to 5 metres of the surface in a relatively soft, free-digging material containing patchy calcrete. Based on trenching and metallurgical test work to date, this does not require blasting before mining, or crushing prior to beneficiation.

The Feasibility Study has shown that the three mining areas can be developed in a practical sequence to produce 0.8-1.1 Mlb/yr UO_4 through the processing plant for over ten years. The first nine years are from currently defined Measured or Indicated Resources, which form the declared Ore Reserve. The total mining cost to develop and operate the mine for ten years, has been estimated at US\$66.6 million or US\$2.24/tonne of material mined. This includes both fixed and variable operating costs, but excludes any capital spent prior to mobilisation.

PIT

OPTIMIZATION

MiningPlus completed resource optimisations for the Lazare North, Lazare South, Hippolyte, Hippolyte South and Sadi Resources using the 2018 Resource estimate, along with input parameters developed as part of the FS. Pit optimisations were completed for all mineralisation categories within the resource by Whittle optimisation. Measured and Indicated resources were included in optimisations for Ore Reserves, while Inferred resources were included as potential mineral inventory towards the later stages of mine life.


Optimisations included locations of the beneficiation circuit to minimise haulage distance. For the optimisations two beneficiation circuit locations were selected for Lazare North, a single location for Lazare South and three for Hippolyte.

The optimisation sales price was set at \$44/lb U_3O_8 as per the offtake agreement with Curzon Uranium Trading (refer to Marketing section 17). Utilising the updated costs and recoveries the cut-off grade was recalculated, resulting in a grade of 179 ppm U_3O_8 .

As the JORC mineral resource model provided for the Tiris Project utilised an MIK estimation method with discrete, pre-defined grade parcels, the cutoff grade selected for the Feasibility Study planning was 175 ppm U_3O_8 .

The optimisations were performed by resource over a range of Revenue Factors (RF). The revenue factor 1 pit was selected for the study. This is because the mine life is not long enough for the discounting effects on NPV to have a material impact at this level of the Feasibility Study. Therefore, the cash flow, rather than the discounted cash flow, is the governing factor in pit selection.

These results are shown at the same scale to allow a direct comparison, and show that Lazare North and Hippolyte are nearly double the size of Lazare South. However, when the optimisations include Inferred Resources, there is significant increase in the potential ore from Lazare South. This indicates the area that should be targeted with further drilling to increase the Ore Reserve. The Lazare South area is currently potentially economic, but not of high enough geological confidence as per the JORC Mineral Resource classification.

Tiris Project

www.auraenergy.com.au Twitter: @aee_auraenergy

Definitive Feasibility Study

OPTIMIZATION RESULTS

The optimisation results for Lazare North, Lazare South and Hippolyte Measured and Indicated resources can be seen in Figure 4.1 to Figure 4.3.



Figure 4.1: Lazare North optimisation results (Measured and Indicated)

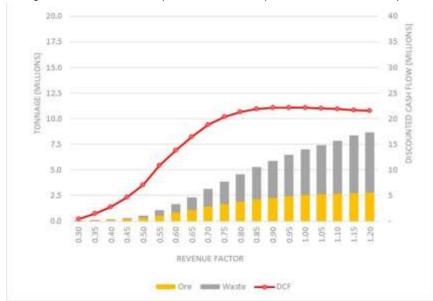


Figure 4.2: Lazare South optimisation results (Measured and Indicated)

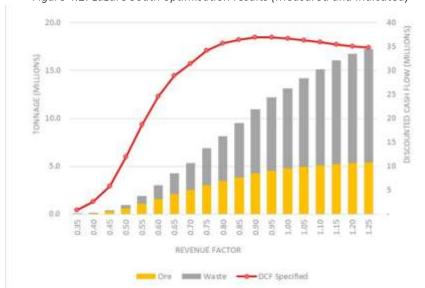


Figure 4.3: Hippolyte optimisation results (Measured and Indicated)

Pit optimisation sensitivities were completed for variations in mining cost, non-mining costs, recoveries and sales price.

The most sensitive parameter is the sales price which is not unexpected. Increasing sales price not only increases the value of the base case optimisations, but also increases the value to the remaining blocks causing the pit shells to increase.

Changes to processing recoveries have a similar effect. Recovery increases result in more product for sale, leading to more revenue which is similar to an increased sales price.

The mining and non-mining costs have a lesser impact on the project size with the non-mining costs returning a 2:1 impact, where a 10% change in non-mining costs can result in nearly a 20% change in DCF. The mining cost sensitivity is much less with a 10% change here only resulting in a 3% variation in DCF.

Figure 4.4 summarises the sensitivity runs by final product generated.

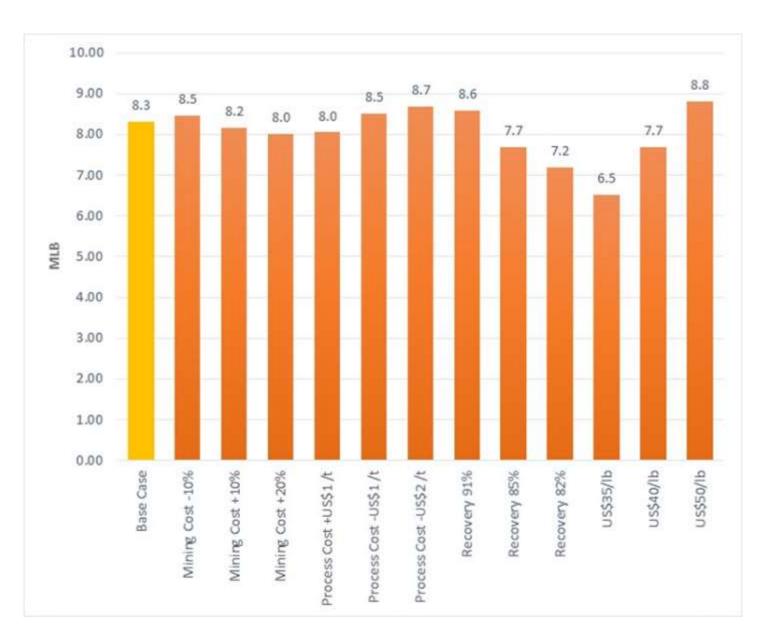
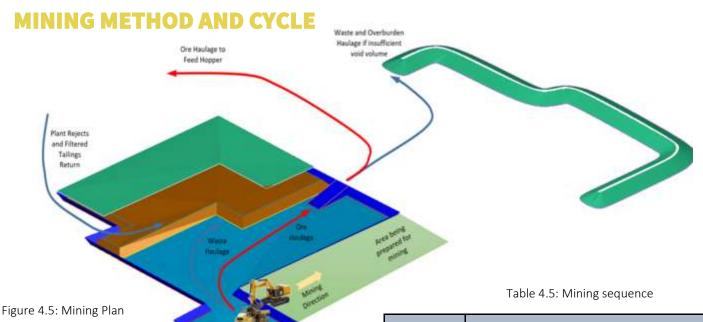



Figure 4.4: Optimisation sensitivity results by final product

MINE DESIGN

Detailed pit designs were not undertaken for the study. This is due to the shallow nature of the deposit and that the resource block sizes are 50m x 50m, which when agglomerated into 100m x 100m panels become a mineable pit in their own right. These 100m x 100m panels are large enough to be mined independently if required and each has sufficient length for an access ramp.

A conventional open pit dry mining method, utilising a combination of bulldozers, excavators and trucks will be employed. Mining is anticipated to follow a strip mining philosophy, where any waste mined will be returned to a previously mined area without the need for building waste dumps or rehandling. It is planned that initial ex-pit dumps or berms will be utilised as the open pit develops, but these should be located immediately adjacent to a pit. The waste material should be able to be simply pushed in, when space is available in the mined out void.

No drilling or blasting is required based on Aura's site investigations and material properties. However each mining area will require grade control drilling prior to excavation. It is expected that this grade control will be undertaken by either excavator dug pits or a rock saw, which could then be gamma logged to ascertain the in-situ grade.

Stage	Description
Sand Clearing	Any overlying sand is pushed into windrow stockpiles alongside the pit with a bulldozer. Where required these shall be formed as berms to avoid any flooding of the pit from the infrequent rainfall and surface water eventuating.
Overburden Removal	Any overburden is removed by bulldozer onto windrow stockpiles.
Ore and Waste Mining	The ore exposed and associated waste is mined by hydraulic shovel or bulldozer and front-end loader and loaded into haul trucks. The ore is hauled directly to the apron feeder area, whereas the waste is placed into stockpiles alongside the pit unless sufficient mining voids are available for backfilling
Backfilling	When sufficient void volume is available, the mined- out cell is filled with filter pressed process plant tailings, barren rejects discharged from the screening plant and mine waste.
Surface Rehabilitati on	Overburden and stockpiled mine waste is pushed over the consolidated cell from the windrow stockpiles at the side of the pit.

MINE SCHEDULE

Mine scheduling was completed with the following constraints:

- Target processing feed rate of 1.25 Mtpa
- A 10 year project life
- Any Inferred mineralisation to be deferred until the end of the mine life
- No ore stockpiling

The schedule was completed on a monthly basis then summarised annually. Allowances for feed hopper relocations were included between mining areas when a shutdown of the plant and mine occurred.

Ore and waste mining occur concurrently as the ore is defined as a proportion of each resource block, with the remainder being waste. Ore is mined at exactly the processing rate required as there is no stockpiling of ore at the hopper. No advance waste mining occurs.

The mining panels were sequenced from highest value within each mining area before a feed hopper relocation occurs. The Inferred panels were treated as a separate mining area requiring additional feed hopper relocations. The final sequence was:

- Lazare North East
- Lazare North West
- Lazare South
- Hippolyte Central
- Hippolyte South
- Hippolyte North
- Hippolyte North (Inferred)
- Hippolyte Central (Inferred)
- Lazare South (Inferred)

Figure 4.6 summarises the annual mining rate by deposit. The schedule has allowed for relocations of the feed hopper and beneficiation circuits between locations. A production shut down of 30 days was included each time a relocation was required.

