

29Metals Limited ('**29Metals**' or, the '**Company**') today announced results from exploration and resource development programs at Capricorn Copper, Golden Grove and Redhill.

The drilling and exploration results in this release have been prepared and are reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 Edition) (the '**JORC Code**').

Highlights¹

Esperanza South ('ESS') drilling campaign (Capricorn Copper)

Surface drilling has intersected wide zones of copper, silver, and cobalt mineralisation, with results exceeding what is modelled within the existing Mineral Resources estimates.² Key results include:

- SDESS22_002_W4: 72.9m @ 2.9% Cu, 37g/t Ag, 672ppm Co, from 793m
- SDESS22_001_W4:
 - o 29m @ 2.0% Cu, 18g/t Ag, 441ppm Co, from 690m; and
 - o 86m @ 2.8% Cu, 32g/t Ag, 822ppm Co, from 727m
- SDESS22_002_W2 104m @ 2.0% Cu, 22g/t Ag, 714ppm Co, from 746m
- SDESS22_002_W3 50.7m @ 2.1% Cu, 15g/t Ag, 896ppm Co, from 894.3m
- SDESS22_002_W1 23m @ 4.3% Cu, 19g/t Ag, 395ppm Co, from 696m

Cervantes drilling campaign (Golden Grove)

Drilling has intersected local zinc, silver, gold, lead and copper mineralisation outside of the existing Mineral Resources estimates. Key results include S22/047 which intersected 2.8m @ 42.7% Zn, 0.1% Cu, 0.6% Pb, 300g/t Ag, 1.3g/t Au, from 272.7m

Results have also been received for the first extensional hole to the north, which intersected zinc, silver, and gold mineralisation outside of existing Mineral Resources estimates, with hole S21/074 intersecting 8.3m @ 10.7% Zn, 0.1% Cu, 0.6% Pb, 52g/t Ag, 0.7g/t Au, from 909.7m.

Redhill field season

Returned rock samples have highlighted possible extensions to existing veins as well as additional veins outside of existing Mineral Resources estimates, with samples returning elevated copper and precious metals mineralisation, with results as high as **3.4% Cu**, **9.5g/t Au**, and **221g/t Ag**.³

The results of the ESS and Cervantes drilling reported in this release will be included in 29Metals' next updates to Mineral Resources and Ore Reserves estimates.

Commenting on the results, Managing Director & Chief Executive Officer, Peter Albert, said:

"We have continued to invest in our pipeline of organic growth opportunities in 2022, with targeted exploration activity across the portfolio. The results reported today reinforce the quality of our existing assets and support 29Metals' organic growth strategy.

The results at Esperanza South highlight the high-grade nature of Capricorn Copper, and the opportunity to extend minelife and grow production. The results at Cervantes come after the highly successful 2021 Cervantes drilling campaign and highlight the opportunity to bring this deposit into the mine plan earlier.

It is fantastic to report promising early results from our first field season at Redhill in Chile. This is a historically underexplored part of Chile, and we look forward to updating the market on the remaining program results in due course."

¹ In this release, all drilling results lengths cited are down-hole lengths unless otherwise stated.

² In this release, a reference to current Mineral Resources estimates is estimates included in 29Metals' 2021 Mineral Resources and Ore Reserves estimates, as released on the ASX announcement platform on 11 March 2022 (a copy of which is available on 29Metals' website at: https://www.29metals.com/investors/reports-presentations).

³ Refer to sampling methodology outlined on page 9 of this release. Redhill results should be viewed as rock sample results and not drilling results.

ESS Drilling Campaign (Capricorn Copper)

Overview

The ESS deposit is one of 29Metals' active mining areas (sub-level cave) at Capricorn Copper and is open down plunge and in some areas, to the south.

Figure 1 - Capricorn Copper long-section with ESS area highlighted

The ESS drilling program is designed to convert material classified as *Inferred* Mineral Resources in 29Metals' current Mineral Resources estimates to higher confidence levels (referred to in this release as '**Resource Development**'), and to extend mineralisation relative to existing estimates (referred to in this release as '**Resource Extension**'). Resource Extension drilling at ESS is testing down plunge of known mineralisation.

Drilling has occurred both from surface and underground platforms, and has comprised (to-date), 19 underground drillholes and nine surface drillholes.

Results

Drilling at depth has intersected intervals that exceeds what is modelled within the existing Mineral Resources estimates. ESS remains open down plunge, with wide zones of copper, silver, and cobalt mineralisation intersected in the deeper parts of the orebody.

As disclosed in 29Metals' Jun-Qtr quarterly report, these results have warranted commitment of an additional \$2 million to expand the drilling program from surface, and drill further holes within the immediate area as well as down plunge to the south. This second phase of drilling from surface is underway and is expected to continue into the December quarter.

The location of the completed drill holes in relation to historical drilling and the current Mineral Resources estimates for ESS is shown in Figure 2. All completed drilling results are reported in Appendix 1.

A down plunge cross section for the south side of ESS is shown in Figure 3, highlighting the thickness of the recent drilling intersections relative to the current Mineral Resources estimates.

