

Millennium Exploration update – Early Assays Received

Highlights

- First assays returned from Phase 1 Millennium RC drilling with results including:
 - 5m @ 2.27% Cu, 0.09% Co and 0.94g/t Au (MI22RC02, 104-109m)
 - o 6m @ 1.24% Cu, 0.5g/t Au (MI22RC07, 60-66m)
 - 9m @ 0.84% Cu, 0.19% Co and 0.23g/t Au (MI22RC07, 71-80m)
- Phase 2 metallurgical sampling and deeper drilling is underway (visible Co-Cu minerals observed)
- Extension drilling to the north and proximal to the Pilgrim/Fountain Range Fault Zone to follow throughout July

Figure 1: MI22DD01 diamond drilling, Millennium Southern Area

Metal Bank Limited (ASX: MBK) ('Metal Bank', 'MBK' or the 'Company') is pleased to provide an exploration update from its Millennium copper-cobalt-gold project in Queensland (MBK earning up to 80%).

Following drilling completed in late May, assay results have now been received for MBK's Phase 1 resource extension and infill program in the Southern and Central Resource Areas at Millennium in NW QLD. These results include:

- 5m @ 2.27% Cu, 0.09% Co and 0.94g/t Au (MI22RC02, 104-109m) 30 metres north of our current resource model
- 6m @ 1.24% Cu, 0.5g/t Au (MI22RC07, 60-66m)
- 9m @ 0.84% Cu, 0.19% Co and 0.23g/t Au (MI22RC07, 71-80m)

Results from holes MI22RC02, 03, 05, and 06 provide support to the resource model interpretation and indicate potential for deeper mineralisation. The MI22RC02 intersection was some 30m north outside the existing resource model and remains open further North along strike indicating potential for resource extension. MI22RC07 displays mineralisation shallower than previously modelled (Figure 3).

In addition, encouraging observations and assay results were also returned from an RC pre-collar in the expected barren hangingwall to the west of Millennium and towards the Pilgrim/Fountain Range Fault Zone including 12m @ 0.26% Cu with minor cobalt and gold (MI22RD03, 136-148m).

Commenting on the first phase of MBK's exploration program for 2022, Metal Bank's Chair, Inés Scotland said:

"We are very pleased with the copper and cobalt assay results which support our resource extension goal at Millennium. Both cobalt and copper are key minerals in Australia's renewable energy future. We are also waiting on assays at our Livingstone Gold Project in WA rounding out our initial exploration results from our portfolio of base and precious metals projects.

Millennium 2022 Work Program

Results from recent Phase 1 drilling have been received, including six RC drill holes validating and testing the existing resource (MI22RC02-07), one hole testing below the Federal workings (MI22RC01) and four of six RC precollars to deeper diamond drill holes.

Results are presented in Table 1 and Figure 2 with cross-sections in Figures 3 and 4.

Results from MI22RC04 are pending.

HOLE ID	FROM	INTERVAL (m)	Cu %	Co %	Au g/t
MI22RC01	23	4	0.57	0.01	<0.01
and	34	1	2.92	<0.01	<0.01
and	60	4	0.46	<0.01	<0.01
MI22RC02	86	4	0.96	0.02	0.42
and	94	1	0.26	0.03	0.02
and	97	1	0.37	0.06	0.01
and	103	1	0.03	0.12	0.01
and	104	5	2.27	0.09	0.94
MI22RC03	18	4	0.23	0.02	0.07
MI22RC05	36	13	0.64	0.04	0.3
and	51	1	0.13	0.28	0.07
MI22RC06	45	13	0.37	0.05	0.17
and	69	2	0.33	0.22	0.13
and	113	1	0.23	0.02	0.01
MI22RC07	43	12	0.36	0.03	0.13
and	60	6	1.24	0.03	0.5
including	61	2	2.37	0.06	1.02
and	71	9	0.84	0.19	0.23
MI22RD03	132	1	0.18	0.10	0.06
and	136	12	0.23	0.04	0.06

Table 1: Millennium Phase 1 notable intersections

NOTE: 0.2% Cu cut-off, 3m maximum internal dilution unless indicated by*. Results >0.1% Co reported individually if Cu above cut-off is not present.

Figure 2: Millennium Project area plan showing current drilling and received results

Figure 3: Millennium 7723300N cross-section (NB: MI22RD03 to be drilled)

Figure 4: Millennium 7722900N cross-section (NB: MI22RD06 to be drilled)

Results are in line with previous intersections and add support to the resource model interpretation. Importantly, the MI22RC02 intersection was some 30m North outside the previous resource model and remains open further North along strike supporting potential for extension to the existing resource.

In addition, mineralisation noted in the hangingwall west of the main Millennium mineralised trend returned broad encouraging results of 12m @ 0.26% Cu (MI22RD03, 136-148m) with minor Co and Au. This supports additional mineralised structures within the granted MLs and/or a potential link with the regionally significant Pilgrim/Fountain Range Fault Zone along the western margin of the project. Additional RC drilling is planned to directly test this regionally significant fault system to establish its relationship with Millennium mineralisation.

Diamond drilling is currently underway including shallow large diameter core for metallurgical samples and infill drilling. Deeper diamond drilling for resource infill, Exploration Target confirmation, structural, geochemical and geometallurgical sampling will follow. Shallow drilling has identified fresh cobalt and copper sulphides in core (Figure 5) and the first of several deeper holes is about to commence.

Figure 5: MI22DD01, 56.4m – cobalt (grey vein, mid left) and copper (yellow speckles, top right) mineralisation as vein cobaltite and disseminated/infill chalcopyrite mineralisation in siliceous metasediment host, (PQ core).

The drilling program will then return to RC seeking to extend and infill the Central Area Resource to the north and confirm economic scope for the Northern Area. The current drilling program is expected to be completed by mid-August. Assay results are currently experiencing significant delays of up to 7-8 weeks from submission.

Millennium Project – MBK earning up to 80%

The Millennium Copper and Cobalt Project near Cloncurry in NW QLD currently holds a JORC 2012compliant Inferred Resource of 5.9Mt @ 1.08% CuEq¹ (Cu-Co-Au-Ag) across 5 granted Mining Leases with significant potential for expansion. It is located 19km from the Rocklands copper-cobalt project with an established processing plant capable of treating Millennium-style ores once recommissioned.

MBK's 2021 drill results and other previous drilling, in conjunction with significant appreciation in copper and cobalt prices since maiden Resource reporting, provided support for an initial Exploration Target¹ for the Project of 8 – 10Mt @ 1.0 - 1.1% CuEq.

MBK has developed a three-phase work program for Millennium in 2022² seeking to confirm the Exploration Target for the Project, and future Resource expansion and development potential.

The Exploration Target is based on extensions both along strike and at depth in both the Southern and Central Area copper-cobalt-gold Resources and in the Northern Area, where shallow copper intervals at broad spacing have been returned some 800-1000m north of the closest Resource.

Upon receipt and assessment of results from the current 2022 drilling program, MBK will embark on a JORC 2012-compliant Resource update and Scoping Study utilising appropriate economic parameters aimed for completion late 2022.

It should be noted that the Exploration Target is conceptual in nature. There has been insufficient drilling at depth of the existing Resource and in the Northern Area of the project and insufficient information relating to the Reasonable Prospects of Eventual Economic Extraction (RPEEE) of the Millennium project to estimate a Mineral Resource over the Exploration Target area, and it is uncertain if further study will result in the estimation of a Mineral Resource over this area. It is acknowledged that the currently available data is insufficient spatially in terms of the density of drill holes, and in quality, in terms of MBK's final audit procedures for down hole data, data acquisition and processing, for the results of this analysis to be classified as a Mineral Resource in accordance with the JORC Code.

Authorised by the Board

For further information contact:

Inés Scotland – Executive Chair ines@metalbank.com.au Sue-Ann Higgins - Director and Company Secretary sue-ann@metalbank.com.au

¹ HMX ASX Announcement dated 6 December 2016 and MBK ASX Release dated 13 December 2021 "MBK signs Earn-in and JV Agreement for the Millennium Project"

² MBK ASX Release dated 16 March 2022 "Drilling at Millennium Copper-Cobalt-Gold Project to commence"

or

About Metal Bank

Metal Bank Limited is an ASX-listed minerals exploration company (ASX: MBK) holding a significant portfolio of advanced gold and copper exploration projects with substantial growth upside, including:

- the right to earn up to 80% of the Millennium Copper & Cobalt project which holds an inferred 2012 JORC resource of 5.9Mt @ 1.08% CuEq^{3,} across 5 granted Mining Leases with significant potential for expansion;
- a 75% interest in the advanced Livingstone Gold Project in WA which holds a JORC 2004 Inferred Resource of 49,900oz Au⁴ at the Homestead prospect, a JORC 2012 Inferred Resource of 30,500oz⁵ Au at Kingsley, and an Exploration Target⁵ of 290 – 400Kt at 1.8 – 2.0 g/t Au for 16,800 – 25,700oz Au at Kingsley; and
- the 8 Mile, Wild Irishman and Eidsvold Gold projects in South East Queensland where considerable work by MBK to date has drill-proven both high grade vein-style and bulk tonnage intrusion-related Au mineralisation.

