

Multiple Rock Chip Results Highlight Gold and Base Metal Potential in East Kimberley Project

13 December 2021

Highlights

- New rock chip results confirm and extend gold and base metal (Cu, Pb ± Ag & Zn) mineralisation at Landrigan, Appaloosa and Gypsy prospects in the Eastman Tenement (E80/4990), where scout drilling results are pending
- Gold assays up to 19.7 g/t and 10.9 g/t received from rock chip samples at Landrigan and Appaloosa prospects respectively
- New gold systems at Taylor River and Glidden identified in Wirana Tenement (E80/5182) from reconnaissance rock chip samples, with assays up to 3g/t Au
- Galena-rich vein system identified at Gossan 15 in the Wirana Tenement with assays as high as 55.7% Pb returned from rock chip samples
- Assay results for 473 shallow first pass reconnaissance aircore holes reviewed with anomalous base metal zones identified in the Eastman area
- Assay results from deeper RC 'scout' drilling are expected late December 2021

Peako Limited (ASX: PKO, Peako) is pleased to provide an update on assay results received to date from its 2021 exploration field season activities at its East Kimberley Project.

Results from rock chip sampling, completed late in the 2021 field season, have now been received with anomalous assay results returned from 7 of the 9 prospects sampled (see *Figure 1*). A total of 93 samples were collected from prospects in the Eastman (E80/4990) and Wirana (E80/5182) tenements (refer *Table 1*).

The majority of the polymetallic vein systems that were rock chip sampled exhibited anomalous results for both gold and copper, in association with variable lead, zinc and silver assays (*Figure 1*).

Eastman Tenement (E80/4990) Rock Chip Results

Rock chips from sampling at the **Landrigan**, **Appaloosa** and **Gypsy** prospects in the Eastman Tenement (E80/4990) all returned anomalous gold and base metal (Cu-Pb-Ag-Zn) results.

Landrigan Prospect

At Landrigan two rock chip samples were taken, with gold grades up to 19.68 g/t Au and multielement data identifying Au-Ag-Cu-Pb metal signatures. The two high-grade rock chip samples are located adjacent to Peako's 2021 scout drill holes for which results are pending. The rock chip sample results are:

- Sample P2104515: 19.7 g/t Au, 243 g/t Ag, 3.3% Cu & 10.5% Pb
- Sample P2104514: 2.0 g/t Au, 50 g/t Ag, 1.5% Cu & 1.6% Pb

Figure 1. Location of the prospects where anomalous rock chip results were returned

The Landrigan Prospect was originally identified by BHP as a base metal prospect with Peako recognising the prospect's gold potential from results of its 2019 RC drill program. That program intersected Cu-Au mineralisation with results that included **15m @ 1.04% Cu** from 184m in PLRC011 and **7m @ 1.1 g/t Au** from 133m in PLRC001.

The new rock chip results from Landrigan extend the strike length of known mineralisation previously intersected in historical drilling by a further 90m, bringing the total strike of the system to approximately 300m. The Au-bearing quartz vein systems at Landrigan strike broadly ENE to NE and dip S to SW. Peako's 2021 scout drilling was designed to test near-surface (<100m) extensions to these vein systems. The results are pending.

Appaloosa and Gypsy Prospects

At Appaloosa, new rock chip results have further defined a gold-bearing vein system that is continuous over a strike length of 180m but which is offset by a series of NE-trending chloritic shears. The gold-bearing veins are typically vuggy and gossanous and hosted by massive serpentinised gabbro. Veins are typically narrow (cm-scale), south dipping and often stacked in outcrop, being traced at surface for up to 50m (see *Figure 2*).

Figure 2. Appaloosa prospect showing location including new rock chip locations

The **Appaloosa** prospect rock chip samples have Au-Ag-Pb metal association, with minor Cu and Zn values. New high-grade results at Appaloosa include:

- Sample P2101018 10.95 g/t Au, 7.8 g/t Ag, 1.8% Pb, 0.12% Cu & 0.11% Zn
- Sample P2101016 5.66 g/t Au, 14.4 g/t Ag, 9.2% Pb, 0.13% Cu & 0.12% Zn
- Sample P2101019 4.27 g/t Au, 5.3 g/t Ag, 1.7% Pb, 0.07% Cu & 0.24% Zn
- Sample P2101017 3.04 g/t Au, 10.0 g/t Ag, 6.5% Pb, 0.08% Cu & 0.5% Zn
- Sample P2101020 1.73 g/t Au, 6.0 g/t Ag, 1.3% Pb, 0.09% Cu & 0.1% Zn
- Sample P2101021 1.1 g/t Au, 13.2 g/t Ag, 0.56% Pb, 8.7% Cu & 0.03% Zn

At **Gypsy** new rock chip samples continue to define quartz-copper vein-shear systems hosted within or at the margins of gabbro. The samples consisted of gossanous quartz veins with varying amounts of associated malachite, covellite and chalcopyrite. The veins are generally less than 1m in width and form a N to NE trending stacked array.

New significant copper-rich results from Gypsy include:

- Sample P2101015 3.7% Cu, 0.8 g/t Au, 5.7 g/t Ag & 0.04 % Pb
- Sample P2101013 3.2% Cu, 0.02 g/t Au, .07 g/t Ag &0.01% Pb
- Sample P2101011 1.4% Cu, 0.02 g/t Au, 5.1 g/t Ag &0.01% Pb

Scout drilling was completed at each of Appaloosa and Gypsy during the 2021 field season, the assay results from which are pending.

Wirana Tenement (E80/5180)

Reconnaissance ground checking and rock chip sampling was completed over several prospects in the Wirana tenement. This tenement has only undergone precursory work by previous explorers. Reconnaissance field work has identified encouraging Cu- (malachite) and Pb- (galena)-rich pyritic to gossanous veins and fault structures at a number of prospects which has been confirmed by gold and multi-element assay analysis.

New Gold Prospects

Rock chip samples from Taylor River, Taylor River East and Glidden in the north of the Wirana Tenement (E80/5182) identify the presence of multiple gold-rich systems with an Au-Ag-Cu metal signature.

Samples from the **Taylor River prospects** were taken from banded quartz veins which were varyingly gossanous with some samples containing malachite. Best results were returned from Taylor River, where a strong Au-Cu association is present with results **up to 3g/t Au and 11.1% Cu**. Samples at Taylor River were mostly taken from an ESE striking, south-west-dipping vein and shear zone that contained a 2 metre wide banded quartz-malachite vein that outcropped continuously over 70m.

Significant rock chip results at Taylor River and Taylor River East include:

- Sample P2104567 2.4 g/t Au, 11.1% Cu, 5 g/t Ag
- Sample P2104568 3.0 g/t Au, 10.4% Cu, 5 g/t Ag
- Sample P2104566 1.2 g/t Au, 1.8% Cu, 4 g/t Ag
- Sample P2104569 0.3 g/t Au, 1.3% Cu, 3 g/t Ag
- Sample P2104560 2.0% Cu, 3 g/t Ag

Figure 3 A) Malachite-bearing quartz carbonate veins up to 1.5m wide at Taylor River. B) Gossanous Cu-oxide bearing vein-fault near Glidden River

Rock chip results from the **Glidden Prospect** also identified the presence of Au systems on E80/5182. Glidden is comprised of ENE striking gossanous structures that occur within prominent outcropping granodiorite ridges striking over 850m in length. Mineralisation is generally represented by a low level Au-Ag-Cu metal signature. Best results include;

- Sample P2104578 0.36 g/t Au, 1 g/t Ag, 0.20% Cu
- Sample P2104572 0.04 g/t Au, 1 g/t Ag, 0.36% Cu

Base Metal Systems

Anomalous Pb results were returned from veins at the **Gossan 15 Prospect** in the south of the Wirana Tenement. Gossan 15 consists of multiple vein and shear systems located along the contacts between sediments and dolerite or aplite intrusions. One system at Gossan 15 is a multistage quartz-carbonate-galena vein that extends over 500m. Galena is developed as veinlets to sub-massive polycrystalline aggregates possibly associated with a late carbonate vein phase to the quartz vein. A total of 21 rock chips were sampled across the Gossan 15 prospect and assay results confirm a Pb-Zn \pm Ag metal signature.

Best rock chip results include:

- Sample P2104532 89 g/t Ag, 55.8% Pb, 1.1% Zn
- Sample P2104517 13 g/t Ag, 14.5% Pb, 3.0% Zn
- Sample P2104518 21 g/t Ag, 10.4% Pb, 1.4% Zn
- Sample P2104531 3 g/t Ag, 2.5% Pb, 1.2% Zn

Figure 4. Gossan 15 Prospect of quartz-carbonate vein and shear zone and close-up of quartz-carbonate vein containing patches of polycrystalline galena.

Aircore Geochemistry Assays

An aircore geochemistry program completed early in Peako's 2021 field season incorporated a 473 hole program for a total of 3,017 metres across seven target areas defined from surface geochemistry, geology, geophysics and satellite imagery (refer *Figure 5* and *Table 2*). Assay results have defined two anomalous base metal corridors at Eastman East and Eastman No.2.

Figure 5 Aircore Geochemical Sampling Program Locations

At Eastman East aircore assays define an anomalous NW-trending corridor approximately 400m in strike and 50-100m wide associated with a dacite geological contact. The Eastman East anomaly has a Pb-Zn \pm Cu signature with Pb up to 0.51% and Zn up to 0.36%.

At Eastman No.2 aircore assay results defined low level Au and base metal anomalism along corridors correlating to ENE and NW structures respectively. The narrow anomalies reflect narrow vein systems with restricted geochemical dispersion with a mineralised vein defined by a single sample having 0.5 g/t Au and low level Zn (<800 ppm) and Pb (<750ppm).

At this stage, results from aircore at Eastman East and Eastman No.2 do have not sufficient scale to warrant additional work.

First pass aircore across reconnaissance lines through conceptual northern target areas at Eastman Yard-9, Wedge, Yellowstone and Stein Creek returned low level base metal values likely related to lithology variations and no further follow up is warranted at this stage.

Aircore geochemistry across the Blackadder and Brumby targets within the Lamboo Ultramafic Belt was aimed at defining continuations of known PGE and Au-bearing ultramafic rocks below flood-plain cover sequences where traditional soil geochemistry was largely ineffective. Unfortunately, aircore sampling of these ultramafic belt targets was unable to penetrate a thick calcrete layer, and therefore also largely ineffective.

Lamboo Ultramafic Belt Potential

The Lamboo Ultramafic Belt is a layered mafic to ultramafic intrusive complex that has demonstrated prospectivity for PGE, base metals, and gold mineralisation. Previous explorers on the Eastman tenement focused on discontinuous chromite seams within the ultramafic belt. However, significant success has been experienced in the region by an explorer targeting the more continuous basal pyroxenite unit of the Lamboo Ultramafic Belt. Compiled historical data highlights significant PGE, Cu, Ni and Au anomalism across the ultramafic belt on the Eastman tenement.

Historical PGE results from the Lamboo Ultramafic Belt in Peako's E80/4990 include (refer **Tables 3 and 4**):

- 18m @ 1.39 g/t Pt+Pd+Au in ERC075
- 9m @ 0.64 g/t Pt+Pd+Au in ERC068
- 5m @ 0.96 g/t Pt+Pd+Au in ERC076

Given the new interpretation, the historical data will be reviewed in early 2022 with the aim of planning follow-up drill programs for the 2022 field season.

