ASX: G88

19 August 2021

Ground EM survey to commence prior to drilling high priority copper-zinc targets at Yarrambee

Highlights

- Ground electromagnetic survey to commence in September over high priority HEM conductors
- Conductor anomalies are associated with large scale structures, magnetic anomalies, and alteration considered favourable to the location of large-scale mineralised base metals (Cu-Zn) systems
- ➤ A compilation of historical exploration data has identified several holes drilled in proximity to a 'central cluster' of high priority HEM anomalies (ND1-6 and Narndee South) which intersected widespread sulfides including
 - 8m @ 0.44% Cu from 53m including **1m @ 1.1% Cu** (NX12-13)
 - 3m @ 0.48% Cu from 50m & **6m @ 1.1% Cu** from 58m (NX14-29)
- Adjacent basement anomalies in the central cluster (ND7-10) were not recognised by previous explorers and represent exciting high priority targets for the upcoming ground EM survey
- In addition to the 'central cluster', the highest priority anomalies at Chi and TBW, and lower order anomalies in the Lambda group, have all seen limited historical exploration (no drilling) and the ground EM survey will help refine those targets for drilling
- Next steps at Yarrambee therefore include:
 - Modelling of airborne HEM data to test effectiveness of historical drilling (underway)
 - Ground EM over 7-10 high priority targets to refine targets for drill testing (September)
 - 3-5,000m RC/diamond drilling program to test highest priority anomalies (October)
- All approvals are in place including Programs of Work (POWs) in preparation for drilling.

Commenting on the Yarrambee update, Golden Mile's Managing Director James Merrillees said:

"The airborne electromagnetic survey identified 48 conductors interpreted to be related to bedrock conductors associated with target horizons considered prospective for base metals copper-zinc mineralisation. Three high priority target areas have been identified for immediate follow up and we are now ready to refine the targets within these areas by combining the HEM survey data with historical drilling data and collecting ground EM to provide us with the best possible drill test sites.

"It's an exciting time for Golden Mile and we look forward to rapidly advancing exploration on these outstanding targets. We already have approvals in place for drilling and look forward to finalising drill-ready targets over the coming weeks."

ASX: G88

Golden Mile Resources Ltd (ASX:G88, "Golden Mile" or "the Company") is pleased to provide an update on the Company's 100% owned Yarrambee base metals project, which covers prospective portions of the Narndee Igneous Complex (NIC) approximately 500km north-east of Perth, within the Murchison Region of Western Australia (*Figure 1*).

Background

The Yarrambee project, located adjacent to Aldoro Resources' (ARN:ASX) Narndee project, comprises more than 800km² of tenements covering the Narndee Igneous Complex (NIC), considered prospective for Ni-Cu-PGE mineralisation (e.g. Voisey's Bay, Nova, Julimar), and Volcanogenic Massive Sulfide (VMS Cu-Zn) mineralisation (e.g. Golden Gove, DeGrussa).

In July 2021 the Company announced the results from a 1,342 line-kilometre, helicopter-borne electromagnetic (HEM) survey which identified 48 conductors interpreted to be related to sulfide accumulations in the basement (*refer figure 2 and G88 ASX Announcement 7 July 2021*)¹.

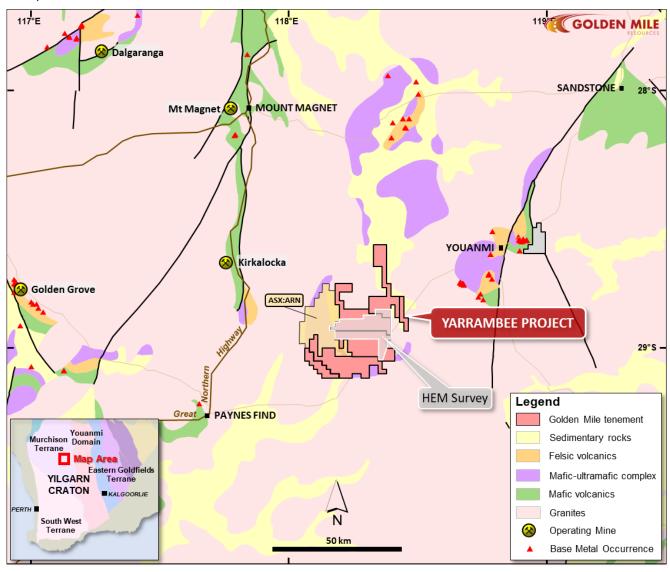


Figure 1: Golden Mile's Yarrambee Base Metals Project, Murchison Region, WA.

