

Mine to Anode

Advanced Automotive Battery Conference Europe

June 2022

Joe Williams – Technical Marketing Manager (Syrah Global DMCC)

Important notice and disclaimer

This presentation is for information purposes only. Neither this presentation nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. This presentation may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in such jurisdiction. This presentation does not constitute financial product advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this presentation are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

Certain statements contained in this presentation, including information as to the future financial or operating performance of Syrah Resources Limited (Syrah Resources) and its projects, are forward-looking statements. Such forward-looking statements: are necessarily based upon a number of estimates and assumptions that, whilst considered reasonable by Syrah Resources, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements; and may include, among other things, Statements regarding targets, estimates and assumptions in respect of metal production and prices, operating costs and results, capital expenditures, ore reserves and mineral resources and anticipated grades and recovery rates, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. Syrah Resources disclaims any intent or obligation to update publicly any forward looking statements, whether as a result of new information, future events or results or otherwise. The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and other similar expressions identify forward-looking statements. All forward-looking statements made in this presentation are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

Syrah Resources has prepared this presentation based on information available to it at the time of preparation. No representation or warranty, express or implied, is made as to the fairness, accuracy or completeness of the information, opinions and conclusions contained in the presentation. To the maximum extent permitted by law, Syrah Resources, its related bodies corporate (as that term is defined in the *Corporations Act 2001 (Cth)*) and the officers, directors, employees, advisers and agents of those entities do not accept any responsibility or liability including, without limitation, any liability arising from fault or negligence on the part of any person, for any loss arising from the use of the Presentation Materials or its contents or otherwise arising in connection with it.

Investor Relations

Viren Hira

T: +61 3 9670 7264

E: v.hira@syrahresources.com.au

Media Enquiries
NWR Communications

Nathan Ryan

T: 0420 582 887

E: nathan.ryan@nwrcommunications.com.au

Syrah Contact Information

Level 28, 360 Collins Street Melbourne, Victoria 3000

T: +61 3 9670 7264

E: enquiries@syrahresources.com.au

W: www.syrahresources.com.au

Company Overview

Syrah's Value Proposition

Electric Vehicles require graphite

- Electric Vehicle ("EV") adoption is gaining momentum
- Anodes in lithium-ion batteries used in EVs are made of graphite

Graphite is a strategic critical mineral

- Global anode supply chain is currently 100% reliant on China
- Graphite is designated as a strategic critical mineral in USA, EU, Japan & Australia

Balama Graphite Operation: A Tier 1 asset

- Long life (>50 years¹) and high grade (16% TGC²)
- Largest integrated natural graphite mine and processing operation globally
- Significant vanadium resource at Balama is a valuable option³

Vertical Integration in USA

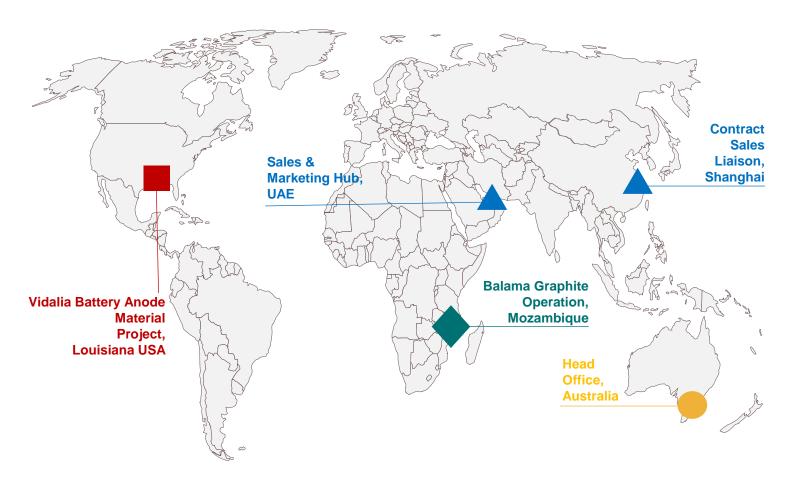
- Balama vertically integrated with AAM⁴ facility at Vidalia, USA
- Large scale ex-Asia AAM supply option that is ESG verifiable

