

PILBARA PROJECTS DRILLING CONFIRMS GOLD & LITHIUM POTENTIAL

HIGHLIGHTS

Brahman Project

- Encouraging results received from the first 13 holes totalling 1500m of the planned 5000m Phase 2 Reverse Circulation drilling program
- The drilling was focused on high priority "Hemi Style" intrusive related and structural gold targets identified from an assessment of multiple geophysical datasets and multi-element geochemistry
- Proof of concept has been confirmed with the drilling encountering significant widths of previously unrecognised Mallina basin sediments beneath thin granitic "caps", mafic-ultramafic intrusive lithologies, quartz-carbonate veining and extensive alteration halos including strongly developed zones of disseminated sulphides (pyrite)
- Gold potential confirmed with broad, coherent, low order gold and multi-element gold pathfinder geochemical anomalism reported from several drillholes at the Brahman Project, located 20-30 kilometres north of De Grey Mining's Mallina Gold Project, 6.8 Moz Hemi Gold Deposit (ASX: DEG), Central Pilbara, Western Australia. Significant results include:
 - 20m @ 2.3ppb Au, 3.1ppm As from 8m depth (21BRC0006), and
 - 4m @ 104ppb Au, 4.6ppm As from 108m depth
 - 40m @ 5.5ppb Au, 11.7ppm As from 36m depth (21BRC0008)
 - o 12m @ 9.1ppb Au, 41.0ppm As from 100m depth (21BRC0012)
- Lithium potential now also confirmed with broad, coherent, low order lithium and multi-element lithium pathfinder geochemical anomalism also reported from several drillholes, including:
 - o 56m @ 137.5ppm Li, 20.7ppm Cs; 2.0ppm Be, 69.4ppm Rb from 36m depth (21BRC0008)
 - 40m at 111.4ppm Li, 1.8ppm Cs from 80m depth (21BRC0012)
 - o 52m @ 76.4ppm Li, 1.2ppm Cs from 16m depth (21BRC0013)

Quartz Hill Project

- Lithium bearing pegmatite confirmed within the Quartz Hill Project located southwest along strike from the world class Wodgina Deposit, one of the world's largest known hard rock lithium deposits
 - Grab sample: 154.1ppm Li, 1.1ppm Cs

Next Steps

• Geochemical soil surveys are in progress across all project areas to refine and prioritise both gold and lithium targets prior to recommencing drilling

REGISTERED OFFICE Level 2 480 Collins Street Melbourne Vic 3000

CONTACT T: +613 9614 0600 F: +613 9614 5612 E: info@nae.net.au

New Age Exploration (ASX: NAE) (**NAE** or the **Company**) is pleased to announce that it has now received results from the first 13 holes of its Phase 2 drilling programme completed at the Company's Brahman Project, and from limited rock chip sampling of lithium pegmatite targets at the Quartz Hill Project, within its extensive Central Pilbara Gold-Lithium Project, centred over the highly prospective yet under-explored Mallina – Whim Creek Basin of the Pilbara Craton, Western Australia.

All of the drilling completed in this most recent campaign was undertaken within the Brahman Project area (E47/3958) which is located north of, and within ~20-30km of De Grey Mining's Mallina Gold Project and the recent Hemi gold discovery (ASX:DEG).

Thirteen Reverse Circulation drillholes for a total of 1506m were completed prior to closure of the 2021 field season. The majority of samples represent four (4) metre composites. Refer to Figures 1 and 2 and Table 1.

The program was designed to follow-up high priority targets defined from its Phase 1 drilling in conjunction with a pipeline of new targets identified from recent data synthesis and proprietary data filtering technology undertaken on multiple geophysical data sets by specialist Geophysical Consulting Group, Fathom Geophysics. (Refer NAE ASX release <u>28 October 2021</u>).

NAE Executive Director, Joshua Wellisch commented;

"The primary objectives of this campaign – to confirm prospective basement rocks and structures beneath relatively shallow cover – have been achieved. We are very encouraged with the results received at this early stage of our exploration effort in the Pilbara particularly given the wide spacing of our reconnaissance drilling to date.

Our focus is on applying leading edge multi-disciplinary geoscience to identify high priority 'Hemi style' intrusive related and structural gold targets through a blanket of cover across our extensive Central Pilbara Projects and to systematically test them with drilling. We have also been critically aware of the lithium potential of the project given our proximity to Wodgina and Pilgangoora, two of the largest high grade hard rock lithium operations in the world.

Our approach has been justified and even though we have really just commenced, a number of holes have returned results indicative of large-scale gold systems including coincident gold-arsenic anomalism which is the main geochemical signature at Hemi. We are also highly encouraged by the lithium results reported from several of our holes at Brahman and from limited rock chip sampling at Quartz Hill within the Wodgina-Mt. Francisco LCT pegmatite structural corridor.

The results received to date confirm our belief that our Central Pilbara Project has the potential to host significant gold and lithium mineral deposits.

Given that we have now confirmed a lithium opportunity in addition to gold, our immediate strategy will be to advance in concert both our gold and lithium targeting. We currently have a geochemical sampling survey underway to help fast track that objective with the aim of recommencing drilling of priority targets later in the year.

We are excited to be recommencing our field activities in the Pilbara. We have also recently re-commenced our field programs in the Central Otago Gold belt in New Zealand and we look forward to delivering strong news flow from both projects over the coming months."

Figure 1. Location of NAE's Central Pilbara Gold and Lithium Projects

Figure 2. Location of NAE's Central Pilbara Brahman and Droughtmaster Gold and Lithium Projects over regional grey scale aeromagnetics showing recent drilling and areas of planned soil geochemical surveys.

Recent Activities

Brahman Project - Drilling - Gold & Lithium

All of the drilling completed prior to the closure of the 2021 field season was carried out within the Brahman Project area. The drilling was designed to follow-up a selection of high priority targets defined from the previously reported Phase 1 aircore drilling campaign in conjunction with a pipeline of new targets identified from data synthesis and proprietary data filtering technology undertaken on multiple geophysical data sets by specialist Geophysical Consulting Group, Fathom Geophysics. (Refer NAE ASX release <u>28 October 2021</u>).

Figure 3: Brahman Project – Drillhole location plan showing geophysical targets and hole collar locations over RTP magnetics.

The 2021 campaign comprised thirteen (13) very widely spaced "scout" reverse circulation drillholes (21BRC0001-21BRC0013) for a total of 1506 metres. Despite the area being shown as granite on existing GSWA map sheets the holes encountered a variety of prospective rock types including granite, granodiorite, Mallina Basin sediments, cherts/quartzites and mafic-ultramafic intrusives showing abundant quartz-carbonate veining and extensive alteration including strongly developed zones of disseminated and veinlet sulphides (pyrite).

Assay results indicate coherent and largely coincident low level multi-element Gold (IRGS) and Lithium-Caesium-Tantalum (LCT) pegmatite pathfinder geochemical anomalism within a number of holes. Figure 3 provides a drillhole location plan and Figures 4 and 5 provide schematic geological cross-sections. Tables 1 – 4 provide drillhole statistics and anomalous intercepts.