4,000,000

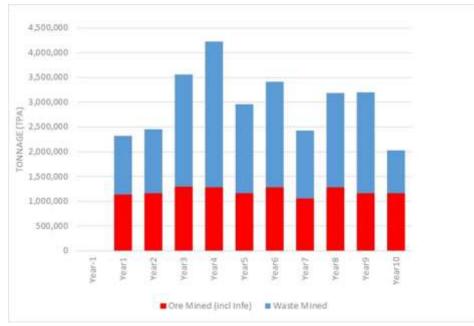
3,500,000

3,000,000

1,500,000

1,000,000

500,000


Lazare North

Lazare South

Hippolyte

Figure 4.6: Mining by deposit

Figure 4.7 summarises the annual mining rate required to feed the processing plant. The average mining rate required for the ten years is 3.0 Million tonnes per year.

The mining schedule includes over 90% Proven and Probably Reserves in the first 10 years of planned operation.

Figure 4.7: Mining by material type

1,400,000

1,200,000

1,000,000

400,000

400,000

200,000

100

Ore Processing — ppm

Figure 4.8: Ore processing plan by tonnage and grade

Tiris Project

The Sadi deposit was included in the study to increase the project life to 15 years. This deposit is an Inferred Resource. The Sadi deposit was optimised, designed and scheduled, in the same manner as the other deposits in the study.

These figures show that the project can produce at a sustainable level of around 0.9 Mlb U_3O_8/yr for 15 years without significant fluctuations in the require mining rate, assuming the Inferred Resource is as modelled.

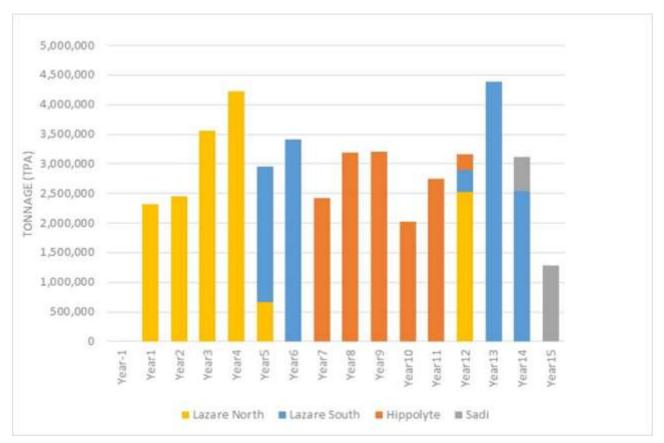


Figure 4.9: Upside scenario ore mined by deposit

CONTRACT MINING

Aura shall adopt a contract mining model for the initial operation. There is considerable mining expertise within Mauritania, Senegal and Ghana, and contract mining is expected to be the most cost-effective option for the operation. It reduces the initial capital cost, and will bring an experienced mining team to bear on the start-up period of the operation.

The contractor will be responsible for the provision, operation and maintenance of the mining fleet. The fleet is required to mine the ore and associated waste, then deliver the ore directly into the run of mine (ROM) apron feeder located approximately one kilometre from the open pit crest. Given that the front end of the plant shall be easily transportable modular units, trucking distances will be minimised through the close placement of this modular plant.

Aura will be responsible for providing the heavy vehicle workshop at the permanent process plant, some 6 km away from the mine. It will contain lifting facilities and spares storage.

PROCESS FACILITIES

Tiris Project

Definitive Feasibility Study

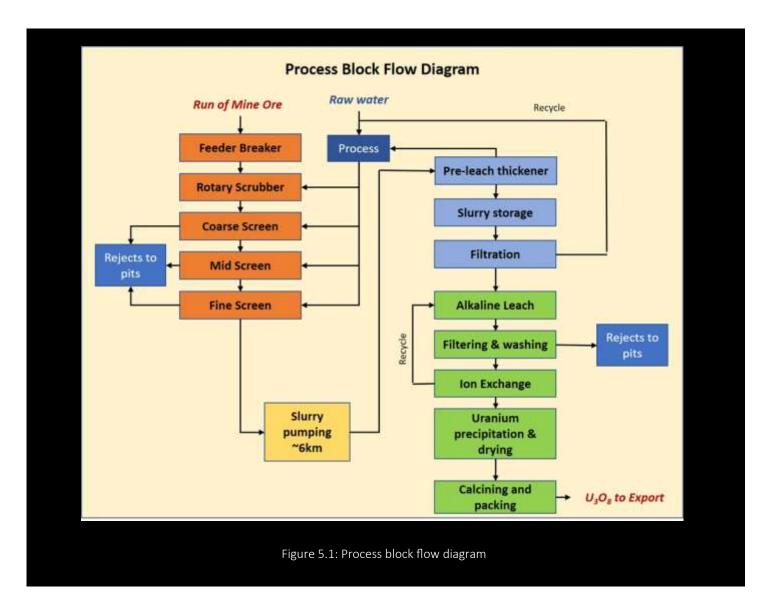
The Tiris Project has very simple uranium mineralisation that is well suited to a conventional

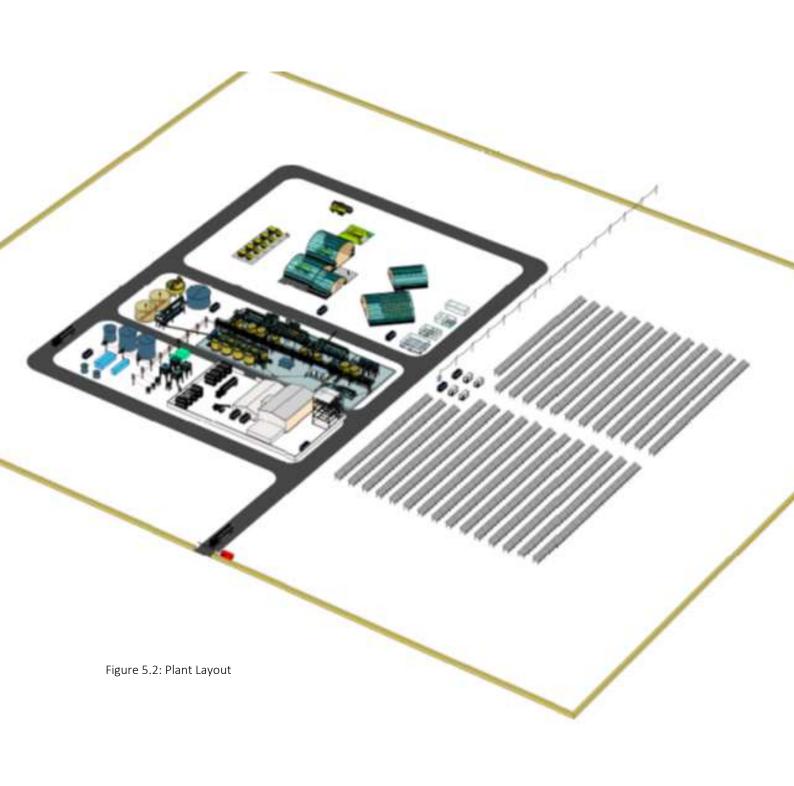
The uranium is hosted with ultra-fine grained carnotite $(K_2(UO_2)_2(VO_4)_2.3H_2O)$ that is loosely attached to barren gangue particles. This means uranium bearing carnotite can be readily separated from barren particles, allowing highly efficient upgrade of uranium concentration by simple scrubbing and screening. This greatly reduces the mass of material for leaching, reducing footprint and throughput for the hydrometallurgical plant.

The processing facility consists of three main sections. These are separated by surge tanks and include:

- Beneficiation circuit
- Uranium extraction circuit (Alkaline leach solid liquid separation – Ion exchange)
- Uranium purification and precipitation circuit.

There are several process configurations used for recovery and extraction of uranium, predominantly driven by the type of uranium mineralisation. Leaching of uranium can be undertaken in either acid or alkaline conditions. The selection of the leaching system is driven by the ore composition and whether acid or alkaline consuming minerals are dominant. In the case of the Tiris calcrete mineralisation, acid consuming minerals (e.g. calcite and strontianite) are prevalent and preferentially concentrate with the uranium bearing carnotite. Therefore, the Tiris mineralisation is well suited to uranium recovery by alkaline leaching, using the sodium carbonate/ sodium bicarbonate system. The leach is undertaken at a temperature of 90°C with a residence time of 12 hours.


The main commercial process options for solution recovery after leaching are counter current decantation (CCD) using high rate thickeners, or filtration. The elevated clay concentration in Tiris leach product means that settling rates are low, and the wash efficiencies for a CCD circuit would be similarly low. This would result in increases in the water balance and high losses of contained reagents. Alternatively, for filtration, while clays lead to slower filtration rates, the efficiency of solution recovery is greater. This leads to more efficient reagent recovery, and higher uranium concentration in feed to recovery circuit. To reduce filtration time the Tiris process utilises a filterrepulp-filter configuration, where washing of the slurry is undertaken in a repulp tank, rather than inside the plate and frame filter.


For alkaline systems the main process options available for recovery of uranium are ion exchange (IX), Resin in Pulp (RIP), or Direct Precipitation. For the Tiris process, ion exchange was selected. For efficient application of Direct Precipitation higher concentrations of uranium in leach solution would be required, to minimise downstream reagent requirements. Similarly, the elevated clay concentration may cause 'blinding' of resin in an RIP system, reducing recovery efficiency.

After ion exchange the resin loaded with uranyl carbonate is eluted using sodium bicarbonate. The eluted uranium stream is then further concentrated by nano-filtration, and sodium bicarbonate recovered for recycle back to the leach circuit. Uranium is then precipitated with sodium hydroxide as sodium diuranate (SDU). The SDU precipitate is filtered and dissolved in sulphuric acid as uranyl sulphate, ready for final precipitation.

Uranium is precipitated with hydrogen peroxide to form the final uranyl peroxide (UO_4) product. UO_4 will then be dried or calcined to form the final Yellowcake product. Yellowcake is a term used to cover all Uranium Oxide Concentrates (UOC), which may include UO_4 , UO_3 , UO_2 or U_3O_8 .