Syrah's vision is to be the world's leading supplier of superior quality graphite and anode material products, working closely with customers and the supply chain to add value in battery and industrial markets

^{1.} Life of mine based on current 107Mt Graphite Ore Reserves being depleted at 2Mt throughput per annum. Refer to 2021 Annual Report released to ASX 24 March 2022 for Reserves as at 31 December 2021. All material assumptions underpinning the Reserves and Resource statement in this presentation continue to apply, other than as updated in subsequent ASX releases.

TGC = Total graphitic carbon.

Scoping study on potential to refine vanadium as per ASX release 30 July 2014.


AAM = Active anode material.

Syrah's Positive ESG Profile

	Leading ESG standards	 ✓ ISO:45001 and ISO:14001 certification at Balama ✓ Vidalia expansion project being developed in line with best practice health, safety and environmental standards ✓ Critical Risk Management Framework embedded across the Group
i/Mi	Best practice sustainability frameworks	 ✓ Sustainability frameworks guided by: Global Reporting Initiative (GRI) United Nations Sustainable Development Goals (SDGs) International Council on Mining and Metals (ICMM) Initiative for Responsible Mining Assurance (IRMA) ✓ Robust Community Development and Stakeholder Engagement Strategy
	Low carbon footprint	 ✓ Lower carbon emissions footprint (life cycle) of natural versus synthetic graphite ✓ Independent life cycle assessment (LCA) completed ✓ Implementing initiatives to lower carbon footprint further
	Auditable back to source	 ✓ Fully integrated by Syrah from mine to customer ✓ Vidalia products will have a single chain of custody back to the source

Syrah is a globally integrated natural graphite producer

A global business to service the growing demand for natural flake graphite and processed graphite-based products

: Balama Graphite Operation

- Ore Reserves 107Mt at 16% TGC¹ (17Mt of contained graphite) underpinning a 50+ year mine life²
- Simple open pit operation, low stripping ratio, design production capability 350kt flake graphite per annum
- Balama graphite product mix and specifications are suited for use in the lithium-ion battery and traditional markets

: Vidalia Active Anode Material Facility

- Capability to produce coated purified spherical graphite for product qualification in the lithium ion battery supply chain
- Existing facility under construction to 11.5ktpa production capacity

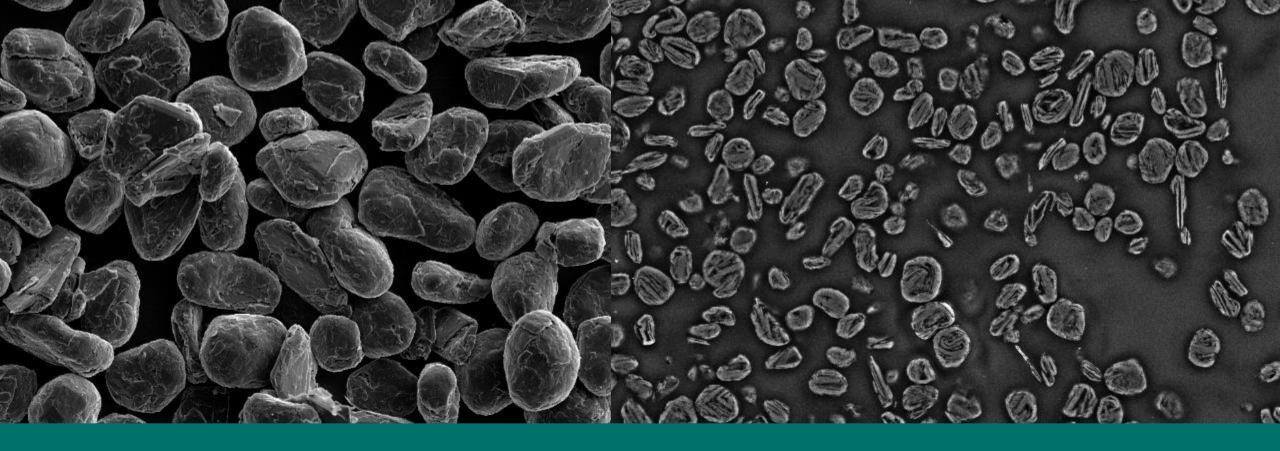
: Sales & Marketing

- · Global sales and marketing functions led from UAE
- Sales and marketing support provided by contract sales liaison in China

