

David Stamler, MD 12 November 2021 CEO

Forward Looking Statements

This presentation may contain some statements that may be considered "Forward-Looking Statements", within the meaning of the US Securities Laws. Thus, any forward-looking statement relating to financial projections or other statements relating to the Company's plans, objectives, expectations or intentions involve risks and uncertainties that may cause actual results to differ materially. For a discussion of such risks and uncertainties as they relate to us, please refer to our 2021 Form 20-F, filed with US Securities and Exchange Commission, in particular Item 3, Section D, titled "Risk Factors."

Alterity is dedicated to creating an alternate future for people living with neurodegenerative diseases.

Alterity = the state of being different

Our goal is to **modify the** course of disease

We're here to **disrupt the trajectory** of illness and improve quality of life

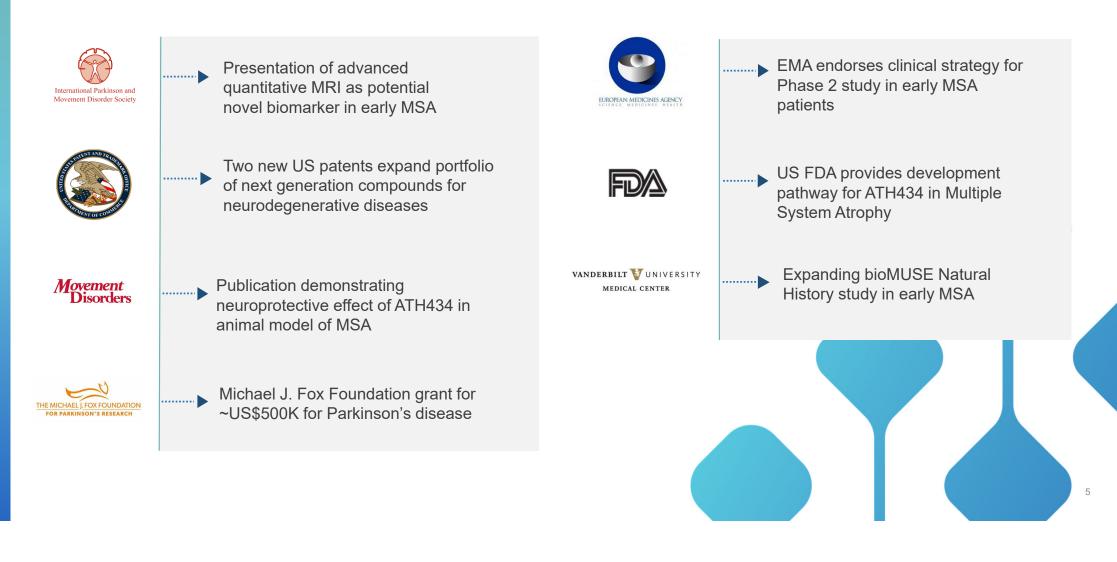
Investment Highlights

Novel approach to treat the underlying pathology of disease

Strong and highly experienced management team with significant R&D experience including 3 drug approvals by US FDA

ATH434 is a **novel drug candidate targeting key proteins** implicated in neurodegeneration of Parkinson's Disease and related disorders

First therapeutic target: Multiple System Atrophy (MSA), a **devastating disease** with no approved treatments


Orphan Drug designation in the U.S. and EU

Advancing to a Phase 2 clinical trial

Strong patent portfolio

Recent Progress

Experienced Leadership Team with Multiple FDA Approvals in Neurology

David Stamler, M.D.

Chief Executive Officer

Auspex/Teva | Abbott | Prestwick Xenoport | Fujisawa

- 3 FDA Approvals in Neurology
- Former CMO, Auspex
- VP, Clinical Development & Therapeutic Head, Movement Disorders, Teva Pharmaceuticals
- Part of Teva's US\$3.5 billion acquisition of Auspex in 2015
- Led development of AUSTEDO[®] (deutetrabenazine) for treatment of Huntington disease and Tardive dyskinesia, both approved in 2017

Kathryn Andrews, CPA

Chief Financial Officer

Antisense Therapeutics | Rio Tinto | Consultant

- Extensive experience advising private and public CFOs, mainly in the biotechnology sector
- Prior CFO and Company Secretary of Antisense Therapeutics Limited
- 15+ years in finance and accounting roles at Rio Tinto Limited and BP Australia Limited

Margaret Bradbury, Ph.D. *VP, Nonclinical Development*

Auspex/Teva | Neurocrine | Merck

- Auspex led strategic planning and program management in Huntington Disease chorea from IND through NDA filing
- Teva led non-clinical development of several neuroscience programs

Cynthia Wong, M.P.H.