Metal Bank's exploration programs at these projects are focussed on:

- short term resource growth advancing existing projects to substantially increase JORC Resources;
- identifying additional mineralisation at each of its projects; and
- assessing development potential and including fast tracking projects through feasibility and development to production.

Metal Bank is also committed to a strategy of diversification and growth through identification of new exploration opportunities which complement its existing portfolio and pursuit of other opportunities to diversify the Company's assets through acquisition of advanced projects or cash-flow generating assets to assist with funding of the exploration portfolio.

³ HMX ASX Announcement dated 6 December 2016 and MBK ASX Release dated 13 December 2021 "MBK signs Earn-in and JV Agreement for the Millennium Project"

⁴ 070301_HC_TR_BoundaryResourceEstimate_R2004 – Talisman Mining Ltd and KSN ASX Announcement dated 2 December 2020

⁵ MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate and updated Exploration Target"

Board of Directors and Management	Registered Office
	Metal Bank Limited
Inés Scotland (Executive Chair)	Suite 506, Level 5, 50 Clarence Street
	Sydney NSW 2000 AUSTRALIA
Guy Robertson (Executive Director)	Phone: +61 2 9078 7669
	Email: <u>info@metalbank.com.au</u>
Sue-Ann Higgins (Executive Director and	
Company Secretary)	Share Registry
	Automic Registry Services
Rhys Davies (Exploration Manager)	Phone: 1300 288 664 (local)
	+61 2 9698 5414 (international)
Trevor Wright (Technical Advisor)	Email: <u>hello@automic.com.au</u>
	Web site: <u>www.automic.com.au</u>
	Please direct all shareholding enquiries to the share
	registry.

Competent Person Statements

The information in this announcement that relates to Mineral Resource Estimation of the Kingsley Deposit was prepared and reported in accordance with the ASX Announcements referenced in this announcement and is based on information compiled by Mr. Michael Job, a Competent Person who is a Fellow of the Australasian Institute of Mining and Metallurgy and a full time employee of Cube Consulting Pty Ltd.

The information in this announcement that relates to Mineral Resources of the Kingsley Deposit is based on information compiled by Mr. Mike Atkinson, a Competent Person who is The Australasian Institute of Geoscientists and a full time employee of Integrated Geological and Mining Solutions Pty Ltd.

The information in this announcement that relates to exploration results and Mineral Resources and Ore Reserves for the Livingstone Project was prepared and reported in accordance with the ASX Announcements, Talisman Mining and Kingston Resources News Releases referenced in this announcement. The information in this announcement that relates to Mineral Resources of the Livingstone Project (Homestead) is based on information compiled by Mr Steven Elliot, a Competent Person who was a Member of the Australasian Institute of Mining and Metallurgy and a full time employee of Talisman Mining Ltd at time of work.

The information in this announcement that relates to exploration results and Mineral Resources and Ore Reserves for the Millennium Project was prepared and reported in accordance with the ASX Announcements and Global Energy Metals Corporation (GEMC) News Releases referenced in this announcement. The information in this announcement that relates to Mineral Resources of the Millennium Project is based on information compiled by Ms Elizabeth Haren, a Competent Person who is a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and a full time employee of Haren Consulting Pty Ltd.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant ASX announcements and News Releases. In the case of Mineral Resource estimates and Ore Reserve estimates, all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company

confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcements or News Releases.

The information in this announcement, that relates to MBK Exploration Results, Mineral Resources and Exploration Target statements is based on information compiled or reviewed by Mr Rhys Davies. Mr Davies is a contractor to the Company and eligible to participate in the Company's equity incentive plan. Mr Davies is a Member of The Australasian Institute of Geoscientists has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Davies consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

It should be noted that the MBK Exploration Targets described in this announcement are conceptual in nature and there is insufficient information to establish whether further exploration will result in the determination of Mineral Resources. As a Cautionary Statement, an Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade, relates to mineralization where there has been insufficient exploration to estimate a Mineral Resource. The potential quantity and grade of the Exploration Targets is conceptual in nature, there has been insufficient exploration to estimate an additional Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Targets take no account of geological complexity that may be encountered, possible mining method or metallurgical recovery factors. It is acknowledged that the currently available data is insufficient spatially in terms of the density of drill holes, and in quality, in terms of MBK's final audit procedures for down hole data, data acquisition and processing, for the results of this analysis to be classified as Mineral Resources in accordance with the JORC Code.

HOLE_ID	EASTING	NORTHING	RL	DIP	AZI	EOH
MI22RC01	416027	7722318	247	-55	90	91
MI22RC02	415908	7722900	239	-70	90	150
MI22RC03	416003	7723008	254	-55	135	79
MI22RC04	415982	7723086	250	-65	110	133
MI22RC05	416006	7723214	260	-63	135	79
MI22RC06	415997	7723250	256	-55	90	127
MI22RC07	416028	7723306	255	-80	90	115
MI22RD01	415782	7722700	256	-70	90	156*
MI22RD02	415810	7722800	254	-70	90	80*
MI22RD03	415920	7723300	257	-70	90	156*
MI22RD04	415979	7723400	249	-80	90	124*
MI22RD05	415983	7723509	247	-72	100	156*
MI22RD06	415816	7722900	248	-70	90	115*
*RC pre	ecollar					

APPENDIX 1: MILLENNIUM PHASE 1 DRILL HOLE DETAILS

ATTENDIX 2.		101		I DIVICEN		
HOLE ID	FROM	то	INT (m)	Cu ppm	Co ppm	Au g/t
HOLE_ID	FROM	TO	INT (m)	Cu ppm	Co ppm	Au g/t
MI22RC01	0	2	2	40	30	-0.01
MI22RC01	2	5	3	500	50	0.01
MI22RC01	5	8	3	380	30	-0.01
MI22RC01	8	10	2	130	20	-0.01
MI22RC01	10	12	2	300	40	-0.01
MI22RC01	12	13	1	410	50	-0.01
MI22RC01	13	17	4	200	20	-0.01
MI22RC01	17	21	4	220	20	-0.01
MI22RC01	21	23	2	160	20	0.02
MI22RC01	23	27	4	5730	120	-0.01
MI22RC01	27	31	4	310	30	-0.01
MI22RC01	31	34	3	50	10	-0.01
MI22RC01	34	35	1	29200	20	-0.01
MI22RC01	35	39	4	500	10	-0.01
MI22RC01	39	40	1	180	30	-0.01
MI22RC01	40	44	4	110	20	-0.01
MI22RC01	44	48	4	60	10	-0.01
MI22RC01	48	52	4	50	10	-0.01
MI22RC01	52	55	3	30	10	-0.01
MI22RC01	55	56	1	60	70	-0.01
MI22RC01	56	60	4	50	30	-0.01
MI22RC01	60	64	4	4570	20	-0.01
MI22RC01	64	68	4	180	10	-0.01
MI22RC01	68	72	4	20	20	-0.01
MI22RC01	72	76	4	60	10	-0.01
MI22RC01	76	80	4	40	10	-0.01
MI22RC01	80	84	4	10	10	-0.01
MI22RC01	84	88	4	10	20	-0.01
MI22RC01	88	91	3	10	20	-0.01
MI22RC02	0	4	4	30	40	-0.01
MI22RC02	4	8	4	30	60	-0.01
MI22RC02	8	13	5	20	40	-0.01
MI22RC02	13	17	4	20	40	-0.01
MI22RC02	17	21	4	10	50	-0.01
MI22RC02	21	25	4	10	60	-0.01
MI22RC02	25	29	4	-10	80	-0.01
MI22RC02	29	33	4	-10	90	-0.01
MI22RC02	33	37	4	-10	80	-0.01
MI22RC02	37	41	4	30	50	-0.01
MI22RC02	41	45	4	140	50	-0.01
MI22RC02	45	47	2	120	30	-0.01
MI22RC02	47	48	1	1200	130	0.01
IVIIZZACUZ	4/	40	L T	1200	130	0.01