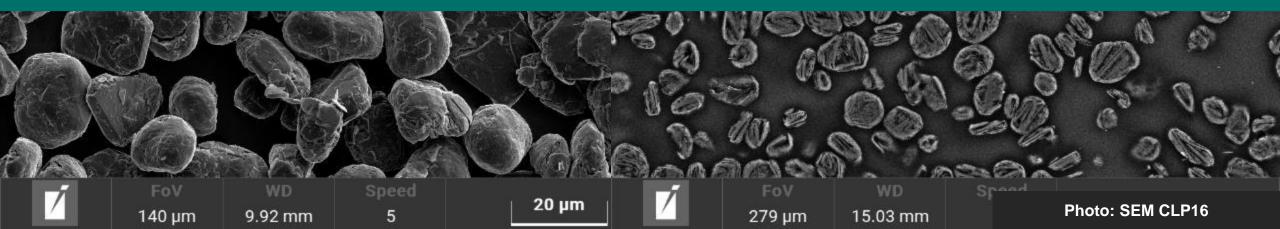
: Corporate Office

• Finance, Legal, Human Resources, Investor Relations

- TGC = Total Graphitic Carbon.
- 2. Life of mine based on current 107Mt Graphite Ore Reserves being depleted at 2Mt throughput per annum. Refer to 2021 Annual Report released to ASX 24 March 2022 for Reserves as at 31 December 2021. All material assumptions underpinning the Reserves and Resource statement in this presentation continue to apply, other than as updated in subsequent ASX releases.

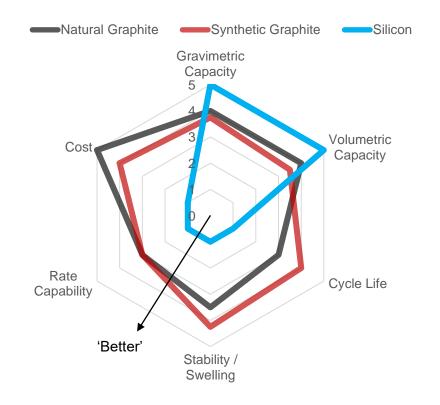


Syrah's vision is to become a leading supplier of anode products


AAM	Vidalia, USA				
Production			Potential ² Asia Tolling (>20ktpa)		
Base		FID Taken	BFS Underway	Europe	
Target Markets and Potential AAM Production Capacity	Customer Qualification Facility	Initial Expansion 11.25ktpa	Potential Additional Expansion: Vidalia Expansion + Europe Exports 45ktpa ¹	Potential Further Vidalia Expansion + Europe AAM Facility >100ktpa	
Potential — Timeline	2015 – now	2023	2025 – 2026	2026 – 2030	
Ownership Model	100% owned	100% owned	100% owned or joint venture	100% owned or joint venture	
Syrah Product e Development	Entry product strategy established via 6-year process with industry & customers	18-micron natural graphite AAM (drop-in) product	18 & 12-micron natural graphite AAM products	Portfolio of AAM (blended natural / artificial graphite, silicon coated) & anode precursor products	

Syrah's downstream expansion strategy is underpinned by integration with a scalable mining/processing operation and world-class graphite resource at Balama