Senior Director, Clinical Operations

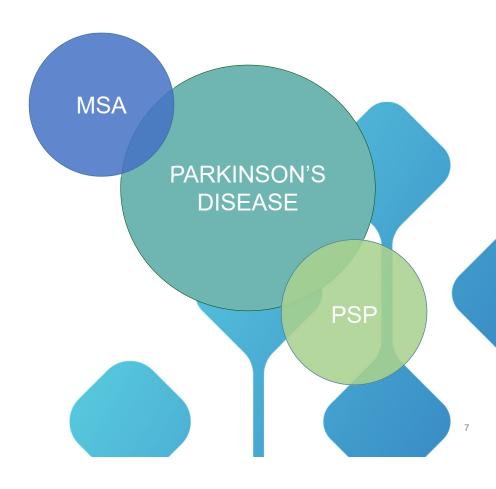
Auspex/Teva | Nextwave | Astex | Intermune | Impax Labs

- Clinical Operations leadership at Auspex/Teva.
- Led clinical trial activities for the registration study of AUSTEDO[®] in Huntington Disease chorea.
- Prior, led Phase 1-3 studies, including registration studies for marketing approval for Quillichew ER, Esbriet and Infergen.

Parkinsonian Disorders: A Significant Unmet Need

Parkinsonism is a syndrome of motor symptoms that includes slowed movement, stiffness and tremor

• A major source of disability

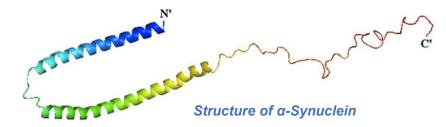

Parkinsonian disorders also include atypical forms such as Multiple system atrophy (MSA) and Progressive supranuclear palsy (PSP)

• "Atypical" as have prominent non-motor symptoms and a limited response to available treatments

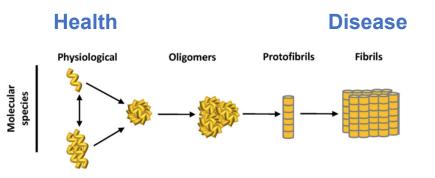
Current therapies treat the symptoms and NOT the underlying pathology of disease

PARKINSONIAN DISORDERS

Discovery and Development Portfolio in Neurodegenerative Diseases


bioMUSE Natural History StudyMultiple System AtrophyOngoing Partner:Enrolling up to 20 patientsATH434Multiple System AtrophyPhase 1 CompletePhase 2 expected to initiate Q1 2022ATH434Parkinson's DiseasePreclinical studies to optimize dosing Partner:Proof of concept study in Parkinson's diseaseDrug DiscoveryNeurodegenerative diseasesDiscovery ongoingGenerate new IND candidates	Program	Indication	Current Status	Future Plans
ATH434 Parkinson's Disease Preclinical studies to optimize dosing Proof of concept study in Parkinson's disease Partner: Pertner: Proof of concept study in Parkinson's disease	_	Multiple System Atrophy	Partner: VANDERBILT VUNIVERSITY	Enrolling up to 20 patients
dosing Partner: THE MICHAEL J. FOX FOUNDATION FOR PARKINSON'S RESEARCH	ATH434	Multiple System Atrophy	Phase 1 Complete	
Drug Discovery Neurodegenerative diseases Discovery ongoing Generate new IND candidates	ATH434	Parkinson's Disease	dosing	
	Drug Discovery	Neurodegenerative diseases	Discovery ongoing	Generate new IND candidates