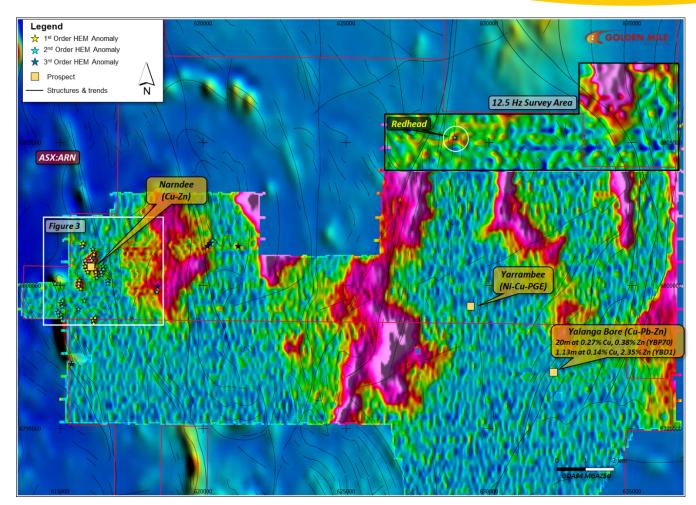
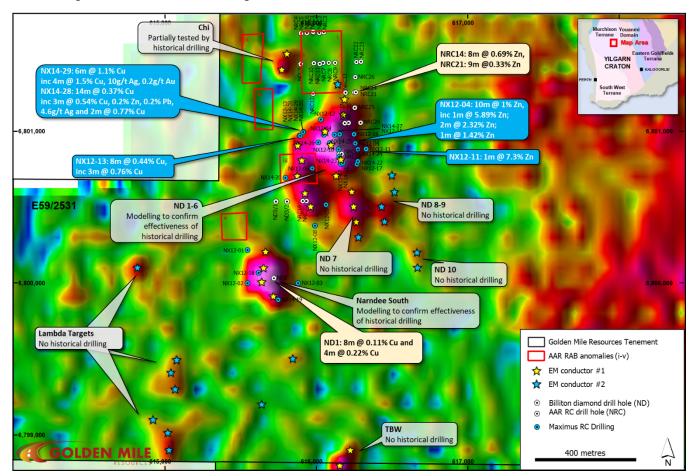


Figure 2: Yarrambee HEM survey. Main block image is 25Hz base channel 23 Bfield (Z component). Northeast block image is 12.5Hz base frequency (channel 457 Z component). Background image regional magnetics (RTP-TMI). Areas of broad conductive responses reflect conductive overburden (e.g. saline groundwater).

Copper (Cu) - Zinc (Zn) Targets

Golden Mile's June 2021 HEM survey identified 48 conductive responses interpreted to be related to sulfide accumulations in the basement rocks and potential VMS-style Cu-Zn mineralisation analogous to the nearby Golden Grove deposits (ASX:E29).

A 'central cluster' of interpreted bedrock conductors are associated with the known Narndee VMS (copper-zinc) prospect where a detailed review of historical exploration has now been completed and further work is ongoing to understand the relationship of the new conductors to the historical work.


The literature review not only highlighted widespread VMS-Style Cu-Zn mineralisation and alteration in the Narndee area but also demonstrated that the highest priority conductors identified by Golden Mile's HEM survey have either not been tested, or only lightly tested by the historical work.

A compilation of historical exploration data has identified several holes drilled in proximity to a 'central cluster' of high priority HEM anomalies (ND1-6 and Narndee South) which intersected widespread sulfides with low-moderate grade metals including (*refer figure 2 and G88 ASX Announcement 11/3/21*)¹:

- 10m @ 1% Zn from 88m incl. 1m @ 5.89% Zn from 97m (NX12-04)
- 8m @ 0.44% Cu from 53m including 1m @ 1.1% Cu (NX12-13)
- 3m @ 0.48% Cu from 50m & 6m @ 1.1% Cu from 58m (NX14-29)
- 8m @ 0.11% Cu & 4m @ 0.22% Cu (ND1)

These targets are summarised in Figure 3 and Table 1 below.

Figure 3: Yarrambee HEM survey and base metal targets with historical exploration. Background image is 25Hz base channel 23 Bfield (Z component). Refer body of text for discussion of historical work.

<u>Table 1:</u> Golden Mile Yarrambee Project, base metals targets and historical exploration.