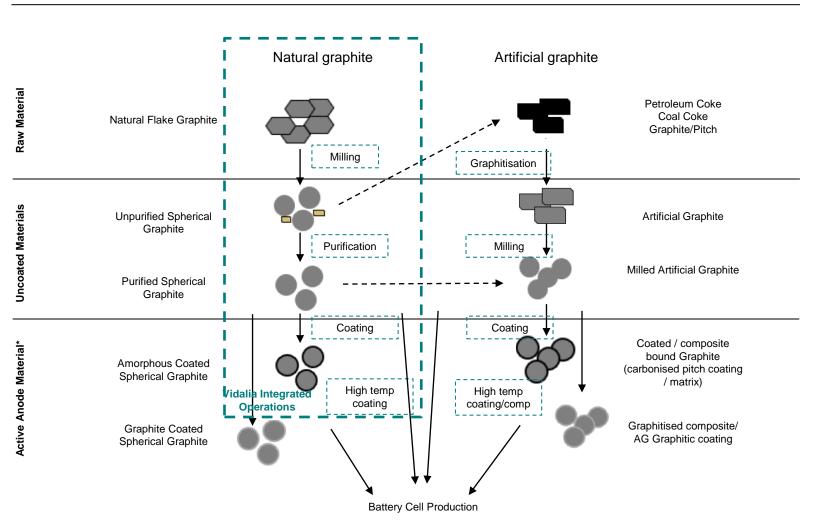
Product Overview

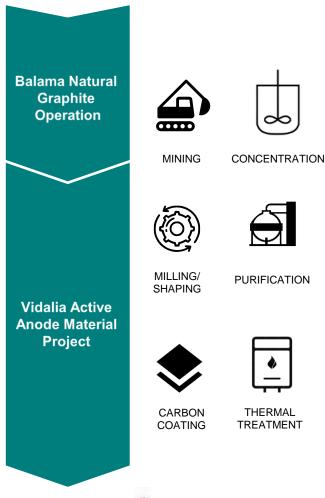

Anode Material KPIs

Internal (Vendor) Benchmark Results (Current)

Powder Properties (Carbon)

Characteristic	Typical Ranges
Purity (LOI Carbon%)	>99.9% (Min) - > 99.99%
Particle Size Distribution	5 - 25 um (D50)
Crystal Structure (d002 interlayer spacing)	0.335 - 0.4nm (hard carbon)
Density (Tapped)	>0.9 g/cc
Surface Area (BET)	1 – 5 m2/g
Morphology	Spherical, Isotropic preference
Pellet Density (>2T)	>1.5 (Ag), >1.7 (Ng)
Moisture	0.1 -> 0.5%

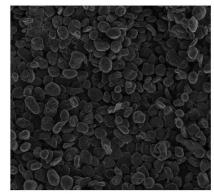

Battery Performance



Syrah progressing to be a vertically integrated natural graphite anode supplier

The Vidalia facility is fully integrated to complete all steps in the process for production of AAM using Balama natural graphite

Typical Production Tree for Natural Graphite and Artificial Graphite AAM


CLP Product Line

Natural Graphite Anode Active Material

Morphology			Standard	CLP-18	CLP-12
·		Dmin		-	
		D10		10.0 ± 2.0	7.0 ± 2.0
Particle Diameter	μm	D50	ASTM E2651	18.0 ± 2.0	12.0 ± 2.0
		D90		27.0 ± 3.0	24.0 ± 3.0
		D99		≤ 50	≤ 50
BET Specific Surface Area (SSA)		m²/g	ISO 9277	2.5 ± 0.5	< 4.0
Tap Density (Td)	g/cc		ASTM D7481 (3000 taps)	> 1.0	> 0.95
Chemical					
Moisture		%	ASTM C562	≤ 0.1	≤ 0.1
Ash		%	ASTM C561	≤ 0.04	≤ 0.04
Total Carbon (TC = 100 – LOI)		%	Dry basis	≥ 99.96	≥ 99.96
Trace Impurities					
Iron (Fe)		ppm	ICP-OES	≤ 30	≤ 30
Electrochemical					
Specific Capacity	m	nAh/g	Half Cell (C/10)	358	355
First Cycle efficiency		%	Half Cell (C/10)	94	93
Discharge Rate	%		Coin Cell (1C:C/20)	94	95

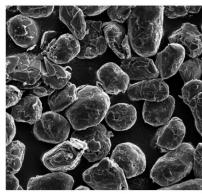
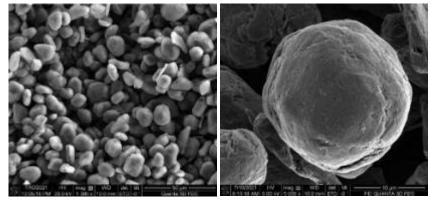



Figure 1: Scanning Electron Microscope (SEM) images of Vidalia AAM from furnace.