Reverse circulation drillholes 21BRC0001/0002/0012 and 21BRC0013 were drilled to test a prominent NE trending "linking" structure between the regionally important ENE trending Mallina Shear Zone to the south (host to De Grey's Mallina Gold Project and the recent Hemi discovery) and the Scholl Shear Zone to the north. In the vicinity of holes 21BRC0012 and 21BRC0013 cover thins to provide a rare window into the basement rocks of interest. Mapping at this location revealed the target of interest to comprise a structurally deformed package including brecciated and silicified chert/quartzite, Mallina Basin sediments and mafic-ultramafic intrusives displaying intense stockwork and sheeted quartz veining. Refer to Plates 1-4.

Plate 1: Brahman Project – Sheeted and Stockwork quartz veining within Mallina Basin sediments and mafic-ultramafic intrusives in the vicinity of holes 21BRC0012 and 21BRC0013.

This setting is similar to the sequence hosting De Grey's Mallina Gold Project and to the tectono-stratigraphic setting at both the Wodgina and Pilgangoora Lithium mining operations where maximum LCT pegmatite development occurs within mafic-ultramafic rock types.

Broad zones of highly anomalous lithium and multi-element lithium pathfinder geochemistry reported within ultramafic rocks at NAE's Brahman Project provide compelling evidence of a well-developed alteration halo emanating from an as yet undiscovered lithium-bearing pegmatite source located in close proximity to these holes.

Similar alteration haloes are well documented from a number of globally significant lithium deposits including the buried world class Tanco Deposit in Canada (New Age Metals; TSXV: NAM) which displays a large Lithium-Rubidium halo within surrounding mafic country rocks (Trueman and Cerny, 1992).

Plate 2: Quartz Stockwork veining within Mallina Basin sediments and weathered mafic-ultramafics – vicinity of 21BRC0012.

Plate 3: Brahman Project - 21BRC0012 – brecciated chert/quartzite outcrop.

Plate 4: 21BRC0012 - Quartz carbonate veined mafic-ultramafic intrusive showing 3-5% disseminated sulphide (pyrite).

At Pilgangoora, there is a confirmed spatial and timing relationship between the main gold mineralising event (ie the Mt. York, Iron Stirrup gold deposits) and emplacement of lithium bearing pegmatites. The relationship provides clear evidence that the gold bearing fluids and pegmatite melts exploited the same structural "plumbing system". A similar Au/Li association is emerging from the work completed at Brahman, and as a consequence the results achieved to date within NAE's Central Pilbara Project are considered to be highly encouraging. Plates 1 & 2: Brahman Project – Stockwork and sheeted quartz veining in weathered sediments and mafic-ultramafics. Plate 3: BRC0012 – drilling beneath brecciated, silicified chert/quartzite. Plate 4: Quartz-carbonate veined maficultramafic intrusive showing 3-5% disseminated sulphide (pyrite).

Significant intersections include the following:

<u>Gold</u>

- 12m @ 1.1ppb Au, 6.5ppm As from 8m (21BRC0001)
- 12m @ 2.7ppb Au, 10.6ppm As from 8m (21BRC0002)
- 12m @ 1.6ppb Au, 8.4ppm As from 4m (21BRC0003)
- 8m @ 1.5ppb Au, 9.4ppm As from 8m (21BRC0004)
- 4m @ 1.5ppb Au, 7.8ppm As from 8m (21BRC0005), and
 4m @ 6.2ppb Au, 0.7ppm As from 92m
- 20m @ 2.3ppb Au, 3.1ppm As from 8m 21BRC0006), and
 - o 4m @ 10.7ppb Au, 1.8ppm As from 84m, and
 - 4m @ 104.0ppb Au, 4.6ppm As from 108m
- 20m @ 2.0ppb Au, 9.3ppm As from 12m (21BRC0007)
- 80m @ 3.4ppb Au, 13.1ppm As from 12m (21BRC0008), *including*:
 - 40m @ 5.45ppb Au, 11.7ppm As from 36m
- 68m @ 1.1ppb Au, 6.8ppm As (21BRC0009)
- 12m @ 2.3ppb Au, 7.1ppm As from 8m21BRC0012), and
 - o 12m @ 9.1ppb Au, 41.0ppm As from 100m
- 12m @ 3.4ppb Au, 13.2ppm As from 32m (21BRC0013), and
 - o 28m @ 3.1ppb Au, 7.2ppm As from 96m

<u>Lithium</u>

- 12m @ 88.9ppm Li, 6.6ppm Cs from 100m (21BRC0007)
- 56m @ 137.5ppm Li, 20.7ppm Cs, 2.0ppm Be, 69.4ppm Rb from 36m (21BRC0008)
- 40m @ 111.4ppm Li, 1.8ppm Cs from 80m (21BRC0012)
- 52m @ 76.4ppm Li, 1.2ppm Cs, from 16m (21BRC0013), *including*:
 - 36m @ 96.0ppm Li, 1.5ppm Cs from 16m

Figure 4: Schematic Geological Cross-Section - RC Drillhole 21BRC0008 showing zones of Au-As anomalism

Figure 5: Schematic Geological Cross-Section - RC Drillhole 21BRC0012 showing zones of Au-As anomalism

Quartz Hill Project – Rock Chip Sampling - Lithium

The Quartz Hill Project secures potential extensions to both the world class Wodgina-Mt. Francisco Lithium-Caesium-Tantalum (LCT) and the Friendly Creek LCT pegmatite structural corridors. Refer to Figure 6 and Tables 4 and 5. Results from a single reconnaissance rock chip/surficial float sample of a rare metal pegmatite occurrence identified in Mindex reports and confirmed in the field, located centrally within the southwestern extension of the Wodgina-Mt. Francisco LCT pegmatite corridor (Refer ASX report 28/10/2021), have now been received.

Figure 6: Quartz Hill Project – Location plan showing the Wodgina Lithium Mine, Mt Francisco and Friendly Creek LCT pegmatite fields, interpreted LCT Pegmatite Structural Corridors and recent NAE rock chip sampling.

The assay confirmed low level lithium geochemical anomalism (sample D001984: 154.1ppm Li, 1.1ppm Cs) associated with a classically zoned rare metal pegmatite. Outcrop is limited to the quartz core and immediate marginal quartz-feldspar-muscovite portions only with strike and depth extensions obscured beneath recent cover.

Next Steps

Following confirmation of the lithium potential of the project in addition to gold the Company has now commenced regional and prospect scale geochemical soil surveys to fast-track prioritising both gold and lithium targets across NAE's extensive Central Pilbara Project tenure. Ongoing target generation, refinement and prioritisation will be underpinned by results obtained from the current phase of exploration activity including these surface geochemical surveys and continued assessment of all available airborne and ground geophysical data. Follow up drill testing of priority targets is planned to commence in Q3/4 2022.

-ENDS-

Authorised for release by the Board.