'Scout' Drilling Results Pending

Peako completed a scout' drilling program which comprised 30 holes for approximately 1,249 metres across six targets (refer *Figure 6*). The program was designed to leverage the opportunity presented by the multi-purpose nature of the rig secured for the aircore program. The rig was reconfigured for shallow RC drilling to expedite early-stage drill testing of 'hard rock' targets developed from a combination of geological mapping, rock chip assay results and Peako's library of historical drill and geochemistry data. While predominantly testing gold-bearing vein systems, all targets were affiliated with polymetallic sulphide halo zones with potential for copper, lead, silver and zinc.

Samples were submitted to the Intertek Genalysis laboratory in Perth in September and assay results are expected to be received in late December 2021.

Figure 6 Scout drilling locations

References

Further details relating to the information provided in this release can be found in the following Peako ASX announcements:

12 August 2021	Scout RC Drilling Program Commenced
21 July 2021	East Kimberley Exploration Update
25 May 2021	East Kimberley Drilling Program Commences
5 May 2021	Reconnaissance Field Work Discovers Extensive Base and Precious Metal- rich Quartz Vein Systems

Competent Person Declaration

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Dr Paul Kitto who is a member of the Australian Institute of Geoscientists. Dr Kitto is Technical Director of and a consultant to Peako Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Kitto consents to the inclusion in this report of the matters based on information provided by him and in the form and context in which it appears.

For more information

Rae Clark Director, Peako Limited | +61 3 8610 4723 | info@peako.com.au

Appendix A

Table 1 Rock Chip Sample Results

Prospect	SampleID	Lith	MGA	MGA	Au	Ag	Cu	Pb	Zn
			East	North	g/t	g/t	ppm	ppm	ppm
Gypsy	P2101011	QV	247816	7930559	0.02	5.1	13760	74	35
Gypsy	P2101012	QV	247825	7930558	0.02	1.9	5800	31	39
Gypsy	P2101013	QV	247845	7930554	0.02	3.7	32290	93	28
Gypsy	P2101014	QV	247845	7930554	0.02	0.7	2780	12	14
Gypsy	P2101015	QV	247850	7930580	0.77	5.7	37280	401	134
Appaloosa	P2101016	GOS	249751	7931269	5.66	14.4	1345	92900	1270
Appaloosa	P2101017	GOS	249760	7931272	3.04	10	827	65100	4860
Appaloosa	P2101018	GOS	249763	7931276	10.95	7.8	1230	18450	1125
Appaloosa	P2101019	GOS	249767	7931281	4.27	5.3	699	17550	2480
Appaloosa	P2101020	GOS	249774	7931285	1.73	6	914	12950	1025
Appaloosa	P2101021	GOS	249740	7931267	1.1	13.2	87520	5610	294
Appaloosa	P2101022	GOS	249737	7931267	0.05	1.9	634	105	128
Eastman No-2	P2104501	QV	242594	7928399	0.012	1	205	248	24
Eastman No-2	P2104502	QV	242594	7928402	0.015	7	385	765	54
Eastman No-2	P2104503	IRON	242594	7928403	0.002	4	241	338	27
Eastman No-2	P2104504	QVBX	242594	7928405	0.019	3	454	584	45
Eastman No-2	P2104505	QVBX	242603	7928443	0.002	1	53	297	49
Eastman No-2	P2104506	QVBX	242603	7928446	0.002	1	63	335	54
Eastman No-2	P2104509	IRON	242602	7928466	0.007	1	125	33	52
Eastman No-2	P2104510	FRHY	242602	7928471	0.002	1	76	43	50
Eastman No-2	P2104511	GOS	242603	7928474	0.005	1	245	108	266
Daves Gossan	P2104512	FRHY	244342	7929694	0.002	1	714	130	260
Daves Gossan	P2104513	FRHY	244185	7929786	0.002	1	259	38	645
Landrigan	P2104514	FRHY	238866	7929996	2.001	50	15942	16390	298
Landrigan	P2104515	FRHY	238871	7929995	19.68	243	33212	105227	1322
Gossan 15	P2104516	QV	239920	7939185	0.071	4	469	21406	13865
Gossan 15	P2104517	QV	239923	7939185	0.056	13	284	144820	29590
Gossan 15	P2104518	QV	239941	7939216	0.029	21	1003	104165	14242
Gossan 15	P2104519	QV	239979	7939264	0.005	1	92	2529	37104
Gossan 15	P2104520	UMAF	240344	7939872	0.01	1	270	3408	919
Gossan 15	P2104521	GOS	240380	7939897	0.002	1	268	575	303
Gossan 15	P2104522	GOS	240406	7939992	0.021	1	1578	194	844
Gossan 16	P2104523	GOS	240577	7940147	0.002	1	132	1138	3490
Gossan 15	P2104524	QV	239887	7939223	0.02	1	193	846	167
Gossan 15	P2104525	GOS	239892	7939221	0.002	1	117	419	142
Gossan 15	P2104526	GOS	239893	7939217	0.002	4	214	170	67
Gossan 15	P2104527	GOS	239893	7939216	0.002	1	312	129	85
Gossan 15	P2104528	GNEISS	239902	7939211	0.002	1	121	62	30
Gossan 15	P2104529	QV	239906	7939216	0.002	1	224	36	64
Gossan 15	P2104530	GOS	239906	7939209	0.005	1	110	42	132
Gossan 15	P2104531	QV	239891	7939154	0.006	3	267	25091	11898

Prospect	SampleID	Lith	MGA	MGA	Au	Ag	Cu	Pb	Zn
			East	North	g/t	g/t	ppm	ppm	ppm
Gossan 15	P2104532	QV	239851	7939124	0.006	89	307	557784	11260
Gossan 15	P2104533	QV	238134	7938971	0.002	1	246	2175	95
Gossan 15	P2104534	GOS	237881	7939026	0.002	1	36	1145	372
Gossan 15	P2104535	GOS	237900	7939031	0.002	4	164	13633	259
Gossan 15	P2104536	QV	238304	7939550	0.002	2	49	190	13
Gossan 15	P2104537	GOS	238284	7939516	0.007	7	69	155	19
Gossan 2-3	P2104538	QV	238257	7939482	0.002	3	221	348	12
Gossan 15	P2104539	QV	238886	7940119	0.002	1	526	103	69
Gossan 2-3	P2104540	QV	239046	7941869	0.007	1	18	223	13
Gossan 2-3	P2104541	CHERT	239038	7941703	0.006	1	65	241	140
Gossan 2-3	P2104542	QV	239245	7941361	0.002	1	92	74	18
Gossan 2-3	P2104543	QV	239252	7941370	0.002	1	235	57	23
Gossan 2-3	P2104544	GOS	239444	7941362	0.002	1	90	100	130
Gossan 2-3	P2104545	GOS	239446	7941358	0.006	1	240	201	389
Gossan 2-3	P2104546	GOS	239471	7941400	0.002	1	167	49	108
Gossan 2-3	P2104547	QV	239481	7941404	0.002	1	230	44	326
Gossan 2-3	P2104548	QV	239492	7941367	0.002	1	215	40	376
Gossan 2-3	P2104549	QV	239483	7941355	0.009	1	164	40	67
Gossan 2-3	P2104550	GOS	239491	7941274	0.002	1	172	31	73
Gossan 2-3	P2104551	GOS	239496	7941249	0.005	1	105	41	42
Lilyhole	P2104552	SHEAR	241730	7945651	0.002	1	7	1	33
Taylor River East	P2104553	GOS	243035	7954230	0.167	1	290	490	44
Taylor River East	P2104554	GOS	243039	7954231	0.463	5	178	360	14
Taylor River East	P2104555	GOS	243124	7954366	0.085	1	13	157	7
Taylor River East	P2104556	GOS	243187	7954401	0.047	1	512	1179	28509
Taylor River East	P2104557	GOS	243190	7954404	0.11	1	629	1343	4660
Taylor River East	P2104558	QV	243815	7954329	0.041	1	192	82	39
Taylor River East	P2104559	QV	243812	7954338	0.006	3	8621	25	348
Taylor River East	P2104560	QV	243775	7954275	0.006	3	20197	17	75
Taylor River East	P2104561	QV	243751	7954255	0.041	3	3804	65	45
Taylor River East	P2104562	QV	243667	7954156	0.011	3	394	2643	5713
Taylor River East	P2104563	SHEAR	243667	7954157	0.008	1	366	645	6072
Taylor River East	P2104564	SHEAR	243665	7954154	0.053	1	95	1757	6475
Taylor River	P2104565	SPEL	238295	7953342	0.002	1	20	28	80
Taylor River	P2104566	QV	238163	7953182	1.172	4	184900	16	54
Taylor River	P2104567	QV	238150	7953189	2.408	5	111000	63	45
Taylor River	P2104568	QV	238142	7953183	3.02	5	104100	39	14
Taylor River	P2104569	GOS	238121	7953208	0.266	3	129700	32	10
Glidden	P2104570	QV	247190	7951011	0.021	1	1752	39	14
Glidden	P2104571	QV	247253	7952466	0.052	1	2290	52	104
Glidden	P2104572	GOS	247238	7952464	0.041	1	3615	50	61
Glidden	P2104573	GOS	247191	7952446	0.128	4	572	222	122
Glidden	P2104574	GOS	247145	7952426	0.019	1	1296	614	93
Glidden	P2104575	GOS	247112	7952421	0.01	3	678	40	8
Glidden	P2104576	QV	247076	7952403	0.094	2	646	142	28

Prospect	SampleID	Lith	MGA	MGA	Au	Ag	Cu	Pb	Zn
			East	North	g/t	g/t	ppm	ppm	ppm
Glidden	P2104577	QV	247310	7952691	0.383	1	539	19	7
Glidden	P2104578	QV	247365	7952712	0.358	1	2158	20	32
Me No Savvy	P2104579	QV	250558	7955889	1.052	7	531	517	76
Daves Gossan	P2104581	QV	244145	7929773	0.012	1	370	121	1196
Daves Gossan	P2104582	QV	244145	7929771	0.013	1	240	128	1546
Daves Gossan	P2104583	GOS	244742	7929954	0.011	6	3919	1176	4531
Daves Gossan	P2104584	GOS	244849	7929847	0.002	1	4902	73	3154