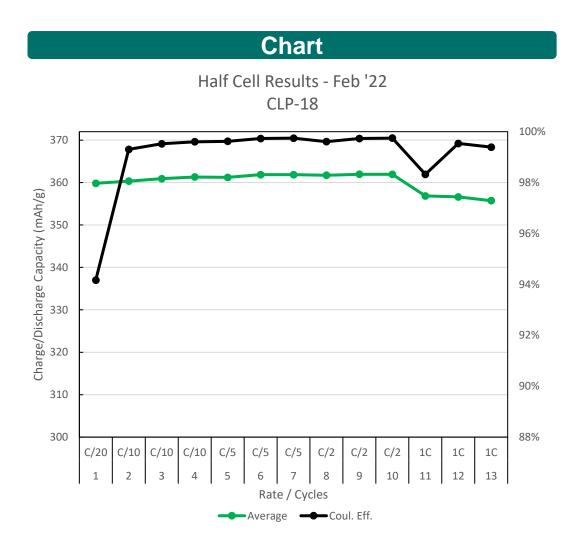
CLP-12, Natural Graphite Active Anode Material- SEM Images

Technical Performance

Committed to measuring and mapping material characteristics to performance

Electrochemical expertise developed internally through external cell testing and customer interaction – supplementary consultancy as required

Measuring and Mapping Interdependencies

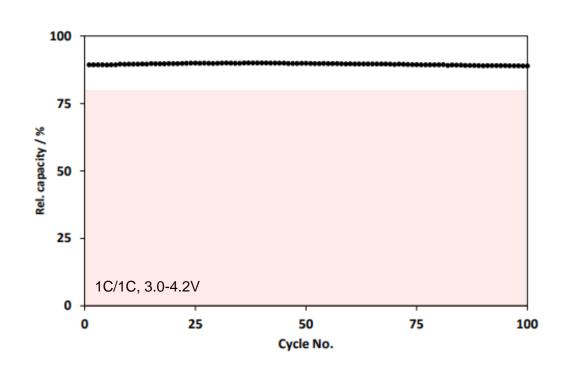

Atomic Structure	Powder Properties	Electrode Properties	Electrochemistry	Cell Properties
<u>Inputs</u>	Processing		1	
Interlayer Spacing	Particle Size Distribution	Porosity	Tortuosity	Cycle performance
(D002)	Surface Area	Wettability	Impedance	Shelf life
Crystallite Domain (Lc length)	Surface porosity	Compressed density	Current density	Rate Capability
Rhombic Phase	Surface impedance	SEI homogeneity	Activation energy	Discharge performance
(ABAB/ABC Ratio)	Shape	Spring-back		Charge performance
Crystallite thickness (Edge plane exposure)	Purity	Expansion		Swelling
	Tap Density	Conductivity		Safety
	Energy Density	Peel Strength		
	Internal porosity & permeability	Slurry mixing/viscosity		

Highly dependent on cell design

CLP18: Half Cell Performance

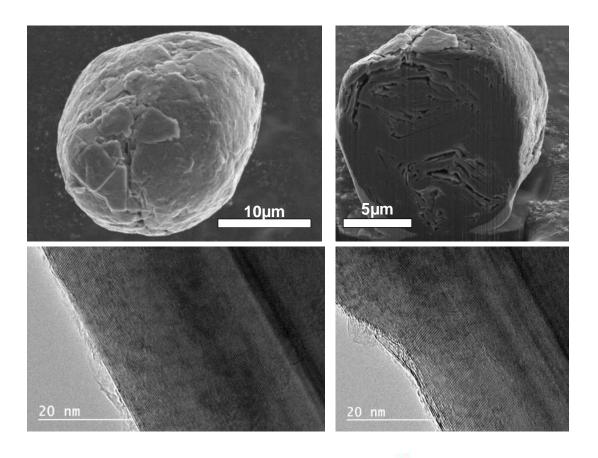
Internal (Vendor) Benchmark Results (Current)