For more information, please contact:

Joshua Wellisch	Mark Flynn
Executive Director	Investor Relations
+61 3 9614 0600	+61 416 068 733
joshua@nae.net.au	mark.flynn@nae.net.au

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information reviewed by Steve Vallance, who is a Consulting Geologist (Principal Wilderness Exploration Pty Ltd) and a Member of the Australian Institute of Geoscientists (MAIG). Mr Vallance has over 30 years' experience in precious and base metal exploration and mining including gold exploration and resource definition in the Pilbara region. Mr Vallance has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. He consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Project	Hole ID	Collar Co	o-ordinates	Туре	Dip	Azimuth	Depth
		Easting	Northing				
Brahman	21BRC0001	620229	7707517	RC	-90	0	84
Brahman	21BRC0002	620186	7706814	RC	-90	0	88
Brahman	21BRC0003	618343	7708151	RC	-90	0	118
Brahman	21BRC0004	617669	7709598	RC	-90	0	113
Brahman	21BRC0005	616728	7709910	RC	-90	0	124
Brahman	21BRC0006	615682	7710722	RC	-90	0	148
Brahman	21BRC0007	621682	7709782	RC	-90	0	112
Brahman	21BRC0008	622420	7720103	RC	-90	0	115
Brahman	21BRC0009	616660	7722629	RC	-90	0	124
Brahman	21BRC0010	627986	7701645	RC	-90	0	130
Brahman	21BRC0011	625512	7696138	RC	-90	0	82
Brahman	21BRC0012	620353	7708297	RC	-60	270	130
Brahman	21BRC0013	620407	7708512	RC	-60	270	138
Brahman	NAC020	616598	7722625	AC	-90	0	13
Brahman	NAC021	616650	7722625	AC	-90	0	13
Brahman	NAC022	616699	7722625	AC	-90	0	13
Brahman	NAC023	616775	7721876	AC	-90	0	16
Brahman	NAC024	616820	7721880	AC	-90	0	14
Brahman	NAC025	616873	7721880	AC	-90	0	13
Brahman	NAC026	616424	7720098	AC	-90	0	16
Brahman	NAC027	616472	7720099	AC	-90	0	16
Brahman	NAC028	616521	7720101	AC	-90	0	16
Brahman	NAC029	618522	7718698	AC	-90	0	49
Brahman	NAC030	618575	7718697	AC	-90	0	42
Brahman	NAC031	616821	7718702	AC	-90	0	54
Brahman	NAC032	619324	7718466	AC	-90	0	52
Brahman	NAC033	619375	7718473	AC	-90	0	50
Brahman	NAC034	619425	7718471	AC	-90	0	50
Brahman	NAC035	622524	7720100	AC	-90	0	41
Brahman	NAC036	622476	7720102	AC	-90	0	41
Brahman	NAC037	622424	7720100	AC	-90	0	39

Appendix Table 1 - Brahman Project - Summary of Drillhole Statistics

HOLE_I	FRO	T	SAMPLE	Au-	As-	Bi-	Te-	W-	Mo-	Sn-	Sb-	Cu-	Ag-	Pb-	Zn-
21BRC0	IVI	0	_U D00150	ppp	ppm	ррт	ppm	ррт	ррт	ррт	ppm	ррш	ppm	ррт	ррт
001	8	12	3	1	6.88	0.09	0.02	0.52	0.55	0.57	0.2	35.35	0.02	6.6	33.2
21BRC0			D00150												
001 2188C0	12	16	4	1	5.09	1.2	0.04	0.7	0.99	0.29	0.12	30.26	0.1	10.6	10.6
21BRC0 001	16	20	5	1.2	7.61	1.58	0.11	1.26	12.06	0.14	0.16	57.25	0.07	34.3	10
21BRC0	40		D00151	4.6	2.01	0.40	0.00	0.0	0.7	0.64	0.00	6.00	0.00	10	57.4
21BRC0	40	44	D00151	1.6	3.01	0.18	-0.02	0.8	0.7	0.64	0.08	6.02	-0.02	12	57.1
001	44	48	2	2.6	5.37	0.34	-0.02	2.61	1.38	0.44	0.1	7.13	0.04	15.7	47.3
21BRC0 001	48	52	D00151 3	2.6	5.9	0.42	-0.02	2.11	1.69	0.3	0.12	4.52	0.04	11.8	38
21BRC0	_		D00152												
002 2188C0	8	12	4	2.1	6.3	0.09	-0.02	0.31	0.54	0.67	0.26	19.64	0.03	6.8	18.5
002	12	16	5	3.2	16.34	0.13	-0.02	0.41	0.74	0.59	0.37	21.26	0.03	6.6	26
21BRC0			D00152												
002	16	20	7	2.7	9.04	0.18	-0.02	0.31	0.59	0.42	0.27	12.68	0.06	9.4	35.4
21BRC0 003	4	8	6 00154	1.7	3.72	0.09	-0.02	0.39	0.99	0.61	0.17	18.42	0.03	5	20.7
21BRC0	0	12	D00154	2	12.07	0.09	-0.02	0.22	0.5	0.59	0.27	16.94	0.02	55	20.1
21BRC0	0	12	, D00154	2	12.07	0.08	-0.02	0.23	0.5	0.58	0.27	10.04	0.02	5.5	20.1
003	12	16	8 D00157	1	9.31	0.07	-0.02	0.35	0.6	0.6	0.18	11.82	0.03	13.9	41.3
21BRC0 004	8	12	9	1.1	6.42	0.08	-0.02	0.24	0.48	0.61	0.25	18.8	0.02	6	18.8
21BRC0	10	4.5	D00158		10.04				0.40	0.55	0.00	00.45	0.05		
004 21BRC0	12	16	0 D00160	1.8	12.34	0.11	-0.02	0.2	0.49	0.55	0.39	20.15	0.05	6.8	27.1
005	8	12	9	1.5	7.82	0.14	-0.02	0.18	0.55	0.83	0.22	25.07	0.05	8.4	35
21BRC0 005	92	96	D00163 1	6.2	0.72	0.03	-0.02	3.51	0.76	1.21	0.07	3.49	0.05	16.3	74.9
21BRC0			D00164	•											
006	8	12	1	1.3	4.68	0.11	-0.02	0.23	1.02	0.7	0.16	15.46	0.08	6.2	19.4
21BRC0 006	12	16	2	2	5.7	0.11	-0.02	0.62	1.07	0.63	0.2	16.08	0.06	9.3	22.3
21BRC0	10	20	D00164	0.6	1.00	0.40	0.00	0.46	0.57	0.76	0.00	6.40	0.00	42.0	644
21BRC0	16	20	3 D00164	0.6	1.96	0.12	-0.02	0.16	0.57	0.76	0.09	6.18	0.06	13.9	64.1
006	20	24	4	3.6	1.91	0.15	-0.02	0.41	0.59	0.55	0.11	4.43	0.07	19.1	57.1
21BRC0	24	20	D00164	12	1 20	0.11	0.02	1 1 6	0.57	0.54	0.11	2.40	0.05	15.2	EE 0
21BRC0	24	28	D00166	4.2	1.39	0.11	-0.02	1.10	0.57	0.54	0.11	3.49	0.05	15.3	55.9
006	84	88	1	10.7	1.79	0.09	-0.02	2.38	0.51	0.71	0.1	5.69	0.08	24.5	63.8
21BRC0 006	108	11 2	D00166 7	104	4.6	2.15	0.26	1.33	12.16	2.13	0.1	127.4 9	0.16	39.3	211.5
21BRC0	100	-	D00168	101	1.0	2.15	0.20	1.55	12.10	2.15	0.1		0.10	55.5	211.5
007	12	16	1	1.6	4.99	0.08	-0.02	0.31	0.44	0.66	0.12	15.87	0.05	5.7	19.7
21BRC0 007	16	20	2	2.2	6.89	0.21	-0.02	0.44	0.56	0.65	0.21	18.17	0.03	6.4	24.6
21BRC0	20	24	D00168	2.4	14.40	0.17	0.00	1.20	1 70	0.40	0.42	26.12	0.1	7.2	24.2
21BRC0	20	24	3 D00168	3.4	14.48	0.17	-0.02	1.26	1.78	0.49	0.42	26.12	0.1	7.3	34.2
007	24	28	4	0.9	14.09	0.25	-0.02	0.98	1.97	0.44	0.48	29.66	0.04	8.3	38.4
21BRC0 007	28	32	5	2	6.12	0.2	0.03	0.56	0.83	0.62	0.26	48.51	0.04	10.3	75.1
21BRC0	40	10	D00171	4.2	12.00	0.00	0.00	0.20	0.40	0.00	0.4.4	10.0	0.00	6.0	22.4
21BRC0	12	16	0 D00171	1.3	12.08	0.08	-0.02	0.39	0.48	0.68	0.14	19.8	0.03	6.8	22.1
008	16	20	1	0.6	13.9	0.1	-0.02	0.39	0.65	0.82	0.15	20.16	0.03	7.6	25
21BRC0 008	20	24	D00171 2	0.7	29.66	0.15	-0.02	0.48	0.88	1.22	0.2	29.54	0.03	10.9	39.8