8



Alterity's Approach to Treating Parkinsonian Disorders

Alpha-Synuclein: A Major Focus for Treating Parkinsonian Disorders

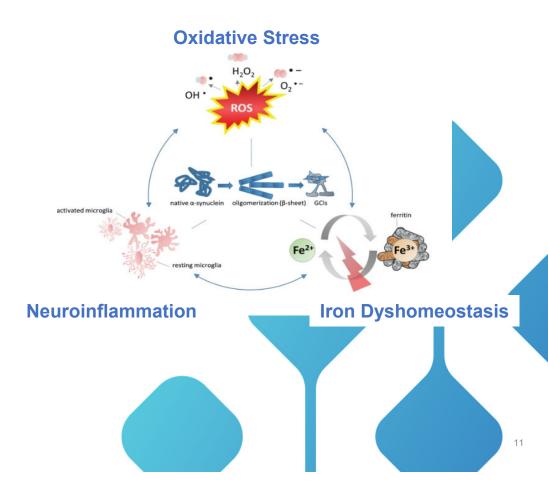
- α-Synuclein is an intracellular protein critical for normal function of neurons
- Native, unfolded protein enables neurotransmission
- α-Synuclein *aggregates* in Parkinson's Disease and Multiple System Atrophy

Our Strategy

- Inhibit oligomerization and aggregation of intracellular α-Synuclein
- Target misfolding α-synuclein by targeting excess iron increased in areas of pathology
- Address underlying pathology of disease

Sources: Ritchie et al, 2012; DOI:10.4236/health.2012.431175; Bengoa-Vergniory et al, 2017.DOI 10.1007/s00401-017-1755-1

Iron is Critical in the Pathogenesis of Parkinsonian Disorders


$\alpha\mbox{-Synuclein}$ and iron are strong contributors to the pathogenesis of MSA

Prominent pathology in Oligodendroglial cells (ODG)

- · ODGs are vital support cells for neurons
- · ODGs are cells with highest iron content in the CNS
- Demonstrate prominent α-synuclein pathology
- Hallmark of MSA: accumulation of α-synuclein within ODGs and neuron loss in multiple brain regions

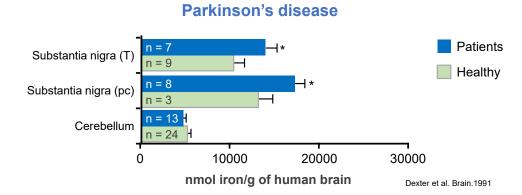
Adverse impact of increased labile iron

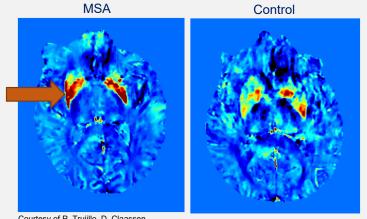
- Promotes α-synuclein aggregation
- Root cause of oxidative stress which damages intracellular structures and leads to neuroinflammation

Sources: Kaindlstorfer, J. Alzheimers Dis. 2018; Rodgers, J Neural Transm (Vienna) 2011

Our Approach: Dual Mode of Action to Address the Underlying Pathology of Disease

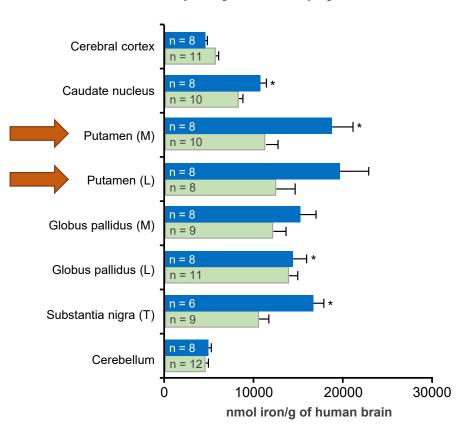
Bind and redistribute excess iron in the CNS of patients with Parkinsonian disorders