Anomaly	Description	Historical Exploration	Follow Up
	A cluster of 12 anomalies associated with surface Cu-Zn anomalism, altered felsic volcanics, associated exhalites and gossans.	10m @ 1% Zn from 88m incl. 1m @ 5.89% Zn from 97m (NX12-04) 2m @ 3.8% Zn from 78m	Modelling of airborne EM plates to check effectiveness of historical drilling.
Narndee 1-6	Most of these conductors may have been partially tested by previous drilling which intersected widespread zones	(NX12-11) 8m @ 0.44% Cu from 53m including 1m @ 1.1% Cu and 0.2g/t Au (NX12-13)	Ground EM to refine targets for drill testing.
	of massive sulfides.	6m @ 1.1% Cu (NX14-29) 14m @ 0.37% Cu (NX14- 28)	
Narndee 7-10	Cluster of 10 bedrock and probable bedrock anomalies with no historical exploration.	None recorded	Ground EM to refine targets for drill testing.
Narndee South	Strong basement conductor across at least four lines. Limited testing by historic diamond hole ND1 and Maximus RC drilling.	8m @ 0.11% Cu and 4m @ 0.22% Cu (ND-1)	Modelling of airborne EM plates to check effectiveness of historical drilling. Ground EM to refine targets.
Chi	A strong bedrock conductor north of the known Narndee Prospect associated with nearby surface and end of hold RAB copper anomalism.	Between two zones (i and ii) of anomalous copper identified in AAR RAB drilling. Historical drilling did not extend to this anomaly	Modelling of airborne EM plates to check effectiveness of historical drilling. Ground EM to refine targets.
TBW	A strong basement conductor to the south of Narndee, 1km south of the nearest historical drilling.	None identified	Ground EM to refine targets for drill testing.
Lambda Group Anomalies	Group of north-south trending probable bedrock conductors extending over more than 1km strike and bounded by a mineralised structural corridor on a magnetic gradient.	No targets previously identified	Ground EM to refine targets for drill testing.
Redhead	Probable bedrock conductor 'seen' through conductive cover using the 12.5Hz system and associated with a mapped gabbro (mafic) intrusive. Possible Ni-Cu target.	No historical exploration	Ground EM to refine targets for drill testing.

NEXT STEPS

Golden Mile is awaiting final products from the HEM survey including the results of modelling of the highest priority conductors identified to date. These data will be integrated with the historical data compilation to rank and prioritise targets for follow up testing.

The Company has engaged a geophysical contractor to undertake a ground electromagnetic (fixed and moving loop EM) survey over the best of these targets with this survey expected to get underway in early September. The ground EM survey will take up to two weeks to complete with results being received and modelled shortly afterwards to define targets for drill testing.

The Company is currently sourcing a drill rig to test targets resulting from the ground EM survey with a 3-5,000m RC and/or diamond drilling program planned to directly test highest priority conductors in September-October .

The actual timing of drilling is contingent on final data from the ground EM survey and rig availability, noting that all approvals for the drilling proposed (including Programs of Work) have already been received.

This Announcement has been approved for release by the Board of Golden Mile Resources Limited.

For further information please contact:

James Merrillees - Managing Director

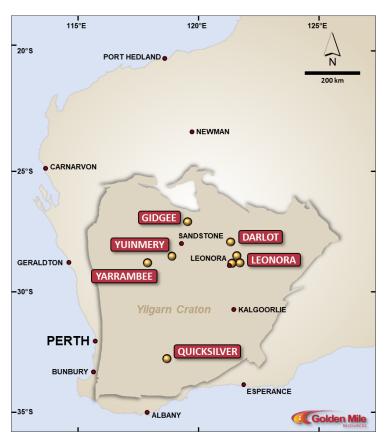
Golden Mile Resources Ltd (ASX: G88)

ABN 35 614 538 402

T: (08) 6383 6508

E: info@goldenmileresources.com.au

W: www.goldenmileresources.com.au


Note 1: Refer ASX announcement on the said date for full details of these results. Golden Mile is not aware of any new information or data that materially affects the information included in the said announcement.

References:

- WAMEX Report A26839 Narndee Project Annual Report for Period Ending 31 March 1989. Anglo Australian Resources.
- WAMEX Report A30411 Narndee Joint Venture, Fourth Annual Report (1989), Billiton Australia.

About Golden Mile Resources Ltd

Golden Mile Resources Ltd (Golden Mile; ASX: G88) is a Western Australian focused mineral exploration company with projects in the Eastern Goldfields, Murchison and South-West regions.

The Company's gold projects are located in the highly prospective Eastern Goldfields region, namely the Leonora (Benalla, Ironstone Well and Monarch prospects), Darlot and Yuinmery Gold Projects.

The Yarrambee Project, an ~816km² landholding located in the Narndee-Igneous Complex (NIC) in the Murchison region, is considered prospective for Ni-Cu-PGE as well as Cu-Zn VMS mineralisation.