Figure 2 – Long section presentation of ESS

Long section of ESS showing pierce points of assay results from holes reported in this release, with select results highlighted, as well as the pierce point location of historic drilling, relative to an illustrative presentation of the current Mineral Resources estimates. All intersections are reported in Appendix 1.

Down-plunge Cross section of ESS centred at local grid 19,600mN +/- 40m, showing drilling and locations of downhole mineralised intervals relative to an illustrative presentation of the current Mineral Resources estimates. Some intersections reported in Figure 2 are located outside this section. All intersections are reported in Appendix 1.

A summary of the highlighted drilling results from Figure 2 are set out in Table 1 below. All intersections are reported in Appendix 1.

Table 1 - Summary of highlighted drilling results

Hole ID	Drilling Type	Depth From	Depth To	Downhole Length	Cu	Ag	Со
		m	m	m	%	g/t	ppm
SDESS22_002_W4	Resource Development	712.1	783.0	70.9	1.2	15	469
	Resource Development	793.0	865.9	72.9	2.9	37	672
SDESS22_001_W4	Resource Development	690.0	719.0	29.0	2.0	18	441
	Resource Development	727.0	813.0	86.0	2.8	32	822
SDESS22_002_W2	Resource development	746.0	850.0	104.0	2.0	22	714
SDESS22_002_W3	Resource Extension	819.6	826.1	6.5	2.4	18	188
	Resource Extension	847.9	886.2	38.3	1.4	19	263
	Resource Extension	894.3	945	50.7	2.1	15	896
SDESS22_002_W1	Resource Development	696.0	719.0	23.0	4.3	19	395
	Resource Development	757.0	789.0	32.0	2.1	20	1,137
SDESS22_001_W5	Resource Development	716.0	777.0	61.0	1.0	10	238
	Abandoned in ore due to s	tuck Rods					
SDESS22_001_W3	Resource Development	789.0	810.0	21.0	1.1	12	106
SDESS22_001_W1B	Resource Development	767.0	797.0	30.0	1.9	10	316
SDESS22_001_W2	Resource Development	773.0	799.0	26.0	2.7	30	214
	Resource Development	824.0	849.0	25.0	1.4	9	307
	Resource Extension	882.0	902.0	20.0	1.7	13	145
UDES21_108	Resource Development	170.5	198.0	27.5	3.8	17	801
UDES21_110	Resource Extension	236.5	264.7	28.2	2.3	20	936
UDES21_104	Resource Development	217.0	227.0	10.0	4.6	37	1,630
UDES22_119	Resource Extension	116.0	139.0	23.0	1.0	8	151
UDES21_105	Resource Extension	228.0	238.0	10.0	2.1	26	1,062

Refer to Appendices for reported drilling results covered in this release and JORC Code Table 1 disclosures.

Cervantes Drilling Campaign (Golden Grove)

Overview

The Cervantes deposit is one of 29Metals' organic growth opportunities at Golden Grove, located approximately 270m vertically below the level of existing development at the Scuddles underground mine. The 2022 drilling campaign follows on from the highly successful 2021 drilling campaign. ¹ Cervantes remains open down plunge, to the north, and in some areas, to the south.

Drilling in the 2022 campaign is targeting:

- conversion of material classified as *Inferred* in 29Metals' current Mineral Resources estimates;
- extension opportunities in the area between the base of development at Scuddles mine and the top of the Cervantes orebody; and
- testing to the north of known mineralisation.

Figure 4 - Golden Grove long-section with Cervantes area highlighted

The results reported in this release includes 13 underground drillholes with returned assays completed to-date.

The campaign at Cervantes is ongoing, with further Resource Development and Resource Extension drilling planned. Extensional drilling will target areas to the north of known mineralisation as the mineralogy at Cervantes becomes dominated by massive pyrite to the north. This pyrite dominant zone is interpreted to correlate with the feeder position for Cervantes, and the area north of this interpreted feeder is considered prospective for further potential copper and zinc mineralisation.

Results

Drilling has intersected local zinc, silver, gold, lead and copper mineralisation outside of the existing mineral resources estimates. Results have also been received for the first extensional hole to the north, which has intersected zinc, silver and gold mineralisation outside the current Mineral Resources estimates.

The location of the completed drill holes in the current program, along with historical drilling locations, is shown in Figure 5. All drilling results are reported in Appendix 2.

¹ Cervantes 2021 drilling campaign results released to the ASX announcement platform on 16 September 2021 and 9 February 2022 (copies of which are available on 29Metals' website at: <u>https://www.29metals.com/investors/asx-releases</u>).

Figure 5 – Long section presentation of Cervantes

Long section of Cervantes showing pierce points of assay results from holes reported in this release, with select results highlighted, as well as the pierce point location of historic drilling and the position of the interpreted feeder at Scuddles, relative to current Mineral Resources estimates. All intersections are reported in Appendix 2.

A summary of the highlighted drilling results from Figure 5 are set out in Table 2 below. All intersections are included in Appendix 2.