APPENDIX 2: MILLENNIUM PHASE 1 DRILLING RESULTS

MI22RC02	48	51	3	170	40	-0.01
MI22RC02	51	52	1	330	60	-0.01
MI22RC02	52	53	1	240	90	-0.01
MI22RC02	53	54	1	660	90	-0.01
MI22RC02	54	55	1	450	30	-0.01
MI22RC02	55	56	1	790	40	-0.01
MI22RC02	56	57	1	110	20	-0.01
MI22RC02	57	58	1	150	20	-0.01
MI22RC02	58	59	1	500	70	-0.01
MI22RC02	59	63	4	430	20	-0.01
MI22RC02	63	64	1	210	70	-0.01
MI22RC02	64	65	1	590	60	-0.01
MI22RC02	65	66	1	390	60	-0.01
MI22RC02	66	70	4	420	30	-0.01
MI22RC02	70	71	1	390	100	-0.01
MI22RC02	71	72	1	620	40	0.01
MI22RC02	72	73	1	450	50	-0.01
MI22RC02	73	74	1	470	90	-0.01
MI22RC02	74	76	2	550	470	-0.01
MI22RC02	76	77	1	1120	280	0.01
MI22RC02	77	78	1	950	140	0.01
MI22RC02	78	80	2	1790	380	0.03
MI22RC02	80	84	4	1300	110	-0.01
MI22RC02	84	86	2	1510	160	0.01
MI22RC02	86	87	1	15550	460	0.92
MI22RC02	87	88	1	13500	280	0.48
MI22RC02	88	89	1	3090	100	0.14
MI22RC02	89	90	1	6170	150	0.13
MI22RC02	90	91	1	830	160	0.01
MI22RC02	91	92	1	510	180	0.01
MI22RC02	92	93	1	510	160	-0.01
MI22RC02	93	94	1	450	170	-0.01
MI22RC02	94	95	1	2570	250	0.02
MI22RC02	95	96	1	600	280	-0.01
MI22RC02	96	97	1	1140	270	-0.01
MI22RC02	97	98	1	3720	600	0.01
MI22RC02	98	99	1	700	330	-0.01
MI22RC02	99	100	1	510	280	-0.01
MI22RC02	100	101	1	930	350	-0.01
MI22RC02	101	102	1	800	420	-0.01
MI22RC02	102	103	1	80	170	-0.01
MI22RC02	103	104	1	320	1240	0.01
MI22RC02	104	105	1	8330	630	0.42
MI22RC02	105	106	1	21200	810	0.59
MI22RC02	106	107	1	51400	1570	2.57
MI22RC02	107	108	1	24200	890	0.87
MI22RC02	108	109	1	8460	520	0.23

MI22RC02	109	110	1	490	60	0.01
MI22RC02	110	111	1	360	80	0.01
MI22RC02	111	112	1	270	40	-0.01
MI22RC02	112	113	1	420	30	-0.01
MI22RC02	113	117	4	150	50	0.03
MI22RC02	117	118	1	90	30	0.03
MI22RC02	118	119	1	50	10	0.03
MI22RC02	119	120	1	70	20	0.03
MI22RC02	120	121	1	40	10	0.03
MI22RC02	121	122	1	70	20	0.03
MI22RC02	122	123	1	190	30	0.03
MI22RC02	123	124	1	70	20	0.02
MI22RC02	124	125	1	50	10	0.03
MI22RC02	125	126	1	40	20	0.03
MI22RC02	126	127	1	60	10	0.02
MI22RC02	127	128	1	100	20	0.03
MI22RC02	128	129	1	100	20	-0.01
MI22RC02	129	130	1	160	40	0.02
MI22RC02	130	131	1	120	40	-0.01
MI22RC02	131	132	1	250	50	0.02
MI22RC02	132	133	1	60	10	-0.01
MI22RC02	133	134	1	130	30	0.02
MI22RC02	134	135	1	50	20	-0.01
MI22RC02	135	136	1	50	20	-0.01
MI22RC02	136	137	1	60	40	0.01
MI22RC02	137	138	1	40	20	0.01
MI22RC02	138	139	1	50	10	-0.01
MI22RC02	139	140	1	70	30	-0.01
MI22RC02	140	141	1	60	20	-0.01
MI22RC02	141	142	1	50	20	0.01
MI22RC02	142	143	1	50	20	0.01
MI22RC02	143	144	1	50	20	0.01
MI22RC02	144	145	1	50	20	-0.01
MI22RC02	145	146	1	60	20	0.01
MI22RC02	146	147	1	30	10	0.01
MI22RC02	147	148	1	40	10	0.01
MI22RC02	148	149	1	30	10	-0.01
MI22RC02	149	150	1	50	10	-0.01
MI22RC03	0	4	4	710	30	-0.01
MI22RC03	4	6	2	970	40	-0.01
MI22RC03	6	10	4	750	180	-0.01
MI22RC03	10	11	1	600	370	0.01
MI22RC03	11	16	5	840	170	0.01
MI22RC03	16	17	1	1050	220	0.16
MI22RC03	17	18	1	1590	400	0.11
MI22RC03	18	22	4	2270	200	0.07
MI22RC03	22	25	3	1020	90	-0.01

MI22RC03	25	27	2	1030	270	-0.01
MI22RC03	27	31	4	770	480	0.01
MI22RC03	31	32	1	940	220	-0.01
MI22RC03	32	33	1	600	170	0.01
MI22RC03	33	34	1	250	120	-0.01
MI22RC03	34	35	1	120	50	-0.01
MI22RC03	35	36	1	110	60	-0.01
MI22RC03	36	40	4	310	120	-0.01
MI22RC03	40	42	2	470	140	-0.01
MI22RC03	42	46	4	400	60	-0.01
MI22RC03	46	50	4	190	30	-0.01
MI22RC03	50	54	4	120	20	-0.01
MI22RC03	54	58	4	80	20	-0.01
MI22RC03	58	62	4	100	30	-0.01
MI22RC03	62	63	1	80	50	-0.01
MI22RC03	63	64	1	150	60	-0.01
MI22RC03	64	65	1	130	30	-0.01
MI22RC03	65	66	1	90	20	-0.01
MI22RC03	66	67	1	180	20	-0.01
MI22RC03	67	68	1	70	10	0.01
MI22RC03	68	69	1	60	10	-0.01
MI22RC03	69	70	1	90	10	0.01
MI22RC03	70	71	1	50	10	-0.01
MI22RC03	71	72	1	40	10	-0.01
MI22RC03	72	73	1	150	20	-0.01
MI22RC03	73	74	1	30	10	0.01
MI22RC03	74	75	1	50	10	-0.01
MI22RC03	75	76	1	120	50	-0.01
MI22RC03	76	77	1	70	10	-0.01
MI22RC03	77	78	1	30	10	-0.01
MI22RC03	78	79	1	30	10	-0.01
MI22RC05	0	1	1	30	10	-0.01
MI22RC05	1	3	2	10	10	-0.01
MI22RC05	3	7	4	30	10	-0.01
MI22RC05	7	8	1	20	10	-0.01
MI22RC05	8	12	4	30	10	-0.01
MI22RC05	12	16	4	90	20	-0.01
MI22RC05	16	20	4	30	10	-0.01
MI22RC05	20	24	4	40	10	-0.01
MI22RC05	24	28	4	50	30	-0.01
MI22RC05	28	31	3	70	80	-0.01
MI22RC05	31	32	1	1680	40	-0.01
MI22RC05	32	33	1	970	40	-0.01
MI22RC05	33	36	3	60	-10	-0.01
MI22RC05	36	37	1	3960	230	0.08
MI22RC05	37	38	1	850	130	0.03
MI22RC05	38	39	1	10250	290	0.49

MI22RC05	39	40	1	11350	750	0.72
MI22RC05	40	41	1	12400	480	0.65
MI22RC05	41	42	1	2910	910	0.12
MI22RC05	42	43	1	1980	390	0.06
MI22RC05	43	44	1	14100	420	0.53
MI22RC05	44	45	1	11750	330	0.59
MI22RC05	45	46	1	2380	190	0.08
MI22RC05	46	47	1	4510	190	0.18
MI22RC05	47	48	1	4720	250	0.26
MI22RC05	48	49	1	2040	160	0.07
MI22RC05	49	50	1	1380	100	0.03
MI22RC05	50	51	1	1740	340	0.04
MI22RC05	51	52	1	1290	2830	0.07
MI22RC05	52	53	1	1660	400	0.06
MI22RC05	53	54	1	170	100	0.01
MI22RC05	54	55	1	650	60	0.01
MI22RC05	55	56	1	250	60	0.01
MI22RC05	56	57	1	100	30	0.01
MI22RC05	57	58	1	60	30	0.01
MI22RC05	58	59	1	110	110	0.01
MI22RC05	59	60	1	100	60	0.01
MI22RC05	60	61	1	70	30	0.01
MI22RC05	61	62	1	70	50	0.01
MI22RC05	62	63	1	50	30	0.01
MI22RC05	63	64	1	60	30	-0.01
MI22RC05	64	65	1	80	60	-0.01
MI22RC05	65	66	1	50	40	-0.01
MI22RC05	66	67	1	80	60	0.01
MI22RC05	67	68	1	50	40	-0.01
MI22RC05	68	69	1	500	90	0.01
MI22RC05	69	70	1	310	70	0.01
MI22RC05	70	71	1	40	40	-0.01
MI22RC05	71	72	1	70	40	-0.01
MI22RC05	72	73	1	50	60	0.02
MI22RC05	73	74	1	70	40	-0.01
MI22RC05	74	75	1	40	30	-0.01
MI22RC05	75	76	1	110	60	-0.01
MI22RC05	76	77	1	170	70	-0.01
MI22RC05	77	78	1	20	30	-0.01
MI22RC05	78	79	1	10	20	-0.01
MI22RC06	0	5	5	230	80	-0.01
MI22RC06	5	7	2	1080	200	-0.01
MI22RC06	7	11	4	230	20	-0.01
MI22RC06	11	14	3	110	10	-0.01
MI22RC06	14	15	1	390	30	-0.01
MI22RC06	15	17	2	570	100	-0.01
MI22RC06	17	19	2	240	70	-0.01