Reduce **α-synuclein** aggregation and oxidative stress


Rescue neurons in multiple brain regions to address underlying pathology

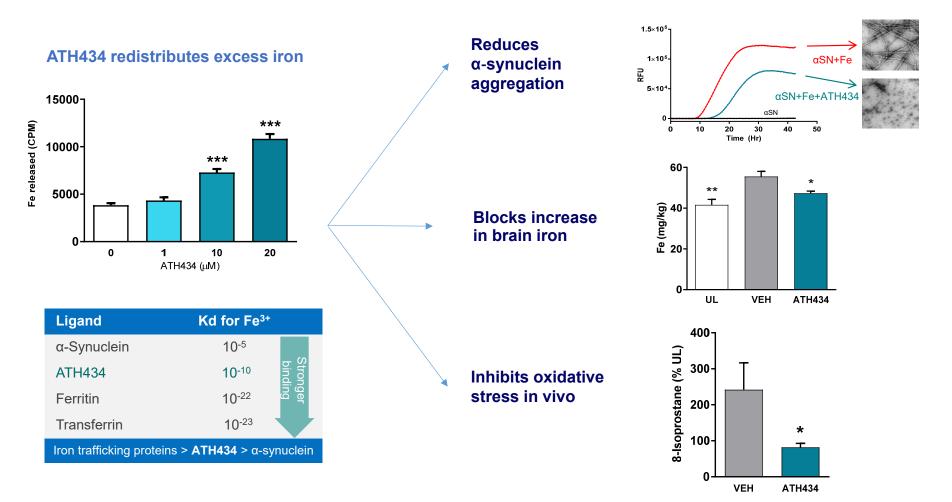
Targeting protein misfolding aggregation by binding and redistributing iron

Increased Brain Iron in Synuclein-related Diseases



Advanced Quantitative MRI to measure brain iron

Courtesy of P. Trujillo, D. Claassen

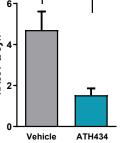


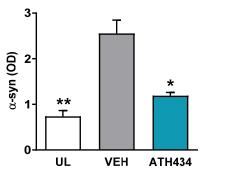
Multiple System Atrophy

Pharmacologic Actions of ATH434

Finkelstein, et al. Acta Neuropath Comm. 2017; Friedlich, et al. Mol Psychiatry. 2007; * P < 0.05, ** P < 0.01, *** P < 0.001

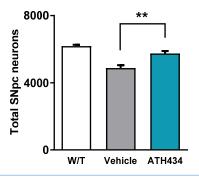
14

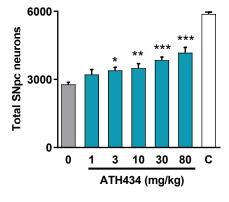

ATH434 Reduces Alpha-Synuclein-related Neuropathology in Parkinson's Disease Animal Models



MPTP

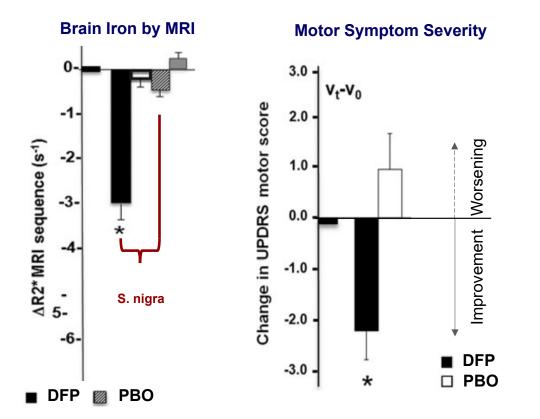
Mouse


↓ <mark>α-Synuclein</mark>



Finkelstein, et al. Acta Neuropath Comm. 2017 TG: transgenic, W/T: wild type, UL: unlesioned, C: control

Preserves Neurons

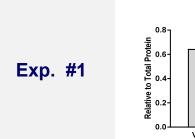


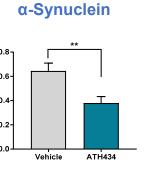
* P < 0.05, ** P < 0.01, *** P < 0.001

Clinical Strategy Supported by Proof of Concept with Iron Binding Drug in Parkinson's Disease

Reducing excess iron led to improved motor function

Deferiprone


- · Designed to treat iron overload
- Binds iron with very high affinity
- Boxed Warning for hematological toxicity


<u>Ligand</u>	Kd for Fe ³⁺	
α-Synuclein	10 ⁻⁵	
ATH434	10 ⁻¹⁰	bir
Ferritin	10 ⁻²²	Stronger binding
Transferrin	10 ⁻²³	
Deferiprone	10 ⁻³⁶	

Source: 6-month data from study of deferiprone in Parkinson's disease; Adapted from Devos. Antiox. and Redox Signaling. 2014

ATH434 Reduces α-Synuclein-related Neuropathology and Improves Motor Function in Animal Model of MSA

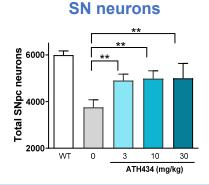
Iron in SN

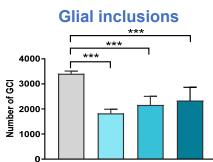
100-

80.