The final UOC product will be packed in secure 205L IP-1 open head steel drums, and strapped within a 6m container for transport by road to the Port of Nouakchott.

BENEFICIATION CIRCUIT

The Tiris Eastern resources are spread over a distance of 64 km east-west and 36 km north-south, so the transport of ore is a significant consideration. Refer to Fig 5.3 for spread of Tiris resources.

The Tiris mineralisation allows for rejection of 85-90% of ore mass as barren rejects, through a simple beneficiation process. To optimise the material transport, a modular transportable beneficiation circuit located close to the resources was incorporated. The trucks have a transport distance of around 1-2 km to the beneficiation stage, and slurried product is pumped to the processing plant. Refer to Fig 5.3 for process plant location at Lazare centroid.



Figure 5.3: Resource distances to Lazare processing plant

The beneficiation plant and the hydrometallurgical process plant are in separate locations connected by three 6 km long pipelines, used to transfer slurry, liquid recycling and raw water

The mine schedule focuses on mining of the three Lazare resources over the first 6 years. In this period, the transportable modular front-end plant will have to be moved twice. Given that this will stop all production until all the plant systems and utilities are re-connected and recommissioned, a highly planned shutdown will be required. An allowance of 4 weeks to shift the beneficiation circuit each time has been made in the mine schedule.

The modular and transportable front end beneficiation circuit comprises:-

- ROM ore Feeder-Breaker unit
- Rotary wet scrubber 2.4 m diameter x 4.8 m long.
- 3 sets of 2 screens with screen apertures of 2mm, 300 micron and 150 micron.
- Waste conveyor and radial stacker for the 85% rejects.
- Agitated surge tank for storing slurry
- Slurry pumps to pump slurry some
 6 km to Process plant

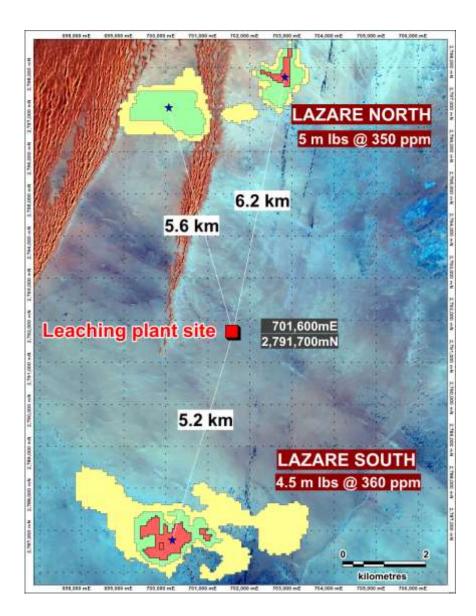
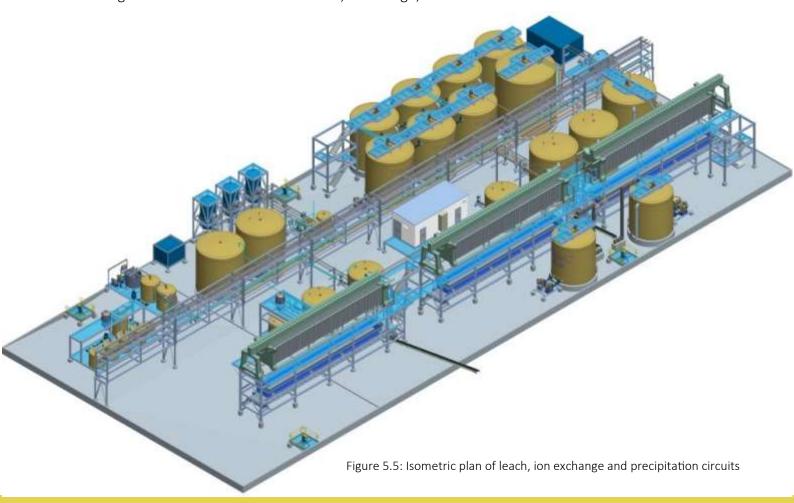


Figure 5.4: Optimized (Opex/Capex) site location for Lazare Resources

PROCESS PLANT


Connecting the Beneficiation front end and the permanent process plant, there are 3 surface run HDPE pipelines some 6 km long as follows:-

- The 225 DN, PN25 PE 100 fines slurry line transferring pumped slurry to the process plant,
- The 200 DN, PN 25 PE 100 liquor recycle line returning filtrate from the process plant to the beneficiation front end,
- The 32 DN, PN16 PE 100 raw water supply line providing raw water to the beneficiation front end.

These will be fully welded into section lengths able to be safely dragged without damage, during the relocation stages. Flanges would connect the section lengths.

The Process plant major equipment comprises:-

- A hi-rate carbon steel pre-leach thickener, ten metres diameter with three metre walls,
- Four agitated surge tanks, providing 24 hours downtime capacity for the downstream process plant,
- A 650m2 filter press feeding a cake transfer conveyor,
- Six agitated leach tanks 6.1 m diameter, 6.4 m high,

- A diesel steam boiler package and two associated heat exchangers, to heat the slurry to 90 degrees C,
- Three 26 m long plate and frame filters filtering the barren liquor from IX, and filtrate from product dewatering,
- IX feed tank and three IX columns,
- SDU Precipitation circuit, including thickener, decanter centrifuge and tanks,
- Product Precipitation plant including fluid bed crystaller, dewatering centrifuge, 150 kW rotary kiln, vent scrubber, and drum packaging plant.

The Modular Dewatering, Drying/Calcining and Drum Packing Plant will be pre-assembled modules. They will be located within the main plant perimeter in a secure building, with restricted and controlled personnel access.

The dewatering, drying, off-gas modules, dust collector and yellowcake buffer hopper will be located in an enclosed and sealed area of the Drum and Packaging (D&P) building, to prevent any fugitive dust escaping from the process plant area. The Drum Packing Module will be located in the clean side of the D&P building.

Tiris Project

TAILINGS

The permanent process plant produces a 150,000m³/ year tailings stream from the leach pressure filtration module at 37% moisture content. The leach plant tailings would be stockpiled on a slab by a belt conveyor and loaded by a front-end loader into mining trucks. For approximately the first 6 months, the tailings would be transported to a tailings dam some 1,100m north east of the plant. The tailings dam would hold 75,000m³ of tailings, with dimensions 250m by 180m by 2m deep. When adequate voids are available in the mined out areas, the dewatered tailings would be trucked directly to the mined-out areas for in-pit disposal, at the base of the pits. The tailings would then be covered by barren reject material, mine waste and overburden.

It has been assumed that no lined geotechnical membrane will be required underlying the tailings dam. Aura will have to confirm from testing the likely concentration of radiation levels in leach plant residue, and whether any groundwater issues will be caused. The required waste and overburden coverage above the tailings requires confirmation.

At the front-end beneficiation plant, there is a barren rejects stream produced of coarser material (680,000m³/year) discharged from the 3-stage screening unit. This reject material will be predominantly between 2mm and 150 micron in size, and be initially used to build berms on the windward side of the pits to reduce dust levels. Once sufficient voids are available in the mined out pits, these rejects would be back filled into the mined out areas, and subsequently covered with mine waste and overburden. Having the front end plant within 1km of the open cut pit reduces trucking to reasonable levels.

Tiris Project

Definitive Feasibility Study

WATER SUPPLY

The 1.25 Mtpa process operation requires between 0.5 and 0.6 Gl of water per year, supplied to the plant. Of this, 150 litres/person/day is required for personnel use, and 0.17 Gl of raw water for dedusting roads and ongoing roadworks. Only some 40,000 m3, (or 7%) needs to be converted by a water treatment plant to demineralised or potable quality, as the process can utilise water with a moderate degree of salinity.

Water drilling on target structures has been successful in discovering water, with one of the bores producing 15,000 litres per hour

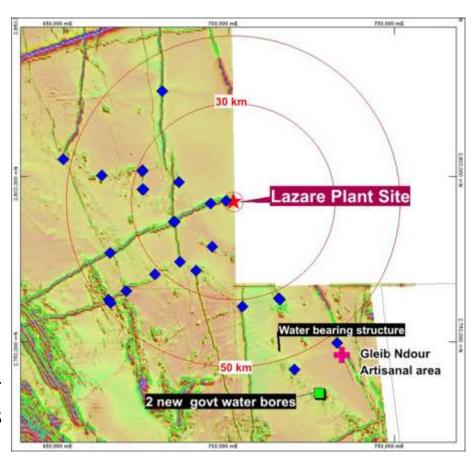


Figure 5.6: Geophysical targets for location of water in Oued el Foule Depression

Of 4 water sourcing options identified by hydrological consultants, Aura's water search and development activities have focussed on the closest source, the Oued El Foule Depression, an extensive drainage system, the central axis of which is less than 20 km from the Tiris plant site.

Aura has undertaken a significant program of water study and review which identified a number of major structures likely to host water and included a program of ground geophysics over 24 structural targets within 50 km of the proposed plant. 15 of the most promising targets have been selected for drilling and testing is underway.

On one of these structures identified by Aura, drilling successfully located water in 2 bores. Of 4 holes drilled in the area 2 successfully located good volumes of water, with one producing 15,000 litres per hour. The 50% strike rate in drilling bodes well for the location of additional water sources in the same geology and indicates a strong likelihood that the current drilling program will locate additional water supply for the relatively low water requirement of the Tiris Project.

The water testing and development program will continue for a period of time beyond the completion of the DFS and during construction.

Small 24 kW dedicated diesel generators will be used at each borehole to power the 11 kW submersible lift pumps, and the 3kW transfer pumps. Similarly a 48 kW diesel generator is required at the main pumping station, to power the duty and standby 37 kW pumps. The local fuel tanks will have a two week capacity, and be supplied by an Aura fuel truck or trailer from the main process plant diesel storage. Telemetry will be installed to provide the control linkage and hourly reporting, back to the main process plant.

The twelve hour capacity raw water storage tank at the process plant, will supply water for firefighting, dust suppression and to the Reverse Osmosis (RO) water treatment plant.