Table 2 - Summary of highlighted drilling results

Hole ID	Drilling Type	Depth From	Depth To	Downhole Length	Zn	Cu	Pb	Ag	Au
		m	m	m	%	%	%	g/t	g/t
S22/047	Resource Extension	272.7	275.5	2.8	42.7	0.1	0.6	300	1.3
S21/074	Resource Extension	909.7	918.0	8.3	10.7	0.1	0.6	52	0.7
S22/025	Resource Extension	420.9	429.0	8.1	10.6	0.4	0.9	87	0.7
S22/051	Resource Extension	374.6	379.0	4.4	14.7	0.1	0.3	7	0.1
S22/026	Resource Development	395.0	396.6	1.6	28.0	0.0	0.4	187	4.3
	Resource Development	435.0	437.1	2.1	27.3	0.7	0.4	47	1.0
S22/027	Resource Development	381.0	383.9	2.9	14.3	0.0	0.3	47	0.8
S22/041	Resource Extension	325.4	331.4	6.0	8.7	0.1	0.3	35	0.6

As noted above, drilling in Cervantes is set to continue into the December quarter. 29Metals will update the market in due course following completion of the full program.

Drilling results for all holes in the current campaign and JORC Code Table 1 disclosures are set out in the Appendices to this release.

	The second		WHIND THE PARTY OF	Aller and a second s					
					ana ana	TRUTT	COLUMN C		

Redhill Field Season

Overview

During the first half of 2022, 29Metals completed its first field season at Redhill in Chile. Redhill comprises the Cutters Cove project as well as a regional tenement package within the surrounding province.

The 2022 Field season focussed on the Cutters Cove project area, which is made up of a series of mesothermal polymetallic quartz-sulphide veins which currently host Mineral Resources estimates (*Inferred* category) of 4.3Mt @ 1.7% Cu, 33g/t Ag, and 0.3g/t Au¹

The locations of 29Metals' current Mineral Resources estimates at Redhill, as well as the location of 2022 field campaign samples, are outlined in Figure 6 below.

Activities undertaken in the 2022 field season comprised:

- acquisition of core samples via a portable small drill which allowed for blind testing of the hard rock below the peat
 overburden layer to test the potential for extension to know veins of mineralisation, as well as testing the potential for
 additional veins outside of known mineralisation;
- mapping and sampling activities resulting in the collection of 60 rock chip samples from various locations; and
- a drone-based magnetics survey conducted over Cutters Cove to gain an improved understanding of the geology and structure under cover.

In total, 385 samples were collected during the 2022 field season. This release reports results of 241 of those samples for which assay results have been finalised.

Results for the balance of the 2022 field season are expected to be returned during the September Quarter.

Samples during the 2022 field season reported in this announcement were collected utilising portable small drills. The portable small drill uses an auger-style bit to penetrate through the organic peat layer. Once the hole is drilled to rock a diamond bit is placed on the drill and a small core sample can be obtained from the fresh rock where it meets the peat cover.

Due to the blind nature of testing, holes were drilled vertically at regular intervals typically 10m apart on lines perpendicular to the known vein orientation. Some infill holes would occur relative to that spacing when vein hosted mineralisation was directly intersected. The samples were then logged, photographed, and despatched for assay analysis.

No interval thicknesses are implied through the sample results and the samples should be viewed as rock samples as opposed to drilling results.

Left: Field crews operating portable small drill. Right: Example of the rock samples collected using portable small drill: Quartz Vein hosting chalcopyrite and pyrite mineralisation collected southeast of the Cristina Vein (Sample ID 5736 from hole CCL49-502)

¹ 29Metals' Mineral Resources estimates for Redhill are set out in the December 2021 Mineral Resources and Ore Reserves estimates released to the ASX on 11 March 2022 2022 (a copy of which is available on 29Metals' website at: <u>https://www.29metals.com/investors/reports-presentations</u>).

Figure 6 - Cutters Cove Project Overview.

Plan view of Cutters Cove project area showing the location of all samples collected within the 2022 field season as well as the samples covered as part of this announcement, and the surface position of all current Mineral Resources Estimates (Inferred category).

Results

Based on the sampling results received to-date, the sampling intersected interpreted extensions to existing veins as well as possible new veins outside the known mineralisation. Though this project is in its early stages, these assay results suggest the system extends beyond the current Mineral Resources estimates at surface, and there is potential to grow the resource by extending the known mineralisation and/or defining additional veins within the system.

The location of samples in relation to the current Mineral Resources Estimates for Cutters Cove are shown in Figure 7. All sampling results are reported in Appendix 3.

29

Plan view showing the results of rock samples collected via portable small drills in relation to the location of current Mineral Resources estimates, with results directly intersecting veins hosted mineralisation highlighted. All results are reported in Appendix 3.

Exploration Update

A summary of the highlighted sampling results from Figure 7 are set out in Table 3 below. All results are included in Appendix 3.