60·

20-

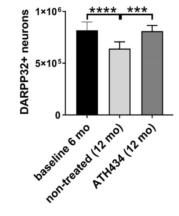

0.


non-treated

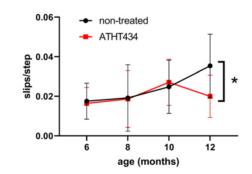
₹ 40

p=0.002

ATHASA


3

0



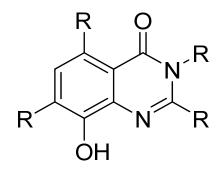
Motor Function

10

ATH434 (mg/kg)

30

* P < 0.05, ** P < 0.01, *** P < 0.001


Finkelstein, et al. Neurology 2019 Heras-Garvin, et al. Mov. Disorders 2021

ATH434: Clinical Development Program

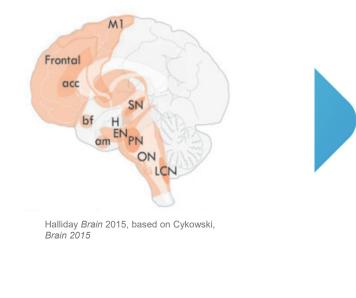
Alterity

ATH434: Potential Use Across Multiple Indications

ATH434

- **Small molecule** designed to cross the blood brain barrier and inhibit α-synuclein aggregation
- Potential to treat various Parkinsonian conditions
- Orphan Drug Designation granted by FDA and EU for the treatment of Multiple System Atrophy (MSA)
 - First indication: Treatment of MSA
- Development pathway endorsed by FDA and EMA
- Oral agent for ease of use

Multiple System Atrophy (MSA) is a Rare, Neurodegenerative Disorder

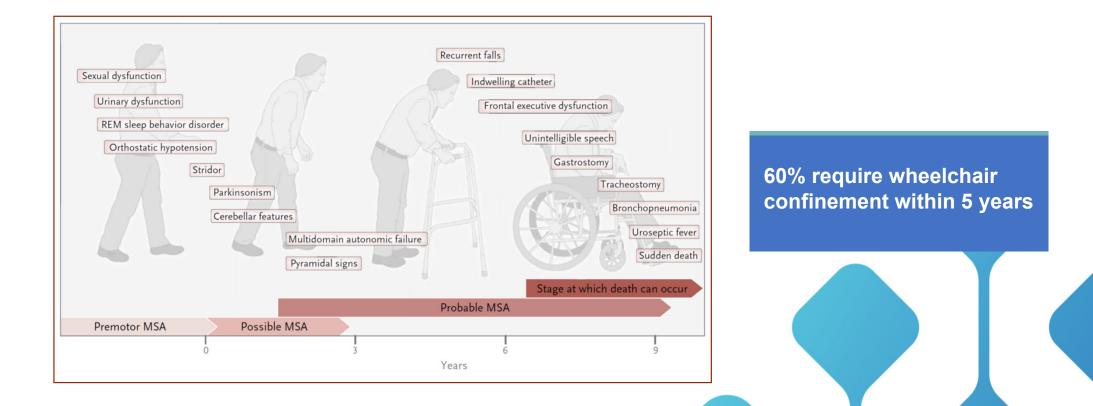

Characterized by Parkinsonism, autonomic instability and/or cerebellar impairments

Affects the body's involuntary (autonomic) functions, including blood pressure, bladder control and bowel function