Table 2 Aircore Assays

HoleID	Prospect	ect Depth (m)		Au	Ag	Cr	Cu	Ni	Pb	Zn
		From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PAC0003	Eastman	0	4	0.001	-0.05	5	21	7	37.7	238
PAC0003	Eastman	4	8	-0.001	-0.05	2	26	6	46.8	226
PAC0005	Eastman	2	3.5	-0.001	0.4	7	18	4	33	230
PAC0006	Eastman	0	3	0.003	0.19	17	15	6	11	181
PAC0006	Eastman	3	6	0.002	0.21	32	13	5	4.9	80
PAC0007	Eastman	0	2	0.007	0.37	34	126	11	156.4	616
PAC0017	Eastman	1	3	-0.001	-0.05	104	13	55	7.3	220
PAC0019	Eastman	4	7	-0.001	-0.05	122	12	92	24.6	239
PAC0024	Eastman	2	5	0.001	-0.05	7	25	9	7.1	348
PAC0024	Eastman	6	8	0.001	-0.05	8	20	6	20.5	328
PAC0027	Eastman	1	3	0.002	0.13	9	132	5	100.5	537
PAC0027	Eastman	4	6	-0.001	0.17	5	154	2	47.3	1416
PAC0028	Eastman	16	17	0.003	0.11	6	530	6	20.5	96
PAC0031	Eastman	9	12	-0.001	-0.05	2	8	5	2.9	226
PAC0031	Eastman	12	13	-0.001	-0.05	3	13	5	2.3	625
PAC0032	Eastman	0	1	0.001	0.23	5	9	2	5.4	46
PAC0033	Eastman	2	4	-0.001	-0.05	12	8	10	10.9	289
PAC0034	Eastman	0	4	-0.001	-0.05	6	38	12	19.7	599
PAC0034	Eastman	4	8	0.001	0.06	1	14	13	4.9	503
PAC0034	Eastman	8	9	0.002	-0.05	4	248	16	63.8	832
PAC0035	Eastman	1	5	-0.001	0.07	5	8	4	2	249
PAC0037	Eastman	2	4	-0.001	0.17	7	117	9	110.2	1231
PAC0037	Eastman	5	7	0.001	0.13	32	419	29	1242.3	3681
PAC0037	Eastman	7	8	-0.001	0.12	6	629	7	1071.9	1756
PAC0037	Eastman	8	8.5	-0.001	0.13	3	21	1	30.1	221
PAC0039	Eastman	3	6	-0.001	-0.05	3	10	7	4.6	220
PAC0039	Eastman	6	8	-0.001	-0.05	3	31	5	5	368
PAC0043	Eastman	9	12	-0.001	0.07	2	17	2	58.8	658
PAC0043	Eastman	12	16	-0.001	-0.05	1	43	1	20.2	365
PAC0043	Eastman	16	18	-0.001	0.08	4	49	2	22.2	383
PAC0043	Eastman	18	19	-0.001	0.1	3	19	-1	17.2	146
PAC0046	Eastman	1	2	0.001	1.92	10	43	4	111.3	553

HoleID	Prospect	Dept	h (m)	Au	Ag	Cr	Cu	Ni	Pb	Zn
		From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PAC0046	Eastman	2	2.6	-0.001	1.86	5	43	2	91.3	553
PAC0047	Eastman	1	3.5	0.001	0.08	2	9	3	6.4	329
PAC0051	Eastman	10	12	-0.001	0.06	39	56	31	7.2	246
PAC0053	Eastman	2	5	-0.001	-0.05	-1	18	2	96.2	432
PAC0053	Eastman	5	9	-0.001	-0.05	-1	53	1	110.6	452
PAC0059	Eastman	1	5	-0.001	-0.05	70	32	76	9.6	585
PAC0059	Eastman	5	8	-0.001	-0.05	72	26	77	4.4	480
PAC0059	Eastman	8	9	0.001	0.05	43	39	62	2.8	860
PAC0059	Eastman	9	13	-0.001	-0.05	74	3	96	2.3	280
PAC0059	Eastman	13	17	-0.001	-0.05	67	22	95	18.6	439
PAC0059	Eastman	17	18	-0.001	-0.05	101	7	116	2.7	250
PAC0060	Eastman	1	5	0.002	0.22	4	556	5	5803	2502
PAC0061	Eastman	1	3	-0.001	0.08	7	27	4	200.3	180
PAC0066	Eastman No 2	4	7	-0.001	-0.05	2	26	3	8.7	226
PAC0071	Eastman No 2	2	6	-0.001	-0.05	4	9	3	1.6	209
PAC0072	Eastman No 2	1	3	-0.001	-0.05	23	34	23	3.4	283
PAC0073	Eastman No 2	1	5.3	-0.001	-0.05	3	24	3	9.1	285
PAC0077	Eastman No 2	1	5	0.003	0.1	3	40	11	54.9	385
PAC0080	Eastman No 2	2	4.5	-0.001	0.06	14	47	15	4.1	252
PAC0081	Eastman No 2	6	9	-0.001	-0.05	4	9	13	6.6	219
PAC0081	Eastman No 2	9	9.3	-0.001	-0.05	7	12	11	5.8	285
PAC0086	Eastman No 2	5	6.5	-0.001	-0.05	4	19	2	3.6	222
PAC0087	Eastman No 2	3	4	-0.001	-0.05	12	7	7	11.2	407
PAC0095	Eastman No 2	2	3	0.002	-0.05	206	80	244	32.1	168
PAC0097	Eastman No 2	2	2.5	-0.001	-0.05	151	5	233	12.3	138
PAC0102	Eastman No 2	1	5	0.002	-0.05	95	43	43	7.7	225
PAC0102	Eastman No 2	5	6	-0.001	-0.05	111	10	78	10.2	208
PAC0103	Eastman No 2	1	5	0.001	-0.05	137	38	201	3.1	161
PAC0104	Eastman No 2	2	6	0.001	-0.05	219	3	235	3.4	119
PAC0105	Eastman No 2	2	6	-0.001	-0.05	229	2	282	2.3	130
PAC0105	Eastman No 2	6	7.5	0.001	-0.05	241	2	168	1.6	228
PAC0107	Eastman No 2	4	5	-0.001	-0.05	97	5	232	10.8	104
PAC0109	Eastman No 2	2	5.6	-0.001	-0.05	281	32	345	1.8	157
PAC0111	Eastman No 2	1	3	-0.001	-0.05	203	4	216	2.7	109
PAC0112	Eastman No 2	2	3	-0.001	0.58	229	495	368	53.3	241
PAC0114	Eastman No 2	1	2	-0.001	-0.05	185	15	236	9.4	97
PAC0121	Eastman No 2	1	4	-0.001	-0.05	21	6	21	7.2	222
PAC0123	Eastman No 2	1	2	0.005	0.25	30	232	44	69	509
PAC0123	Eastman No 2	2	3	0.004	0.41	22	796	30	150.4	422
PAC0123	Eastman No 2	3	4.5	0.005	0.5	18	673	22	164.9	577
PAC0124	Eastman No 2	1	2	0.003	0.3	14	172	19	311.8	408
PAC0124	Eastman No 2	2	3	0.007	0.22	10	103	12	106.2	310
PAC0124	Eastman No 2	3	4	0.007	0.16	4	38	5	37.9	332
PAC0124	Eastman No 2	4	5	0.117	-2	-10	193	23	73	647

HoleID	Prospect	Dept	า (m)	Au	Ag	Cr	Cu	Ni	Pb	Zn
		From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PAC0124	Eastman No 2	5	5.5	0.486	-2	-10	242	18	102	820
PAC0125	Eastman No 2	1	2.6	-0.001	0.11	6	107	6	205.7	164
PAC0126	Eastman No 2	2	5	0.005	3.04	35	742	20	365.2	556
PAC0126	Eastman No 2	5	5.7	0.005	1.14	17	380	14	205.6	428
PAC0127	Eastman No 2	7	11	-0.001	-0.05	261	2	275	2.1	150
PAC0127	Eastman No 2	11	12	-0.001	-0.05	298	4	318	4.6	183
PAC0129	Eastman No 2	1	2	-0.001	-0.05	138	6	223	2.4	73
PAC0130	Eastman No 2	1	3	-0.001	-0.05	147	5	241	4.8	117
PAC0132	Eastman No 2	2	3	-0.001	-0.05	161	16	237	1.2	70
PAC0133	Eastman No 2	1	2.5	-0.001	-0.05	126	4	262	7.5	79
PAC0134	Eastman No 2	2	5	-0.001	-0.05	169	28	214	2.1	96
PAC0138	Eastman No 2	4	4.2	-0.001	0.17	19	17	25	3.5	92
PAC0140	Eastman No 2	2	2.6	-0.001	0.1	123	51	133	81	202
PAC0152	Eastman No 2	1	1.5	-0.001	0.28	18	262	6	58.6	72
PAC0153	Eastman No 2	1	3.1	0.001	0.19	8	42	4	39.2	37
PAC0156	Eastman No 2	1	1.3	-0.001	0.18	7	478	4	47.4	66
PAC0158	Eastman No 2	1	3	-0.001	0.79	5	60	17	510.6	242
PAC0159	Eastman No 2	1	5	-0.001	0.1	6	18	6	7.9	69
PAC0162	Eastman No 2	1	3	-0.001	-0.05	191	46	232	13.3	154
PAC0164	Eastman No 2	1	1.5	0.002	0.12	158	8	166	20.1	94
PAC0166	Eastman No 2	3	4.1	-0.001	0.09	89	5	118	4.8	242
PAC0176	Eastman No 2	2	3	0.003	0.21	13	784	4	39.5	66
PAC0182	Eastman No 2	2	6	0.002	1.12	5	30	4	198.8	216
PAC0183	Eastman No 2	2	5	-0.001	-0.05	156	9	227	3	119
PAC0183	Eastman No 2	5	7	-0.001	-0.05	189	47	254	2.2	149
PAC0185	Eastman No 2	1	3	-0.001	0.15	18	10	25	4.5	61
PAC0199	Eastman No 2	1	2.5	-0.001	-0.05	89	21	78	9.6	432
PAC0203	Eastman No 2	1	1.5	0.001	0.39	6	381	4	123.6	68
PAC0206	Eastman No 2	1	2	-0.001	0.45	6	18	5	10	35
PAC0209	Eastman No 2	1	1.5	-0.001	-0.05	5	70	13	68.3	355
PAC0213	Eastman No 2	1	4	-0.001	0.07	233	30	249	226.7	655
PAC0213	Eastman No 2	4	7.3	-0.001	0.08	249	6	201	186.5	642
PAC0215	Eastman No 2	1	3	0.002	0.15	139	16	161	4.1	63
PAC0216	Eastman No 2	1	3	-0.001	-0.05	368	37	232	1.5	92
PAC0225	Eastman No 2	2	3	-0.001	0.15	1	190	35	7.8	102
PAC0228	Eastman No 2	1	5	0.004	0.14	14	29	11	76.4	143
PAC0229	Eastman No 2	1	3	-0.001	0.1	7	46	5	332.8	178
PAC0238	Eastman No 2	6	10	0.002	0.1	32	26	20	1.7	110
PAC0239	Eastman No 2	0	2	0.002	0.19	24	73	23	71.7	87
PAC0242	Eastman No 2	1	3	0.002	0.21	15	91	11	57.4	112
PAC0247	Eastman No 2	1	2.5	0.001	-0.05	519	11	205	12.3	137
PAC0248	Eastman No 2	5	9	-0.001	-0.05	317	7	138	5.3	256
PAC0248	Eastman No 2	9	13	-0.001	-0.05	350	12	165	6.1	268
PAC0248	Eastman No 2	13	17	-0.001	-0.05	337	31	155	5.4	243