Hole ID	Lab sample	Cu	Au	Ag	Pb	Zn	Comment
		%	g/t	g/t	ppm	ppm	
CCL45-455	5550	1.4	0.0	19	154	271	
CCL33-346	5567	0.9	0.1	23	57	43	
CRL17-177	5568	0.4	0.0	11	10000	10000	Pb/Zn Overlimit result pending
CRL17-179	5570	1.3	2.9	163	10000	10000	Pb/Zn Overlimit result pending
ANL06-65	5594	0.1	1.0	2	28	68	
CRL29-232	5609	0.3	0.7	13	95	144	
ANL04-39	5644	1.2	0.1	21	31	118	
CRL27-288	5674	0.5	0.0	19	271	231	
CRL26-281	5681	0.1	0.2	4	4510	10000	Zn Overlimit result pending
CRL26-277	5685	0.0	1.7	14	467	2990	
CRL26-276	5686	0.0	0.8	13	396	19	
CRL15-159	5728	1.2	0.3	8	340	304	
CRL15-160	5729	1.3	5.8	221	10000	10000	Pb/Zn Overlimit result pending
CRL15-161	5730	0.0	9.5	11	232	188	
CCL49-498	5732	0.1	0.5	3	458	127	
CCL49-502	5736	3.4	0.2	51	367	407	
CCL51-516	5747	0.7	0.0	8	26	103	

Table 3 – Summary of highlighted sampling results, samples annotated in Figure 6 are bolded.

As noted above, the balance of sample results will return in the September quarter. 29Metals will update the market in due course.

Refer to Appendices for reported sampling results covered in this release and JORC Code Table 1 disclosures.

This announcement was authorised for release by the Managing Director & Chief Executive Officer.

Investor Enquiries

Michael Slifirski

Group Manager Investor Relations

Michael.Slifirski@29metals.com

+61 0459 967 977

Media Enquiries Citadel-MAGNUS Michael Weir / Cameron Gilenko <u>mweir@citadelmagnus.com</u> / <u>cgilenko@citadelmagnus.com</u>

+61 402 347 032 / +61 466 984 953

Competent Person Statement

The information regarding exploration results in this release is based on and fairly represent information and supporting documentation compiled by Mr Mark van Heerden. Mr van Heerden (RPGeo – Mineral Exploration) is Group Manager Geology and a full-time employee of 29Metals Limited. Mr van Heerden is a member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to this style of mineralisation and type of deposit under consideration, and to the activity being reported on, in this release to qualify as a Competent Person as defined in the JORC Code.

Mr van Heerden has consented to the inclusion in this release of the information regarding exploration results in the form and context in which it appears.

Appendix 1: Esperanza South Drilling Results

Hole ID	Drilling Type	Easting	Northing	RL	Azi	Dip	Total Depth	Depth From	Depth To	Downhole Length	Cu	Ag	Со
		Local	Local	Local	Local	deg	m	m	m	m	%	g/t	ppm
UDES21_056	Resource Development	27011	19713	4901	290	-40	174	84.0	93.0	9.0	1.3	17	300
								129.0	136.4	7.4	2.4	28	57
UDES21_080	Resource Development	27105	19888	4858	275	-9	162	149.5	153.0	3.5	1.4	10	172
UDES21_082	Resource Extension	27106	19888	4858	287	-8	161	149.0	153.0	4.0	1.8	13	35
UDES21_083	Resource Extension	27105	19888	4857	292	-16	180	139.0	142.0	3.0	0.9	7	146
								154.0	157.0	3.0	1.0	8	93
UDES21_084	Resource Extension	27105	19888	4858	297	-9	162	135.0	138.0	3.0	1.9	11	119
								153.0	156.0	3.0	1.1	8	55
UDES21_085	Resource Development	27106	19889	4858	302	2	170	154.0	164.0	10.0	1.5	12	39
UDES21_087	Resource Development	27002	19679	4901	259	-36	211	163.0	200.0	37.0	1.9	16	1573
UDES21_091	Resource Development	27002	19679	4902	247	-24	226	179.0	198.0	19.0	0.8	14	988
								201.0	206.0	5.0	0.8	20	338
UDES21_098	Resource Development	27032	19856	4823	283	-9	125	76.0	82.0	6.0	3.3	19	146
								93.8	104.0	10.2	5.2	35	122
UDES21_099	Resource Development	27032	19856	4822	283	-22	123	100.7	115.0	14.3	3.4	23	277
UDES21_104	Resource Development	27002	19680	4901	251	-35	240	180.0	188.0	8.0	1.5	13	801
	Resource Development							217.0	227.0	10.0	4.6	37	1630
UDES21_105	Resource Extension	27002	19679	4901	246	-31	254	113.0	116.0	3.0	1.0	12	428
								193.0	221.0	28.0	0.9	11	504
								228.0	238.0	10.0	2.1	26	1062
UDES21_108	Resource Development	27002	19680	4901	263	-46	235	170.5	198.0	27.5	3.8	17	801
UDES21_109	Resource Extension	27002	19680	4901	255	-44	251	205.0	208.0	3.0	1.0	14	1499
								219.0	230.0	11.0	1.2	23	933