The containerized RO water treatment plant will produce both potable and demineralized water, with storage for 48 hours potable water and 4h demineralized water. Water will then be reticulated from these tanks to accommodation, administration and laboratory buildings as well as to the process plant, and to the camp via a 3 km pipeline. Potable water requirements for the transportable front end and mining offices will be trucked down in a suitable water tanker, to smaller portable tanks there.

Tiris Project

Definitive Feasibility Study

PROCESS TEST WORK

18 metallurgical and mineralogical test work programs completed

Confirms simple metallurgy

Yellowcake product within ASTM standard specificiations

Tiris Project

Definitive Feasibility Study

Process development for the Tiris Project was based on detailed material characterisation. This included detailed mineralogical characterisation early in the project development, supported by various diagnostic techniques.

The results of material characterisation were assessed against established uranium processing options. This allowed early assessment of viable options and rejection of unsuitable options. The primary characteristics driving process selection were defined as:

- Presence of uranium exclusively with carnotite group minerals.
- Fine grained nature of carnotite, which could be easily liberated from host particles.
- Dominance of carbonate minerals over sulphate minerals.
- Tendency for carbonate minerals to upgrade with uranium, while sulphate minerals were rejected.
- Presence of swelling and non-swelling clay minerals.

The uranium mineralisation at Tiris occurs principally as carnotite $K_2(UO_2)_2(VO_4)_2.3H_2O)$ and possibly some of the chemically-similar calcium uranium vanadate, tyuyamunite $Ca(UO_2)_2(VO_4)_{2.5}-8H_2O)$ in varying proportions.

Carnotite is a radioactive, bright-yellow, soft and earthy vanadium mineral that is an important source of uranium. A hydrated potassium uranyl vanadate, pure carnotite contains about 53 % uranium, 12 % vanadium, and trace amounts of radium. It is of secondary origin, having been formed by alteration of primary uranium-vanadium minerals. It occurs chiefly with tyuyamunite (its calcium analogue) in sandstone, either disseminated or locally as small pure masses, particularly around fossil wood.

The Carnotite grain size for the Tiris material is in the range of 5-15µm diameter across the deposits. The majority of carnotite grains identified were within the micron size range.

Several Ore Domains were defined by geometallurgical modelling based on process behaviour. These Domains were defined by gangue mineralisation and particle size distribution. Geometallurgical modelling focused on the first 6 years of mine production, for the Lazare North and Lazare South Resources. The geometallurgical modelling covered 69.5% of defined Ore Reserves for the Tiris Project.

The primary differentiating factors for the Ore Domains were:

- Proportion of mass distribution reporting to -75μm screen fraction.
- Proportion of sulphate mineral reporting to -75μm screen fraction.
- Upgrade factor of uranium to -75μm screen fraction

The material characterisation identified that the most appropriate process flowsheet would include ore beneficiation, followed by a heated alkaline leach, concentration of leached uranium and precipitation of yellowcake product.

To investigate the technical viability of process flowsheet options a steady state simulation model was developed. This allowed rapid assessment of process configurations and early rejection of options that were technically unsuitable. The steady state simulation model was used throughout process development test work to support test work results and allow for solution recycle and potential impurity build up at every stage. This allowed test work programs to be developed that were targeted specifically at design critical parameters.

ORE BENEFICIATION

There is a high portion of barren sands within the mineralised calcrete. Removal of the sand prior to leaching reduces the throughput in the hydrometallurgical process plant, with a subsequent reduction in capital and operating costs. The Tiris mineralisation is particularly well suited to this type of ore beneficiation.

The uranium bearing carnotite is very fine grained, with average particle diameter of $5-15\mu m$. The carnotite, clay minerals and fine grained calcite is loosely bound to barren silica and sulphate rich gravels. This can be easily separated using low power washing in a rotary scrubber, resulting in concentration of carnotite in the fine fractions. Uranium can be separated in these fine fractions using simple screening, resulting in recovery of over 90% of the uranium into between 10% and 15% of the total mass, as demonstrated in Figure 6.1.

The response to ore beneficiation allows rejection of the majority of the ore mass, greatly reducing the throughput to leaching. This translates to Capital savings through requirement for a significantly smaller leach circuit, along with significant operating savings through reduction in reagent consumption.

Beneficiation test work was undertaken at AMML, Gosford on $^{\sim}100$ kg domain composite samples. This included benchtop scrubbing of bulk samples followed by screening to $150\mu m$ to product ore concentrates of 10-15kg for each Domain Composite. These provided the inputs for development hydrometallurgical test work at ANSTO Minerals.

Bulk Domain Composite samples were also prepared at Mintek, South Africa. These samples were scrubbed in a 1m diameter rotary scrubber and screened at 150um on an industrial scale single deck Derrick Stack Sizer. Technical support for Derrick screening test work was provided by Derrick International.

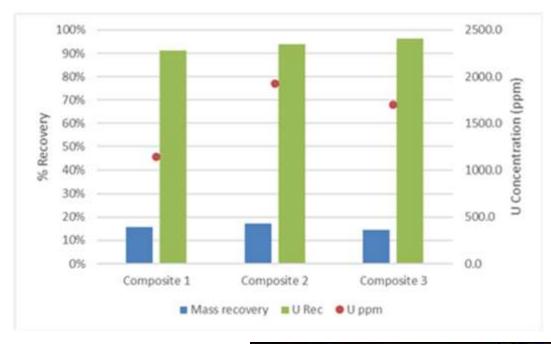


Figure 6.1: Mass recovery, uranium recovery and product uranium grade for screen cut size of 150µm. All composites.

Figure 6.2: Scrubbed vs unscrubbed samples from Hippolyte resource

Tiris Project

ALKALINE LEACHING

The nature of the carnotite mineralisation also translates to improved leaching response. A program of bulk heated alkaline leaches was undertaken at ANSTO Minerals. Figure 6.3 shows the leaching profile by Domain composite for Lazare North and Lazare South. The fine grained nature of carnotite results in very rapid leaching, with the reaction essentially complete within 8 hours. This is significantly faster than leaching rates for similar calcrete deposits, where leach residence time of 96 hours is often required.

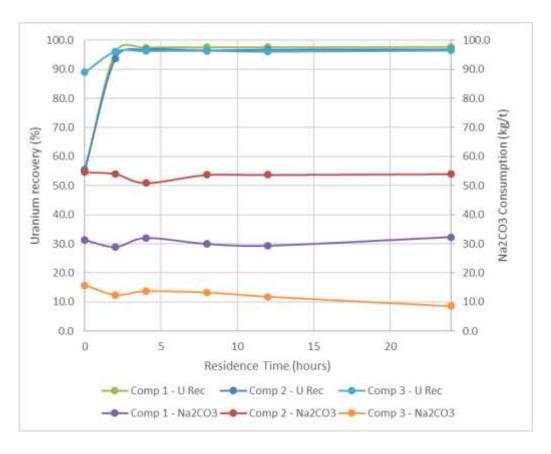


Figure 6.3: Mass recovery, uranium recovery and product uranium grade for screen cut size of 150µm. All composites.

Ultra-fine grained carnotite leads to rapid leaching. Leach residence time of only 12 hours required

SOLID LIQUID SEPARATION AND DEWATERING

The upgrade of carnotite by screening naturally results in concentration of clay minerals. A program of rheological characterisation, including thickener and filtration modelling was undertaken at ANSTO Minerals by Rheological Consulting Services.

ION EXCHANGE

Uranium was recovered from clarified pregnant leach liquor by Ion Exchange at ANSTO Minerals. Ion exchange was undertaken using a fixed bed in lead-lag configuration with a Strong Base Anionic (SBA) Resin. For a nominal 98 % extraction of uranium from the PLS (670 mg/L U_3O_8), very close to the maximum loading can be achieved with resin inventories of $^{\sim}0.15$ m³ resin per m³/h of PLS.

URANIUM PRECIPITATION AND PURIFICATION

Uranyl peroxide precipitation sighter tests were performed using a portion of the sulphuric acid digest solution, by the addition of hydrogen peroxide at controlled pH. Samples of the feed and final liquors were analysed by ICP-OES and ICP-MS. The UO₄ was washed, dried, digested in nitric acid and analysed by ICP-OES and ICP-MS. A vanadium removal test, was performed by adjusting the SDU digest liquor to approximately pH 2 at 50°C, prior to UO₄ precipitation at pH 3-4.

Tiris Project

Definitive Feasibility Study

URANIUM OXIDE PRODUCT

UOC Product within
ASTM Standard
specifications
generated from test
work

Table 6.1 provides a summary of the composition of the final UOC product from test work. It should be noted that the tolerances accepted by commercial converters for certain impurities listed in ASTM C967-13 (including, zirconium and boron) are generally less stringent than in the ASTM standard.

Table 6.1: Tiris UOC Product specification.

	UO4 wt% U Basis	Limit Without Penalty	Limit Without Rejection
As	<0.02	0.05	0.10
В	<0.02	0.01	0.10
Ca	0.03	0.05	1.00
K	0.06	0.20	3.00
Mg	<0.02	0.02	0.50
Мо	<0.02	0.10	0.30
Na	<0.02	0.50	7.50
Р	0.05	0.10	0.70
S	0.11	1.00	4.00
Si	<0.12	1.07	5.35
Ti	<0.02	0.01	0.05
V	0.17	0.06	0.30
Zr	0.03	0.01	0.10
Cl	0.07	0.05	0.10
F	0.07	0.01	0.10

INFRASTRUCTURE

Tiris Project located 680km from Zouerat, a mining centre.

Workforce will be bus in and out of Zouerat.

Installation of BOO hybrid diesel-solar power generation capacity.

Tiris Project

Definitive Feasibility Study

INFRASTRUCTURE

The infrastructure component of the Tiris Project includes all supporting facilities located outside the mining area. Infrastructure includes the engineering design, procurement and management for the following site infrastructure works:

- Internal roads within the process site, and minor roadworks on the 680km site access road from Zouerat.
- Bulk earthworks
- Accommodation camp installation, reticulated services, waste disposal, water treatment and associated infrastructure.
- Transportable buildings including offices, change rooms, crib rooms and ablutions.
- Communications systems
- Steel framed buildings including workshops, warehouse and uranium packaging building.
- Power reticulation across the project site.
- Site security.
- Process plant security.
- Remote water borefield and pipeline.