HoleID	Prospect	Dept	n (m)	Au	Ag	Cr	Cu	Ni	Pb	Zn
		From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PAC0248	Eastman No 2	17	21	-0.001	-0.05	338	192	174	4.9	279
PAC0250	Eastman No 2	1	4	-0.001	0.12	16	7	16	1.5	77
PAC0252	Eastman No 2	2	6	-0.001	-0.05	63	135	62	18.3	213
PAC0255	Eastman No 2	1	2.5	-0.001	0.13	9	219	6	757	776
PAC0258	Eastman No 2	1	5	-0.001	-0.05	27	30	24	47.2	233
PAC0260	Eastman No 2	1	2	-0.001	-0.05	194	10	80	10.1	243
PAC0265	Eastman No 2	5	9	-0.001	-0.05	235	2	229	8	163
PAC0271	Blackadder	2	3	0.011	-0.05	1360	214	642	1.5	30
PAC0274	Blackadder	13	15	0.001	-0.05	20	31	235	4.7	141
PAC0279	Blackadder	13	16	-0.001	-0.05	1748	143	415	3	62
PAC0284	Blackadder	10	13.5	-0.001	0.23	23	14	46	2	193
PAC0286	Blackadder	2	5	0.003	-0.05	3257	346	687	5.5	31
PAC0286	Blackadder	5	8	0.01	-0.05	1701	311	530	3.6	34
PAC0305	Blackadder	2	5	0.002	-0.05	843	386	404	1.3	32
PAC0305	Blackadder	5	7.5	0.003	-0.05	1126	418	434	0.6	44
PAC0306	Blackadder	2	6	0.006	-0.05	543	96	225	1.3	92
PAC0310	Blackadder	10	11.5	-0.001	-0.05	3	2	1	1.6	296
PAC0313	Blackadder	1	5	0.01	-0.05	513	166	277	1.1	64
PAC0313	Blackadder	5	9	0.019	-0.05	1408	189	518	1.9	99
PAC0328	Brumby	5	9	-0.001	-0.05	12	172	15	1.1	200
PAC0329	Brumby	0	4	0.002	-0.05	785	93	269	3.7	106
PAC0329	Brumby	4	6	-0.001	-0.05	1189	37	385	3.6	115
PAC0331	Brumby	5	6	0.174	0.12	141	356	164	4.1	106
PAC0362	Brumby	1	5	0.001	-0.05	839	24	320	0.8	83
PAC0365	Brumby	1	3	0.039	-0.05	540	1915	633	4.6	25
PAC0366	Brumby	1	3	0.005	-0.05	925	613	909	3.1	31
PAC0367	Brumby	1	2	0.009	-0.05	704	421	861	0.7	39
PAC0371	Yellowstone	5	7.5	-0.001	0.16	14	17	14	3.2	83
PAC0372	Yellowstone	5	9	0.002	0.1	20	26	21	23.8	202
PAC0372	Yellowstone	9	12	0.002	0.11	30	28	31	21.5	149
PAC0372	Yellowstone	12	16	-0.001	0.12	29	32	28	28.2	125
PAC0372	Yellowstone	16	20	0.01	0.12	34	29	40	21.2	133
PAC0372	Yellowstone	24	28	0.002	0.07	35	36	37	70.5	238
PAC0373	Yellowstone	5	9	0.003	0.09	35	39	56	64.4	217
PAC0373	Yellowstone	9	12	0.005	0.11	38	46	55	21.4	216
PAC0374	Yellowstone	17	18	0.003	0.27	17	48	15	131.1	165
PAC0375	Yellowstone	21	25	0.002	0.1	21	28	20	37.9	72
PAC0375	Yellowstone	25	29	0.005	0.1	21	33	20	18.9	52
PAC0376	Yellowstone	1	2.5	0.002	0.13	80	51	34	104.3	55
PAC0381	Yellowstone	1	5	0.003	0.06	217	30	101	55.4	327
PAC0381	Yellowstone	5	9	0.002	-0.05	273	76	94	152.7	412
PAC0381	Yellowstone	9	13	0.002	-0.05	284	94	94	298.1	628
PAC0381	Yellowstone	13	15	-0.001	-0.05	308	51	100	73	334
PAC0390	Yellowstone	21	25	0.004	0.14	15	235	23	7.5	99

HoleID	Prospect	Dept	n (m)	Au	Ag	Cr	Cu	Ni	Pb	Zn
		From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PAC0390	Yellowstone	33	34.5	0.005	-0.05	142	47	88	26.2	310
PAC0397	Stein Creek	5	9	0.002	0.13	5	64	4	18.7	111
PAC0397	Stein Creek	9	11.5	0.005	0.23	13	265	16	65.7	449
PAC0401	Stein Creek	1	5	0.002	-0.05	78	42	281	8.4	122
PAC0401	Stein Creek	5	9	0.001	-0.05	86	64	320	3.6	116
PAC0401	Stein Creek	9	12	0.005	-0.05	86	58	352	1.9	128
PAC0415	Wedge	5	9	0.005	0.13	16	32	25	41	106
PAC0415	Wedge	9	13	0.014	0.18	9	55	20	131.7	124
PAC0415	Wedge	13	15	0.027	0.17	10	54	29	483.5	266
PAC0417	Wedge	1	5	-0.001	0.15	10	13	12	27.8	44
PAC0417	Wedge	5	9	-0.001	0.15	12	27	18	28.2	93
PAC0417	Wedge	9	13	0.001	0.15	92	20	32	87.4	165
PAC0417	Wedge	13	16.5	0.016	0.24	8	18	15	115.6	135
PAC0418	Wedge	1	5	-0.001	0.16	9	17	15	116.9	67
PAC0418	Wedge	5	9	0.002	0.25	12	25	19	145	120
PAC0418	Wedge	9	13	0.003	0.15	13	25	22	104.5	168
PAC0418	Wedge	13	17	0.003	0.12	11	17	19	89.7	129
PAC0418	Wedge	25	29	0.002	0.1	9	8	13	66.6	93
PAC0418	Wedge	29	32.5	0.007	0.1	13	10	12	77	79
PAC0419	Wedge	1	5	-0.001	0.18	13	23	19	41.3	84
PAC0419	Wedge	5	9	-0.001	0.12	10	20	20	51.1	95
PAC0422	Wedge	1	5	0.002	0.22	21	36	30	21.2	129
PAC0422	Wedge	5	9	0.002	0.13	19	29	35	33.5	163
PAC0422	Wedge	9	13	0.007	0.17	19	32	33	384.8	427
PAC0422	Wedge	13	17	0.005	0.17	5	20	26	123.3	300
PAC0422	Wedge	17	21	0.016	0.3	11	24	18	265.3	287
PAC0422	Wedge	21	24	0.003	0.15	16	12	18	171.3	148
PAC0423	Wedge	1	5	0.003	0.16	9	19	18	12.3	81
PAC0423	Wedge	5	9	-0.001	0.12	8	12	15	14.8	61
PAC0423	Wedge	9	13	0.002	0.11	11	15	16	20.4	74
PAC0424	Wedge	21	25	0.023	0.13	11	21	28	7.7	118
PAC0430	East Yard 9	1	5	-0.001	0.06	21	39	38	86.8	229
PAC0430	East Yard 9	9	13	0.002	0.12	20	47	31	123.2	267
PAC0442	East Yard 9	1	3	0.002	-0.05	188	19	96	8.2	203
PAC0444	East Yard 9	1	2	0.001	0.1	17	26	23	25.4	99
PAC0450	East Yard 9	5	5.5	0.01	-0.05	21	23	96	8.6	212
PAC0453	East Yard 9	1	2.5	0.002	0.06	15	17	16	285.6	64
PAC0454	East Yard 9	1	2.5	0.002	0.16	8	15	15	129.6	120
PAC0472	East Yard 9	1	3	0.028	0.1	21	33	33	14.8	73

• Shown results are >0.1 ppm Au, >0.1 ppm Ag, >200 ppm Ni, >200ppm Cu, > 100ppm Pb, > 200ppm Zn

• For collar details see announcement 21 July 2021: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02397489-3A571075?access_token=83ff96335c2d45a094df02a206a39ff4

Table 3 Magma Metals historical RC drill collars

The following drillhole information has been sourced from open file WAMEX data. All drillholes have been converted to GDA2020/MGA Zone 52).

HoleID	Year	Company	DrillType	MGA East	MGA North	RL	Dip	Azim UTM	EOH Depth	WAMEX Ref.
ERC068			RC	248390	7930093	500	-60	323.14	108	
ERC075	2008	Magma Metals	RC	247090	7929393	500	-75	318.14	54	A80967
ERC076		Metals	RC	237912	7926625	500	-60	33.13	150	

Table 4 Magma Metals historical RC drill assays

HoleID	Dept	h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
ERC068	0	1	0.003	-0.5	8	30	11	30	0.007	0.001	0.011
ERC068	1	2	0.003	-0.5	5	21	-2	34	0.006	0.001	0.010
ERC068	2	3	0.002	-0.5	12	17	4	37	0.005	0.001	0.008
ERC068	3	4	0.001	-0.5	20	15	7	35	0.006	0.001	0.008
ERC068	4	5	-0.001	-0.5	30	19	7	36	0.005	0.001	0.005
ERC068	5	6	0.001	-0.5	24	15	6	33	0.005	0.001	0.007
ERC068	6	7	0.001	-0.5	8	16	5	30	0.004	0.001	0.006
ERC068	7	8	0.001	-0.5	16	14	7	28	0.002	-0.001	0.002
ERC068	8	9	-0.001	-0.5	12	16	29	53	0.003	-0.001	0.001
ERC068	9	10	-0.001	-0.5	4	10	10	36	0.002	-0.001	0.000
ERC068	10	11	0.001	-0.5	3	10	5	38	0.002	-0.001	0.002
ERC068	11	12	-0.001	-0.5	8	14	10	52	0.003	-0.001	0.001
ERC068	12	13	-0.001	-0.5	6	17	6	45	0.002	-0.001	0.000
ERC068	13	14	0.001	-0.5	5	13	4	38	0.002	-0.001	0.002
ERC068	14	15	0.001	-0.5	3	12	4	29	0.002	-0.001	0.002
ERC068	15	16	-0.001	-0.5	3	122	4	35	0.004	0.001	0.004
ERC068	16	17	-0.001	-0.5	3	19	8	50	0.003	0.001	0.003
ERC068	17	18	-0.001	-0.5	2	18	9	54	0.002	-0.001	0.000
ERC068	18	19	0.001	-0.5	4	13	6	46	0.002	-0.001	0.002
ERC068	19	20	-0.001	-0.5	3	10	8	35	0.001	-0.001	-0.001
ERC068	20	21	-0.001	-0.5	3	16	7	35	0.001	-0.001	-0.001
ERC068	21	22	-0.001	-0.5	1	19	4	34	0.002	0.001	0.002
ERC068	22	23	-0.001	-0.5	5	19	6	34	0.001	-0.001	-0.001
ERC068	23	24	-0.001	-0.5	2	26	-2	34	0.001	-0.001	-0.001
ERC068	24	25	-0.001	-0.5	6	34	6	42	0.002	-0.001	0.000
ERC068	25	26	-0.001	-0.5	9	24	10	46	0.002	0.001	0.002
ERC068	26	27	-0.001	-0.5	8	27	8	43	0.002	0.001	0.002
ERC068	27	28	-0.001	-0.5	6	16	5	41	0.002	-0.001	0.000
ERC068	28	29	-0.001	-0.5	1	29	6	36	0.001	0.001	0.001
ERC068	29	30	-0.001	-0.5	3	24	10	38	0.001	-0.001	-0.001
ERC068	30	31	-0.001	-0.5	5	21	7	33	0.001	-0.001	-0.001
ERC068	31	32	-0.001	-0.5	2	18	10	21	0.001	0.001	0.001