The Company also holds the Quicksilver nickel-cobalt project, located about 350km south east of Perth.

Competent Persons Statement

The information in this report that relates to Exploration Results is based upon and fairly represents information compiled by Mr James Merrillees, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Merrillees is a full-time employee of the Company.

Mr Merrillees has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Merrillees consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

The Company confirms it is not aware of any new information or data that materially affects the exploration results set out in the in the original announcements referenced in this announcement and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Golden Mile Resources Ltd (ASX: G88) planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Golden Mile Resources Ltd (ASX: G88) believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements

APPENDIX 1 – YARRAMBEE HISTORICAL DRILLING

TABLE 1: Compilation of historical drill results. Drill hole coordinates MGA94 Zone 51 (GDA94). AAR = Anglo Australian Resources

RC= Reverse circulation, DDH = Diamond drill holes

Hole ID	Company	Hole Type	EOH (m)	East MGA	North MGA	RL MGA*	Dip	Azimuth MGA
ND_1	Billiton	RC/DDH	149.5	615720	6800033	400	-61	270
ND_2	Billiton	RC/DDH	128.9	615897	6801442	400	-65.5	255
ND_3/1	Billiton	RC	30	615732	6800538	400	-60	270
ND_3/2	Billiton	RC/DDH	129	615806	6800539	400	-60	270
NRC_01	AAR	RC	50	615978	6801652	400	-60	270
NRC_02	AAR	RC	80	616019	6801645	400	-60	270
NRC_03	AAR	RC	80	616050	6801648	400	-60	270
NRC_04	AAR	RC	80	615898	6801643	400	-60	100
NRC_05	AAR	RC	80	615937	6801643	400	-60	90
NRC_06	AAR	RC	59	615980	6801647	400	-60	90
NRC_07	AAR	RC	80	616043	6801449	400	-60	270
NRC_08	AAR	RC	90	616082	6801448	400	-60	270
NRC_09	AAR	RC	90	616125	6801449	400	-60	270
NRC_10	AAR	RC	80	615982	6801445	400	-60	90
NRC_11	AAR	RC	80	616022	6801441	400	-60	90
NRC_12	AAR	RC	80	615979	6801244	400	-60	270
NRC_13	AAR	RC	80	616191	6801252	400	-60	270
NRC_14	AAR	RC	65	616250	6801254	400	-60	90
NRC_15	AAR	RC	87	616151	6800848	400	-60	92
NRC_16	AAR	RC	89	616212	6801053	400	-60	96
NRC_17	AAR	RC	90	616187	6801051	400	-60	88
NRC_18	AAR	RC	95	616167	6800848	400	-60	88
NRC_19	AAR	RC	93	615911	6800539	400	-60	272
NRC_20	AAR	RC	73	615936	6800540	400	-60	272
NRC_21	AAR	RC	73	616260	6801254	400	-60	265
NRC_22	AAR	RC	80	616264	6801453	400	-60	271
NRC_23	AAR	RC	71	616293	6801454	400	-60	270
NRC_24	AAR	RC	80	616291	6801054	400	-60	255
NRC_25	AAR	RC	71	616253	6801153	400	-60	265
NRC_26	AAR	RC	89	616256	6801354	400	-60	269

^{*} A nominal RL of 400m has been applied to all drilling with more accurate RLs to be determined from HEM digital elevation model.

TABLE 2: Significant drilling assay results. Intervals are reported >0.1% Cu, and >0.1%Zn with no internal dilution. All widths quoted are downhole widths, true widths are not known.