MI22RC06	19	21	2	60	20	-0.01
MI22RC06	21	22	1	60	10	-0.01
MI22RC06	22	26	4	60	20	-0.01
MI22RC06	26	27	1	170	60	-0.01
MI22RC06	27	31	4	470	290	-0.01
MI22RC06	31	33	2	400	100	-0.01
MI22RC06	33	34	1	1750	20	-0.01
MI22RC06	34	38	4	640	30	-0.01
MI22RC06	38	40	2	1100	80	0.02
MI22RC06	40	41	1	760	140	0.01
MI22RC06	41	42	1	670	240	0.01
MI22RC06	42	43	1	570	210	0.01
MI22RC06	43	44	1	190	240	0.01
MI22RC06	44	45	1	560	300	0.01
MI22RC06	45	46	1	4030	380	0.13
MI22RC06	46	47	1	6830	860	0.23
MI22RC06	47	48	1	3130	470	0.13
MI22RC06	48	49	1	1290	230	0.03
MI22RC06	49	50	1	5540	420	0.31
MI22RC06	50	51	1	3310	170	0.08
MI22RC06	51	52	1	3630	290	0.25
MI22RC06	52	53	1	4130	560	0.19
MI22RC06	53	54	1	4780	550	0.18
MI22RC06	54	56	2	320	420	0.03
MI22RC06	56	57	1	2040	440	0.12
MI22RC06	57	58	1	9300	670	0.49
MI22RC06	58	59	1	1460	310	0.05
MI22RC06	59	60	1	180	100	0.01
MI22RC06	60	61	1	100	160	0.01
MI22RC06	61	62	1	110	20	0.01
MI22RC06	62	63	1	90	40	-0.01
MI22RC06	63	64	1	150	60	-0.01
MI22RC06	64	65	1	140	120	0.01
MI22RC06	65	66	1	50	60	-0.01
MI22RC06	66	67	1	40	50	-0.01
MI22RC06	67	68	1	50	90	-0.01
MI22RC06	68	69	1	560	790	0.02
MI22RC06	69	70	1	2130	3090	0.08
MI22RC06	70	71	1	4480	1270	0.17
MI22RC06	71	72	1	730	180	0.02
MI22RC06	72	73	1	320	160	0.01
MI22RC06	73	74	1	880	130	0.02
MI22RC06	74	75	1	40	70	0.01
MI22RC06	75	76	1	30	60	-0.01
MI22RC06	76	77	1	50	70	-0.01
MI22RC06	77	78	1	70	50	-0.01
MI22RC06	78	79	1	70	50	0.01

MI22RC06	79	80	1	80	60	0.01
MI22RC06	80	84	4	180	60	0.01
MI22RC06	84	88	4	60	30	-0.01
MI22RC06	88	89	1	70	40	-0.01
MI22RC06	89	90	1	110	30	0.01
MI22RC06	90	91	1	20	10	-0.01
MI22RC06	91	92	1	120	30	-0.01
MI22RC06	92	93	1	60	40	-0.01
MI22RC06	93	94	1	80	40	0.03
MI22RC06	94	95	1	100	40	-0.01
MI22RC06	95	96	1	240	110	0.01
MI22RC06	96	97	1	50	30	-0.01
MI22RC06	97	98	1	20	20	-0.01
MI22RC06	98	99	1	30	20	-0.01
MI22RC06	99	100	1	110	50	-0.01
MI22RC06	100	101	1	50	40	-0.01
MI22RC06	101	102	1	160	50	-0.01
MI22RC06	102	103	1	60	40	-0.01
MI22RC06	103	104	1	100	50	-0.01
MI22RC06	104	106	2	130	50	-0.01
MI22RC06	106	107	1	420	70	-0.01
MI22RC06	107	108	1	240	60	-0.01
MI22RC06	108	109	1	280	60	0.01
MI22RC06	109	110	1	250	20	-0.01
MI22RC06	110	111	1	30	10	-0.01
MI22RC06	111	112	1	80	20	-0.01
MI22RC06	112	113	1	110	20	-0.01
MI22RC06	113	114	1	2330	160	0.01
MI22RC06	114	115	1	1000	80	0.01
MI22RC06	115	116	1	280	30	-0.01
MI22RC06	116	117	1	290	30	-0.01
MI22RC06	117	118	1	180	20	-0.01
MI22RC06	118	119	1	60	10	-0.01
MI22RC06	119	120	1	130	20	-0.01
MI22RC06	120	121	1	50	10	-0.01
MI22RC06	121	122	1	30	20	-0.01
MI22RC06	122	123	1	140	20	-0.01
MI22RC06	123	124	1	150	20	-0.01
MI22RC06	124	125	1	30	10	-0.01
MI22RC06	125	126	1	80	10	-0.01
MI22RC06	126	127	1	260	30	-0.01
MI22RC07	0	3	3	570	30	0.01
MI22RC07	3	7	4	900	20	-0.01
MI22RC07		11	4	500	10	-0.01
MI22RC07	11	15	4	1210	20	-0.01
MI22RC07	15	19	4	1360	50	0.01
MI22RC07	19	23	4	700	20	-0.01