SITE WORKS

The process plant area includes a heavy vehicle workshop, which will carry out maintenance on all the mining fleet. All the designated road areas within the process plant area, and the process plant equipment area, will require some soil compaction to avoid settlement. Key process equipment/traffic areas will be prepared by stripping the topsoil, proof rolling the area and installing a crushed compacted granite sub-base. Earthworks will thus be limited to the minimum required only. No earthworks are planned for the camp 3km north east of the process plant, due to the low building weights involved.

ACCESS ROAD

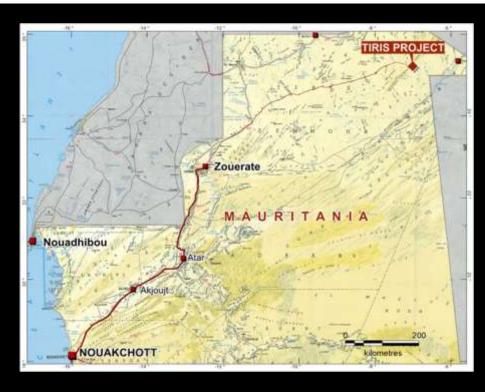


Figure 7.1: Proposed site access route from Nouakchott via Zouerat

The route utilises trucking on the existing 767 km N1 sealed highway from Nouakchott port to Zouerat. From Zouerat, there is initially 15 km of sealed road, then a 665 km unsealed desert track to Tiris.

Some limited road works will be required on the 665 km unsealed section prior to construction commencing, to ensure all trucks (2WD & 4WD) can reliably travel from Zouerat to the Tiris site in two days. The route will be marked clearly, and soft sand sections replaced with crushed compacted rock fill. A permanent road maintenance crew will then be required during construction and ongoing operations to keep the road in satisfactory condition.

ACCOMMODATION CAMP

The camp will consist of accommodation for 146 personnel in total, including an allowance of visitors. Security, kitchen and dining facilities, a large recreation room, a prayer room and storage facilities will be provided. Camp accommodation and support buildings will be located some 3km north-east of the plant site, to reduce the effects of windblown dust and noise from the operations.

COMMUNICATION SYSTEMS

Aura will install a fully managed VSAT solution, coupled with Wireless and Wi-fi extensions. Satellite telecommunications systems are well proven, given that numerous other remote mining companies in Africa are using similar systems.

A guaranteed pool of 10 Mbps dedicated bandwidth will be provided. It will be dynamically allocated as required between the VSATs, with input by Aura. Wi-fi connectivity then extends coverage within the Aura transportable front-end and mine buildings, process plant and camp.

ELECTRICAL POWER SUPPLY

The electrical power supply for the Tiris plant comprises supply of power to four separate locations as follows:

- The transportable front-end plant comprising beneficiation, screening and slurry pumping.
- The permanently located process plant comprising leaching, ion exchange, precipitation and carbonation, SDU purification, UO₄ precipitation and packing, workshops and administration facilities.
- The permanently located construction/operations camp 3.3 km NE of the process plant, supporting 146 bed accommodation with kitchen/dining room, recreation hall, prayer room and camp management offices.
- The remote water borefields and water pumping station some 31 km south west of the process plant.

The following table summarizes the total power peak demand per area and the related power generation required (Table 7.1)

Area	Peak Demand (kW)	DG installed power (kW)	Solar installed power (kW)
Front-end	429	2 x 400	-
Permanent Plant	2,718	4 x 1,200	2,160
Camp	650	From plant	From plant
Remote water supply	75	1 x 48	-
		4x 24	
Total	3,872	5,744	2,160

Table 7.1: Summary of total power peak demand by area

The camp is powered through a 3km long overhead 11 kV powerline from the Process power plant, with 415V/11Kv transformers at either end.

The Transportable Front end plant is powered by diesel generators, which is a more economic solution rather than a MV/HV powerline from the permanent process plant. Relocating the front-end four times in the first ten years of operation will be easier with transportable generators.

The permanent plant site and camp have an estimated peak demand of 3,370 kW, requiring four off 1,500 kVA diesel-powered generators. Two will operate most of the time, with one on standby and one for redundancy.

A 2,160 kW solar power plant will provide most of the permanent plant electricity during daylight, with solar supplying 30% of the total energy consumed per year.

AIRSTRIP

Charter flights to site for medical evacuations and essential executive travel will initially use the existing Shield Mining airfield, located 152 km from the site. Re-licencing is required for this 1,100m long by 39m wide airstrip.

After a few years of operation, a daylight hours airstrip is expected to be built on the project site, some 2km from the Tiris process plant.

ZOUERAT OFFICES, ADMINISTRATION AND GUEST HOUSE

Aura Energy will need to set up an administration office based in the key location of Zouerat. Zouerat will be the key source of much site labour, and initial inductions and training required would be carried out there. During Construction and Operations, workers would be bussed the 680 km to site from Zouerat by Aura's bus fleet.

A local guest house with dining facilities will also be required for the frequent stopover periods of expatriate specialists or management flying into Zouerat from Nouakchott, and travelling on to site.

ENVIRONMENT

Tiris Project

Definitive Feasibility Study

INTRODUCTION

A comprehensive Environmental and Social Impact Assessment (ESIA) was completed in 2017 by Earth Systems, an internationally recognized consulting group with extensive experience in mining and uranium extraction.

The ESIA pays close attention to issues of radiation exposure and security of the uranium 'yellowcake' product. Throughout the ESIA and the associated project design and management measures, best practice guidelines from the International Atomic Energy Agency (IAEA) and the International Commission on Radiological Protection (ICRP) have been used, complementing the applicable Mauritanian regulations and guidelines.

ESIA was fully approved by the Mauritanian Government on 5th October 2017

Tiris Project

PHYSICAL SETTING

CLIMATE AND METEOROLOGY

The project is located in the hyper-arid zone of northern Mauritania receiving only very rare rainfall. Annual average rainfall rarely exceeds 20 mm around the Eastern resources and 50 mm around the Western resource.

The region is subject to Harmattan winds, a northeasterly trade wind that occurs during dry conditions and can result in extensive and dense clouds of dust that can form dust or sandstorms.

NATURALLY OCCURRING RADIOACTIVE MATERIAL

Uranium in the environment is a form of Naturally Occurring Radioactive Material (NORM). The uranium mineralisation targeted by the Tiris Uranium Project is a near-surface accumulation of carnotite (potassium uranium vanadate) that has formed by cyclical near-surface weathering, dissolution, evaporation and reprecipitation.

The annual NORM radiation dose in the resource areas is predominantly in the range 0.02–1.7 mSv/y, with fewer than 1% of readings above this value (up to 23 mSv/y). The worldwide average annual radiation dose from natural sources is 2.4 mSv/y but due to elevated NORM sources, some areas can be as high as 6–12 mSv/y.

AIR QUALITY

Dust is the main determinant of air quality in the project region. Natural wind-blown dust levels are typically high and likely to exceed international inhalable particulate health criteria on a regular basis.

Tiris Project

Definitive Feasibility Study

SOCIAL SETTING

The project is located in a very sparsely populated region of the Sahara Desert, in a designated military Prohibited Zone. This Zone is enforced due to smuggling activity across adjoining borders.

The nearest permanent settlements are Bir Moghrein (pop c. 3000), 460 km west of the Eastern Tiris Resource Area), and provincial capital Zouerate (pop c. 45,000), 620 km westsouthwest. Other populations in the region include a small military base at Cheggat, 105 km from the Eastern Tiris resources, a small military outpost at Ain Ben Tili, 15 km north of the Western Tiris Resource Area, and a small settlement located across the border in Western Sahara within 20 km of the Western Tiris Resource Area.

No nomadic groups were identified in the broader region surrounding the Eastern Tiris Resource Area, and the area is not in the normal range of nomadic families.

Artisanal gold miners make temporary settlements in the region, and there is currently such a settlement 55 km southeast of the project at Gleib Ndour.

LAND AND WATER USE

There is no permanent land use in the vicinity of the project areas.

ARCHAEOLOGY AND CULTURAL HERITAGE

A survey of the project areas and surrounds in January 2017 identified 29 archaeological sites (principally burial sites) in the vicinity of the project areas (12 at the Eastern Tiris Resource Area and 17 at the Western Tiris Resource Area). Five additional sites of cultural heritage significance are located in the broader area surrounding the project.

RISK ASSESSMENT

Radiation
Impacts and
Measurement

Careful management will be applied when extracting and processing the uranium mineralisation to prevent or minimise potential radiation exposure for workers, the public and the surrounding environment. The project will produce on site a uranium ore concentrate (UOC) or 'yellowcake', in a benign oxide form. UOC is not toxic, has low radioactivity and is safe to transport. UOC is not fissile, it does not undergo any nuclear reaction and has no use or value without technological enrichment. Enrichment is only conducted at a small number of highly regulated enrichment facilities around the world. The activities at the Tiris Uranium Project deal only with naturally occurring materials, and do not create any 'new' sources of radiation.

Terrestrial Fauna The estimated exposure of terrestrial fauna to radiation associated with project activities is 0.045 mSv/d (15.88 mSv/y), which is significantly below the US Department of Energy guideline (DOE-STD-1153-2002) levels (20 times lower). The risk of radiation impacts on fauna is therefore expected to be **NEGLIGIBLE**.

Terrestrial Flora

The Eastern Tiris Resource Area is devoid of vegetation and the Western Tiris Resource Area is only sparsely vegetated with grasses in limited areas. The estimated exposure of terrestrial flora to radiation associated with project activities is 0.044 mSv/day (15.70 mSv/y). The total estimated radiation dose is significantly below the guideline levels (200 times lower) indicating that the risk of radiation impacts on flora is expected to be **NEGLIGIBLE**.

Aquatic Ecology Fugitive radioactive dust could accumulate in surface waters following rare rainfall which could result in the risk of radiation exposure to aquatic biota. However, the residual impact is expected to be **NEGLIGIBLE**.