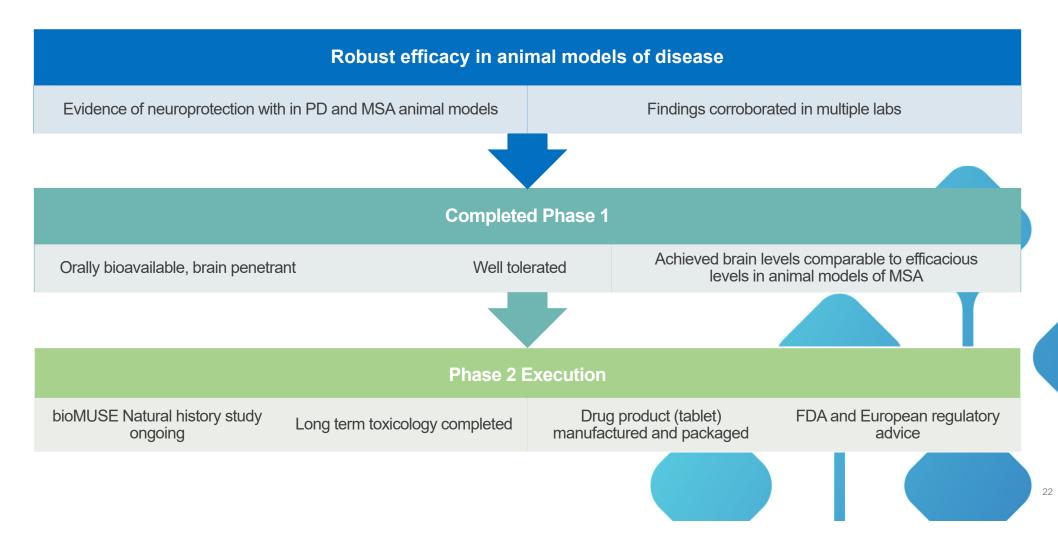
Current treatments only address symptoms of MSA

Alterity development strategy

- Target early stage MSA patients
- Explore the effect of ATH434 treatment on biomarkers and preliminary effects on clinical measures

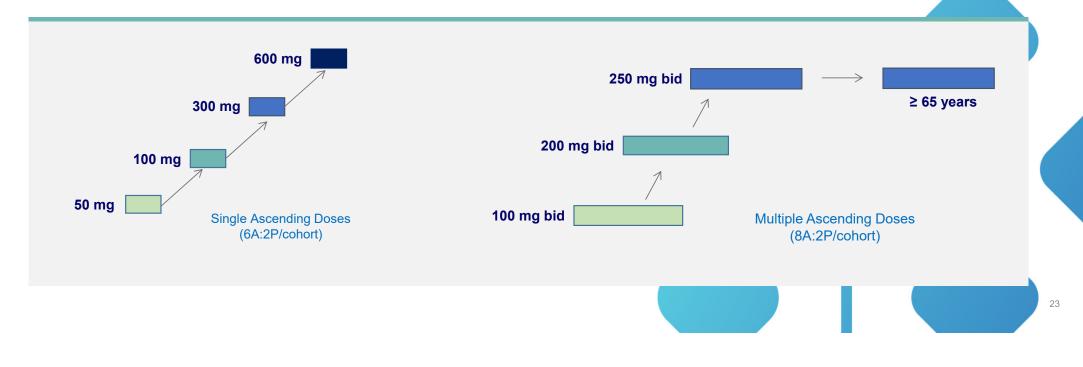


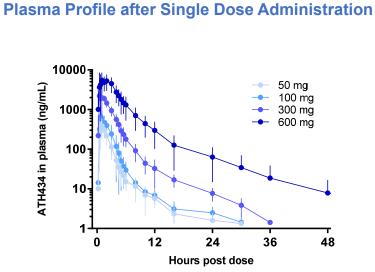
MSA is Highly Debilitating and Rapidly Progressive


21

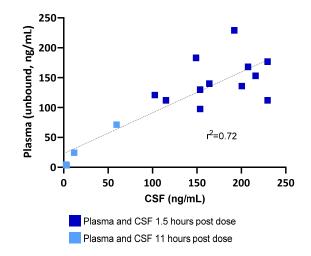
Fanciulli, Wenning. NEJM 2015;372:249-63.