MI22RC07 23 27 4 540 20 0.01 MI22RC07 30 31 1 1920 50 -0.01 MI22RC07 31 32 1 400 370 0.01 MI22RC07 32 33 1 450 170 -0.01 MI22RC07 33 34 1 680 290 0.01 MI22RC07 35 36 1 560 220 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 38 39 1 250 150 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 42 43 1 1110 380 0.33 MI22RC07 44 45 1 450 680 0.15 MI22R							
MI22RC07 27 30 31 1 1920 50 0.01 MI22RC07 31 32 1 400 370 0.01 MI22RC07 32 33 1 450 170 -0.01 MI22RC07 33 34 1 680 290 0.01 MI22RC07 35 36 1 580 10.02 MI22RC07 36 37 1 580 310 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 38 39 1 250 150 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 45 46 1 1310 190 0.02 MI22	MI22RC07	23	27	4	540	20	0.01
MI22RC07 30 31 1 1920 50 -0.01 MI22RC07 31 32 1 400 370 0.01 MI22RC07 32 33 1 450 170 -0.01 MI22RC07 34 35 1 780 580 0.02 MI22RC07 36 37 1 580 310 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 38 39 1 250 150 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 46 47 1 3660 340 0.1 MI2	MI22RC07	27	30	3	930	20	0.01
MI22RC07 31 32 1 400 370 0.01 MI22RC07 32 33 1 450 170 -0.01 MI22RC07 33 34 1 680 290 0.01 MI22RC07 34 35 1 780 580 0.02 MI22RC07 36 37 1 580 310 0.01 MI22RC07 38 39 1 250 150 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 44 41 2570 170 0.09 MI22RC07	MI22RC07	30	31	1	1920	50	-0.01
MI22RC07 32 33 1 450 170 -0.01 MI22RC07 33 34 1 680 290 0.01 MI22RC07 34 35 1 780 580 0.02 MI22RC07 36 37 1 580 310 0.01 MI22RC07 36 37 1 250 150 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.02 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 42 43 1 1310 190 0.05 MI22RC07 44 45 1 4520 680 0.1 MI22RC07 47 48 1 2570 170 0.09 MI22RC07 48 49 1 1240 70 0.44 MI2	MI22RC07	31	32	1	400	370	0.01
MI22RC07 33 34 1 680 290 0.01 MI22RC07 34 35 1 780 580 0.02 MI22RC07 35 36 1 560 220 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 37 38 1 270 250 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 41 42 1 600 180 0.03 MI22RC07 42 43 1 1110 380 0.33 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 46 47 1 3660 340 0.1 MI22	MI22RC07	32	33	1	450	170	-0.01
MI22RC07 34 35 1 780 580 0.02 MI22RC07 35 36 1 560 220 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 37 38 1 270 250 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22	MI22RC07	33	34	1	680	290	0.01
MI22RC07 35 36 1 560 220 0.01 MI22RC07 36 37 1 580 310 0.01 MI22RC07 37 38 1 270 250 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 50 51 1 520 210 0.22 MI22R	MI22RC07	34	35	1	780	580	0.02
MI22RC07 36 37 1 580 310 0.01 MI22RC07 37 38 1 270 250 0.01 MI22RC07 38 39 1 250 150 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 44 45 1 4520 680 0.1 MI22RC07 47 48 1 2570 170 0.09 MI22RC07 50 51 1 520 210 0.02 MI	MI22RC07	35	36	1	560	220	0.01
MI22RC07 37 38 1 270 250 0.01 MI22RC07 38 39 1 250 150 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.33 MI	MI22RC07	36	37	1	580	310	0.01
MI22RC07 38 39 1 250 150 0.01 MI22RC07 39 40 1 420 210 0.01 MI22RC07 40 41 1 640 240 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 50 51 1 520 210 0.02 MI22RC07 50 51 1 2380 260 0.55 MI22RC07 53 54 1 4590 280 0.17 MI	MI22RC07	37	38	1	270	250	0.01
MI22RC07394014202100.01MI22RC07404116402400.01MI22RC07414216001800.02MI22RC074243111103800.03MI22RC074344139404800.13MI22RC074445145206800.15MI22RC074647136603400.1MI22RC074647136603400.1MI22RC07484911240700.04MI22RC07484911240700.44MI22RC074950144801700.24MI22RC07505115202100.02MI22RC075051123802600.55MI22RC075253193508200.43MI22RC07555619301600.03MI22RC07555619301600.03MI22RC07555619305000.02MI22RC07555619301600.21MI22RC0757581140130-0.01MI22RC0758591140130-0.01MI22RC076061154301600.22MI22RC0766 <t< td=""><td>MI22RC07</td><td>38</td><td>39</td><td>1</td><td>250</td><td>150</td><td>0.01</td></t<>	MI22RC07	38	39	1	250	150	0.01
MI22RC07 40 41 1 640 240 0.01 MI22RC07 41 42 1 600 180 0.02 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 48 49 1 520 210 0.02 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.05 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 55 56 1 930 160 0.03 MI	MI22RC07	39	40	1	420	210	0.01
MI22RC07 41 42 1 600 180 0.02 MI22RC07 42 43 1 1110 380 0.03 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 48 49 1 520 210 0.02 MI22RC07 50 51 1 520 210 0.02 MI22RC07 52 53 1 9350 820 0.43 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 55 56 1 930 160 0.03 MI	MI22RC07	40	41	1	640	240	0.01
MI22RC07 42 43 1 1110 380 0.03 MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.55 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 56 57 1 120 40 0.01	MI22RC07	41	42	1	600	180	0.02
MI22RC07 43 44 1 3940 480 0.13 MI22RC07 44 45 1 4520 680 0.15 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.05 MI22RC07 52 53 1 9350 820 0.43 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 56 57 1 120 40 0.01 MI22RC07 58 59 1 140 130 -0.01	MI22RC07	42	43	1	1110	380	0.03
MI22RC07 44 45 1 4520 680 0.15 MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 47 48 1 2570 170 0.09 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.43 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 55 56 1 930 160 0.03 MI22RC07 57 58 1 390 500 0.01	MI22RC07	43	44	1	3940	480	0.13
MI22RC07 45 46 1 1310 190 0.05 MI22RC07 46 47 1 3660 340 0.1 MI22RC07 47 48 1 2570 170 0.09 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.55 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 53 54 1 4280 360 0.14 MI22RC07 55 56 1 930 160 0.03 MI22RC07 55 56 1 930 160 0.22 MI22RC07 58 59 1 140 130 -0.01	MI22RC07	44	45	1	4520	680	0.15
MI22RC07 46 47 1 3660 340 0.1 MI22RC07 47 48 1 2570 170 0.09 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.05 MI22RC07 52 53 1 9350 820 0.43 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 56 57 1 120 40 0.01 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 60 61 1 5430 160 0.2 M	MI22RC07	45	46	1	1310	190	0.05
MI22RC07 47 48 1 2570 170 0.09 MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.05 MI22RC07 52 53 1 9350 820 0.43 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 56 57 1 120 40 0.01 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 60 61 1 5430 160 0.2	MI22RC07	46	47	1	3660	340	0.1
MI22RC07 48 49 1 1240 70 0.04 MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.05 MI22RC07 52 53 1 9350 820 0.43 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 55 56 1 930 160 0.03 MI22RC07 57 58 1 390 500 0.02 MI22RC07 59 60 1 150 40 -0.01 MI22RC07 61 62 1 24300 540 0.92 MI22RC07 62 63 1 2300 570 1.11 <td< td=""><td>MI22RC07</td><td>47</td><td>48</td><td>1</td><td>2570</td><td>170</td><td>0.09</td></td<>	MI22RC07	47	48	1	2570	170	0.09
MI22RC07 49 50 1 4480 170 0.24 MI22RC07 50 51 1 520 210 0.02 MI22RC07 51 52 1 2380 260 0.05 MI22RC07 52 53 1 9350 820 0.43 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 56 57 1 120 40 0.01 MI22RC07 56 57 1 120 40 0.01 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 59 60 1 150 40 -0.01 MI22RC07 61 62 1 24300 540 0.92 MI22RC07 63 64 1 9740 270 0.41	MI22RC07	48	49	1	1240	70	0.04
MI22RC07505115202100.02MI22RC075152123802600.05MI22RC075253193508200.43MI22RC075354145902800.17MI22RC075455142803600.14MI22RC07555619301600.03MI22RC0756571120400.01MI22RC0756571140130-0.01MI22RC0758591140130-0.01MI22RC075960115040-0.01MI22RC076061154301600.2MI22RC0761621243005400.92MI22RC076364197402700.41MI22RC076364153501200.15MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076869119204900.12MI22RC076869119204900.12MI22RC07707114101600.02MI22RC07777311235011600.35MI22RC0777731126505400.32MI22RC07	MI22RC07	49	50	1	4480	170	0.24
MI22RC075152123802600.05MI22RC075253193508200.43MI22RC075354145902800.17MI22RC075455142803600.14MI22RC07555619301600.03MI22RC0756571120400.01MI22RC07575813905000.02MI22RC0758591140130-0.01MI22RC075960115040-0.01MI22RC076061154301600.2MI22RC0761621243005701.11MI22RC076364197402700.41MI22RC076566153501200.15MI22RC076566153501200.15MI22RC076768110801700.04MI22RC07697018701700.04MI22RC07707114101600.22MI22RC07777311235011600.35MI22RC0772731123505400.32MI22RC0772731126505400.32MI22RC07747512210014700.42	MI22RC07	50	51	1	520	210	0.02
MI22RC07 52 53 1 9350 820 0.43 MI22RC07 53 54 1 4590 280 0.17 MI22RC07 54 55 1 4280 360 0.14 MI22RC07 55 56 1 930 160 0.03 MI22RC07 56 57 1 120 40 0.01 MI22RC07 56 57 1 390 500 0.02 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 59 60 1 150 40 -0.01 MI22RC07 60 61 1 5430 160 0.2 MI22RC07 61 62 1 24300 540 0.92 MI22RC07 63 64 1 9740 270 0.41 MI22RC07 65 66 1 5350 120 0.15	MI22RC07	51	52	1	2380	260	0.05
MI22RC075354145902800.17MI22RC075455142803600.14MI22RC07555619301600.03MI22RC0756571120400.01MI22RC07565713905000.02MI22RC0758591140130-0.01MI22RC075960115040-0.01MI22RC076061154301600.2MI22RC0761621243005400.92MI22RC0762631230005701.11MI22RC076465163401800.23MI22RC076667110801700.04MI22RC076869119204900.12MI22RC07697018701700.04MI22RC07777114101600.22MI22RC07777114101600.22MI22RC07777114101600.22MI22RC07747512210014700.42	MI22RC07	52	53	1	9350	820	0.43
MI22RC07 54 55 1 4280 360 0.14 MI22RC07 55 56 1 930 160 0.03 MI22RC07 56 57 1 120 40 0.01 MI22RC07 57 58 1 390 500 0.02 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 59 60 1 150 40 -0.01 MI22RC07 60 61 1 5430 160 0.2 MI22RC07 61 62 1 24300 540 0.92 MI22RC07 61 62 1 23000 570 1.11 MI22RC07 63 64 1 9740 270 0.41 MI22RC07 65 66 1 5350 120 0.15 MI22RC07 66 67 1 1080 170 0.04 <td< td=""><td>MI22RC07</td><td>53</td><td>54</td><td>1</td><td>4590</td><td>280</td><td>0.17</td></td<>	MI22RC07	53	54	1	4590	280	0.17
MI22RC07 55 56 1 930 160 0.03 MI22RC07 56 57 1 120 40 0.01 MI22RC07 57 58 1 390 500 0.02 MI22RC07 58 59 1 140 130 -0.01 MI22RC07 59 60 1 150 40 -0.01 MI22RC07 60 61 1 5430 160 0.2 MI22RC07 61 62 1 24300 540 0.92 MI22RC07 62 63 1 23000 570 1.11 MI22RC07 63 64 1 9740 270 0.41 MI22RC07 64 65 1 6340 180 0.23 MI22RC07 66 67 1 1080 170 0.04 MI22RC07 67 68 1 1760 430 0.09 <td< td=""><td>MI22RC07</td><td>54</td><td>55</td><td>1</td><td>4280</td><td>360</td><td>0.14</td></td<>	MI22RC07	54	55	1	4280	360	0.14
MI22RC0756571120400.01MI22RC07575813905000.02MI22RC0758591140130-0.01MI22RC075960115040-0.01MI22RC076061154301600.2MI22RC0761621243005400.92MI22RC0761621230005701.11MI22RC076364197402700.41MI22RC076566153501200.15MI22RC076566153501200.15MI22RC076869110801700.04MI22RC076869119204900.12MI22RC07707114101600.02MI22RC07777311235011600.35MI22RC07727312210014700.42	MI22RC07	55	56	1	930	160	0.03
MI22RC07575813905000.02MI22RC0758591140130-0.01MI22RC075960115040-0.01MI22RC076061154301600.2MI22RC0761621243005400.92MI22RC0762631230005701.11MI22RC076364197402700.41MI22RC076364153501200.15MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076869117604300.09MI22RC076768119204900.12MI22RC07707114101600.02MI22RC07777311235011600.35MI22RC0772731126505400.32MI22RC07747512210014700.42	MI22RC07	56	57	1	120	40	0.01
MI22RC07 58 59 1 140 130 -0.01 MI22RC07 59 60 1 150 40 -0.01 MI22RC07 60 61 1 5430 160 0.2 MI22RC07 61 62 1 24300 540 0.92 MI22RC07 61 62 1 24300 570 1.11 MI22RC07 62 63 1 23000 570 1.11 MI22RC07 63 64 1 9740 270 0.41 MI22RC07 64 65 1 6340 180 0.23 MI22RC07 65 66 1 5350 120 0.15 MI22RC07 66 67 1 1080 170 0.04 MI22RC07 68 69 1 1920 490 0.12 MI22RC07 69 70 1 870 170 0.04	MI22RC07	57	58	1	390	500	0.02
MI22RC075960115040-0.01MI22RC076061154301600.2MI22RC0761621243005400.92MI22RC0762631230005701.11MI22RC076364197402700.41MI22RC076364197402700.41MI22RC076465163401800.23MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076869119204900.12MI22RC07697018701700.04MI22RC0771721100004600.26MI22RC0771721125011600.35MI22RC0773741126505400.32MI22RC07747512210014700.42	MI22RC07	58	59	1	140	130	-0.01
MI22RC076061154301600.2MI22RC0761621243005400.92MI22RC0762631230005701.11MI22RC076364197402700.41MI22RC076465163401800.23MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076869119204900.12MI22RC076869119204900.12MI22RC07707114101600.02MI22RC07777311235011600.35MI22RC0773741126505400.32MI22RC07747512210014700.42	MI22RC07	59	60	1	150	40	-0.01
MI22RC0761621243005400.92MI22RC0762631230005701.11MI22RC076364197402700.41MI22RC076465163401800.23MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076667110801700.04MI22RC076869119204900.12MI22RC07697018701700.04MI22RC07707114101600.02MI22RC07777311235011600.35MI22RC0773741126505400.32MI22RC07747512210014700.42	MI22RC07	60	61	1	5430	160	0.2
MI22RC0762631230005701.11MI22RC076364197402700.41MI22RC076465163401800.23MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076667110801700.04MI22RC076869119204900.12MI22RC076869119204900.12MI22RC07697018701700.04MI22RC07707114101600.02MI22RC0771721100004600.26MI22RC0773741126505400.32MI22RC07747512210014700.42	MI22RC07	61	62	1	24300	540	0.92
MI22RC07 63 64 1 9740 270 0.41 MI22RC07 64 65 1 6340 180 0.23 MI22RC07 65 66 1 5350 120 0.15 MI22RC07 66 67 1 1080 170 0.04 MI22RC07 66 67 1 1080 170 0.04 MI22RC07 66 67 1 1080 170 0.04 MI22RC07 67 68 1 1760 430 0.09 MI22RC07 68 69 1 1920 490 0.12 MI22RC07 69 70 1 870 170 0.04 MI22RC07 70 71 1 410 160 0.02 MI22RC07 71 72 1 10000 460 0.26 MI22RC07 73 74 1 12650 540 0.32	MI22RC07	62	63	1	23000	570	1.11
MI22RC076465163401800.23MI22RC076566153501200.15MI22RC076667110801700.04MI22RC076768117604300.09MI22RC076869119204900.12MI22RC07697018701700.04MI22RC07707114101600.02MI22RC0771721100004600.26MI22RC07727311235011600.35MI22RC07737412210014700.42	MI22RC07	63	64	1	9740	270	0.41
MI22RC07 65 66 1 5350 120 0.15 MI22RC07 66 67 1 1080 170 0.04 MI22RC07 67 68 1 1760 430 0.09 MI22RC07 68 69 1 1920 490 0.12 MI22RC07 69 70 1 870 170 0.04 MI22RC07 70 71 1 410 160 0.02 MI22RC07 70 71 1 10000 460 0.26 MI22RC07 72 73 1 12350 1160 0.35 MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	64	65	1	6340	180	0.23
MI22RC07 66 67 1 1080 170 0.04 MI22RC07 67 68 1 1760 430 0.09 MI22RC07 68 69 1 1920 490 0.12 MI22RC07 69 70 1 870 170 0.04 MI22RC07 69 70 1 870 170 0.04 MI22RC07 70 71 1 410 160 0.02 MI22RC07 71 72 1 10000 460 0.26 MI22RC07 72 73 1 12350 1160 0.35 MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	65	66	1	5350	120	0.15
MI22RC07 67 68 1 1760 430 0.09 MI22RC07 68 69 1 1920 490 0.12 MI22RC07 69 70 1 870 170 0.04 MI22RC07 70 71 1 410 160 0.02 MI22RC07 71 72 1 10000 460 0.26 MI22RC07 72 73 1 12350 1160 0.35 MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	66	67	1	1080	170	0.04
MI22RC076869119204900.12MI22RC07697018701700.04MI22RC07707114101600.02MI22RC0771721100004600.26MI22RC07727311235011600.35MI22RC0773741126505400.32MI22RC07747512210014700.42	MI22RC07	67	68	1	1760	430	0.09
MI22RC07697018701700.04MI22RC07707114101600.02MI22RC0771721100004600.26MI22RC07727311235011600.35MI22RC0773741126505400.32MI22RC07747512210014700.42	MI22RC07	68	69	1	1920	490	0.12
MI22RC07 70 71 1 410 160 0.02 MI22RC07 71 72 1 10000 460 0.26 MI22RC07 72 73 1 12350 1160 0.35 MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	69	70	1	870	170	0.04
MI22RC07 71 72 1 10000 460 0.26 MI22RC07 72 73 1 12350 1160 0.35 MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	70	71	1	410	160	0.02
MI22RC07 72 73 1 12350 1160 0.35 MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	71	72	1	10000	460	0.26
MI22RC07 73 74 1 12650 540 0.32 MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	72	73	1	12350	1160	0.35
MI22RC07 74 75 1 22100 1470 0.42	MI22RC07	73	74	1	12650	540	0.32
	MI22RC07	74	75	1	22100	1470	0.42