Appendix Table 2: Brahman Project – Reconnaissance Drilling – Anomalous Intercepts – GOLD

21BRC0	1		D00171												
800	24	28	3	1.1	12.09	0.15	-0.02	0.23	0.53	0.86	0.2	25.33	0.04	8.2	32.9
21BRC0 008	28	32	D00171 4	0.8	27.16	0.2	0.02	0.45	0.63	0.91	0.44	39.44	0.05	11.2	51.3
21BRC0			D00171	1.0		0.07		0.45	0.60	0.64	0.50	40.05	0.05	10.0	544
008 21BRC0	32	36	5 D00171	1.9	22.32	0.37	0.03	0.45	0.68	0.61	0.58	40.95	0.06	10.2	54.4
008	36	40	6	7.4	28.77	0.17	0.03	0.81	2.19	0.58	1.08	56.38	0.04	3.6	74.3
21BRC0 008	40	44	D00171 7	7.7	14.25	0.25	0.04	1.58	2.29	0.45	0.87	60.71	0.06	10	78.2
21BRC0			D00171												
008 21BRC0	44	48	8 D00171	3.8	9.69	0.65	0.04	8.53	3.22	0.55	0.97	67.86	0.11	14.3	96.7
008	48	52	9	2.8	6.39	0.23	0.03	4.74	4.04	0.56	0.88	74.63	0.08	12.3	88.3
21BRC0 008	52	56	D00172 0	3.4	7.16	0.19	0.03	18.75	3.85	0.58	0.86	66.35	0.08	36.5	154.4
21BRC0			D00172												
008 21BRC0	56	60	1 D00172	3.3	8.28	0.29	0.03	8.21	2.82	0.37	1.06	65.48	0.06	9.3	102.4
008	60	64	2	4.5	9.28	0.45	0.06	4.01	2.55	0.5	0.88	70.07	0.05	5	111.1
21BRC0 008	64	68	D00172 3	7.4	10.59	0.37	0.15	8.11	3.75	0.66	0.87	78.37	0.06	6.7	108.1
21BRC0			D00172												
21BRC0	68	/2	4 D00172	10.2	10.77	0.43	0.05	9.37	5.28	0.47	1.07	59.1	0.13	13.3	109.8
008	72	76	5	4.1	11.68	0.5	0.16	10.86	5.02	1.13	1.43	85.02	0.1	13.5	108.3
21BRC0 008	76	80	D00172 7	1.1	7.75	0.48	0.03	3.79	8.78	0.77	1.35	72.14	0.13	18.3	83
21BRC0			D00172												
008 21BRC0	80	84	8 D00172	2.9	4.45	15.4	0.04	6.96	5.64	0.48	0.88	52.75	0.13	14.5	82.8
008	84	88	9	2.2	10.92	4.02	-0.02	9.03	3.57	0.63	1.51	65.81	0.1	65.6	137.9
21BRC0 008	88	92	D00173 0	1.6	5.7	4.78	0.02	6.57	6.89	0.66	0.51	29.91	0.26	47.2	80.4
21BRC0			D00175	1.0		0.00		5.4.6	0.00	0.05	0.66	0.40		76.4	10.0
21BRC0	56	60	2 D00175	1.2	4.61	0.32	-0.02	5.16	2.83	0.85	0.66	2.12	-0.02	76.4	10.8
009	60	64	3	1.4	7.61	0.49	-0.02	4.76	3.56	0.69	0.71	1.3	-0.02	74.7	6.8
21BRC0 009	64	68	4	1.3	6.02	0.64	-0.02	3.69	3.83	0.62	0.79	3.46	-0.02	78.1	7.8
21BRC0	60	72	D00175	1 1	E 0/	1 67	0.02	ΕD	4.25	0.72	0.76	E 22	0.02	75 5	0.0
21BRC0	00	12	D00175	1.1	5.04	1.07	-0.02	5.5	4.23	0.72	0.70	5.55	0.02	75.5	9.9
009 2188C0	72	76	6 D00175	0.9	3.51	0.48	-0.02	3.63	2.66	0.93	0.58	2.94	-0.02	75.5	13.3
009	76	80	7	0.8	2.54	0.21	-0.02	3.48	1.79	0.71	0.47	1.42	-0.02	62.5	9.9
21BRC0	80	84	D00175 8	1	5 72	0 34	-0.02	3 95	2	0.73	0.65	1.06	-0.02	74 5	86
21BRC0	00	01	D00175		5.72	0.51	0.02	3.55	2	0.75	0.05	1.00	0.02	7 1.5	0.0
009 21BRC0	84	88	9 D00176	1.2	3.31	0.53	-0.02	6.82	2.43	0.86	0.49	1.13	-0.02	71.7	9.7
009	88	92	0	0.9	7.42	0.19	-0.02	5.17	2.37	0.61	0.85	2.81	-0.02	74.8	7.5
21BRC0	92	96	D00176 1	0.9	8 98	0.27	-0.02	7 08	2 05	0.45	0.9	1 14	0.02	71 4	73
21BRC0	52	10	D00176	0.5	0.50	0.27	0.02	7.00	2.05	0.15	0.5		0.02	,	7.5
009 21BRC0	96	0	2 D00176	0.9	18.24	0.88	-0.02	7.21	2.65	0.48	1.14	1.4	0.13	152.3	32.9
009	100	4	3	1	13.69	0.8	-0.02	5.73	3.36	0.54	0.99	1.17	0.09	113.3	28.3
21BRC0 009	104	10 8	D00176 4	1.2	7.78	0.38	-0.02	5.98	2.66	0.7	0.95	6.78	0.03	82.1	12.6
21BRC0		11	D00176												
009 21BRC0	108	2 11	5 D00176	1.1	4.53	0.63	-0.02	6.11	5.11	0.81	0.72	2.43	-0.02	75.2	14
009	112	6	6	1	4.71	0.75	-0.02	6.43	7.67	0.86	0.8	1.85	0.03	85.3	13.6
21BRC0 009	116	12 0	D00176 7	1.1	4.18	0.36	-0.02	6.03	11.02	0.77	0.61	3.94	-0.02	65.9	12.3
209 21BRC0 209	56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116	60 64 68 72 76 80 84 88 92 96 10 0 10 4 10 10 4 10 11 6 12 0	2 D00175 3 D00175 4 D00175 6 D00175 7 D00175 8 D00175 9 D00176 0 D00176 1 D00176 3 D00176 3 D00176 4 D00176 5 D00176 5 D00176 7 D00176 3 D00176 7 D00176 3 D00176 7 D00176 7 D00176 7 D00176 7 D00175 8 D00175 9 D00175 9 D00175 8 D00175 9 D00175 8 D00175 9 D00175 9 D00175 9 D00175 9 D00175 9 D00175 9 D00175 9 D00175 9 D00175 9 D00175 9 D00176 1 D00176 0 0 D00176 0 0 D00176 0 0 D00176 0 0 D00176 0 0 D00176 0 0 D00176 0 0 D00176 0 0 0 0 0 0 0 0 0 0 0 0 0	1.2 1.4 1.3 1.1 0.9 0.8 1 1.2 0.9 0.9 0.9 0.9 1 1.2 1.1 1.1 1.1	4.61 7.61 6.02 5.84 3.51 2.54 5.72 3.31 7.42 8.98 18.24 13.69 7.78 4.53 4.71 4.18	0.32 0.49 0.64 1.67 0.48 0.21 0.34 0.53 0.19 0.27 0.88 0.8 0.8 0.8 0.38 0.38 0.63 0.75 0.36	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02	5.16 4.76 3.69 5.3 3.63 3.48 3.95 6.82 5.17 7.08 7.21 5.73 5.98 6.11 6.43 6.03	2.83 3.56 3.83 4.25 2.66 1.79 2 2.43 2.37 2.05 2.65 3.36 2.65 3.36 2.66 5.11 7.67 11.02	0.85 0.69 0.62 0.72 0.93 0.71 0.73 0.86 0.61 0.45 0.48 0.54 0.54 0.7 0.81 0.81 0.86 0.77	0.66 0.71 0.79 0.76 0.58 0.47 0.65 0.49 0.85 0.9 1.14 0.99 0.95 0.95 0.72 0.8	2.12 1.3 3.46 5.33 2.94 1.42 1.06 1.13 2.81 1.14 1.14 1.14 1.17 6.78 2.43 1.85 3.94	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.03 -0.03 -0.02 0.03 -0.02	76.4 74.7 78.1 75.5 62.5 74.5 71.7 74.8 71.4 152.3 113.3 82.1 75.2 85.3 65.9	