Excellent Progress with Lead Drug Candidate ATH434




Phase 1 Clinical Trial Design

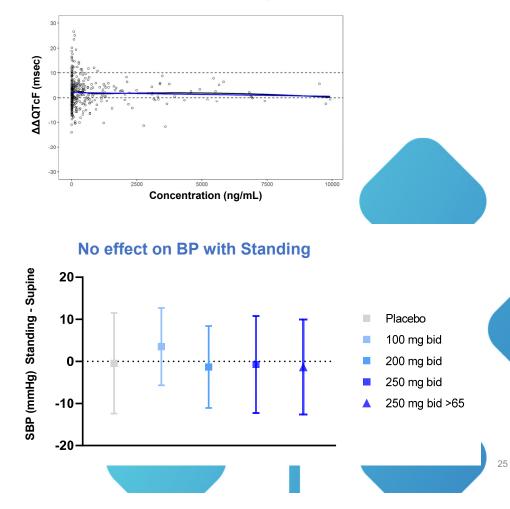
Design: Randomized, double blind, placebo-controlled, healthy adult and older adults (≥65 yo) Objectives: Assess safety and pharmacokinetics of ATH434 after single and multiple oral doses Plasma PK in each cohort, CSF sampled in two top multiple dose levels Safety: Adverse events, clinical labs, vital signs including orthostatics Continuous 12-lead digital ECGs for QT assessment



Phase 1 Achieved Target Drug Concentrations Associated with Efficacy in Animal Models

- Rapid absorption after oral administration
- Dose dependent pharmacokinetics
 - Single doses up to 600 mg
 - Multiple doses up to 250 mg bid
- Mean elimination half-life up to 9.3 hrs

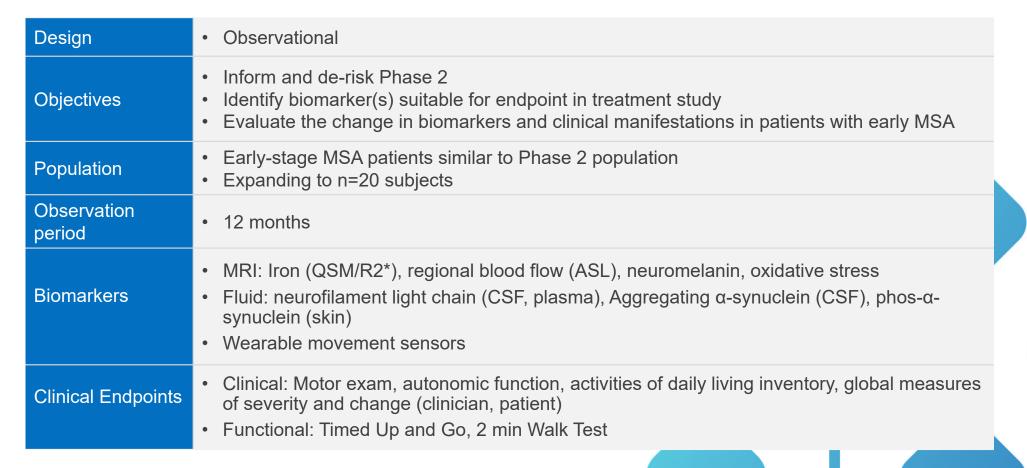
- CSF and free plasma levels strongly correlated and within 2-fold of each other
- CSF concentrations at steady state exceed those associated with efficacy in animal models of PD and MSA


Source: Stamler et al. Neurology 2019; 92 (15 Suppl.)

Favorable Safety Profile

- No clinically significant AEs
- All AEs were mild to moderate in severity
- Most common AEs reported in ATH434 subjects was headache
- Similar AE profile for adults and older adults (≥ 65 years)
- No significant findings observed in vital signs, clinical labs or 12-lead ECGs
- Favorable cardiovascular safety profile

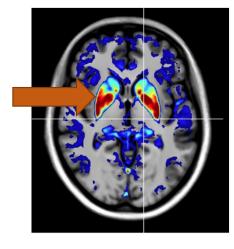
No evidence of QT prolongation



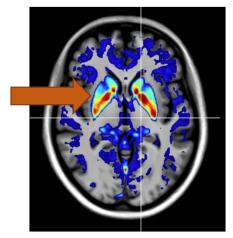
ATH434 Well-Tolerated with No Serious Adverse Events