Hole ID	Hole	Total	Depth	Depth	Length	Cu	Zn
	Туре	Depth (m)	From (m)	To (m)	(m)	(ppm)	(ppm)
ND_1	DDH	149.5	74	82	8	1142	199
ND_1	DDH	149.5	90	94	4	2180	113
ND_2	DDH	128.9	2	3	1	190	1258
ND_2	DDH	128.9	102	104	2	8100	370
ND_3/2	DDH	129	102	104	2	3200	220
NRC_02	RC	80	16	19	3	1213	252
NRC_06	RC	59	18	19	1	1400	320
NRC_06	RC	59	40	41	1	2550	140
NRC_07	RC	80	5	7	2	2225	475
NRC_07	RC	80	16	21	5	3020	1046
NRC_08	RC	90	14	16	2	2675	650
NRC_08	RC	90	19	20	1	1020	560
NRC_08	RC	90	27	28	1	2900	1309
NRC_11	RC	80	5	6	1	106	2900
NRC_11	RC	80	13	19	6	2367	407
NRC_13	RC	80	45	47	2	1010	670
NRC_14	RC	65	57	65	8	598	6919
NRC_15	RC	87	49	52	3	125	4090
NRC_15	RC	87	57	66	9	103	2920
NRC_16	RC	89	42	44	2	26	1045
NRC_16	RC	89	60	62	2	355	1965
NRC_16	RC	89	76	78	2	155	1795
NRC_16	RC	89	80	81	1	670	5700
NRC_16	RC	89	82	83	1	1050	700
NRC_16	RC	89	84	85	1	1050	7300
NRC_17	RC	90	52	54	2	542	1425
NRC_18	RC	95	58	59	1	118	2280
NRC_18	RC	95	68	73	5	196	3612
NRC_19	RC	93	61	64	3	332	2347
NRC_20	RC	73	66	70	4	98	4795
NRC_21	RC	73	59	68	9	914	3396
NRC_24	RC	80	50	53	3	102	2167
NRC_24	RC	80	60	61	1	6638	121
NRC_24	RC	80	66	67	1	701	5870
NRC_25	RC	71	51	52	1	118	1040
NRC_25	RC	71	60	67	7	2173	1395

TABLE 3: Compilation of historical Anglo Australian Resources RAB (bottom of hole) drill results (source WAMEX open file report A20263). Note hole depths not recorded. -9999 = sample not submitted.

Consecutive sample IDs applied as original sample IDs were recorded in local grid coordinates. Coordinates MGA94 Zone 51 (GDA94).

Sample ID	East	North	Cu	Zn	Ni	Pb
Sample ID	MGA	MGA	(ppm)	(ppm)	(ppm)	(ppm)
1	615379	6801628	50	30	30	20
2	615400	6801628	30	10	70	-5
3	615422	6801629	20	20	70	-5
4	615441	6801629	40	20	70	10
5	615463	6801630	50	20	40	20
6	615482	6801630	50	20	50	10
7	615502	6801631	60	20	60	20
8	615520	6801631	50	10	40	20
9	615540	6801631	50	10	60	30
10	615559	6801632	70	20	50	40
11	615581	6801633	140	100	40	20
12	615601	6801633	100	150	70	30
13	615621	6801633	40	80	40	20
14	615640	6801634	70	100	60	20
15	615660	6801635	50	80	40	30
16	615681	6801635	50	160	40	20
17	615701	6801636	30	30	30	10
18	615739	6801637	20	50	30	-5
19	615779	6801638	10	20	20	-5
20	615819	6801640	20	50	40	20
21	615858	6801641	70	210	30	300
22	615879	6801641	20	40	30	30
23	615899	6801642	60	80	50	250
24	615917	6801642	50	220	40	130
25	615937	6801643	60	110	30	440
26	615957	6801643	50	80	30	40
27	615978	6801644	120	100	60	70
28	615998	6801644	2700	890	400	130
29	616018	6801645	690	590	100	80
30	616037	6801645	900	550	160	110
31	616058	6801646	840	510	150	100
32	616078	6801646	230	550	150	40
33	616098	6801647	50	50	50	20
34	616118	6801648	90	110	60	20
35	616137	6801648	110	50	160	10
36	616158	6801649	-5	40	180	20
37	616177	6801649	110	80	70	10
38	616197	6801650	120	90	60	10

			_	_	• • •	-1
Sample ID	East MGA	North MGA	Cu (ppm)	Zn (ppm)	Ni (ppm)	Pb (ppm)
39	616216	6801650	70	290	110	30
40	615386	6801431	140	40	80	30
41	615408	6801431	90	50	70	40
42	615426	6801431	90	30	70	40
43	615447	6801433	50	40	70	30
43	615468	6801433	60	40	60	40
45	615486	6801434	80	20	60	30
46	615507	6801434	140	60	70	30
47	615526	6801434	90	20	40	30
48	615545	6801435	320	80	40	40
49	615565	6801435	130	70	50	30
50	615586	6801435	180	140	50	30
51	615605	6801436	130	70	60	20
52	615630	6801437	60	80	40	50
53	615645	6801437	50	50	30	30
54	615665	6801438	120	70	40	20
55	615706	6801439	120	90	30	-5
56	615745	6801440	600	100	40	20
57	615786	6801441	180	80	30	20
58	615904	6801444	60	60	40	10
59	615923	6801445	50	70	60	10
60	615944	6801445	120	40	30	20
61	615982	6801447	120	80	180	50
62	616002	6801447	60	160	80	50
63	616022	6801447	90	90	60	60
64	616043	6801448	150	210	100	60
65	616062	6801449	190	140	70	140
66	616082	6801449	230	260	100	50
67	616103	6801448	1000	920	220	30
68	616132	6801450	340	280	80	20
69	616152	6801450	50	70	70	10
70	616169	6801451	30	160	170	-5
71	616187	6801451	40	60	60	-5
72	616229	6801453	-5	40	-5	-5
72	615571	6801237	80	20	100	20
73	615392	6801233	70	60	60	20
74	615414	6801234	60	80	80	-5
75	615435	6801235	-9999	260	140	20
76	615454	6801235	-9999	80	60	20
77	615473	6801235	50	40	80	20
78	615495	6801236	90	100	80	30
79	615512	6801236	90	40	60	20
80	615531	6801236	50	70	70	20