MI22RC07	75	76	1	4970	1310	0.12
MI22RC07	76	77	1	2720	1950	0.11
MI22RC07	77	78	1	3210	2390	0.12
MI22RC07	78	79	1	5650	5600	0.27
MI22RC07	79	80	1	2360	1770	0.12
MI22RC07	80	81	1	790	560	0.05
MI22RC07	81	82	1	180	260	0.02
MI22RC07	82	83	1	410	970	0.01
MI22RC07	83	84	1	180	230	0.01
MI22RC07	84	85	1	170	150	0.01
MI22RC07	85	86	1	130	130	0.01
MI22RC07	86	87	1	100	180	0.01
MI22RC07	87	91	4	60	120	0.01
MI22RC07	91	95	4	80	70	-0.01
MI22RC07	95	99	4	120	100	-0.01
MI22RC07	99	103	4	120	100	-0.01
MI22RC07	103	107	4	90	60	-0.01
MI22RC07	107	111	4	60	60	0.01
MI22RC07	111	115	4	30	40	-0.01
MI22RD01	0	4	4	260	80	-0.01
MI22RD01	4	6	2	160	20	-0.01
MI22RD01	6	7	1	220	90	-0.01
MI22RD01	7	8	1	280	130	-0.01
MI22RD01	8	10	2	220	110	-0.01
MI22RD01	10	14	4	660	80	-0.01
MI22RD01	14	18	4	640	40	-0.01
MI22RD01	18	22	4	660	80	-0.01
MI22RD01	22	26	4	300	10	0.01
MI22RD01	26	30	4	220	30	-0.01
MI22RD01	30	34	4	80	10	-0.01
MI22RD01	34	36	2	240	20	-0.01
MI22RD01	36	41	5	470	70	-0.01
MI22RD01	41	43	2	560	50	-0.01
MI22RD01	43	47	4	280	20	-0.01
MI22RD01	47	48	1	90	10	-0.01
MI22RD01	48	49	1	110	10	-0.01
MI22RD01	49	50	1	60	20	-0.01
MI22RD01	50	51	1	70	10	-0.01
MI22RD01	51	54	3	60	10	-0.01
MI22RD01	54	55	1	290	40	0.01
MI22RD01	55	59	4	50	10	-0.01
MI22RD01	59	60	1	40	20	0.01
MI22RD01	60	61	1	70	-10	-0.01
MI22RD01	61	62	1	40	-10	-0.01
MI22RD01	62	63	1	30	10	-0.01
MI22RD01	63	66	3	150	60	-0.01
MI22RD01	66	69	3	110	40	-0.01