Hole ID	Drilling Type	Easting	Northing	RL	Azi	Dip	Total Depth	Depth From	Depth To	Downhole Length	Cu	Ag	Со
		Local	Local	Local	Local	deg	m	m	m	m	%	g/t	ppm
								240.0	248.0	8.0	1.1	6	115
UDES21_110	Resource Extension	27002	19679	4901	249	-41	283	210.0	226.0	16.0	1.1	17	1462
								236.5	264.7	28.2	2.3	20	936
UDES22_116	Resource Extension	27024	19849	4798	311	7	120	77.0	80.0	3.0	1.0	9	193
UDES22_117	Resource Development	27024	19849	4797	305	-7	122	80.0	83.0	3.0	2.3	15	106
UDES22_118	Resource Extension	27024	19850	4797	320	-8	135	60.0	66.0	6.0	1.5	5	851
								94.0	97.8	3.8	1.2	13	409
UDES22_119	Resource Extension	27024	19850	4797	315	-27	153	116.0	139.0	23.0	1.0	8	151
SDESS22_001_W1B	Resource Development	26611	19757	5221	106	-82	859	734.6	738.0	3.4	2.1	27	301
								746.0	760.0	14.0	0.9	10	117
								767.0	797.0	30.0	1.9	10	316
								803.0	809.0	6.0	0.9	7	206
SDESS22_001_W2	Resource Development	26611	19757	5221	Wedge	Wedge	953	744.5	747.7	3.2	1.4	20	205
								758.9	765.0	6.1	1.8	27	229
								773.0	799.0	26.0	2.7	30	214
								824.0	849.0	25.0	1.4	9	307
	Resource Extension							882.0	902.0	20.0	1.7	13	145
SDESS22_001_W3	Resource Development	26611	19757	5221	Wedge	Wedge	997	789.0	810.0	21.0	1.1	12	106
								846.8	851.0	4.2	2.4	33	616
SDESS22_001_W4	Resource Development	26611	19757	5221	Wedge	Wedge	852	690.0	719.0	29.0	2.0	18	441
								727.0	813.0	86.0	2.8	32	822
SDESS22_001_W5	Resource Development	26611	19757	5221	Wedge	Wedge	820	716.0	777.0	61.0	1.0	10	238
								795.0	798.0	3.0	2.3	26	513
Hole abandoned in ore	e due to stuck rods												
SDESS22_002_W1	Resource Development	26571	19694	5225	106	-82	867	696.0	719.0	23.0	4.3	19	395

Hole ID	Drilling Type	Easting	Northing	RL	Azi	Dip	Total Depth	Depth From	Depth To	Downhole Length	Cu	Ag	Со
		Local	Local	Local	Local	deg	m	m	m	m	%	g/t	ppm
								757.0	789.0	32.0	2.1	20	1137
SDESS22_002_W2	Resource Development	26571	19694	5225	Wedge	Wedge	891	746.0	850.0	104.0	2.0	22	714
SDESS22_002_W3	Resource Extension	26571	19694	5225	Wedge	Wedge	962	743.0	751.0	8.0	0.8	5	288
								770.0	781.0	11.0	0.9	3	127
								819.6	826.1	6.5	2.4	18	188
								847.9	886.2	38.3	1.4	19	263
								894.3	945.0	50.7	2.1	15	896
SDESS22_002_W4	Resource Development	26571	19694	5225	Wedge	Wedge	943	712.1	783.0	70.9	1.2	15	469
								793.0	865.9	72.9	2.9	37	672

Appendix 2: Cervantes Drilling Results

Hole ID	Drilling Type	Easting	Northing	RL	Azi	Dip	Total Depth	Depth From	Depth To	Downhole Length	Cu	Zn	Au	Ag	Pb
		Local	Local	Local	Local		m	m	m	m	%	%	g/t	g/t	%
S21/015	Resource Extension	6395	22315	9337	16	-59	494.7	0.0	494.7	494.7	No sig	nificant ass	ay result		
S21/043	Resource Extension	6395	22314	9337	29	-65	456	400.4	405.0	4.6	2.1	0.0	0.3	11	0.0
S21/063	Resource Extension	6446	22446	9341	49	-64	450.1	0.0	450.1	450.1	no sig	nificant ass	ay result		
S21/074	Resource Extension	6394	22315	9337	15	-75	1020.4	909.7	918.0	8.3	0.1	10.7	0.6	52	0.7
S21/074D1	Resource Extension	6394	22315	9337	15	-75	255	0.0	255.0	255.0	Termi result	nated due to	o deviation ·	- no significa	ant assay
S21/079	Resource Extension	6446	22447	9341	20	-64	525	0.0	525.0	525.0	no sig	nificant ass	ay result		
S22/024	Resource Extension	6446	22445	9340	86	-58	460	0.0	460.0	460.0	no sig	nificant ass	ay result		
S22/025	Resource Extension	6446	22445	9340	91	-56	540	420.9	429.0	8.1	0.4	10.6	0.9	87	0.7
S22/026	Resource Development	6446	22445	9341	87	-60	563.8	395.0	396.6	1.6	0.0	28.0	0.4	187	4.3
								435.0	437.1	2.1	0.7	27.3	0.4	47	1.0
S22/027	Resource Development	6446	22445	9340	83	-63	534.4	381.0	383.9	2.9	0.0	14.3	0.3	47	0.8
S22/041	Resource Extension	6446	22446	9340	51	-67	453.1	325.4	331.4	6.0	0.1	8.7	0.3	35	0.6
								335.5	340.6	5.1	0.2	5.2	0.3	25	0.8
								360.3	364.8	4.5	1.6	0.0	0.2	24	0.0
S22/047	Resource Extension	6446	22446	9340	64	-66	459	272.7	275.5	2.8	0.1	42.7	0.6	300	1.3
								414.6	419.4	4.8	1.7	0.0	0.1	11	0.0
S22/051	Resource Extension	6446	22445	9340	89	-62	467.9	374.6	379.0	4.4	0.1	14.7	0.3	7	0.1
								379.0	383.9	4.9	2.0	0.5	0.5	28	0.0
								392.2	396.6	4.4	1.8	0.9	0.3	7	0.0