	East	North	Cu	Zn	Ni	Pb
Sample ID	MGA	MGA	(ppm)	(ppm)	(ppm)	(ppm)
81	615551	6801237	100	40	90	100
83	615592	6801238	90	30	80	20
84	615611	6801239	250	40	90	20
85	615632	6801239	240	40	70	10
86	615652	6801240	-9999	-9999	-9999	-9999
87	615672	6801240	350	70	100	-5
88	615692	6801241	150	40	60	10
89	615711	6801241	60	50	30	10
90	615789	6801244	90	70	50	80
91	615829	6801245	160	150	110	-5
92	615947	6801248	150	210	120	30
93	615966	6801249	100	340	170	50
94	615987	6801250	60	260	160	30
95	616008	6801250	150	310	140	60
96	616028	6801250	70	130	100	30
97	616068	6801251	90	210	90	60
98	616088	6801252	60	90	70	40
99	616107	6801252	120	100	170	30
100	616129	6801253	110	90	60	10
101	616154	6801259	70	90		
102	616167	6801254	60	80	70	40
103	616189	6801254	60	80	80	30
104	616209	6801255	120	160	60	80
105	616229	6801255	120	130	60	40
106	615239	6801031	60	30	50	-5
107	615259	6801032	60	20	40	-5
108	615278	6801032	50	20	40	-5
109	615318	6801033	80	30	50	-5
110	615335	6801033	50	70	80	10
111	615354	6801034	60	50	60	-5
112	615395	6801035	60	50	60	-5
113	615434	6801036	80	100	70	-5
114	615517	6801038	80	90	100	-5
115	615537	6801038	70	130	100	-5
116	615556	6801039	70	60	60	20
117	615576	6801039	80	60	70	20
118	615596	6801040	70	50	50	10
119	615619	6801039	80	160	40	60
120	615638	6801040	230	40	60	10
121	615661	6801040	160	40	80	-5
122	615682	6801042	40	40	30	10
123	615702	6801043	40	40	30	-5
124	615716	6801043	40	40	40	-5

				-	•••	D.
Sample ID	East MGA	North MGA	Cu (ppm)	Zn (ppm)	Ni (ppm)	Pb (ppm)
125	615736	6801044	60	100	60	10
126	615756	6801044	80	60	60	10
127	615795	6801045	100	50	60	40
128	615812	6801045	110	90	70	20
129	615855	6801047	110	60	60	20
130	615876	6801047	170	50	80	20
131	615933	6801048	210	130	60	10
132	615976	6801050	150	100	60	30
133	616076	6801053	100	-9999	80	20
134	616113	6801054	-9999	-9999	-9999	-9999
135	616135	6801054	-9999	-9999	-9999	-9999
136	616154	6801055	60	50	90	40
137	616178	6801055	40	30	70	40
138	616194	6801056	20	20	50	40
139	616214	6801056	80	50	70	50
140	615283	6800834	130	40	70	20
141	615302	6800835	50	50	50	20
141	615341	6800835	60	90	50	20
143	615360	6800836	40	40	70	-5
143	615399	6800837	70	60	80	10
145	615441		150	210	140	10
146	615462	6800838 6800838	80	90	80	-5
147	615482	6800839	80	120	70	-5 -5
148	615502	6800840	110	180	210	-5 -5
149	615542	6800840	80	100	120	-5 -5
150	615561	6800841	60	100	90	-5 -5
151	615582	6800842	-9999	80	110	10
152	615602	6800843	190	110	140	10
153	615620	6800843	110	90	90	20
154	615643	6800844	80	80	70	10
155	615663	6800843	130	40	100	10
156	615700	6800845	160	60	70	-5
157	615720	6800845	-9999	-9999	-9999	-9999
158	615739	6800845	160	100	90	-9999 -5
159	615758	6800846	110	90	70	-5 -5
	615779	6800846		60	50	-5 -5
160 161	615800	6800847	100 80	60	50	-5 -5
162	615821	6800847	100	100	60	10
163	615842	6800848	130	200	70	-5
164	615861	6800848	90	180	60	30
165	615881	6800849	70	80	50	40
166	615900	6800850	60	90	50	10
	615958				50	
167	ΩΤΟΆΟΟ	6800852	60	80	_ 5U	10