HoleID	Dept	h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
ERC068	32	33	0.003	-0.5	121	63	10	57	0.008	0.009	0.020
ERC068	33	34	0.001	-0.5	53	79	10	69	0.010	0.011	0.022
ERC068	34	35	-0.001	-0.5	8	27	3	50	0.004	0.002	0.005
ERC068	35	36	-0.001	-0.5	9	20	14	48	0.002	0.001	0.002
ERC068	36	37	-0.001	-0.5	5	13	6	36	0.001	-0.001	-0.001
ERC068	37	38	0.001	-0.5	12	21	13	44	0.002	0.002	0.005
ERC068	38	39	0.014	-0.5	62	27	60	159	0.002	0.001	0.017
ERC068	39	40	0.001	-0.5	49	76	30	273	0.012	0.013	0.026
ERC068	40	41	0.006	-0.5	21	78	14	225	0.008	0.010	0.024
ERC068	41	42	0.003	-0.5	6	96	12	189	0.011	0.013	0.027
ERC068	42	43	0.002	-0.5	30	98	9	112	0.019	0.014	0.035
ERC068	43	44	0.009	-0.5	343	455	4	103	0.090	0.035	0.134
ERC068	44	45	0.005	-0.5	175	622	2	109	0.045	0.020	0.070
ERC068	45	46	0.002	-0.5	45	241	2	79	0.019	0.008	0.029
ERC068	46	47	-0.001	-0.5	16	61	3	46	0.006	0.004	0.009
ERC068	47	48	0.002	-0.5	29	89	-2	107	0.012	0.012	0.026
ERC068	48	49	0.003	-0.5	64	79	2	96	0.012	0.012	0.027
ERC068	49	50	0.003	-0.5	83	56	-2	78	0.010	0.011	0.024
ERC068	50	51	0.001	-0.5	7	52	5	68	0.008	0.007	0.016
ERC068	51	52	-0.001	-0.5	6	45	2	53	0.006	0.005	0.010
ERC068	52	53	0.002	-0.5	16	253	7	77	0.019	0.009	0.030
ERC068	53	54	0.006	-0.5	67	762	8	123	0.043	0.034	0.083
ERC068	54	55	0.006	-0.5	114	195	3	168	0.020	0.010	0.036
ERC068	55	56	0.001	-0.5	16	195	6	86	0.013	0.015	0.029
ERC068	56	57	-0.001	-0.5	16	74	2	70	0.002	0.011	0.012
ERC068	57	58	0.001	-0.5	36	126	15	90	0.015	0.011	0.027
ERC068	58	59	0.005	-0.5	200	294	11	93	0.015	0.015	0.035
ERC068	59	60	0.008	-0.5	271	337	14	116	0.041	0.038	0.087
ERC068	60	61	0.009	-0.5	306	383	31	105	0.035	0.039	0.083
ERC068	61	62	0.007	-0.5	332	440	13	122	0.056	0.041	0.104
ERC068	62	63	0.01	-0.5	345	386	8	146	0.061	0.049	0.120
ERC068	63	64	0.004	-0.5	197	310	9	215	0.052	0.034	0.090
ERC068	64	65	0.004	-0.5	138	197	7	235	0.099	0.040	0.143
ERC068	65	66	0.006	-0.5	141	237	12	91	0.025	0.016	0.047
ERC068	66	67	0.01	-0.5	362	503	17	104	0.040	0.023	0.073
ERC068	67	68	0.02	-0.5	349	579	5	120	0.098	0.041	0.159
ERC068	68	69	0.03	-0.5	583	879	105	332	0.059	0.027	0.116
ERC068	69	70	0.022	-0.5	184	866	111	1050	0.103	0.058	0.183
ERC068	70	71	0.025	-0.5	387	770	30	169	0.051	0.030	0.106
ERC068	71	72	0.016	-0.5	352	768	19	167	0.051	0.037	0.104
ERC068	72	73	0.003	-0.5	58	306	16	120	0.021	0.011	0.035
ERC068	73	74	0.003	-0.5	80	215	4	104	0.025	0.012	0.040
ERC068	74	75	0.005	-0.5	113	257	9	190	0.046	0.024	0.075
ERC068	75	76	0.002	-0.5	98	261	3	138	0.061	0.034	0.097
ERC068	76	77	0.01	-0.5	148	331	5	196	0.097	0.041	0.148

HoleID	Dept	:h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)								
ERC068	77	78	0.003	-0.5	109	245	10	191	0.027	0.012	0.042
ERC068	78	79	0.002	-0.5	222	210	4	87	0.048	0.026	0.076
ERC068	79	80	0.006	0.7	257	289	5	112	0.094	0.039	0.139
ERC068	80	81	0.008	-0.5	260	439	2	75	0.055	0.036	0.099
ERC068	81	82	0.013	-0.5	343	631	5	83	0.062	0.035	0.110
ERC068	82	83	0.016	-0.5	332	784	-2	80	0.052	0.041	0.109
ERC068	83	84	0.02	-0.5	604	871	3	95	0.063	0.040	0.123
ERC068	84	85	0.022	-0.5	711	1320	3	100	0.088	0.064	0.174
ERC068	85	86	0.019	-0.5	402	1440	2	105	0.091	0.039	0.149
ERC068	86	87	0.268	-0.5	359	1640	-2	94	0.128	0.040	0.436
ERC068	87	88	0.014	-0.5	388	1320	5	66	0.320	0.089	0.423
ERC068	88	89	0.012	-0.5	378	1240	4	142	0.212	0.104	0.328
ERC068	89	90	0.012	-0.5	424	1180	4	71	0.124	0.055	0.191
ERC068	90	91	0.011	-0.5	539	960	-2	48	0.102	0.051	0.164
ERC068	91	92	0.009	-0.5	170	1180	5	56	0.083	0.044	0.136
ERC068	92	93	0.013	-0.5	241	1250	2	72	0.216	0.091	0.320
ERC068	93	94	0.017	-0.5	244	1180	4	82	0.325	0.134	0.476
ERC068	94	95	0.03	-0.5	909	1990	5	74	0.484	0.218	0.732
ERC068	95	96	0.065	1.1	2790	3040	9	154	0.808	0.315	1.188
ERC068	96	97	0.027	-0.5	1160	2000	6	109	0.384	0.119	0.530
ERC068	97	98	0.031	0.5	1385	2660	7	245	0.376	0.108	0.515
ERC068	98	99	0.01	-0.5	446	1220	3	144	0.186	0.055	0.251
ERC068	99	100	0.026	-0.5	828	1120	-2	128	0.170	0.060	0.256
ERC068	100	101	0.014	-0.5	218	1510	6	107	0.450	0.186	0.650
ERC068	101	102	0.065	0.7	1640	2640	7	117	0.794	0.266	1.125
ERC068	102	103	0.041	-0.5	1145	1690	6	111	0.379	0.099	0.519
ERC068	103	104	0.036	0.5	1070	2100	49	257	0.325	0.110	0.471
ERC068	104	105	0.013	-0.5	402	1360	16	193	0.218	0.073	0.304
ERC068	105	106	0.006	-0.5	155	1030	23	95	0.128	0.036	0.170
ERC068	106	107	0.004	-0.5	160	1130	10	66	0.097	0.039	0.140
ERC068	107	108	0.013	-0.5	170	1200	11	54	0.065	0.022	0.100
ERC075	0	1	0.007	1.3	188	1100	8	133	0.086	0.032	0.125
ERC075	1	2	0.011	-0.5	165	1060	6	122	0.078	0.038	0.127
ERC075	2	3	0.011	0.7	147	1070	3	133	0.095	0.042	0.148
ERC075	3	4	0.01	-0.5	156	977	9	85	0.097	0.034	0.141
ERC075	4	5	0.011	-0.5	283	1010	21	106	0.076	0.032	0.119
ERC075	5	6	0.011	-0.5	136	1250	5	81	0.064	0.040	0.115
ERC075	6	7	0.007	-0.5	159	1130	20	146	0.071	0.036	0.114
ERC075	7	8	0.012	-0.5	146	1110	12	115	0.086	0.045	0.143
ERC075	8	9	0.008	1.3	164	1200	18	199	0.079	0.036	0.123
ERC075	9	10	0.008	-0.5	97	1150	12	130	0.102	0.051	0.161
ERC075	10	11	0.01	0.5	119	1090	39	259	0.106	0.045	0.161
ERC075	11	12	0.012	0.6	144	1010	37	266	0.100	0.034	0.146
ERC075	12	13	0.009	-0.5	112	1130	17	154	0.089	0.037	0.135
ERC075	13	14	0.008	-0.5	54	1110	33	198	0.106	0.045	0.159

HoleID	Dept	h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)	(ppm)							
ERC075	14	15	0.017	0.8	137	1150	51	281	0.124	0.050	0.191
ERC075	15	16	0.015	-0.5	255	415	19	94	0.030	0.013	0.058
ERC075	16	17	0.028	-0.5	263	307	45	91	0.033	0.014	0.075
ERC075	17	18	0.009	0.8	105	922	21	272	0.139	0.056	0.204
ERC075	18	19	0.012	0.7	190	900	5	243	0.142	0.054	0.208
ERC075	19	20	0.01	0.9	193	1050	3	118	0.113	0.042	0.165
ERC075	20	21	0.012	-0.5	154	1210	16	131	0.152	0.061	0.225
ERC075	21	22	0.014	-0.5	116	1160	20	171	0.222	0.101	0.337
ERC075	22	23	0.01	-0.5	123	1150	39	217	0.245	0.097	0.352
ERC075	23	24	0.013	-0.5	146	1120	30	203	0.208	0.073	0.294
ERC075	24	25	0.012	0.5	168	1110	16	166	0.181	0.070	0.263
ERC075	25	26	0.011	-0.5	145	1110	11	126	0.174	0.072	0.257
ERC075	26	27	0.024	-0.5	206	1040	43	174	0.313	0.092	0.429
ERC075	27	28	0.015	0.8	214	1110	64	201	0.247	0.081	0.343
ERC075	28	29	0.014	-0.5	145	1090	15	149	0.209	0.076	0.299
ERC075	29	30	0.017	-0.5	139	1060	23	177	0.197	0.064	0.278
ERC075	30	31	0.023	0.6	149	1050	91	232	0.256	0.079	0.358
ERC075	31	32	0.027	-0.5	149	1250	24	145	0.234	0.097	0.358
ERC075	32	33	0.063	0.6	376	1360	20	283	0.939	0.429	1.431
ERC075	33	34	0.057	0.7	318	1330	27	232	0.702	0.333	1.092
ERC075	34	35	0.042	-0.5	319	1350	13	152	0.579	0.245	0.866
ERC075	35	36	0.052	-0.5	381	1380	13	170	0.790	0.331	1.173
ERC075	36	37	0.052	0.7	723	1420	79	155	0.696	0.329	1.077
ERC075	37	38	0.076	-0.5	439	1520	45	167	0.673	0.304	1.053
ERC075	38	39	0.042	0.5	193	1250	53	121	0.178	0.077	0.297
ERC075	39	40	0.02	0.6	100	1240	53	111	0.138	0.058	0.216
ERC075	40	41	0.07	0.6	359	1520	36	323	1.180	0.500	1.750
ERC075	41	42	0.11	0.5	670	1710	26	265	1.310	0.560	1.980
ERC075	42	43	0.19	0.8	959	2000	150	295	1.390	0.720	2.300
ERC075	43	44	0.237	0.9	1540	2500	30	271	1.700	0.890	2.827
ERC075	44	45	0.17	0.5	1320	2240	45	247	1.590	0.770	2.530
ERC075	45	46	0.17	0.8	1290	2180	46	318	1.420	0.770	2.360
ERC075	46	47	0.257	0.6	1690	2480	18	300	1.200	0.690	2.147
ERC075	47	48	0.095	-0.5	476	1560	8	119	0.418	0.253	0.766
ERC075	48	49	0.036	-0.5	297	1400	4	78	0.281	0.178	0.495
ERC075	49	50	0.603	-0.5	1510	2410	3	147	0.379	0.239	1.221
ERC075	50	51	0.146	0.5	1610	2800	17	165	0.185	0.114	0.445
ERC075	51	52	0.1	-0.5	1170	2020	39	172	0.075	0.041	0.216
ERC075	52	53	0.099	-0.5	1400	2250	43	209	0.051	0.025	0.175
ERC075	53	54	0.154	0.7	2030	2450	6	143	0.111	0.080	0.345
ERC076	0	1	0.001	-0.5	8	25	19	40	0.002	0.001	0.004
ERC076	1	2	0.001	-0.5	4	31	24	36	0.002	0.001	0.004
ERC076	2	3	0.001	-0.5	6	24	34	75	0.001	0.001	0.003
ERC076	3	4	0.001	-0.5	39	65	40	145	0.001	-0.001	0.001
ERC076	4	5	0.002	-0.5	67	62	16	113	0.001	-0.001	0.002