21BRC0		12	D00176				ĺ	ĺ		ĺ				ĺ	
009	120	4	8	1.1	6.81	0.67	-0.02	10.55	12.5	0.82	0.85	3.48	-0.02	63.4	12.2
21BRC0															
010				NSR											
21BRC0															
011				NSR											
21BRC0			D00182												
012	8	12	8	1.2	5.88	1.52	0.03	1.42	1.69	0.31	0.15	96.49	0.09	12.9	40.8
21BRC0			D00182												
012	12	16	9	3.7	8.86	3.33	0.06	2.86	2.86	0.16	0.13	97.14	0.15	26.8	39.2
21BRC0			D00183												
012	16	20	0	1.9	6.6	1.48	0.04	3.26	2.08	0.15	0.1	54.82	0.12	12.5	17.2
21BRC0	100	10	D00185	_	00.64	0.01									40.7
012	100	4	2	5	22.61	0.81	0.02	4.16	4.04	0.22	0.29	4.01	0.08	11.1	49.7
21BRC0	104	10	D00185	10	41 40	2.00	0.04	2.00	14.40	0.10	0.22	25.64	0.21	10 5	100 7
012	104	8	3	10	41.48	3.88	0.04	2.89	14.49	0.19	0.33	25.61	0.21	19.5	123.7
21BRC0	109	11	D00185	12.2	E0 00	1 5 2	0.02	164	6 20	0.2	0.52	96.62	0.24	64.2	125
218860	106	2	4 D00196	12.2	00.00	1.55	0.05	1.04	0.50	0.2	0.52	80.05	0.24	04.2	155
21BKC0 013	32	36	8	21	16 67	2 44	0.13	1 1 5	2.06	0.15	0.18	25 44	0 37	55	128.2
21BRC0	52	50	D00186	2.1	10.07	2.11	0.15	1.15	2.00	0.15	0.10	23.11	0.37	55	120.2
013	36	40	9	6.3	16.84	5.26	0.26	1.08	2.79	0.14	0.2	11.09	0.22	20.7	63.6
21BRC0			D00187												
013	40	44	0	1.9	6.2	1.76	0.09	2.59	2.28	0.14	0.11	8.52	0.14	15.7	69.5
21BRC0		10	D00188												
013	96	0	5	1.9	7.25	4.16	0.02	6.8	2.05	0.34	0.13	57.66	0.07	11.3	28.6
21BRC0		10	D00188												
013	100	4	6	2.4	8.43	0.74	-0.02	6.79	2.16	0.21	0.11	14.02	0.04	8.1	20.3
21BRC0		10	D00100												
013		10	D00188												
21BRC0	104	8	D00188 7	1	2.85	0.54	-0.02	5	0.75	0.32	0.06	3.93	0.04	10.3	36.1
LIBRED	104	10 8 11	7 D00188	1	2.85	0.54	-0.02	5	0.75	0.32	0.06	3.93	0.04	10.3	36.1
013	104 108	10 8 11 2	D00188 7 D00188 8	1 1.3	2.85 3.85	0.54 0.63	-0.02	5 5.79	0.75 1.51	0.32	0.06	3.93 7.8	0.04	10.3 11.2	36.1 30.6
013 21BRC0	104	10 8 11 2 11	D00188 7 D00188 8 D00188	1	2.85	0.54	-0.02	5	0.75	0.32	0.06	3.93	0.04	10.3 11.2	36.1 30.6
013 21BRC0 013	104 108 112	10 8 11 2 11 6	D00188 7 D00188 8 D00188 9	1 1.3 4.4	2.85 3.85 8.11	0.54	-0.02 -0.02 -0.02	5 5.79 7.98	0.75 1.51 1.6	0.32 0.23 0.25	0.06 0.08 0.09	3.93 7.8 50.12	0.04 0.07 0.11	10.3 11.2 15.7	36.1 30.6 33.1
013 21BRC0 013 21BRC0 013	104 108 112	10 8 11 2 11 6 12	D00188 7 D00188 8 D00188 9 D00189	1 1.3 4.4	2.85 3.85 8.11	0.54	-0.02 -0.02 -0.02	5 5.79 7.98	0.75	0.32 0.23 0.25	0.06	3.93 7.8 50.12	0.04	10.3 11.2 15.7	36.1 30.6 33.1
013 21BRC0 013 21BRC0 013 21BRC0 013	104 108 112 116	10 8 11 2 11 6 12 0	D00188 7 D00188 8 D00188 9 D00189 0 D00180	1 1.3 4.4 3.2	2.85 3.85 8.11 5.37	0.54 0.63 1.07 0.72	-0.02 -0.02 -0.02 -0.02	5 5.79 7.98 7.81	0.75 1.51 1.6 2.11	0.32 0.23 0.25 0.36	0.06 0.08 0.09 0.07	3.93 7.8 50.12 3.48	0.04 0.07 0.11 0.05	10.3 11.2 15.7 13.3	36.1 30.6 33.1 32.8