	East	North	Cu	Zn	Ni	Pb
Sample ID	MGA	MGA	(ppm)	(ppm)	(ppm)	(ppm)
168	615977	6800853	60	80	70	10
169	616076	6800854	60	60	70	20
170	616119	6800856	40	40	50	-5
171	616158	6800857	30	30	40	3
172	616197	6800858	40	30	50	10
173	616119	6800856	70	-9999	60	20
174	616089	6800843	180	110	80	10
175	616067	6800835	230	140	80	20
176	616045	6800826	410	70	200	20
177	616020	6800818	130	140	60	20
178	615995	6800811	80	60	60	20
179	615972	6800801	120	150	60	20
180	615949	6800792	320	540	160	10
181	615227	6800633	90	20	30	-5
182	615268	6800634	100	20	30	-5
183	615286	6800635	90	20	30	-5
184	615329	6800636	40	140	40	-5
185	615346	6800636	100	140	70	-5
186	615367	6800637	60	70	30	-5
187	615388	6800637	80	100	80	-5
188	615408	6800637	70	50	60	-5
189	615426	6800637	90	80	60	-5
190	615447	6800639	70	130	90	-5
191	615464	6800639	80	250	120	-5
192	615485	6800639	80	320	180	-5
193	615505	6800639	90	90	100	-5
194	615528	6800640	90	230	140	-5
195	615547	6800641	100	110	110	-5
196	615565	6800641	60	70	110	-5
197	615586	6800642	70	90	100	10
198	615605	6800642	80	80	100	-5
199	615625	6800643	80	70	60	10
200	615646	6800644	90	60	50	-5
201	615663	6800644	80	60	60	-5
202	615683	6800643	90	50	70	50
203	615703	6800645	100	150	90	20
204	615726	6800646	80	110	70	10
205	615742	6800646	100	160	110	40
206	615763	6800646	110	120	100	40
207	615784	6800647	90	110	90	20
208	615802	6800648	110	90	180	10
209	615822	6800647	190	390	120	10
210	615844	6800648	160	200	100	20

Commis ID	East	North	Cu	Zn	Ni	Pb
Sample ID	MGA	MGA	(ppm)	(ppm)	(ppm)	(ppm)
211	615863	6800649	100	60	60	-5
212	615883	6800650	160	90	60	20
213	615902	6800650	90	150	110	40
214	615925	6800651	70	80	50	30
215	615946	6800651	90	80	70	30
216	615965	6800651	60	150	70	30
217	615986	6800650	130	110	110	40
218	616004	6800653	30	60	50	30
219	616024	6800653	60	50	60	20
220	616044	6800654	30	20	80	20
221	616064	6800654	40	20	40	10
222	616083	6800655	-9999	80	70	20
223	615897	6801499	190	540	130	10
224	615918	6801502	80	190	80	10
225	615938	6801504	190	60	30	-5
226	615960	6801506	210	60	40	-5
227	615982	6801508	370	270	40	90
228	616002	6801510	390	740	90	30
229	616023	6801511	100	830	80	320
230	616045	6801513	-9999	-9999	-9999	-9999
231	615297	6801824	30	50	60	10
232	615337	6801825	50	30	30	20
233	615378	6801826	80	40	20	20

ASX: G88

Appendix 2: JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 There have been several generations of historical exploration over the Narndee project area in the last 50 years including: mapping and costeaning; rockchip, stream and surface (maglag/soil) sampling; ground and airborne magnetic surveys; RAB, aircore, percussion, RC, and limited diamond drilling; ground and airborne EM surveys. A list of previous explorers is given in Section 2 with the primary focus being on VMS exploration associated with the Yaloginda Fm on the Narndee prospect. This announcement describes results from: RAB Drilling by Anglo Australian Resources (AAR) reported in WAMEX report A20263 RC drilling by AAR described in report A26839 Diamond drilling by Billiton Australia Ltd (Billiton) reported in report A30411. Historic sampling and drilling used best industry standards for that time, and results are considered indicative only due to the inability to verify the results independently.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling techniques used by previous explorers include RAB, percussion/RC, and limited diamond drilling Drilling used best practice for that time and results are unable to be verified
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 There are no records available regarding sample recoveries and representativeness for the historic drilling Insufficient information is available in open file records to understand any bias related to sample recovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Hard copy geological logs are available and considered suitable for early-stage exploration. Logging is qualitative in nature. All historic drill holes were logged.
Sub-sampling techniques and sample	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample 	 Billiton diamond drill holes were fillet sampled at 2 m intervals Sample preparation techniques for the RAB and RC drilling are not known. For the RAB and RC drilling reported by Anglo Australian Resources (AAR) at Narndee (holes NRC01-NRC26) standards were inserted at the rate of 1 in 40