MI22RD01	69	72	3	70	30	-0.01
MI22RD01	72	75	3	100	30	-0.01
MI22RD01	75	76	1	100	40	-0.01
MI22RD01	76	80	4	180	50	0.02
MI22RD01	80	84	4	70	30	-0.01
MI22RD01	84	88	4	120	40	-0.01
MI22RD01	88	90	2	120	50	-0.01
MI22RD01	90	91	1	130	40	0.02
MI22RD01	91	94	3	80	40	0.01
MI22RD01	94	95	1	50	30	-0.01
MI22RD01	95	99	4	110	40	-0.01
MI22RD01	99	103	4	120	50	-0.01
MI22RD01	103	107	4	70	30	-0.01
MI22RD01	107	111	4	100	70	-0.01
MI22RD01	111	115	4	100	40	-0.01
MI22RD01	115	119	4	90	40	-0.01
MI22RD01	119	122	3	80	50	-0.01
MI22RD01	122	126	4	120	90	0.02
MI22RD01	126	127	1	240	80	-0.01
MI22RD01	127	131	4	100	40	0.02
MI22RD01	131	135	4	40	40	0.04
MI22RD01	135	139	4	30	40	-0.01
MI22RD01	139	143	4	40	40	0.02
MI22RD01	143	147	4	30	50	0.01
MI22RD01	147	151	4	10	50	0.01
MI22RD01	151	156	5	30	50	-0.01
MI22RD02	0	2	2	260	20	-0.01
MI22RD02	2	4	2	480	30	0.01
MI22RD02	4	8	4	630	50	0.01
MI22RD02	8	12	4	270	20	0.02
MI22RD02	12	16	4	330	50	0.02
MI22RD02	16	20	4	270	30	-0.01
MI22RD02	20	23	3	290	40	0.02
MI22RD02	23	27	4	90	10	0.02
MI22RD02	27	30	3	80	-10	0.02
MI22RD02	30	32	2	20	-10	-0.01
MI22RD02	32	33	1	20	10	-0.01
MI22RD02	33	37	4	30	10	-0.01
MI22RD02	37	39	2	40	10	-0.01
MI22RD02	39	40	1	70	10	0.02
MI22RD02	40	41	1	80	10	0.01
MI22RD02	41	42	1	60	10	-0.01
MI22RD02	42	43	1	210	10	0.01
MI22RD02	43	44	1	90	20	0.01
MI22RD02	44	45	1	90	40	-0.01
MI22RD02	45	47	2	70	30	0.02
MI22RD02	47	51	4	40	20	-0.01

MI22RD02	51	54	3	30	30	0.02
MI22RD02	54	57	3	10	20	-0.01
MI22RD02	57	58	1	10	-10	0.01
MI22RD02	58	59	1	10	-10	0.01
MI22RD02	59	60	1	10	40	0.01
MI22RD02	60	61	1	20	10	0.01
MI22RD02	61	62	1	40	10	0.02
MI22RD02	62	63	1	10	10	0.02
MI22RD02	63	64	1	10	10	0.02
MI22RD02	64	65	1	10	-10	0.02
MI22RD02	65	66	1	60	20	0.02
MI22RD02	66	70	4	60	20	-0.01
MI22RD02	70	74	4	70	10	-0.01
MI22RD02	74	75	1	180	80	0.01
MI22RD02	75	80	5	90	20	0.02
MI22RD03	0	2	2	40	20	0.01
MI22RD03	2	6	4	90	40	-0.01
MI22RD03	6	10	4	170	40	-0.01
MI22RD03	10	14	4	160	60	-0.01
MI22RD03	14	17	3	180	50	-0.01
MI22RD03	17	21	4	110	40	-0.01
MI22RD03	21	25	4	50	40	-0.01
MI22RD03	25	29	4	30	40	-0.01
MI22RD03	29	33	4	40	50	0.01
MI22RD03	33	37	4	30	50	-0.01
MI22RD03	37	41	4	30	40	-0.01
MI22RD03	41	45	4	50	40	-0.01
MI22RD03	45	49	4	50	40	-0.01
MI22RD03	49	53	4	50	50	-0.01
MI22RD03	53	57	4	30	30	-0.01
MI22RD03	57	61	4	50	40	-0.01
MI22RD03	61	65	4	40	40	-0.01
MI22RD03	65	69	4	70	40	-0.01
MI22RD03	69	73	4	50	40	-0.01
MI22RD03	73	77	4	30	40	-0.01
MI22RD03	77	81	4	40	40	-0.01
MI22RD03	81	85	4	30	40	-0.01
MI22RD03	85	89	4	40	50	-0.01
MI22RD03	89	93	4	30	40	-0.01
MI22RD03	93	97	4	30	50	-0.01
MI22RD03	97	101	4	30	50	-0.01
MI22RD03	101	105	4	40	50	-0.01
MI22RD03	105	109	4	60	50	-0.01
MI22RD03	109	110	1	280	50	-0.01
MI22RD03	110	111	1	570	100	-0.01
MI22RD03	111	112	1	240	80	-0.01
MI22RD03	112	115	3	180	80	-0.01

MI22RD03	115	119	4	560	50	-0.01
MI22RD03	119	123	4	450	30	-0.01
MI22RD03	123	127	4	590	20	-0.01
MI22RD03	127	128	1	510	20	-0.01
MI22RD03	128	129	1	440	20	-0.01
MI22RD03	129	130	1	540	60	-0.01
MI22RD03	130	131	1	560	90	0.01
MI22RD03	131	132	1	1110	250	0.02
MI22RD03	132	133	1	1800	1020	0.06
MI22RD03	133	134	1	1760	410	0.06
MI22RD03	134	135	1	1080	400	0.04
MI22RD03	135	136	1	1690	430	0.05
MI22RD03	136	137	1	4070	450	0.1
MI22RD03	137	138	1	890	430	0.02
MI22RD03	138	139	1	2360	340	0.15
MI22RD03	139	140	1	1010	260	0.02
MI22RD03	140	141	1	990	280	0.03
MI22RD03	141	142	1	4150	1010	0.14
MI22RD03	142	143	1	4400	340	0.15
MI22RD03	143	146	3	1770	180	0.02
MI22RD03	146	147	1	1830	300	0.04
MI22RD03	147	148	1	2110	370	0.05
MI22RD03	148	150	2	1340	370	0.03
MI22RD03	150	154	4	1140	240	0.02
MI22RD03	154	156	2	1750	120	0.03
MI22RD04	0	3	3	70	20	-0.01
MI22RD04	3	5	2	170	30	0.02
MI22RD04	5	9	4	90	50	-0.01
MI22RD04	9	13	4	210	90	-0.01
MI22RD04	13	17	4	220	110	0.01
MI22RD04	17	21	4	160	80	0.02
MI22RD04	21	24	3	70	80	0.02
MI22RD04	24	28	4	170	100	0.01
MI22RD04	28	32	4	90	100	0.02
MI22RD04	32	36	4	30	100	0.02
MI22RD04	36	37	1	40	100	0.01
MI22RD04	37	41	4	10	100	0.02
MI22RD04	41	45	4	10	110	0.02
MI22RD04	45	50	5	-10	100	0.01
MI22RD04	50	53	3	10	90	0.01
MI22RD04	53	54	1	50	70	0.01
MI22RD04	54	57	3	70	60	0.02
MI22RD04	57	61	4	70	20	0.01
MI22RD04	61	65	4	50	20	0.03
MI22RD04	65	69	4	140	30	0.01
MI22RD04	69	73	4	330	60	0.01
MI22RD04	73	77	4	140	40	0.01