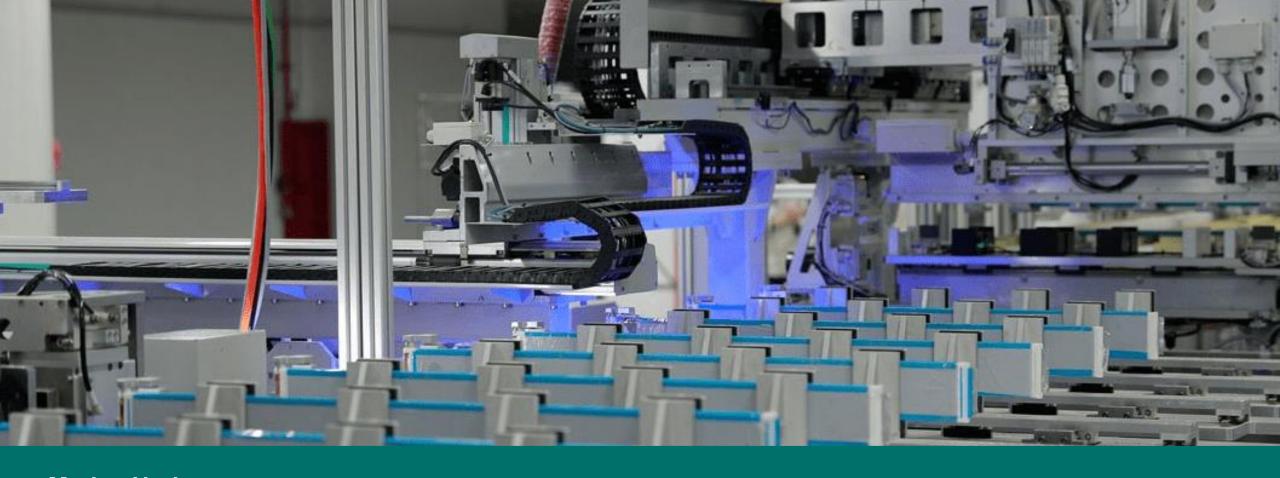
KPIs & Method


Specific Capacity (mAh/g)	First Cycle Efficiency (%)	Rate (Delithiation)- 1C:C/20 (%)	
359.8	94.17	362.9/359.8 99.2%	

Half Cell Methodology / Design		
Cell Type	2032	
Cell Components	Cell can, spring, SS spacer (1mm), Li foil, separator, glass fibre separator (300um), Anode, Cu collector (10um)	
Electrode Comp.	Graphite:CB:CMC:SBR (94.5:1.5:1.5:2.5)	
Electrolyte	12.7% LiPF6, 26.2% EC, 61.1% EMC (%w/w)	
Calendared Thickness	85um	
Loading	12.8mg/cm2	
Pressed Density	1.5g/cc	
Porosity	30%	
Temperature	22.5 °C	