Appendix 3: Redhill Sampling Results

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CCL36-365	5501	Portable small drill sample	670581	4085087	11	0.0	0.0	2	9	68	
CCL36-368	5502	Portable small drill sample	670614	4085096	16	0.0	0.0	0	12	75	
CCL36-369	5503	Portable small drill sample	670624	4085100	18	0.0	0.0	0	36	79	
CCL36-370	5504	Portable small drill sample	670636	4085103	19	0.0	0.0	0	47	134	
CCL42-422	5505	Portable small drill sample	670659	4085114	23	0.0	0.0	1	1390	4290	
CCL42-423	5506	Portable small drill sample	670665	4085118	23	0.0	0.0	0	89	205	
CCL42-424	5507	Portable small drill sample	670672	4085121	24	0.0	0.0	0	11	59	
CCL42-427	5508	Portable small drill sample	670702	4085131	27	0.1	0.0	12	135	118	
CCL42-428	5509	Portable small drill sample	670715	4085140	30	0.1	0.0	4	130	5830	
CCL42-429	5510	Portable small drill sample	670719	4085138	31	0.1	0.0	5	645	1160	
CCL42-430	5511	Portable small drill sample	670731	4085140	34	0.0	0.0	0	89	187	
CCL42-431	5512	Portable small drill sample	670739	4085142	35	0.0	0.0	0	7	74	
CUG01-01	5513	Portable small drill sample	671400	4084740	37	0.0	0.0	0	8	80	
CUG01-02	5514	Portable small drill sample	671410	4084740	39	0.0	0.0	0	2	77	
CUG01-03	5515	Portable small drill sample	671420	4084744	41	0.0	0.0	0	5	101	
CUG01-05	5517	Portable small drill sample	671440	4084748	46	0.0	0.0	0	8	159	
CUG01-09	5518	Portable small drill sample	671487	4084760	53	0.0	0.0	0	8	60	
CUG01-11	5519	Portable small drill sample	671508	4084766	56	0.0	0.0	0	8	75	
CUG02-12	5520	Portable small drill sample	671413	4084709	34	0.0	0.0	0	6	54	
CUG02-16	5521	Portable small drill sample	671454	4084713	43	0.0	0.0	0	4	108	
CUG02-17	5522	Portable small drill sample	671466	4084716	46	0.0	0.0	0	5	90	
CUG02-18	5523	Portable small drill sample	671477	4084715	48	0.0	0.0	0	11	117	
CUG02-19	5525	Portable small drill sample	671486	4084718	50	0.0	0.0	0	13	104	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CUG02-20	5526	Portable small drill sample	671500	4084718	51	0.0	0.0	0	5	78	
CUG02-22	5527	Portable small drill sample	671521	4084725	55	0.0	0.0	0	4	89	
CUG03-30	5528	Portable small drill sample	671503	4084676	46	0.0	0.0	0	28	90	
CCL48-487	5529	Portable small drill sample	670735	4085138	35	0.0	0.0	0	1	62	
CCL48-488	5530	Portable small drill sample	670745	4085145	36	0.0	0.0	0	7	24	
CCL48-489	5531	Portable small drill sample	670754	4085146	38	0.0	0.0	0	9	39	
CCL48-490	5532	Portable small drill sample	670768	4085150	39	0.2	0.0	2	64	303	
CCL48-491	5534	Portable small drill sample	670775	4085155	39	0.0	0.0	0	7	61	
CCL48-492	5535	Portable small drill sample	670788	4085159	38	0.0	0.0	5	8	79	
CCL48-493	5536	Portable small drill sample	670795	4085159	39	0.0	0.0	0	8	62	
CCL48-494	5537	Portable small drill sample	670809	4085165	38	0.0	0.0	0	23	69	
CCL48-495	5537	Portable small drill sample	670814	4085170	38	0.0	0.0	0	14	126	
CCL48-496	5539	Portable small drill sample	670827	4085175	37	0.0	0.0	0	7	49	
CCL45-464	5540	Portable small drill sample	670792	4085282	34	0.0	0.0	0	5	77	
CCL45-463	5542	Portable small drill sample	670781	4085280	34	0.0	0.0	0	68	89	
CCL45-461	5543	Portable small drill sample	670760	4085269	31	0.1	0.2	5	218	760	
CCL45-460	5544	Portable small drill sample	670756	4085269	31	0.0	0.0	0	7	45	
CCL45-459	5545	Portable small drill sample	670747	4085267	31	0.0	0.0	0	15	126	
CCL45-458	5546	Portable small drill sample	670738	4085262	31	0.0	0.0	0	71	159	
CCL45-457	5547	Portable small drill sample	670727	4085260	31	0.0	0.0	0	10	80	
CCL45-456	5548	Portable small drill sample	670715	4085258	29	0.0	0.0	1	43	88	