Land Use

With no permanent settlements or land use in the vicinity of the project, impacts on existing land use are expected to be **NEGLIGIBLE** throughout construction, operations, de-commissioning and post-closure.

Terrestrial Biodiversity

There are no international, national or regional protected areas or reserves in proximity to the project areas.

The small amount of habitat loss associated with the siting of project infrastructure is not likely to be significant for species conservation in the region. No species are expected to be lost due to the development of the project, or have a significant proportion of their range affected.

Hydrology

Due to the rarity of rainfall and absence of surface water, the overall expected impact of the project on hydrology is expected to be **NEGLIGIBLE**. However, the risk of flooding during rare rainfall needs to be considered in the siting and design of project components, to protect project personnel and infrastructure.

In the production bore area, the expected impact of the project on local hydrogeology is expected to be **LOW** due to local temporary groundwater drawdown, and the absence of beneficial users.

During the Operations Phase, the expected impact of the project on water quality is expected to be **LOW** and localised. The principal residual risks are:-

- the potential for water contamination during flood inundation should such inundation exceed design flood controls
- and the low potential for downstream accumulation of wind-blown dust that escapes project dust management measures.

Post-closure, the site will be returned to the pre-development landform and soil/ overburden cover, including removal of any identified surface contamination. The post -closure impact of the project on water quality is expected to be **NEGLIGIBLE**.

Air Quality

The naturally high ambient dust levels of the region will be one of the principal concerns for workers' health. Ambient air quality in the region has the potential to exceed IFC/WHO air quality guidelines during dust storms and Harmattan dust haze events.

The primary potential air quality impact associated with project activities is the potential for fugitive dust emissions from mining and processing. Dust modelling indicates that dust emissions are expected to be localised within the vicinity of operations. There are no permanent settlements in the vicinity of the project areas or on the route, and no significant wildlife or vegetation. Therefore dust generation from mining, processing and transport activities is not expected to result in any significant impact beyond the worker community.

Archaeology and Cultural Heritage No World Heritage Sites or otherwise internationally recognised archaeological or cultural heritage sites are located close to the project.

No archaeological sites were identified in the current resource zones, however, eight sites were identified within 250 m of a resource zone and will require management to avoid potential indirect impacts. Allowance has been made for fencing or relocation of any affected archaeological sites.

No cultural heritage sites were identified in proximity to the project areas and no cultural heritage impacts are expected.

Cumulative Impacts The project lies in a remote, underdeveloped and unpopulated area of the Sahara Desert and cumulative impacts associated with the project are therefore expected to be minimal.

The project is expected to help progress the socio-economic development of the region through procurement of goods and services, and continue the development of Tiris Zemmour as an important economic area for Mauritania.

Other Impacts

Other potential impacts likely to be associated with the development of the Tiris Project are:

- Traffic and transport: The principal transportation route from Zouerate to Tiris is unpopulated, lightly trafficked by other road users, has few nearby settlements, and is subject to controlled access under military authority. Some roadworks will be required on the 665km desert track to ensure 2WD construction traffic can make this trip in 2 days in daylight. Implementation of the management and mitigation measures outlined will ensure that potential impacts are minimised.
- Community health and safety: The project is expected to directly and indirectly improve local health facilities and services in the Tiris Zemmour region through the implementation of a community development program, and the economic development and employment opportunities created. Potential community health risks and potential health impacts are expected to be very low or non-existent for the Tiris Project due to the remoteness of the project site.

PROJECT IMPLEMENTATION PLAN

Overall schedule is 21 months to design, construct and commission the Tiris Project.

No major long lead equipment items required.

Tiris Project

Definitive Feasibility Study

The approach proposed for the engineering, procurement, logistics, construction and commissioning of the Tiris Uranium plant and infrastructure is summarised below. The project will be run by the following parties, coordinating with each other:

- Owner's team: dedicated team from Aura.
- Main engineering contractor: Australian engineering company with African and modular knowledge and experience, providing the Engineering Procurement or EP components.
- Technology suppliers: engineering companies for the two main parts of the process plant, where specific knowledge and experience about uranium processing is required. These two suppliers are virtually turnkey designers, but with site commissioning only.
- Vendors: companies from around the world that will supply the different equipment and material.
- Site contractors: companies mainly from Mauritania or with experience in the country, that will perform the installation works, providing services required in country and on site.
- Logistics contractor: responsible for all construction equipment pick up, delivery to port, shipping, customs clearance and transport to Aura's site warehouse at Tiris.

The strategy is to contract the main engineering contractor to engineer and procure. This involves managing procurement of supply packages, and setting up the site installation contracts for and on behalf of Aura. The owner's team is then responsible for construction management, including the site contract administration with site installation contractors.

As some of the detailed process technology will be provided by others, the main engineering contractor will act as an "Integrator" for various aspects of the project. Where equipment is supplied by others, this involves integrating the equipment interfaces with the balance of the plant, including foundations, steelwork, piping and electrics. The main engineering contractor also ensures that all services required by the equipment are provided, e.g. power, water, compressed air.

At practical completion the main engineering contractor supplies all drawings, documentation and Operating and Maintenance manuals required to run the plant.

PROJECT SCHEDULE

The Tiris Project schedule is expected to have the following time scale:-

- Issue of the Feasibility Study at start of month 1.
- Three months of fund raising completed by the end of month 3,
- Kick-off of the full project from the board approval date at the start of month 4.
- Detailed engineering design commencing immediately taking 9.5 months and being largely complete by mid-month 13. .
- Site and camp establishment to commence in month 14
- Allowing the main construction contracting to commence in month 9 and be completed in 12.5 months in mid-month 22..
- Operations start up after completion of commissioning, in month 24.

This gives an overall project duration of 21 months from kick off.

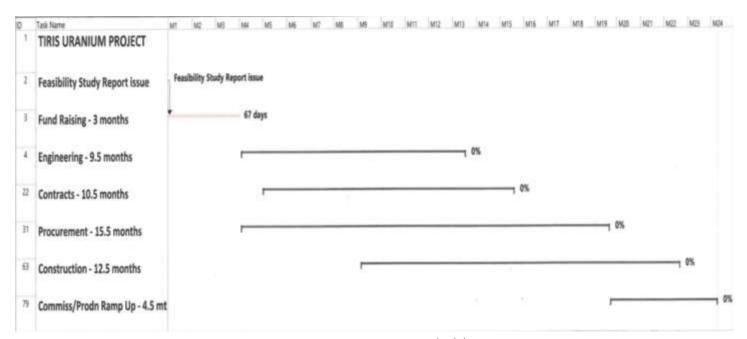


Figure 9.1: Project schedule

CAPITAL COST ESTIMATE

Total capital cost of US\$74.8M, inclusive of contingency.

CAPITAL COST SUMMARY

Aura's Engineering company Mincore have provided a capital cost (CapEx) estimate for the Tiris Project. This includes the scope of facilities and services required to design, purchase and construct the entire project, up to practical completion and handover to operations.

The Capital estimate originally published in July 2019 was reanalysed to update material and equipment costs to a 2021 basis. Aura undertook this re-evaluation to fully understand the impact of the global COVID-19 pandemic on the Tiris U Project CAPEX. Where possible updated quotes were obtained from original or technically compliant vendors and currency exchange rates were updated to the 2021 basis.

Table 10.1 and Table 10.2 show the estimated capital cost summary by main area.

Table 10.1: Capital cost summary

Description	Cost (U\$M)	Ratio (%)
Mining (contract mining assumed)	0.00	0
Process Plant	39.1	50
Infrastructure	17.6	24
EPCM	4.9	7
Owner's cost	9.9	13
Contingency	4.8	6
Total Capital Cost	74.8	100

85% of Capital estimate from supplier quotes

www.auraenergy.com.au

Twitter: @aee_auraenergy

The Power generation capital costs have been allocated to Operating expenses, with the delayed costs paid over three years once production commences. Aura obtained conceptual agreement to this financing arrangement, with one of the Power generation suppliers. The CapEx total cost is therefore reported as \$74.8M USD.

The scope for the facilities also includes two specialised plant areas that were separately engineered for both quantities and prices. The specialised plant areas include:

- Leach and uranium recovery plant developed by Simulus Engineers, (2020-2050).
- Fluid bed precipitation, calcining and drum packing plant developed by Adelaide Control Engineering, (2060).

The costing for these two specialised packages includes full engineering, procurement of all equipment and packing ready for transportation (site erection and commissioning by others).

In total, 85% of pricing was sourced externally by budget pricing enquiries.

CURRENCY EXCHANGE RATES

This estimate is provided in Australian dollars (A\$) and American dollars (US\$), accurate as of the date of 1 July 2021.

The capital cost estimate has exposure to various currencies, with the principal currencies and rates shown in Table 10.3. Aura has taken a long-term view that the Australian dollar will weaken against the US dollar, based on market predictions. Any variations in these exchange rates will require adjustment to the final AUD estimate total.

Table 10.3: Currency exchange rates applied to supplying countries

Currency	A\$	US \$	Euro €	Ouguiya	Rand
	AUD	USD	EUR	MRU	ZAR
1 A\$	1.000	0.70	0.63	32.03	10.78

CONTINGENCY

The contingency provided on this project was established based on a cost risk analysis with Mincore. To establish the desired estimate accuracy of -15% + 20% to AusIMM Class 3 standards, requires a set amount of engineering and project deliverables to be developed. Based on the integrity of these deliverables, the desired schedule and consideration of other risks, the contingency level was set.

Table 10.4: Contingency summary

Pricing Basis (A\$)	Contingency applied	Contingency US\$
Budget pricing	10%	3,311,403
Technology provider (Simulus)	12%	1,470,588
Estimated	10%	630,015
Historical	15%	248,684
Allowance	0%	0
TOTAL		5,660,690

COMPARISON TO 2019 CAPITAL ESTIMATE

In 2019 Aura released a Definitive Feasibility Study on the Tiris Uranium Project . In general the results of the DFS remain unchanged and the current update reflects the price inflation between 2019 and 2021. In this time significant global economic upheaval due to the COVID-19 pandemic has occurred and Aura determined that it was relevant to fully understand the potential impact of these changed conditions on project implementation

The comparison of the 2021 DFS Capital cost estimate with the 2019 DFS showed an increase of 19% on a USD basis . This is a good result given it remains within both the estimate accuracy levels and base sensitivity levels used in project evaluation.