MI22RD04	77	81	4	70	20	0.02
MI22RD04	81	85	4	50	10	-0.01
MI22RD04	85	89	4	60	10	0.01
MI22RD04	89	93	4	40	10	-0.01
MI22RD04	93	94	1	60	30	-0.01
MI22RD04	94	100	6	160	90	0.01
MI22RD04	100	104	4	120	130	0.01
MI22RD04	104	106	2	140	90	0.01
MI22RD04	106	107	1	290	160	-0.01
MI22RD04	107	111	4	230	60	-0.01
MI22RD04	111	115	4	310	30	-0.01
MI22RD04	115	119	4	390	40	-0.01
MI22RD04	119	121	2	190	30	-0.01
MI22RD04	121	124	3	50	50	0.08

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 5.5" Reverse circulation (RC) drilling was used to obtain chip samples for geological logging and assaying. The drill holes were sited to test geophysical targets/surface geochemical targets as well as previous drilling results 1m RC samples were collected via a cyclone mounted rotary splitter for all samples. Sample intervals were determined by the rig geologist based on visual observations with all notable samples undertaken in 1m intervals, otherwise in 2-4m riffle split composites as determined by downhole geology RC samples were submitted to ALS Mt Isa and sample preparation consisted of the drying of the sample, the entire sample being crushed to 70% passing 6mm and pulverized to 85% passing 75 microns in a ring and puck pulveriser. RC samples are assayed for gold by 50g fire assay with AAS finish. Multielement analysis is completed using an ICPAES analysis.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 RC drilling used a 5.5" face sampling RC hammer and a modified Ingersoll Rand track mounted drill rig
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For RC sample recoveries of less than approximately 80% are noted in the geological/sampling log with a visual estimate of the actual recovery. Very few samples were recorded with recoveries of less than 80%. No wet RC samples were recovered. No relationship has been observed between sample recovery and grade.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. If care, whether cut or court and whether quarter, half or all and the support of the relevant intersections whether cut or court and whether quarter, half or all and the support of the relevant intersections whether cut or court and whether quarter, half or all and the support of the relevant intersections have been support of the superior of the support of the superior of the support of the support of the s	 Geological logging is carried out on all RC chips. This includes lithology, alteration, sulphide percentages and vein percentages. Geological logging of alteration type, alteration intensity, vein type and textures, % of veining, and sulphide composition. All RC chip trays and all core trays are photographed. All drill holes are logged in full.
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Implify the samples were obtained using a cyclone mounted 87.5%:12.5% riffle splitter. Im samples were taken in notable or altered/mineralised ground, otherwise composited via riffle splitter as determined by the rig geologist Duplicated samples were collected in visual ore zones and at a frequency of at least 1 in 20. QAQC samples (standards / blanks) were submitted at a frequency of at least 1 in 20. Regular reviews of the sampling were carried out by the Exploration Manager to ensure all procedures were followed and best industry practice carried out. Sample sizes and preparation techniques are considered appropriate. The sample sizes are considered to be appropriate for the nature of mineralisation within the project area. Duplicate RC sampling concentrated on potentially mineralised intervals.
Quality of data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 RC samples were assayed for Au using 50g Au-AA26 fire assay which is considered appropriate for this style of mineralisation. Fire assay is considered total assay for gold. Multi-element analysis was conducted by standard ME-ICP61a protocol and considered appropriate for this style of mineralisation. It is considered a near-total assay for most relevant elements Monitoring of results of blanks and standards is conducted regularly. QA/QC data is reviewed for bias prior to inclusion in any subsequent Mineral Resource estimate.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are routinely monitored through review of drill chip and drill core and by site visits when possible by the Exploration Manager. Data is verified and checked in Micromine software. No drill holes have been twinned. Primary data is collected via paper and laptops in the field in self-validating data entry forms. Data is subsequently uploaded into a corporate database for further validation/checking and data management. All original files are stored as a digital record. No adjustments have been applied to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations are pegged and checked on completion via handheld GPS with +/-5m accuracy using existing LiDAR and regional DTM data and considered appropriate for this level of exploration work Drill hole collar locations are initially set out (and reported) using a handheld GPS with a location error of +/- 5m. All holes are pegged and will be accurately surveyed (x,y,z) at a later date. Down hole surveys were completed using an Eastman film survey tool or Reflex digital survey tool at a maximum interval of 30m. All drilling is conducted on the MGA94 Zone 54 grid. A complete topographic survey of the project area has not been conducted however LiDAR high resolution

Criteria	JORC Code explanation	Commentary
		coverage is available over the majority of the project area
Data Spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes were sited to test along strike and down dip of previous drilling. Some drill holes have been collared off the same drill pads. The current drill hole spacing in some locations is of sufficient density to establish geological and grade continuity appropriate for a Mineral Resource. An updated mineral resource estimate will be considered once further drilling is completed. Samples >1m are weighted mean average with a tabled cut off of 0.2% Cu with 3m maximum internal dilution.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling is oriented to intersect known and interpreted structures as perpendicular as possible in the XY plane and in the XZ plan as required to either infill spacing vertically as required or transect the structure at best possible true widths
Sample security	The measures taken to ensure sample security.	 Samples are delivered via MBK staff directly to ALS Mt Isa laboratory in sealed and zip-tied bags and bulk bags
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The sampling techniques are regularly reviewed.

Section 2 – Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Millennium project consists of 5 granted ML's 2512, 2761, 2762, 7506 and 7507 which is 100% owned by Global Energy Metals Corporation (GEMC), a TSX-listed Canadian diversified battery metals company. Metal Bank Limited (MBK) has recently entered into a formal option agreement with GEMC to earn up to 80% of the project A review of environmental maps at the time of application did not identify any significant environmental restricted areas.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Several exploration companies have completed exploration work at Millennium in recent years including China Yunnan and Hammer Metals.
Geology	 Deposit type, geological setting and style of mineralisation. 	The MLs lie on the Cloncurry 1:100,000 map sheet. The Millennium Project is situated in the Quamby-Malbon Sub- province of the Eastern Succession of the Mt. Isa Inlier and lies within the predominantly metasedimentary Corella Formation of the Mary Kathleen Group The metasedimentary rocks locally comprise Milo Beds of the Tommy Creek Domain containing Palaeoproterozoic Cover Sequence 3 sediments and felsic and mafic igneous rocks with

		geochronological ages ranging from 1660 to 1610 Ma. The domain is underlain by Cover Sequence 2 Corella Formation belonging to the Mary Kathleen Domain (west) and Canobie Domain (east). The western margin is bordered by the Fountain Range/Quamby Fault system, a regionally extensive NNE-trending, dextral strike slip fault system that demarcates the Tommy Creek Domain from the Mary Kathleen Domain. A block of Quamby Conglomerate is situated immediately west of the Milo Beds, bound between the Quamby Fault to the east and the Fountain Range Fault to the west. In the vicinity of the Millennium Project area, the Fountain Range Fault has merged with the Pilgrim Fault, a regionally extensive NNE- trending, reverse to dextral strike slip fault system that hosts numerous mineral occurrences including the Kalman Cu, Au, Mo, Re deposit and the Tick Hill Au occurrences. The Pilgrim Fault is interpreted as an east dipping fault with a surface expression of multiple stacked east stepping, steeply west dipping shears.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• See Appendix 1 in document and document text
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Unless specified otherwise, a nominal 0.2% Cu lower cut-off has been applied incorporating up to 3m of continuous internal dilution below the reporting cut-off grade and minimum 1m downhole width used to highlight zones of mineralisation. Refer Table 2. Where Cu is not present, a 0.1% Co value has been applied and reported independently Where Cu and Co are not present, a 0.5g.t Au cut-off has been applied and reported independently No metal equivalent values have been used for reporting MBK exploration results. A CuEq% was utilised by Hammer Metals in the 2016 resource estimate with the following commodity prices: <i>Cu: US\$4,600/t; Co: US\$27,000/t; Au: US\$1,330/oz; and Ag: US\$20/oz</i>
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Downhole observation results are listed only and interpreted as approximately 70-75% true width The internal geometry of the mineralisation and grade distribution is not known in enough detail to determine the true width of the mineralisation. However, in most cases a clear gross intersection angle between known mineralised structural corridor and drill hole orientation allows a reasonable estimation of interval true width should mineralisation match Refer Table 1.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures contained within this report showing the regional location of the drill holes and cross- sections.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results are presented in figures and tables contained within this report.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; 	 No other material data collected by Metal Bank Limited is presented in this report.

exploration data	metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further Work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further interpretation and review of the data will be completed in conjunction with upcoming drilling.