HoleID	Dept	h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)	(ppm)							
ERC076	5	6	0.002	-0.5	86	50	9	127	0.001	-0.001	0.002
ERC076	6	7	0.001	-0.5	7	21	10	30	0.001	0.001	0.003
ERC076	7	8	0.001	-0.5	9	21	10	34	0.001	-0.001	0.001
ERC076	8	9	0.001	-0.5	57	48	9	131	0.001	-0.001	0.001
ERC076	9	10	0.001	-0.5	43	16	8	107	0.002	-0.001	0.002
ERC076	10	11	0.002	-0.5	71	7	8	109	0.002	-0.001	0.003
ERC076	11	12	0.001	-0.5	21	30	12	71	0.001	-0.001	0.001
ERC076	12	13	0.001	-0.5	51	53	13	129	0.001	-0.001	0.001
ERC076	13	14	0.005	-0.5	19	43	60	91	0.053	0.012	0.070
ERC076	14	15	0.001	-0.5	9	43	19	41	0.001	0.001	0.003
ERC076	15	16	0.002	-0.5	27	93	12	105	0.001	-0.001	0.002
ERC076	16	17	0.001	-0.5	99	66	6	123	0.001	-0.001	0.001
ERC076	17	18	0.001	-0.5	14	39	12	36	0.003	0.001	0.005
ERC076	18	19	0.004	-0.5	55	243	12	312	0.046	0.018	0.068
ERC076	19	20	0.007	-0.5	294	723	3	240	0.149	0.047	0.203
ERC076	20	21	0.009	-0.5	490	709	8	136	0.110	0.036	0.155
ERC076	21	22	0.011	-0.5	383	776	5	138	0.123	0.035	0.169
ERC076	22	23	0.01	-0.5	301	835	3	121	0.129	0.037	0.176
ERC076	23	24	0.008	-0.5	284	855	-2	123	0.146	0.041	0.195
ERC076	24	25	0.005	-0.5	223	860	-2	146	0.103	0.027	0.135
ERC076	25	26	0.001	-0.5	299	277	8	143	0.002	-0.001	0.002
ERC076	26	27	0.001	-0.5	66	11	7	122	0.002	0.001	0.004
ERC076	27	28	0.002	-0.5	91	10	8	116	0.002	0.001	0.005
ERC076	28	29	0.005	-0.5	134	293	7	142	0.081	0.030	0.116
ERC076	29	30	0.004	0.5	114	751	-2	211	0.141	0.046	0.191
ERC076	30	31	0.005	-0.5	198	210	5	129	0.033	0.009	0.047
ERC076	31	32	0.002	-0.5	58	267	5	105	0.008	0.005	0.015
ERC076	32	33	0.006	-0.5	72	59	6	86	0.002	-0.001	0.007
ERC076	33	34	0.002	-0.5	112	190	6	90	0.005	0.007	0.014
ERC076	34	35	0.005	-0.5	154	551	2	77	0.009	0.018	0.032
ERC076	35	36	0.002	-0.5	150	196	3	108	0.004	0.004	0.010
ERC076	36	37	0.002	-0.5	59	141	5	95	0.003	0.004	0.009
ERC076	37	38	0.002	-0.5	39	210	4	167	0.007	0.007	0.016
ERC076	38	39	0.003	-0.5	104	156	7	231	0.006	0.002	0.011
ERC076	39	40	0.001	-0.5	101	117	8	247	0.004	0.002	0.007
ERC076	40	41	0.002	-0.5	127	50	9	165	0.001	-0.001	0.002
ERC076	41	42	0.003	-0.5	95	55	7	180	0.001	-0.001	0.003
ERC076	42	43	0.018	-0.5	96	37	8	147	0.001	-0.001	0.018
ERC076	43	44	0.003	-0.5	165	12	8	149	0.001	-0.001	0.003
ERC076	44	45	0.002	-0.5	87	12	9	198	0.001	-0.001	0.002
ERC076	45	46	0.001	-0.5	51	13	12	189	0.001	-0.001	0.001
ERC076	46	47	0.002	-0.5	183	43	13	134	0.001	-0.001	0.002
ERC076	47	48	0.001	-0.5	50	86	11	133	0.001	0.001	0.003
ERC076	48	49	0.001	-0.5	56	49	6	141	0.001	-0.001	0.001
ERC076	49	50	0.004	-0.5	114	16	8	172	0.001	0.001	0.006

HoleID	Dept	:h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)	(ppm)							
ERC076	50	51	0.004	0.5	97	16	9	182	0.001	-0.001	0.004
ERC076	51	52	0.01	-0.5	83	236	7	159	0.020	0.022	0.052
ERC076	52	53	0.007	-0.5	275	790	3	104	0.010	0.010	0.027
ERC076	53	54	0.005	-0.5	56	1320	-2	142	0.011	0.012	0.028
ERC076	54	55	0.002	-0.5	6	1380	-2	153	0.015	0.017	0.034
ERC076	55	56	0.002	-0.5	15	1270	-2	106	0.033	0.025	0.060
ERC076	56	57	0.002	-0.5	46	1410	-2	103	0.090	0.046	0.138
ERC076	57	58	0.008	-0.5	102	1320	-2	95	0.085	0.036	0.129
ERC076	58	59	0.01	-0.5	112	1250	-2	68	0.243	0.083	0.336
ERC076	59	60	0.006	-0.5	156	1250	-2	78	0.102	0.067	0.175
ERC076	60	61	0.003	-0.5	40	1250	-2	109	0.100	0.026	0.129
ERC076	61	62	0.003	-0.5	93	1040	2	125	0.154	0.025	0.182
ERC076	62	63	0.005	-0.5	239	921	-2	137	0.116	0.026	0.147
ERC076	63	64	0.01	-0.5	444	926	-2	161	0.126	0.043	0.179
ERC076	64	65	0.009	-0.5	357	915	-2	193	0.170	0.049	0.228
ERC076	65	66	0.006	-0.5	416	664	2	136	0.101	0.025	0.132
ERC076	66	67	0.01	-0.5	410	740	-2	148	0.151	0.044	0.205
ERC076	67	68	0.011	-0.5	372	739	6	154	0.130	0.047	0.188
ERC076	68	69	0.005	-0.5	188	732	30	387	0.174	0.057	0.236
ERC076	69	70	0.004	-0.5	285	454	2	293	0.077	0.031	0.112
ERC076	70	71	0.002	-0.5	135	234	8	83	0.026	0.009	0.037
ERC076	71	72	0.004	-0.5	173	393	4	194	0.063	0.017	0.084
ERC076	72	73	0.005	-0.5	259	644	-2	188	0.100	0.042	0.147
ERC076	73	74	0.007	-0.5	504	595	4	159	0.088	0.030	0.125
ERC076	74	75	0.003	-0.5	186	539	-2	90	0.040	0.016	0.059
ERC076	75	76	0.002	-0.5	89	255	4	52	0.009	0.009	0.020
ERC076	76	77	0.006	0.5	297	450	7	92	0.033	0.026	0.065
ERC076	77	78	0.002	-0.5	119	682	5	94	0.023	0.036	0.061
ERC076	78	79	0.001	-0.5	41	526	-2	92	0.016	0.022	0.039
ERC076	79	80	0.003	-0.5	104	137	7	92	0.002	0.004	0.009
ERC076	80	81	0.001	-0.5	37	357	14	252	0.021	0.011	0.033
ERC076	81	82	0.004	-0.5	63	898	5	329	0.115	0.074	0.193
ERC076	82	83	0.018	-0.5	547	1390	2	125	0.091	0.053	0.162
ERC076	83	84	0.008	-0.5	319	1690	-2	144	0.111	0.075	0.194
ERC076	84	85	0.012	-0.5	377	1600	3	158	0.154	0.124	0.290
ERC076	85	86	0.006	-0.5	234	1440	3	132	0.084	0.047	0.137
ERC076	86	87	0.009	-0.5	99	1430	-2	346	0.272	0.095	0.376
ERC076	87	88	0.017	-0.5	450	1230	4	170	0.137	0.055	0.209
ERC076	88	89	0.016	-0.5	398	1050	-2	95	0.029	0.014	0.059
ERC076	89	90	0.012	-0.5	302	915	-2	84	0.011	0.004	0.027
ERC076	90	91	0.008	-0.5	273	923	-2	92	0.007	0.004	0.019
ERC076	91	92	0.054	-0.5	1270	1060	-2	94	0.006	0.004	0.064
ERC076	92	93	0.024	-0.5	676	914	-2	70	0.003	0.002	0.029
ERC076	93	94	0.002	-0.5	49	804	9	84	0.003	0.003	0.008
ERC076	94	95	0.023	-0.5	507	835	5	76	0.005	0.002	0.030