HOLE_ID	FROM	то	SAMPLE_ID	Li-ppm	Cs-ppm	Ta-ppm	Sn-ppm	Be-ppm	Sb-ppm	Nb-ppm	Rb-ppm
21BRC0001				NSR							
21BRC0002				NSR							
21BRC0003				NSR							
21BRC0004				NSR							
21BRC0005				NSR							
21BRC0006				NSR							
21BRC0007	100	104	D001704	90.6	7	-0.01	0.82	0.44	0.06	0.71	40.83
21BRC0007	104	108	D001705	76.64	6.6	-0.01	0.88	0.61	0.07	0.46	31.69
21BRC0007	108	112	D001706	99.47	6.23	-0.01	0.62	0.37	0.07	0.17	32.94
21BRC0008	36	40	D001716	67.84	8.34	-0.01	0.58	1.9	1.08	-0.05	32.07
21BRC0008	40	44	D001717	81.33	12.53	-0.01	0.45	2.2	0.87	-0.05	42.77
21BRC0008	44	48	D001718	130.85	19.04	-0.01	0.55	2.31	0.97	0.15	57.08
21BRC0008	48	52	D001719	144.04	35.82	-0.01	0.56	1.73	0.88	0.29	98.22
21BRC0008	52	56	D001720	130.9	16.45	-0.01	0.58	1.65	0.86	0.13	47.31
21BRC0008	56	60	D001721	134.02	14.14	-0.01	0.37	1.56	1.06	0.12	46.29
21BRC0008	60	64	D001722	133.72	11.49	-0.01	0.5	1.58	0.88	0.12	34.45
21BRC0008	64	68	D001723	120.72	10.57	-0.01	0.66	2.36	0.87	0.2	39.67
21BRC0008	68	72	D001724	142.06	11.22	-0.01	0.47	1.99	1.07	0.13	43.94
21BRC0008	72	76	D001725	240.62	54.38	-0.01	1.13	2.86	1.43	0.28	179.03
21BRC0008	76	80	D001727	249.29	63.1	-0.01	0.77	2.11	1.35	0.32	202.39
21BRC0008	80	84	D001728	137.03	10.68	-0.01	0.48	1.51	0.88	0.12	39.96
21BRC0008	84	88	D001729	151.55	17.52	-0.01	0.63	2.5	1.51	0.41	76.54
21BRC0008	88	92	D001730	60.35	4.27	-0.01	0.66	1.14	0.51	0.82	32.14
21BRC0009				NSR							
21BRC0010				NSR							
21BRC0011				NSR							
21BRC0012	80	84	D001846	51.5	0.76	-0.01	0.16	0.92	0.09	-0.05	4.54
21BRC0012	84	88	D001847	112.16	0.82	-0.01	0.19	0.81	0.07	-0.05	3.28
21BRC0012	88	92	D001848	95.86	1.07	-0.01	0.24	0.83	0.11	-0.05	9.4
21BRC0012	92	96	D001849	32.93	1.22	-0.01	0.2	1.22	0.13	0.05	13.93
21BRC0012	96	100	D001851	20.76	1.11	-0.01	0.21	0.99	0.1	-0.05	14.76
21BRC0012	100	104	D001852	52.93	1.75	-0.01	0.22	1.26	0.29	-0.05	17.8
21BRC0012	104	108	D001853	144.74	2.45	-0.01	0.19	1.74	0.33	-0.05	6.59
21BRC0012	108	112	D001854	178.95	2.03	-0.01	0.2	2.3	0.52	-0.05	5.7
21BRC0012	112	116	D001855	271.5	3.95	-0.01	0.25	4.22	0.08	-0.05	8.6
21BRC0012	116	120	D001856	152.82	2.93	-0.01	0.25	2.44	0.08	-0.05	14.07
21BRC0013	16	20	D001864	96.05	1.92	-0.01	0.37	3.25	0.05	-0.05	8.35
21BRC0013	20	24	D001865	118.95	2.28	-0.01	0.32	2.93	0.07	-0.05	6.7
21BRC0013	24	28	D001866	37.83	0.97	-0.01	0.33	2.89	0.06	-0.05	9.37
21BRC0013	28	32	D001867	96.11	1.13	-0.01	0.18	2.06	0.07	-0.05	3.51
21BRC0013	32	36	D001868	157.62	1.79	-0.01	0.15	2.33	0.18	-0.05	4.26

Appendix Table 3: Brahman Project – Reconnaissance Drilling – Anomalous Intercepts – LITHIUM

21BRC0013	36	40	D001869	82.63	1.2	-0.01	0.14	0.99	0.2	-0.05	8.86
21BRC0013	40	44	D001870	82.94	0.95	-0.01	0.14	0.78	0.11	-0.05	5.46
21BRC0013	44	48	D001871	40.88	1.93	-0.01	0.12	0.82	0.08	-0.05	5.4
21BRC0013	48	52	D001872	150.85	1.35	-0.01	0.15	0.89	0.05	-0.05	3.22
21BRC0013	52	56	D001873	21.09	0.43	-0.01	0.1	0.38	0.07	-0.05	2.7
21BRC0013	56	60	D001874	26.5	0.95	-0.01	0.1	0.65	0.11	-0.05	4.37
21BRC0013	60	64	D001875	30.87	0.62	-0.01	0.15	0.66	0.09	-0.05	4.66
21BRC0013	64	68	D001877	51.35	0.37	-0.01	0.14	0.52	0.05	-0.05	4.46

Appendix Table 4: Brahman Project – Rock Chip Samples – Anomalous Intercepts – GOLD