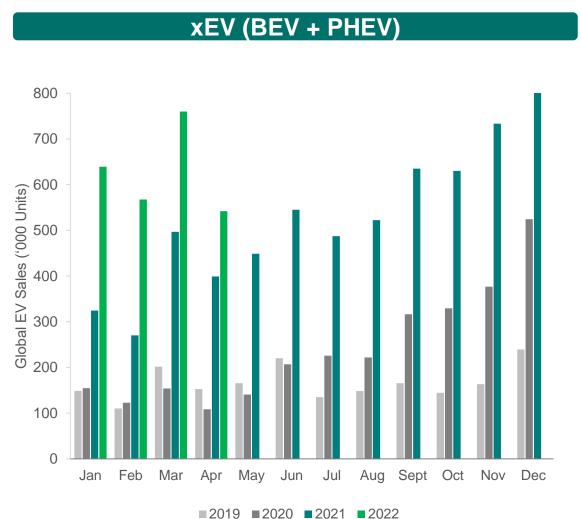
Cycle Life and Particle morphology


Syrah's CLP Product cycle life is enhanced through particle engineering


25°C – Full coin-cell, Ni(622) Cathode

100% = first charge capacity

Cross-section and Carbon Coating



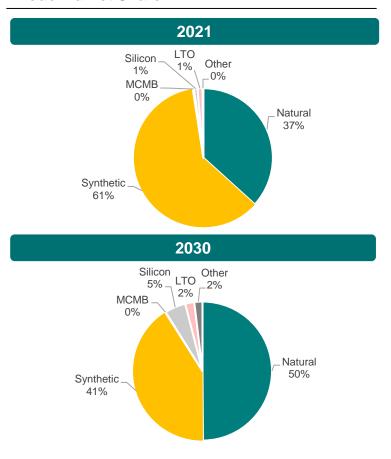
Market Update

xEV adoption requires significant lithium-ion battery supply

Growth has been incredibly strong, market share has increased to ~24% in China for April

Li-ion Battery

Battery demand outlook under BNEF's Economic Transition Scenario and Net Zero Scenario



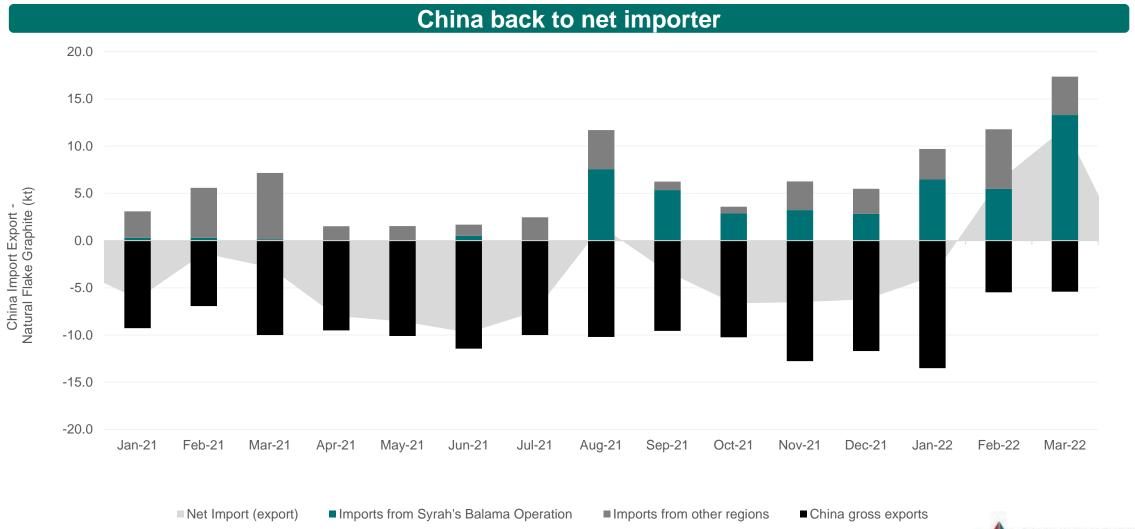
Source: BNEF. Note: Consumer electronics and stationary storage demand are assumed to be the same under both scenarios. ETS is the "Economic Transition Scenario" and NZS is the "Net Zero Scenario".

A SYRAH RESOURCES

Significant Active Anode Material is required for the lithium-ion battery market

Anode Market Share

Global Anode Material Production (kt)


Source: Benchmark Mineral Intelligence Flake Graphite Forecast, Q1 2022

Source: ICCSino (excludes 'Other'), Company reports, Syrah analysis

Natural flake graphite is the key feedstock for Active Anode Material

Not all natural graphite is suitable for consumption as Active Anode Material, major industrial markets are steel and foundry

A SYRAH RESOURCES