Single Doses	Placebo (N=8)	50 mg (N=6)	100 mg (N=6)	300 mg (N=6)	600 mg (N=6)
Patients with ≥ 1 AE	3 (38%)	0	0	1 (17%)	1 (17%)
Patients with AEs leading to Withdrawal	0	0	0	0	0
Patients with Serious AEs	0	0	0	0	0
Multiple Doses	Placebo	100 mg BID	200 mg BID	250 mg BID	250 mg BID
	(N=8)	(N=8)	(N=8)	(N=8)	≥65 (N=8)
Patients with ≥ 1 AE	(N=8) 5 (63%)		_		
		(N=8)	(N=8)	(N=8)	(N=8)
Patients with ≥ 1 AE Patients with AEs leading to	5 (63%)	(N=8) 3 (38%)	(N=8) 6 (75%)	(N=8) 4 (50%)	(N=8) 5 (63%)

Biomarkers of Progression in Multiple System Atrophy (bioMUSE) Natural History Study

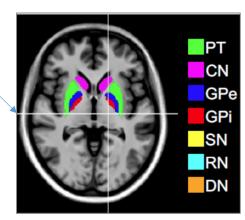


27


bioMUSE Interim Results

MSA (N=9)

PD (N=17)



Brain iron correlates with disease severity in MSA	Iron Content (GPe)	0.30 0.20 0.10 0.00	_	•)	y = 0.0017	x + 0.1298 0.6269
		0.00	0	20	40	60	80
				Unified M	1SA Ratir	ng Scale	

Iron Content by Region of Interest				
ROI	MSA vs PD†			
PT	0.03*			
GPe	0.04*			
GPi	0.18			
DN	0.11			

[†] P-value

Identification of Primary endpoint that encompasses all **3 regions**

Images registered with PD25 MNI template

Goal: Develop New MSA template to improve precision of iron quantification

ATH434 Phase 2 Clinical Trial Early-Stage MSA Patients

Design	Randomized, double-blind, placebo controlled
Objectives	 Assess efficacy and safety of ATH434 in subjects with MSA Assess target engagement based on imaging and fluid biomarkers of disease severity Evaluate the pharmacokinetics of ATH434 in target population
Population	 Early-stage patients with clinical diagnosis of MSA who are ambulatory, not severely impaired, and do not have long standing motor symptoms
Sample Size	 N=60 at ~30 sites in Australia, New Zealand, Europe and the U.S.
Treatment	12-months treatmentThree groups: Two doses of ATH434 or placebo
Primary Endpoint	Change in iron content as measured by brain MRI
Secondary Endpoints	 Additional imaging biomarkers and fluid biomarkers (aggregating α-synuclein, NFL) Clinical measures of motor function, autonomic function, activities of daily living

Significant Commercial Opportunity in Treating Multiple System Atrophy

Substantial Unmet Need

Severely debilitating illnesses with no current treatments are ripe for new entrants targeting what may be the actual cause of the disease.

Strong Intent to Prescribe

Motivated by efficacy of treating the underlying disease and not just the symptoms, clinicians intend to offer ATH434 to most of their patients with MSA.

Unique MOA

Inhibition of protein aggregation is a novel mechanism of action that may prove to impact more than motor symptoms. Ease of Use

Twice daily oral administration of ATH434 preferred by physicians

Alterity: Poised for Progress

- Targeting Orphan disease with no approved treatments
- Development team with proven track record and multiple FDA approvals
- ✓ Lead drug candidate ATH434 Progressing to Phase 2
 - Completed Phase 1 demonstrating well-tolerated safety profile and delivery of drug to site of action
 - Recent publications validating mechanism of action targeting α-synuclein
- Drug discovery team generating patentable compounds as next generation therapies
- ✓ Strong balance sheet with \$41.3M AUD as of 30 Sept 21

- ✓ 1H 2021: Commence Phase 2 Feasibility Study
- ✓ Q3 2021: Present bioMUSE Natural History biomarker data
- ✓ Q4 2021: Phase 2 Clinical Plan
- Q1 2022: Initiate Phase 2 Clinical Trial