SAMPL	MGA94	MGA94	ΤY	Au-	As-	Bi-	Te-	W-	Mo-	Sb-	Cu-	Ag-	Pb-	Zn-	Cr-	Ni-
E_ID	Z50_X	Z50_Y	PE	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
D0019			RO								57.5					108.
84	632188	7609943	CK	3.8	0.78	0.65	-0.02	0.11	0.77	0.06	8	-0.02	22.6	45	36.5	1
D0019	508600	7646475	RO	0.7	21./	0.15	0.02	1 77	1 1 1	0.46	27.1	0.02	12.0	70.4	707	70.2
83 D0010	598699	7646475		0.7	4	0.15	0.03	1.//	1.11	0.46	27.1	0.03	12.6	78.4	70.7	78.2
82	600114	7661230	СК	0.3	0.7	0.09	-0.02	0.13	0.45	0.09	2.66	0.03	2.1	2.3	8.2	1.9
D0019		7001200	RO	0.0	017	0.05	0102	39.0	0110	0.05	2.00	0.05		2.0	0.2	
81	594256	7659637	CK	8	9.96	2.74	-0.02	1	0.54	1.43	3.69	2.25	29.9	2.8	7	1.2
D0019			RO													
85	637035	7612446	СК	0.1	0.69	0.14	-0.02	0.06	0.12	0.02	1.49	0.24	3.5	2.7	3	3
D0019			RO								69.9				146.	
60	620389	7708489	CK	0.4	2.59	7.37	0.03	0.19	3.3	0.15	1	0.08	6.5	13	2	25.9
D0019 78	620355	7708451	КО СК	0.6	2 38	0 38	-0.02	0 33	6.22	0 19	23.3 7	0.03	2	5	46.6	11 7
D0019	020333	7700151	RO	0.0	2.50	0.50	0.02	0.55	0.22	0.15	, 15.2	0.05	-	5	10.0	,
80	620360	7708500	CK	0.8	3.61	1.04	0.04	0.22	3.54	0.12	7	0.02	2.2	4.9	40.3	8.7
D0019			RO								47.8				136.	
77	620378	7708509	СК	0.7	2.14	0.21	-0.02	0.21	8.06	0.11	3	0.03	2.1	13.7	3	20.7
D0019			RO		24.4						57.2					
56	620317	7708257	CK	0.3	6	0.16	0.12	0.21	3.75	0.93	8	-0.02	22.2	6.5	289	39.4
D0019	620256	7700471	RO	2 5	19.4	0.00	0.12	0.10	2 75	0.4	153.	0.2	17.0	21 5	448.	41.0
79	620356	7708471		2.5	6	0.96	0.12	0.19	3.75	0.4	121	0.2	17.8	21.5	261	41.8
76	620384	7708511	CK	0.6	5.66	0.3	0.05	0.1	2.04	0.14	56	0.14	7.8	15.5	301. 7	14.5
D0019			RO								66.8				162.	
51	620544	7709389	СК	0.5	1.94	0.3	-0.02	0.24	3.65	0.13	3	0.06	3	5.2	1	5.2
D0019			RO												117.	
52	620544	7709358	CK	0.8	3.61	0.4	0.08	0.99	3.26	0.18	17.8	0.04	2.8	4.7	5	7.9
D0019	600504	7700050	RO		4 6 6			0.50	7.00	0.47	12.2		10.5	4.0	00.4	-
53	620534	//09359	CK	0.4	1.08	2.99	-0.02	0.53	1.22	0.17	101	0.03	12.5	4.2	83.1	5
57	620317	7708264	КU СК	0.6	1 33	0.28	-0.02	0.5	4 86	0.15	10.1	0.04	82	8 1	617	45
D0019	020317	7700204	RO	0.0	1.55	0.20	0.02	0.5	00	0.15	5	0.04	0.2	0.1	01.7	7.5
55	620528	7709318	CK	0.3	0.81	0.35	-0.02	0.16	3.26	0.09	5.2	-0.02	1.3	1.3	21.5	2.2
D0019			RO								14.5					
59	620330	7708302	СК	0.3	1.88	0.87	0.02	0.36	3.7	0.06	5	0.07	6.7	2.3	32.9	2.3
D0019			RO													
58	620333	7708272	CK	0.3	1.51	0.79	-0.02	0.52	4.96	0.19	8.34	0.03	7.1	4.2	43.4	7.9
54	620530	7709350	ко СК	6.5	0.42	0.48	-0.02	0.28	0.79	0.06	2.8	0.03	3	1.2	11.8	1.9

SAMPLE_ID	MGA94_Z50_X	MGA94_Z50_Y	ТҮРЕ	Li-ppm	Cs-ppm	Ta-ppm	Sn-ppm	Be-ppm	Sb-ppm	Nb-ppm	Rb-ppm
D001984	632188	7609943	ROCK	154.1	1.13	-0.01	0.23	0.83	0.06	0.09	17
D001983	598699	7646475	ROCK	7.74	1.26	-0.01	0.67	4.38	0.46	0.14	4.94
D001982	600114	7661230	ROCK	2.62	0.49	-0.01	0.12	0.32	0.09	0.06	6.19
D001981	594256	7659637	ROCK	2.08	0.59	-0.01	0.08	0.19	1.43	0.09	6.99
D001985	637035	7612446	ROCK	1.52	1.13	-0.01	0.1	0.21	0.02	-0.05	46.27
D001960	620389	7708489	ROCK	10.61	0.27	-0.01	0.27	0.55	0.15	-0.05	6.01
D001978	620355	7708451	ROCK	7.18	0.24	-0.01	0.38	0.38	0.19	0.1	11.86
D001980	620360	7708500	ROCK	6.85	0.39	-0.01	0.21	0.42	0.12	-0.05	15.54
D001977	620378	7708509	ROCK	6.29	0.07	-0.01	0.22	0.36	0.11	0.08	1.25
D001956	620317	7708257	ROCK	6.04	0.38	-0.01	0.56	1.81	0.93	0.14	5.23
D001979	620356	7708471	ROCK	5.17	0.16	-0.01	0.21	1.46	0.4	-0.05	5.98
D001976	620384	7708511	ROCK	4.06	0.09	-0.01	0.12	0.98	0.14	-0.05	2.17
D001951	620544	7709389	ROCK	3.85	0.19	-0.01	0.24	0.56	0.13	-0.05	4.73
D001952	620544	7709358	ROCK	3.49	0.22	-0.01	0.32	0.53	0.18	-0.05	7.26
D001953	620534	7709359	ROCK	1.96	0.13	-0.01	0.32	0.22	0.17	0.06	4.13
D001957	620317	7708264	ROCK	1.9	0.21	-0.01	0.31	0.24	0.15	0.07	6.36
D001955	620528	7709318	ROCK	1.55	0.12	-0.01	0.15	0.1	0.09	-0.05	3.17
D001959	620330	7708302	ROCK	1.31	0.1	-0.01	0.12	0.16	0.06	-0.05	3.09
D001958	620333	7708272	ROCK	1.3	0.12	-0.01	0.34	0.18	0.19	0.07	3.11
D001954	620530	7709350	ROCK	1.04	0.16	-0.01	0.18	0.1	0.06	-0.05	4.7