Table 10.5: Comparison of 2019 and 2021 DFS CAPEX estimate

Description	DFS 2019	DFS update 2021	Variation
	US\$/M	US\$/M	%
Mining	0.00	0.00	0.00
Process Plant	26.3	39.1	39%
Infrastructure	18.9	17.6	-7%
EPCM	4.45	4.9	10%
Owner's cost	8.2	9.9	21%
Contingency	4.30	4.8	11%
Total Capital Cost	62.94	74.8	19%

OPERATING COST ESTIMATE

LOM cash operating cost of US25.43/lb U₃O₈.

All In Sustaining Cost (AISC) of US\$29.81/lb U_3O_8 , including royalties, insurances, LOM sustaining capital and product transport.

Tiris Project

Definitive Feasibility Study

ESTIMATE BASIS

The operating cost estimate for the Tiris Project was developed by Aura Energy with assistance of MinCore Engineers, Simulus Engineers and MiningPlus. An estimate review was undertaken by METS Engineering. The estimate is based on the LOM ore schedule, process design criteria, steady state mass and energy balance and metallurgical test work undertaken as part of the Feasibility Study.

The estimate includes all costs associated with production of an average $0.8Mlbs\ U_3O_8$ per annum, including:

- Contract mining;
- Labour;
- Fuel;
- Power;
- Reagents and consumables;
- Maintenance;
- General and administration;
- Product transport;
- Sustaining capital;
- World Bank Community contributions; and
- Royalties.

The operating cost estimate is considered to have an estimate accuracy of +15% -10%.

OPERATING COST SUMMARY

The operating cost estimate has been summarised in table 11.1 and figure 11.1. The total C1 cash cost will be US\$25.43/lb U $_3$ O $_8$ and All In Sustaining Cost (AISC), inclusive of Royalties, LOM Sustaining Capital, Insurances and product transport will be US\$29.81. These costs have been estimated as an average of annualised expenditure.

Table 11.1: Operating cost summary

Category	Annual e	expenditure	US\$/lb U₃O ₈	
Contract Mining	\$ 5,78	9,051	\$	7.16
Labour	\$ 2,97	5,253	\$	3.68
Power	\$ 3,69	6,040	\$	4.57
Reagents	\$ 3,19	6,216	\$	3.95
Maintenance	\$ 1,84	1,887	\$	2.28
G&A	\$ 3,07	6,507	\$	3.80
Total cash cost (C1)	\$ 20,57	4,953	\$	25.43
Product transport and marketing	\$ 367,3	344	\$	0.45
Insurances	\$ 373,0	000	\$	0.46
Sustaining capital	\$ 673,8	328	\$	0.83
Royalties	\$ 1,934	,686	\$	2.39
All In Sustaining Cost (AISC)	\$ 23,92	3,811	\$	29.81

www.auraenergy.com.au

Twitter: @aee_auraenergy

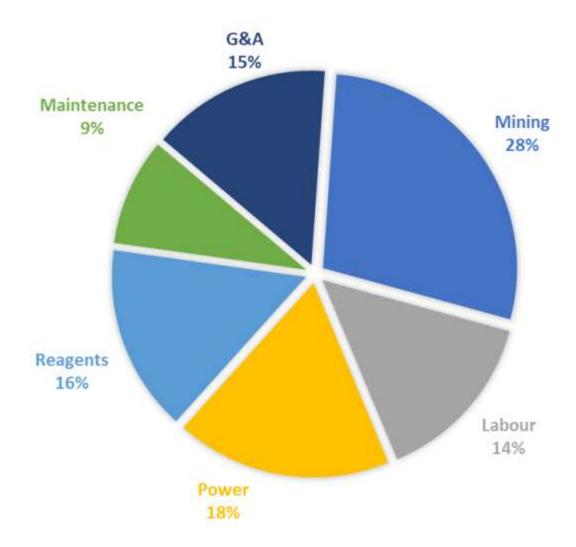


Figure 11.1: Operating cost distribution

MINING

Mining for the Tiris operation will be undertaken under a contract agreement over a 5 year period. Mining rates were based on submissions by three independent companies in Mauritania, Senegal and Ghana, and a first principles contract mining estimate performed by MiningPlus.

Table 11.2: Mining cost summary

Description	Unit	Rate (2)
Waste Mining	\$/bcm	2.10
Ore (0-1 km)	\$/bcm	2.10
Ore (1-2 km)	\$/bcm	3.20
Ore (2-3 km)	\$/bcm	3.63
Reject Return	\$/m ³	1.05

LABOUR

Table 11.3: Labour summary

Area	# on payroll
G&A - Zouerat	5
G&A - Site	38
Mining - owners	6
Process - general	18
2010/15	6
2020/30	3
2040/50	3
2060	3
Maintenance	44
FIFO Costs	
Total	126

The labour rates are annualised and inclusive of local on-costs, including:

- Social security (14%)
- Medical Insurance (5%)
- Training allowance (0.6%)
- Overtime penalty rates

An organisation structure and manning structure has been developed for the Tiris Feasibility Study to meet planned production targets. The proposed mining, operations and administrative employee numbers are presented in table 11.3.

An additional 91 personnel are included for the mining contractor. The total Tiris Project workforce will be 213 personnel.

Personnel will reside in Zouerat, with travel to/ from the operation being via bus. Employees will work a 3 week on, 10 day off roster and leave entitlements have been based on the Mauritanian labour code.

The labour cost estimate includes allowance for local and international travel for expatriate employees.

FUEL

Quotations were received from fuel distributors to supply diesel to the Tiris Operation inclusive of international and local freight, insurance and handling costs, and margins.

Quotations were received from two suppliers and a diesel price of US\$0.86 per litre has been applied to the operating cost estimate.

POWER

Power will be provided to the Tiris Operation via a main power station located adjacent to the Process Plant, plus several diesel generators located at the Beneficiation Plant and Remote Bore Field. The main power plant will include a hybrid of diesel and solar generation. The power generation will be supplied under a build, own, operate (BOO) contract over a 5 year term.

The levelized cost of energy (LCOE) unit cost for the Tiris Feasibility Study has been estimated at US\$0.22 per kWh, based on the diesel fuel price of US\$0.86 per litre.

MAINTENANCE

Maintenance costs include the cost for maintenance consumables and spare parts necessary for day-to-day operation of the process plant.

Maintenance costs are also included for maintenance of the site access road, diesel generator maintenance, light vehicle maintenance, and solar field maintenance. Maintenance facilities will be provided for the contract mining fleet, but maintenance costs are included in the mining contract.

SUSTAINING CAPITAL

Sustaining capital is the ongoing cost required to sustain mobile and fixed assets. For the Tiris Operation it includes costs related to:

- Major maintenance of plant and infrastructure
- Transportation of Beneficiation Circuit to new mining areas as defined by the LOM mine schedule.

The total LOM sustaining capital has been estimated at US\$10.1M, equivalent to US\$0.83 /lb U_3O_8 .

REAGENTS AND CONSUMABLES

Reagents and consumables include the following cost elements:

- Rotary scrubber (e.g. tyres)
- Screen consumables
- All reagents used in the process;
- Fuel for mobile equipment assigned to the process and maintenance groups;
- Lubricants, operating tools and equipment, general and operator supplies.

Reagent addition rates were derived from laboratory test work and steady state simulation of the process. Reagent and steam consumption rates have been calculated on a per pound of uranium oxide or per tonne of leach feed basis. This was derived from the steady state mass and energy balance developed using the Andritz IDEAS software.

GENERAL AND ADMINISTRATION

General and administration expenses have been categorised into the following areas:

- Safety and training
- Environmental
- External technical services
- Communications
- Camp accommodation and messing
- Laboratory
- Medical clinic
- Logistics and freight
- General administration

OPERATING COST SENSITIVITY

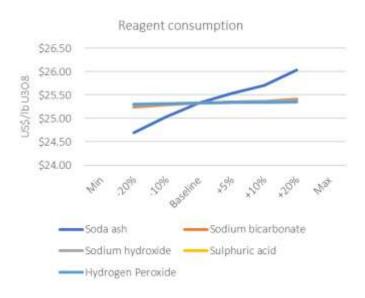


Figure 11.2: Sensitivity of operating cost to variations in reagent consumption



Figure 11.4: Sensitivity of operating cost to variations in Mining rate

Figure 11.3: Sensitivity of operating cost to variations in reagent price

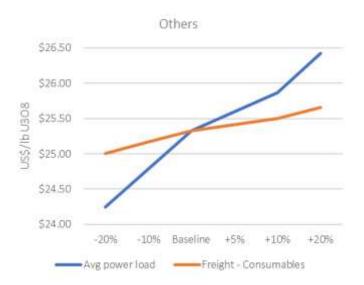


Figure 11.5: Sensitivity of operating cost to other variations

SCOPING STUDY COMPARISON

Comparison of estimated OPEX in Table 11.4 demonstrated an overall reduction in operating costs between the Scoping Study and DFS of 14%. These reductions were predominantly achieved in optimisation of reagent consumption.

In August 2017 Aura announced a reduction in operating costs. This included process optimisation, without updating the other OPEX inputs. As part of the DFS study additional detail was added to the mining plan and the decision was made to utilise contract mining, rather than an owner operated fleet. This transferred expenditure from Capital to Operating costs and accounts for a significant proportion of the cost difference.

Table 11.4: Comparison of Scoping Study and DFS OPEX estimate

Category	Scoping Study Scoping Study 2014 2017 update ¹		DFS 2019
	US\$/lb U₃O ₈	US\$/lb U ₃ O ₈	US\$/lb U₃O ₈
Mining	3.53	3.53	7.16
Processing	16.20	6.15	7.05
Services	4.12	4.12	5.19
G & A	5.60	5.60	6.04
TOTAL	29.46	19.40	25.43

¹ASX Announcement: "Tiris operating cost reduced by 35%" 30th August 2017. Included optimisation of processing costs only. All other costs remained unchanged from 2014 Scoping Study.