HoleID	Dept	h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)								
ERC076	95	96	0.012	-0.5	451	944	-2	87	0.006	0.002	0.020
ERC076	96	97	0.014	-0.5	443	1180	-2	132	0.018	0.008	0.040
ERC076	97	98	0.011	-0.5	316	1200	-2	120	0.022	0.008	0.041
ERC076	98	99	0.01	-0.5	282	782	7	132	0.061	0.032	0.103
ERC076	99	100	0.007	-0.5	492	329	10	141	0.020	0.011	0.038
ERC076	100	101	0.007	-0.5	382	149	9	127	0.008	0.003	0.018
ERC076	101	102	0.005	-0.5	146	196	19	121	0.005	0.002	0.012
ERC076	102	103	0.002	-0.5	90	59	27	124	0.002	0.001	0.005
ERC076	103	104	0.002	-0.5	58	48	12	119	0.002	0.001	0.005
ERC076	104	105	0.011	-0.5	288	565	10	121	0.082	0.053	0.146
ERC076	105	106	0.008	-0.5	151	1260	-2	184	0.577	0.302	0.887
ERC076	106	107	-0.03	-0.5	96	1500	-2	166	1.010	0.481	1.461
ERC076	107	108	0.011	-0.5	126	1660	-2	131	0.938	0.485	1.434
ERC076	108	109	0.009	-0.5	194	1660	-2	97	0.261	0.177	0.447
ERC076	109	110	0.035	-0.5	719	1630	-2	114	0.342	0.193	0.570
ERC076	110	111	0.025	-0.5	383	2000	7	131	0.243	0.185	0.453
ERC076	111	112	0.037	-0.5	669	1350	-2	107	0.157	0.074	0.268
ERC076	112	113	0.016	-0.5	222	1340	-2	150	0.189	0.061	0.266
ERC076	113	114	0.016	-0.5	210	1530	5	142	0.152	0.067	0.235
ERC076	114	115	0.029	-0.5	514	1810	4	105	0.061	0.025	0.115
ERC076	115	116	0.036	-0.5	677	1710	5	97	0.037	0.012	0.085
ERC076	116	117	0.031	-0.5	621	1660	2	96	0.029	0.011	0.071
ERC076	117	118	0.024	-0.5	439	1470	-2	89	0.026	0.010	0.060
ERC076	118	119	0.024	-0.5	449	1170	-2	98	0.019	0.008	0.051
ERC076	119	120	0.021	-0.5	348	1360	2	87	0.021	0.008	0.050
ERC076	120	121	0.02	-0.5	485	1130	7	113	0.023	0.009	0.052
ERC076	121	122	0.011	-0.5	342	1440	3	118	0.017	0.008	0.036
ERC076	122	123	0.02	-0.5	451	1430	4	89	0.009	0.006	0.035
ERC076	123	124	0.019	-0.5	478	1240	4	82	0.008	0.004	0.031
ERC076	124	125	0.024	-0.5	555	1200	3	78	0.005	0.003	0.032
ERC076	125	126	0.025	-0.5	854	1200	3	88	0.003	0.001	0.029
ERC076	126	127	0.035	-0.5	1600	1130	9	113	0.007	0.004	0.046
ERC076	127	128	0.012	-0.5	420	1130	7	100	0.004	0.002	0.018
ERC076	128	129	0.018	-0.5	440	971	7	86	0.003	0.002	0.023
ERC076	129	130	0.01	-0.5	310	1100	7	74	0.003	0.002	0.015
ERC076	130	131	0.01	-0.5	293	1130	11	55	0.003	0.002	0.015
ERC076	131	132	0.005	-0.5	206	1240	17	59	0.004	0.003	0.012
ERC076	132	133	0.02	-0.5	437	924	13	78	0.008	0.006	0.034
ERC076	133	134	0.008	-0.5	177	902	10	114	0.007	0.007	0.022
ERC076	134	135	0.031	-0.5	860	1220	8	93	0.004	0.005	0.040
ERC076	135	136	0.026	-0.5	764	1220	20	109	0.004	0.006	0.036
ERC076	136	137	0.02	-0.5	522	1090	18	131	0.005	0.006	0.031
ERC076	137	138	0.022	-0.5	563	916	11	101	0.003	0.004	0.029
ERC076	138	139	0.017	-0.5	471	733	18	90	0.009	0.005	0.031
ERC076	139	140	0.007	-0.5	240	1290	25	90	0.013	0.013	0.033

HoleID	Dept	h	Au	Ag	Cu	Ni	Pb	Zn	Pd	Pt	Au+Pt+Pd
	From (m)	To (m)	(ppm)								
ERC076	140	141	0.017	-0.5	481	1210	42	88	0.008	0.007	0.032
ERC076	141	142	0.012	-0.5	445	831	21	102	0.004	0.003	0.019
ERC076	142	143	0.005	-0.5	201	288	36	82	0.003	0.002	0.010
ERC076	143	144	0.003	-0.5	127	311	23	90	0.003	0.002	0.008
ERC076	144	145	0.008	-0.5	291	1010	12	92	0.007	0.004	0.019
ERC076	145	146	0.009	-0.5	266	927	7	90	0.008	0.005	0.022
ERC076	146	147	0.015	-0.5	371	1110	8	105	0.017	0.010	0.042
ERC076	147	148	0.018	-0.5	379	1440	9	116	0.032	0.012	0.062
ERC076	148	149	0.011	-0.5	209	1420	22	167	0.138	0.067	0.216
ERC076	149	150	0.017	-0.5	435	1260	6	100	0.049	0.032	0.098

Appendix B: JORC Code (2012 Edition), Assessment and Reporting Criteria

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Explanation
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as	The sampling described in this report refers to rock chip sampling and aircore (AC) drilling carried out by Peako in 2021 and historical drilling by Magma Metals Limited.
	down hole gamma sondes, or	Rock chip sampling
	These examples should not be taken as limiting the broad meaning of sampling.	Rock chip samples are random (grab) samples comprised of fragments of rock outcrop (and veins in varying orientations), sampled with a hammer.
		Rock chip sampling was carried out as part of a geological mapping exercise in areas of geological interest. Sample size is nominally 0.5 to 1 kilogram.
		AC Drilling
		The AC samples are judged to be representative of the rock being drilled.
		The nature and quality of all sampling is carried out under QAQC procedures as per industry standards.
		Historical RC Drilling
		An RC drilling program was undertaken by Magma Metals Limited in 2008 . Results and information from this drilling has been sourced from open file reports available within the Western Australia Minerals Exploration database, specifically report with reference number A80967
	Include reference to measures	Rock chip sampling & AC Drilling
	taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	All sampling is guided by Peako's protocols and Quality Control procedures as per industry standards.
		Historical RC Drilling
		Information not available
	Aspects of the determination of	Rock chip sampling
	Public Report.	A total of 93 rock chip samples were collected.
		83 samples were dispatched for analysis to Intertek Genalysis Laboratory in Perth with analysis for Au using FA50/OE04, which is a 50g Fire Assay with ICP-OES finish. The multi- element suite was determined using 4AM/OE, which is a 4 Acid digest with an ICP-OES analysis.

Criteria	JORC Code Explanation	Explanation
		10 samples were dispatched for analysis to ALS Laboratory in Burnie. Au was analysed using method Au-AA25, which is a Fire Assay on a 30g charge with an AAS finish. Base metals and Ag were analysed using AA45 and AA46 on ore grade samples. Both methods are an aqua regia digest with an AAS finish.
		AC Drilling
		AC samples are collected by downhole sampling hammers with nominal 127 to 140mm holes.
		Samples for every metre were collected by the drill offsider from the drill rig cyclone directly into a bucket that was then placed on the ground.
		A representative sample was collected using a scoop and sampling through and across the sample pile and then placed in pre-labelled calico bags. Samples were no more than 3kg.
		The AC samples were composited in 1m, 2m or 4m composite intervals. Compositing was based on geological boundaries.
		A total of 839 AC samples have been submitted to Intertek Genalysis Laboratory in Perth for analysis for Aqua Regia 33 element package including Gold by AR25/MS33 method
		Historical RC Drilling
		All samples were analysed by ALS Chemex in Perth. Method PGM-MS23 was used to assay Au, Pt and Pd. This method is a fire assay on a 30g charge followed by ICP-MS finish. All other elements were analysed with method ME- ICP1S, which involved an acid digest with an ICP-AES finish.
Drilling Techniques	Drill type (e.g. core, reverse circulation open-hole hammer rotary	AC Drilling
reoninques	air blast, auger, Bangka, sonic, etc.)	A total of 473 AC holes for 3017m were drilled.
	and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The location of each hole was recorded by handheld GPS with positional accuracy of approximately +/-5m. Location data was collected in GDA 2020, MGA Zone 52.
		All holes were drilled at 90 degrees.
		Historical RC Drilling
Duill consult	Mathad of roomaling and accessing	Magma Metals drilled
recovery	ivietnod of recording and assessing core and chip sample recoveries and	AC Drilling
	results assessed.	AC sample recovery was good.

Criteria	JORC Code Explanation	Explanation				
		Drill samples were collected in 1m intervals.				
		Historical RC Drilling				
		Information not available				
	Measures taken to maximise sample	AC Drilling				
	nature of the samples.	Drill samples are visually checked for recovery, moisture and contamination.				
		A technician is always present at the rig to monitor and record recovery. Recoveries are recorded in the database. There are no significant sample recovery problems.				
		Historical RC Drilling				
		Information not available				
	Whether a relationship exists between	AC Drilling				
	sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No sample bias is due to preferential loss/gain of any fine/coarse material due to the acceptable sample recoveries obtained AC drilling.				
		Historical RC Drilling				
		Information not available				
Logging	Whether core and chip samples have	Rock chip sampling				
	logged to a level of detail to support appropriate Mineral Resource	All rock samples were logged into field notebooks along with sample numbers.				
	estimation, mining studies and metallurgical studies.	The rock type, presence of sulphides (or their weathering products) and the presence or absence of alteration minerals was recorded at each site.				
		AC Drilling				
		Logging of AC drill chips recorded lithology, mineralogy, mineralisation, weathering, alteration, colour and other features of the samples.				
		The geological logging was done using a standardised logging system. This information and the sampling details were transferred into Peako's drilling database.				
		Historical RC Drilling				
		All holes were geologically logged based on visual observation.				
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC, AC and rock chip logging are both qualitative and quantitative, depending on the field being logged.				

Criteria	JORC Code Explanation	Explanation
	The total length and percentage of the	All rock chips are lithologically logged.
	relevant intersections logged.	All AC drill holes are logged in full and to the total length of each drill hole. 100% of each relevant intersection is logged in detail.
		Historical RC drill holes
		All RC appear to have been logged.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	No drill core is described in this report.
and sample	If non-core, whether riffled, tube	Rock chip sampling
preparation	sampled, rotary split, etc and whether sampled wet or dry.	Rock chip samples were submitted to Intertek Genalysis' Perth laboratory and ALS Laboratory Burnie. Both laboratories are ISO9001-certified.
		The samples were oven dried and crushed to a nominal top-size of 2mm and pulverised to that at least 85% of the material was finer than 75µm. A low-Cr steel mill was used for pulverizing to minimise contamination.
		No sub-sampling was undertaken.
		No duplicate sample were taken as these are reconnaissance samples.
		Each of the rock chip samples weighed approximately 0.5 to 1kg and are considered to be suitable given the nature of the material being sampled.
		AC Drilling
		AC samples were collected at every metre by the drill offsider from the drill rig cyclone directly into a bucket that was then placed on the ground. A representative sample from each metre was collected using a scoop and sampling through and across the sample pile and then placed in pre-labelled calico bags.
		The majority of the samples were dry.
		On the rare occasion that wet samples were encountered, they were sampled as normal, and a note was made in the drill log.
		AC samples were composted to 1m, 2m or 4m intervals based upon geology.
		Historical RC Drilling
		Samples were collected at 1m intervals and split with either a rotary splitter or a three tier riffle splitter.