Appendix Table 5: Brahman Project – Rock Chip Samples – Anomalous Intercepts – LITHIUM

JORC CODE, 2012 EDITION- TABLE 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	Samples were drilled by standard Reverse Circulation drilling techniques. Sample material was flushed through a cyclone to sample collection point. Samples were taken as composites at 4m and 2m lengths with 1m splits always being taken for lithological, geochemical footprint and pathfinder purposes. Samples were collected in a plastic bucket and laid on ground in discrete piles at 1-meter intervals with representative proportions sampled using a PVC trowel. All samples were geologically logged on-site at the rig and collected in calico bags for sample submission.			
Drilling techniques	• Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Drilling was carried out using conventional Reverse Circulation drilling techniques. The drill bit was a 5 inch hammer with sample material flushing through a cyclone to collection point. All holes were drilled to pre-planned target depths or beyond to get a representative sample of weathered or fresh bedrock. Most holes were drilled vertical (at -90 degrees) as there was little geological information available with regards to dip/strike of underlying bedrock. Two holes were drilled at -60 degrees to provide an orthogona test beneath a prominent outcrop			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether 	Sample recovery was good to excellent except in the case of holes that encountered water. When water flows were considered excessive or compromising the sample quality the holes were stopped. Pending a review and interpretation of results these sites may be drilled again and anomalies followed-up.			

Criteria	JORC Code explanation	Commentary
	sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	All samples were logged on-site at the rig with the following parameters being logged: Hole number, sample intervals and hole depth, water table, regolith type, weathering, colour, grain size, lithology and end of hole sample comments. These holes were exploration holes and not part of a resource orientated program. The chip trays were photographed for data purposes.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being samplad 	On emerging from the cyclone 1m samples were collected in a plastic bucket and placed in series in discrete piles on the ground. Duplicates were inserted in the sample stream as 1 in 50. Standards and blanks were inserted into the sample strings as per standard procedure at the Perth laboratories of Intertek Genalysis. The maximum composite interval was 4 metres, minimum 2 metres in line with established geological and sampling protocols. Sample sizes were appropriate for the type of exploration being carried out.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	Samples were prepared, pulverized and assayed at Intertek Laboratories in Perth. Given the reconnaissance nature of the program, Gold and Multi element analyses were carried out by Interteks method code AR005/MS553 with Aqua Regia digest for geological and geochemical pathfinder investigations. Duplicates were inserted on-site in the sample stream. Intertek Laboratories also employed internal standards and checks as part of the analytical process.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Drill hole data was checked by independent consultants (Pivot Exploration Information Management Services) and New Age Company personnel. No significant ore-grade intersections were reported as the program is for reconnaissance purposes only and not a resource drill-out. No twinned holes were done or deemed necessary at this stage. Drill logs were recorded on paper in the field and then transferred to a spreadsheet with picklists for validation. All data was checked and validated by in-house competent personnel.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Drillholes were located by handheld Garmin GPS 64s accurate to +/- 4m. This is adequate for the type of exploration program
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drill targeting of anomalies generally comprised single holes spaced up to several Km apart.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	In general traverses were oriented perpendicular to the general structural trends. Drillholes were spaced to provide a first pass test of as many geological/geophysical targets as possible in the time available.
Sample security	• The measures taken to ensure sample security.	All holes were sampled and bagged at the drill site. These were held at the Munda Station under the control of geologists and field assistants. All samples were shipped from Port Hedland in sealed bulka bags by courier to Intertek laboratories in Maddington.

Criteria	JORC Code explanation	Commentary
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 The data were independently verified by Core Geophysics. Assay results were checked against samples and drill logs and validated by competent persons in Perth.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	All Reverse circulation drilling relevant to this announcement was conducted within Tenement E47/3958 – the Brahman Project. Limited rock chip sampling was undertaken in E47/4407 – the Quartz Hill Project.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Very limited and poorly reported previous exploration. No detailed appraisal carried out in these areas of sparse previous exploration coverage. Tenements are predominantly under cover and geophysics (aeromagnetics) were the main targeting criteria employed.
Geology	• Deposit type, geological setting and style of mineralisation.	Mineralisation anticipated to be related to mantle-derived intrusives intersected by trending linear features and discrete magnetic anomalies. The target is gold hosted in intrusive intermediate granites, VHMS base metal and pegmatite hosted lithium mineralization.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Table of drill hole data included in the body of the announcement.

Criteria	JORC Code explanation	Commentary
	justified on the basis that the information is	
	not Material and this exclusion does not	
	detract from the understanding of the	
	report, the Competent Person should	
	clearly explain why this is the case.	
	In reporting Exploration Results, weighting	
	averaging techniques, maximum and/or	
	minimum grade truncations (e.g., cutting of	
	high grades) and cut-off grades are usually	
	Material and should be stated.	
Data	Where aggregate intercepts incorporate	No data aggregation was carried out and no
	short lengths of low grade results the	truncation or top cuts of results were employed.
aggregation	nrocedure used for such aggregation	All reported intersections are length weighted
methods	should be stated and some typical	only.
	examples of such aggregations should be	
	shown in detail.	
	• The assumptions used for any reporting of	
	metal equivalent values should be clearly	
	stated.	
	These relationships are particularly	
Relationshi	important in the reporting of Exploration	
p between	Results.	The geometry of any mineralized bodies is not
mineralisati	If the geometry of the mineralisation with	known at this stage. The holes were drilled at -90
on widths	respect to the drill hole angle is known, its	degrees or -60 degrees as an initial test and to
and	nature snoula be reported.	obtain geochemical and geological data down to
intercent	 If it is not known and only the down note lengths are reported, there should be a 	or beyond the bedrock interface.
lowethe	clear statement to this effect (e.g. 'down	
lengths	hole length, true width not known').	
	Appropriate maps and sections (with	
	scales) and tabulations of intercepts should	
	be included for any significant discovery	
Diagrams	being reported These should include, but	See text for typical plans and hole locations.
	not be limited to a plan view of drill hole	
	collar locations and appropriate sectional	
	VIEWS.	
	writere comprehensive reporting of all Evaluation Results is not practicable	
Ralanced	representative reporting of both low and	All geophysical data was reported
ronorting	high grades and/or widths should be	All geological and assay data is reported.
reporting	practiced avoiding misleading reporting of	
	Exploration Results.	
	• Other exploration data, if meaningful and	
	material, should be reported including (but	
Other	not limited to): geological observations;	
substantive	geophysical survey results; geochemical	All known and relevant data has been reported
exploration	survey results; bulk samples – size and	
data	method of treatment; metallurgical test	
	results; bulk density, groundwater,	
	geolechnical and rock characteristics;	

Criteria	JORC Code explanation	Commentary
	potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Reconnaissance drilling is imperative to confirm geophysical models/investigations and observations with the objective of detecting bedrock gold mineralization. This Project is at the early stage of exploration and no resource drilling has yet been contemplated or planned.