Criteria	JORC Code explanation	Commentary
preparation	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	samples and laboratory standards, blanks and duplicates are reported. No information is available on QA/QC for the DD drilling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 AAR RAB drilling analyses are AAS after a mixed acid digest for Cu, Pb, Zn, Ni and Ag which is considered a total digestion technique. Billiton diamond drill holes were fillet sampled at 2 m intervals and assayed by AAS for Cu, Pb, Zn, Fe, Mn, Ag, ±.Ni, with selected, or sulphidic intercepts for Au, Pt, Pd (ICP /MS) and As, Ti, Zr. For the AAR and Billiton drilling, standards and duplicates were regularly inserted however values for standards are not reported so no comment can be made regarding their effectiveness. The open file reports (WAMEX reports A26839 and A30411) do not note any sample bias. No geophysical tools were noted in the historical drilling reports.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historical sampling collected in hardcopy format prior to being entered into a spreadsheet for import into the Company's digital database. No twinned holes have been identified. It is not known if any adjustments have been made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The accuracy and quality of historic coordinates is unknown. Only one downhole survey was noted (ND2) which is included in the data capture The grid system used is the Geocentric Datum of Australia 1994 (GDA 94), MGA50. Topographic control is not documented
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill spacing is considered appropriate given the early stage of exploration. No Mineral Resource or Reserve has been estimated. In historic RC drilling samples were composited over 4m intervals, with re-assay of 1 m intervals for any significant intersections. Billiton diamond drill holes were fillet sampled at 2 m intervals
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 There is no quantitative information regarding the orientation of mineralised structures and the relationship between the drilling orientation and the orientation of key mineralised structures is not known. No sampling bias is interpreted to have been introduced but there is insufficient information to confirm this

ASX: G88

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	This is not recorded in the historical reports
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits of sampling techniques and data have been completed

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Yarrambee Project comprises granted tenements E59/2529, E59/2530, E59/2531, and E59/2532 and tenement applications E59/2533 and E59/2542 all held 100% by Golden Mile Resources Ltd. Golden Mile entered into a sale and purchase agreement with the tenement applicants which includes a 1% NSR Tenements are currently in good standing with no known impediments to exploration
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration was undertaken by: BHP-Hunter Resources (1986-1989) Duval (1985) Anglo Australian Resources/Billiton/Normandy-Poseidon JV 1985-1992 Windimurra Resources (1997-1998) Falconbridge-Apex (2006-2007) Apex/WMC JV (2006-2016) Maximus Resources (20056-16) Legendre/Santa Fe Mining (2015-2018)
Geology	Deposit type, geological setting and style of mineralisation.	 The Yarrambee Project is located within the Youanmi Terrane of the Yilgarn Craton, close to a major structural boundary between the Murchison and Southern Cross Domains. Regional geology is dominated by Archaean granite-greenstone terranes (greenstone 2.8-3.0 billion years, granites 2.6-2.95 billion years) and the Windimurra Group of layered mafic intrusions (2.847 Ga ± 71Ma). The Narndee Igneous Complex forms the primary component of the Boodanoo Suite and is divided into three broad units of stratigraphy: Ultramafic Zone, Lower Zone and Main Zone. Golden Mile is focussed on the discovery of economic Ni-Cu-PGE mineralisation associated with intrusive rocks (chonoliths) analogous to Voisey's Bay within the layered complex, as well as VMS (Cu-Zn-Pb-Ag) mineralisation associated with felsic volcanic stratigraphy within the Yaloginda Formation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	A listing of the drill hole information material to the understanding of the exploration results is provided in the body and appendices of this announcement

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No weighting or aggregating of drill grades are reported No metal equivalents are reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Holes are angled and a downhole intercept length is quoted, true width is not known The geometry of mineralisation with respect to drill hole angle is unknown at this stage
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and tabulations are presented in the body of the announcement
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All composite samples were assayed and comprehensive reporting of all results is not practicable Significant intersections are reported in the body and appendices of the announcement Holes not reported do not contain any significant intersections
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable, no other material exploration data

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	·