Criteria	JORC Code Explanation	Explanation
	For all sample types, the nature,	Rock Chip Sampling and AC Drilling
	quality and appropriateness of the sample preparation technique.	The sample preparation for all samples follows industry best practice.
		Historical RC Drilling
		Information not available, but methods described follow industry best practice.
	Quality control procedures adopted	Rock Chip Sampling and AC Drilling
	maximise representivity of samples.	Peako has protocols that cover the sample preparation at the laboratories and the collection and assessment of data to ensure that accurate steps are used in producing representative samples
		Historical RC Drilling
		Information not available
	Measures taken to ensure that the	Rock Chip Sampling and AC Drilling
	sampling is representative of the in- situ material collected, including for instance results for field	Sampling is carried out in accordance with Peako's protocols as per industry best practice.
	duplicate/second-half sampling.	Field QC procedures involve the use of certified reference material as assay standards and, blanks. The insertion rate of these averaged 1:25 for AC samples.
		Historical RC Drilling
		Information not available
	Whether sample sizes are appropriate	Rock Chip Sampling and AC Drilling
	sampled.	The sample sizes are considered appropriate to correctly represent the style of mineralisation, the thickness and consistency of the intersections
Quality of	The nature, quality and	Rock chip sampling
and laboratory tests	laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed in certified Intertek Genalysis Laboratory in Perth or in the certified ALS Laboratory in Burnie
		83 samples submitted to Intertek Genalysis were requested for analysis for Au and 33 multi- elements. Gold was determined by lead collection fire assay in new pots and analysed by ICP-OES (code FA50/OE)
		1 sample was submitted for analysis for Au, Pt and Pd using Intertek method FA50/OE04. In which a 50g charge was split for the sample for fire assay with an ICP-OES finish to determine precious metal grades.
		10 samples were submitted to ALS Burnie for analysis. Au was analysed using method Au-

Criteria	JORC Code Explanation	Explanation
		AA25, which is a Fire Assay on a 30g charge with an AAS finish. Base metals and Ag were analysed using AA45 and AA46 on ore grade samples. Both methods are an aqua regia digest with an AAS finish.
		AC Drilling
		A total of 839 aircore samples have been submitted to Intertek Genalysis for analysis using Aqua Regia 33 element package including gold by method AR25/MS33.
		All samples were sent to certified laboratories and analysed by widely used and industry accepted techniques.
		Historical RC Drilling
		The methods and techniques described in reporting are appropriate for material drilled.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make	Samples were logged and preliminary analyse of the geochemistry of the sample was intermittently checked using a pXRF machine in the field.
	factors applied and their derivation,	Historical RC Drilling
	etC.	NA
	Nature of quality control procedures	Rock Chip Sampling and AC Drilling
	duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 90% passing 75 microns.
		Internal laboratory QAQC checks are reported by the laboratory.
		Review of the internal laboratory QAQC suggests the laboratory is performing within acceptable limits.
		For AC samples, Peako inserts one blank or one standard for every 25 samples
		Historical RC Drilling
		NA
Verification of sampling	The verification of significant intersections by either independent or	Rock Chip Sampling and AC Drilling
and assaying	alternative company personnel.	Reported results are compiled and verified by the Company's Senior Geologist and Competent Person
		Historical RC Drilling

Criteria	JORC Code Explanation	Explanation
		Reported results are compiled from open file WAMEX reports by the Company's Senior Geologist and Competent Person
	The use of twinned holes.	No twinned holes are reported in this release.
	Documentation of primary data, data	Rock Chip Sampling and AC Drilling
	entry procedures, data verification, data storage (physical and electronic) protocols.	Primary field data is collected by Peako's geologists on standardised logging sheets. This data is compiled and digitally captured.
		The compiled digital data is verified and validated by the Company's geologists.
		Historical RC Drilling
		NA
	Discuss any adjustment to assay data.	There were no adjustments to the assay data.
Location of	Accuracy and quality of surveys used	Rock Chip Sampling and AC Drilling
data points	to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sample locations were captured by hand-held GPS with a positional accuracy is approximately +/-5 metres.
		The coordinates of samples and drill holes are shown in the tables in this report.
		Historical RC Drilling
		NA
	Specification of the grid system used.	Rock Chip Sampling and AC Drilling
		Location data was collected in GDA2020, MGA Zone 52.
		Historical RC Drilling
		Location data was collected in GDA1994, MGA Zone 52 and has been converted to GDA2020, MGA Zone 52.
	Quality and adequacy of topographic control.	AC drilling
		The RL of the samples was not recorded as it is not considered necessary for early reconnaissance work of this nature.
		Historical RC Drilling
		NA
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Rock chip sampling and AC drilling
		The samples taken were part of a reconnaissance sampling program.
		Rock chip samples were taken at the geologist's discretion from available outcrops.
		Historical RC Drilling

Criteria	JORC Code Explanation	Explanation
		Drillhole spacing is appropriate for first pass drill testing
	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	AC drilling, rock chip sampling and historical RC drilling are not being used for Mineral Resource estimation.
	Whether sample compositing has been applied.	Rock chip sampling
		No sample compositing was applied for the rock chip sampling.
		AC Drilling
		Sample composting was done for AC drilling.
		Historical RC Drilling
		Samples not composited
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of	Rock chip sampling
relation to geological structure	possible structures and the extent to which this is known, considering the deposit type.	Rock chip samples were taken from outcropping veins, gossans, and highly altered rocks in order to confirm the spatial location of the mineralisation.
		AC Drilling
		AC drilling is a first pass sampling method to determine if there is mineralisation present. No structures have been accurately determined at this stage.
		Historical RC Drilling
		NA
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified in the data at this point.
Sample	The measures taken to ensure	Rock chip sampling and AC Drilling
security	sample security.	Samples are stored on site prior to road transport by Company personnel to Broome and then freighted to the laboratory in Perth.
		Samples transported to ALS in Burnie were carried as luggage by Peako's geologist and delivered to ALS laboratory.
		Historical RC Drilling
		NA

Criteria	JORC Code Explanation	Explanation
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There has been no external audit or review of the Company's techniques or data and Peako has not carried out any audits or reviews of the historical sampling techniques.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Explanation
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Results reported in this announcement are from currently granted Exploration Licences E80/4990 and E80/5182, in which Peako's wholly owned subsidiary SA Drilling Pty Ltd has a 100% interest.
		The tenement is situated within the Gooniyandi Combined #2 Native Title Claim (WC 2000/010) and Determination (WCD2013/003).
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to	The tenements are current and in good standing with all statutory commitments being met as and when required.
		There are no known impediments to obtaining a licence to operate pending the normal approvals process.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration within the tenement area has been undertaken by numerous parties, commencing with Pickands Mather in 1967.
		Refer Peako Limited ASX release dated 15 August 2018, Appendix 3 and 28 November 2019, Appendix C for overview of exploration historically undertaken on the tenement.
Geology	Deposit type, geological setting and style of mineralisation.	The tenements host a diverse Paleoproterozoic succession that is widely intruded by multiple granitoid phases and deformed by multiple orogenic episodes.
		The morphology of the mineralisation as well as the structural make up is not well understood.
		The area represents the western-most window of the Halls Creek Orogen where volcanic successions of the bimodal Koongie Park Formation volcanic belt (c.1845 Ma) and the Lamboo Ultramafic (LUM) intrusive belt (c.1850-1835 Ma) are well developed.
		Satellite imagery and rock geochemistry define an array of multistage, poorly

JORC Code explanation	Explanation
	constrained granitoid intrusions across the tenement, with compositions that include granite, granodiorite, diorite, monzogranite and granophyre.
	The geological diversity within the tenements has driven the search for a wide range of commodities by present and past explorers. The Koongie Park Formation (KPF) has demonstrated prospectivity for base (Cu-Pb-Zn) and precious (Ag, Au) metals with postulated mineralisation styles varying from VHMS to SVAL-hybrid styles, to epithermal and skarnoid mineralisation associated with widespread carbonate facies in the KPF stratigraphy.
	In addition, mafic to ultramafic intrusions of the Lamboo Ultramafic complex have demonstrated prospectivity for base metal (Ni, Cu) and precious (Au, PGE) metals with potential mineralisation styles varying across magmatic, cumulate to intrusion or orogenic- related gold associated with deep crustal- tapping fertile structures.
A summary of all information material to the understanding of the exploration	Rock chip samples
 easting and northing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	N/A <u>AC drilling</u>
	Location data was provided in Table 1 of announcement dated 21 July 2021 <u>https://cdn-api.markitdigital.com/apiman- gateway/ASX/asx-research/1.0/file/2924- 02397489- 3A571075?access_token=83ff96335c2d45a</u>
 down hole length and interception depth 	094df02a206a39ff4 The location of AC holes is shown in Figure
hole length.	1.
	Historical RC Drilling See Table 3
If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	There has been no exclusion of information
	JORC Code explanation A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length.

Criteria	JORC Code explanation	Explanation
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Rock chip samples N/A <u>AC drilling</u> AC drill samples were composted in 1m, 2m or 4m intervals, based on geology. Assay cut-offs are reported at Table 2. <u>Historical RC drilling</u> No cutting of grade or compositing of samples was described Not applicable to this document.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values are not reported in this announcement.
Relationship between mineralisati on widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	Rock chip samplesSamples were taken from outcropping rocks/veins/gossans in order to confirm the spatial location of the mineralisation.AC drillingThe reported AC assays are from reconnaissance sampling designed to identify the geology and the presence of any anomalous bedrock mineralisationHistorical RC drillingInsufficient geological data has been collected to confirm the geometry or true width of mineralisation.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down	Not applicable to this document. Not applicable to this document.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view	Rock chip samples The coordinates of sample locations are presented in Table 2 and shown in Figure 1. AC drilling

Criteria	JORC Code explanation	Explanation
	of drill hole collar locations and appropriate sectional views.	The coordinates of AC collar locations are presented in Table 1 of announcement dated 21 July 2021 <u>https://cdn- api.markitdigital.com/apiman-</u> <u>gateway/ASX/asx-research/1.0/file/2924-</u> <u>02397489-</u> <u>3A571075?access_token=83ff96335c2d45a</u> <u>094df02a206a39ff4</u> and shown in Figure 5
Balanced	Where comprehensive reporting of all	Rock chip samples
reporting	Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting	All rock-chip assay results, regardless of grade, have been reported.
	of Exploration Results.	<u>AC drilling</u>
		Assay information provided in Table 2 is presented on Cu > 200ppm, Ni>200ppm, Pb>100ppm, Zn>200ppm, Ag.0.1ppm and Au > 0.1ppm cut-offs, which are considered sufficiently low to identify anomalous zones in the aircore geochemistry and consequently represents balanced reporting
		Historical RC drilling
		Assay cut-offs are shown in Table 4 and are considered appropriate for identifying anomalous zones in the historical drilling assay data and consequently represent balance reporting.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 pXRF measurements were taken in the field of some AC drill and rock chip samples. pXRF analysis have not been reported to the ASX and are considered qualitative analysis only. There is no other exploration data which is considered material to the results reported in the announcement.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Planned further work includes follow up field mapping and further rock chip sampling and a full review of the Lamboo Ultramafic Belt. At this stage no further work is planned on the recent Aircore drilling grids. Assay results from Peako's 2021 scout RC program are expected late December and will inform further work.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to main body of this report.