CCL45-455	5550	Portable small drill sample	670709	4085253	28	1.4	0.0	19	154	271	
CCL45-455	5551	Portable small drill sample	670709	4085253	28	0.0	0.0	0	9	77	
CCL45-454	5552	Portable small drill sample	670700	4085252	28	0.0	0.0	1	52	803	
CCL39-398	5553	Portable small drill sample	670701	4085261	27	0.0	0.0	0	13	105	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CCL39-397	5554	Portable small drill sample	670691	4085254	27	0.0	0.0	0	10	72	
CCL39-396	5555	Portable small drill sample	670676	4085249	27	0.0	0.0	0	99	180	
CCL39-395	5556	Portable small drill sample	670662	4085244	26	0.0	0.0	1	227	532	
CCL39-394	5558	Portable small drill sample	670651	4085240	25	0.0	0.0	0	12	91	
CCL39-391	5559	Portable small drill sample	670621	4085231	21	0.0	0.0	1	181	634	
CCL39-389	5560	Portable small drill sample	670606	4085221	19	0.0	0.0	0	39	173	
CCL39-388	5561	Portable small drill sample	670595	4085215	19	0.0	0.0	0	14	64	
CCL33-351	5562	Portable small drill sample	670578	4085231	20	0.0	0.0	1	13	75	
CCL33-350	5563	Portable small drill sample	670569	4085226	21	0.1	0.0	1	95	297	
CCL33-349	5564	Portable small drill sample	670561	4085238	21	0.0	0.0	1	104	286	
CCL33-348	5565	Portable small drill sample	670553	4085240	21	0.0	0.0	1	9	172	
CCL33-347	5566	Portable small drill sample	670552	4085252	19	0.0	0.0	0	5	116	
CCL33-346	5567	Portable small drill sample	670530	4085240	16	0.9	0.1	23	57	43	
CRL17-177	5568	Portable small drill sample	670353	4085695	43	0.4	0.0	11	10000	10000	Pb/Zn Overlimit result pending
CRL17-178	5569	Portable small drill sample	670362	4085703	45	0.0	0.0	1	16	80	
CRL17-179	5570	Portable small drill sample	670373	4085705	48	1.3	2.9	163	10000	10000	Pb/Zn Overlimit result pending
CRL17-180	5571	Portable small drill sample	670382	4085708	50	0.0	0.0	0	297	668	
CRL17-181	5573	Portable small drill sample	670394	4085714	54	0.0	0.0	0	42	38	
CRL17-182	5574	Portable small drill sample	670403	4085717	56	0.0	0.0	0	7	155	
CRL17-184	5575	Portable small drill sample	670421	4085724	61	0.0	0.0	0	49	116	
CRL17-185	5576	Portable small drill sample	670431	4085729	63	0.0	0.0	0	47	190	
CRL17-187	5577	Portable small drill sample	670451	4085734	66	0.0	0.0	0	14	88	
CRL18-189	5578	Portable small drill sample	670477	4085744	67	0.0	0.0	1	136	214	
CRL18-190	5579	Portable small drill sample	670487	4085748	66	0.0	0.0	0	31	126	
CRL18-191	5581	Portable small drill sample	670494	4085755	65	0.0	0.0	0	1	6	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CRL18-192	5582	Portable small drill sample	670502	4085757	64	0.0	0.0	1	7	78	
CRL18-193	5583	Portable small drill sample	670516	4085757	62	0.3	0.2	14	569	1260	
CRL18-195	5584	Portable small drill sample	670533	4085765	63	0.0	0.0	0	4	67	
CRL18-196	5585	Portable small drill sample	670546	4085766	63	0.0	0.0	0	31	182	
CRL18-197	5586	Portable small drill sample	670557	4085772	64	0.0	0.0	1	59	86	
CRL18-198	5587	Portable small drill sample	670562	4085780	63	0.0	0.0	0	19	122	
ANL06-59	5588	Portable small drill sample	670665	4085961	75	0.0	0.0	0	6	67	
ANL06-60	5590	Portable small drill sample	670673	4085963	75	0.1	0.1	5	66	78	
ANL06-61	5591	Portable small drill sample	670681	4085967	75	0.0	0.0	0	7	97	
ANL06-62	5592	Portable small drill sample	670689	4085975	74	0.0	0.0	0	19	148	
ANL06-64	5593	Portable small drill sample	670706	4085984	71	0.0	0.0	1	11	70	
ANL06-65	5594	Portable small drill sample	670715	4085988	69	0.1	1.0	2	28	68	
ANL06-66	5595	Portable small drill sample	670721	4085986	68	0.0	0.0	0	10	40	
ANL07-77	5596	Portable small drill sample	670742	4085933	68	0.0	0.0	0	8	39	
ANL07-74	5597	Portable small drill sample	670723	4085915	73	0.0	0.0	0	2	46	