URANIUM MARKET

Long-Term Contracting market by utilities will be a key driver in sentiment for uranium and strongly impact the uranium price

With Section 232 now resolved a degree of uncertainty has been removed allowing market participants to re-engage with certainty in the uranium market.

URANIUM MARKET

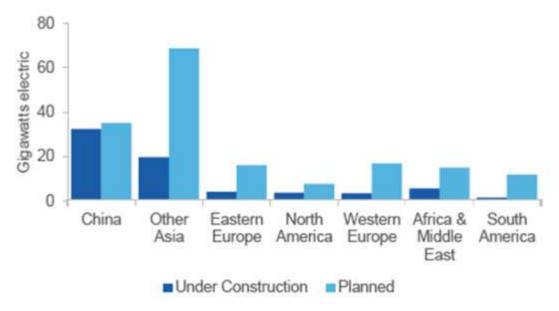
The uranium market is somewhat different to other metal markets as almost all uranium is sold on long-term contracts between miners and utilities. These contracts are confidential and have very little visibility in the market. While only limited uranium is sold on the 'spot' market, the spot price is the only visible metric for uranium price, and has a significant influence on market sentiment.

The uranium spot price has experienced a sustained period of depressed levels, driven by reduced demand following the Fukushima incident in 2011.

NUCLEAR CAPACITY DEVELOPMENTS

Recent developments in Asia have lifted demand.

A number of new reactors in China have been connected to the China's national power grid. The Sanmen nuclear power plant was connected to the power system in September 2018. Unit No 4 of the Tianwan nuclear power plant was connected to the power system in October 2018, which lifted global nuclear power generation above 400 GWe for the first time. Haiyang Unit No 1 is also close to connection to the national power grid.


In Taiwan a referendum to phase out nuclear power by 2025 was defeated, with 59% of votes cast for the continuation of nuclear power generation. The nuclear power costs in Taiwan are one-third of the cost of wind power and one-fifth the cost of LNG.

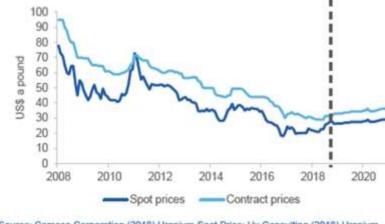
The Japanese Nuclear Regulation Authority has approved the restart of Unit No 2 at the Tokai nuclear facility.

An injunction to restart Unit No 3 at Okata power plant was rejected in October 2018. Overall, nine nuclear reactors have been given approval to restart, and another 18 are in the process of completing the final stages of recommencement.

Russian energy group Rosenergoatom announced that both Unit No 1 at its Leningrad Phase II nuclear power plant, and Unit No 4 at the Rostov nuclear power plant entered commercial operations in December 2018. In the USA, both the Vogtle No 3 and No 4 reactor development recently cleared approval from its owners to continue construction.

World wide uranium consumption increased from 80,900 tonnes in 2017 to 84,300 tonnes in 2018, an increase in consumption of 4.2% year-on-year. The scale of construction across Asia is forecast to increase consumption by 10,000 tonnes by 2020.

Source: International Energy Agency (2018); World Nuclear Association (2018); Department of Industry, Innovation and Science (2018)


Figure 12.1: Nuclear plants operating and under construction

Large production cuts in 2018 reduced the growth in uranium inventories. Global supply fell from 69,000 tonnes in 2017 to 61,700 tonnes in 2018, a reduction of 10.6%.

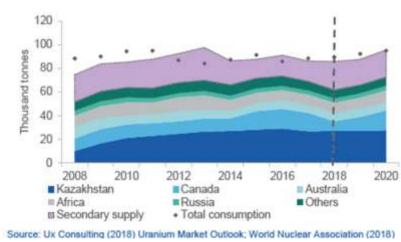
MARKET BALANCE AND PRICE

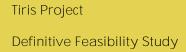
There are early signs of a sustained recovery in the uranium price with gains since September 2018.

Supply cuts from Canada and Kazakhstan have been the main drivers for the lift in spot prices. With production expected to continue at current levels, a number of commentators believe spot prices will hold in a tighter market. The Bureau of Resource and Energy Economics (BREE) maintain that inventory levels are likely to suppress price growth to some degree, but there is a shift towards prices spiking. The impact of falling mine commencements and lower exploration have not been quantified.

Source: Cameco Corporation (2018) Uranium Spot Price; Ux Consulting (2018) Uranium Market Outlook

Figure 12.2: Uranium spot price




Figure 12.3: U_3O_8 production

OFFTAKE AGREEMENT

On 25 January 2019, the Company announced that it had completed an offtake agreement with Curzon Uranium Trading Limited. Details of the offtake agreement are available in ASX announcement "Aura concludes offtake agreement", 29th January 2019.

FINANCIAL ANALYSIS

- Total project After Tax cash flow is US\$289 million (A\$413 million)
- Average After Tax cash flow of US\$19.2 million per annum (A\$27.4 million)
- Project IRR of 22%

Financial analysis of the Tiris Project is based on 75% project funding. This is by way of an Export Credit facility equal to US\$56.13 million, with upfront costs of US\$18.71 million. All results are inclusive of Mauritanian government royalties and commitments relating to the offtake agreement with Curzon Resources. This is outlined in the ASX announcement "Aura concludes offtake agreement", dated 29th January 2019. Results are on an after tax basis in \$USD, unless otherwise stated. Financial modelling is inclusive of all capital items, including mining mobilisation, process plant, project infrastructure and LOM sustaining capital.

The project financial analysis has been completed with a valuation date of 1 July 2021.

Table 13.1 shows the variance in NPV₈, IRR, payback period and net cashflows for a range of uranium contract prices, including commitments to Curzon Resources offtake agreement. At a base case uranium price of US\$60/lb U_3O_{8} , the NPV₈ of the Tiris Project is US\$79.7M. This is with an IRR of 22%, and a project payback of 3.7 years from commencement of production. At this price the project generates annual net cashflows (EBITDA) of US\$19.9M.

Table 13.1: Summary of project financials						
Price	NPV ₈	IRR	Payback	Net Cas	shflows	
US\$/pound	US\$M		years	Total	annualised	
45	15.6	11%	6.4	95.6	11.6	
50	36.0	15%	5.3	133.8	14.2	
55	57.0	18%	4.4	173.4	17.0	
60	79.7	22%	3.7	216.0	19.9	
65	102.4	25%	3.3	258.8	22.8	

Figure 13.2 shows the sensitivity of the Project NPV $_8$ to variations in capital and operating costs, uranium head grade and uranium price within the -15% +20% accuracy of the FS. Uranium Price and uranium grade have the greatest impact on project economics.

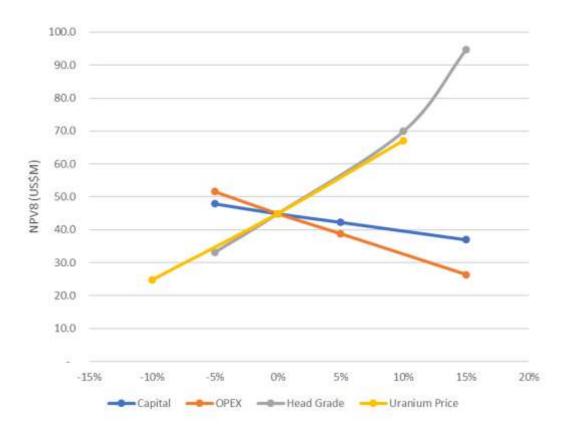


Figure 13.2: Project sensitivity

Tiris Project

Definitive Feasibility Study

The key risks with their mitigations, are identified as follows:-

- The project's success is fundamentally linked to the contract price for uranium exceeding the operating cost for the project. Aura is in the process of seeking additional Offtake agreements with suitable long term pricing, but this risk is largely outside Aura's control. There are some previous suppliers with their plants in care and maintenance who could come back on-line, but as time extends this likelihood is expected to lessen.
- 2) The estimated capital costs for the project could prove optimistic, requiring additional funding. The Capex estimate was composed of 85% external pricing, so has a strong basis for its pricing. The project will rely on competent Project cost control by the EPC company overviewing the project.
- 3) There is an OHS risk of radioactive dust in the mining and front end areas causing OHS issues in front end operators. Aura will ensure operators are in dust sealed cabins, use personnel badges and will rotate personnel if necessary.
- 4) Sourcing of crushed rock aggregate for roads, pads and concrete from a source close to Tiris is a concern. A mobile rock crushing and screening plant is planned, using local granite or calcrete rock outcrops.
- There are potential risks in obtaining Mauritanian statutory permit approvals, in the time required. Aura would seek a high level connection between Government authorities and its senior management, to supplement the usual project interfaces between Aura's local permitting supervisor and Government authorities. It is expected given Aura's focus on maximising local employment, that the Mauritanian Government will be quite supportive.
- There are risks from terror groups in the Sahel region in taking Western hostages. Aura has provisionally arranged for a platoon of 20 soldiers to be permanently based close to the site, responsible for external security. Aura will continue with its very close coordination with police/gendarmes/military guarding the area, and will minimise the number of Western expatriates at site.
- 7) There is a potential loss of knowledge from resignation or illness of Aura's key technical personnel. Aura has taken action to reduce this likelihood, and with its engineering house having produced a detailed Feasibility Study, has further back up.
- 8) A risk remains of insufficient water being available for the project. However drilling in 2019 successfully located water in 2 bores on structures identified by Aura with one producing 15,000 litres per hour. Of 4 holes drilled in the area 2 successfully located good volumes of water. The 50% strike rate in drilling bodes well for the location of additional water sources in the same geology and indicates a strong likelihood that the current drilling program will locate additional water supply in the same geology for the relatively low water requirement of the Tiris Project. A program of drilling and test work is currently underway.
- 9) With no network power back up, Aura's hybrid diesel and solar generation plant may suffer "crash stops" from power system fluctuations. Aura shall undertake rigorous engineering selection of the power generation supply, and hire experienced and competent electrical support personnel for the initial 2-3 years to maintain the power plant.