ANL07-73	5598	Portable small drill sample	670714	4085908	75	0.0	0.0	1	14	68	
ANL07-68	5599	Portable small drill sample	670667	4085891	73	0.0	0.0	0	4	73	
ANL07-67	5600	Portable small drill sample	670658	4085888	72	0.0	0.0	0	8	74	
ANL08-78	5601	Portable small drill sample	670661	4085849	67	0.0	0.0	0	8	85	
ANL08-79	5602	Portable small drill sample	670674	4085855	67	0.0	0.0	2	362	1045	
ANL08-81	5603	Portable small drill sample	670691	4085873	72	0.0	0.1	0	29	120	
ANL08-83	5604	Portable small drill sample	670710	4085878	74	0.0	0.0	0	8	225	
ANL08-84	5605	Portable small drill sample	670722	4085886	74	0.0	0.0	1	13	67	
ANL08-85	5606	Portable small drill sample	670733	4085895	72	0.0	0.0	1	43	246	
ANL08-86	5607	Portable small drill sample	670742	4085901	70	0.0	0.0	0	3	38	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
ANL08-87	5608	Portable small drill sample	670749	4085906	67	0.0	0.0	0	7	34	
CRL29-232	5609	Portable small drill sample	670569	4085908	69	0.3	0.7	13	95	144	
CRL29-233	5610	Portable small drill sample	670578	4085912	68	0.0	0.0	0	10	122	
CRL29-234	5611	Portable small drill sample	670586	4085915	69	0.0	0.0	0	22	108	
CRL30-235	5613	Portable small drill sample	670546	4085868	64	0.0	0.0	1	8	90	
CRL30-236	5614	Portable small drill sample	670554	4085873	65	0.0	0.0	0	8	78	
CRL30-237	5615	Portable small drill sample	670562	4085876	65	0.0	0.0	1	14	57	
CRL30-238	5616	Portable small drill sample	670572	4085880	66	0.0	0.0	0	40	94	
CRL30-239	5617	Portable small drill sample	670580	4085884	67	0.0	0.0	1	47	93	
CRL31-240	5618	Portable small drill sample	670549	4085845	63	0.0	0.0	1	7	73	
CRL31-241	5619	Portable small drill sample	670559	4085848	64	0.0	0.0	0	6	53	
CRL31-242	5620	Portable small drill sample	670568	4085851	65	0.0	0.0	0	13	87	
CRL31-243	5621	Portable small drill sample	670577	4085854	65	0.0	0.0	0	38	118	
ANL05-48	5622	Portable small drill sample	670885	4085800	64	0.0	0.0	0	5	50	
ANL05-47	5623	Portable small drill sample	670877	4085794	62	0.0	0.0	0	4	82	
ANL05-46	5624	Portable small drill sample	670866	4085790	60	0.0	0.0	1	14	73	
ANL05-45	5625	Portable small drill sample	670860	4085784	58	0.0	0.0	0	12	64	
ANL10-100	5626	Portable small drill sample	670888	4085855	68	0.0	0.0	1	12	61	
ANL10-102	5628	Portable small drill sample	670907	4085869	75	0.0	0.0	0	3	39	
ANL10-104	5629	Portable small drill sample	670924	4085880	80	0.0	0.0	0	4	22	
ANL10-106	5630	Portable small drill sample	670942	4085885	78	0.0	0.0	0	6	20	
ANL10-107	5631	Portable small drill sample	670948	4085893	70	0.0	0.0	0	6	11	
ANL09-96	5632	Portable small drill sample	670934	4085908	72	0.0	0.0	0	4	26	
ANL09-95	5633	Portable small drill sample	670925	4085902	77	0.0	0.0	0	9	15	
ANL09-94	5634	Portable small drill sample	670920	4085895	78	0.0	0.0	0	7	19	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
ANL09-93	5635	Portable small drill sample	670913	4085894	77	0.0	0.0	0	5	10	
ANL06-56	5637	Portable small drill sample	670636	4085943	72	0.0	0.1	1	21	117	
CCL33-352	5638	Portable small drill sample	670588	4085235	20	0.0	0.0	0	7	46	
CRL17-186	5639	Portable small drill sample	670439	4085731	64	0.0	0.0	1	331	1610	
CCL39-392	5640	Portable small drill sample	670632	4085232	22	0.0	0.0	0	2	61	
CRL17-183	5641	Portable small drill sample	670411	4085722	59	0.0	0.0	0	2	50	
ANL04-34	5642	Portable small drill sample	670794	4085930	61	0.0	0.0	0	9	93	
ANL04-36	5643	Portable small drill sample	670809	4085930	61	0.0	0.0	0	7	128	
ANL04-39	5644	Portable small drill sample	670842	4085933	63	1.2	0.1	21	31	118	
ANL04-41	5645	Portable small drill sample	670860	4085934	64	0.0	0.0	0	6	30	
ANL04-42	5646	Portable small drill sample	670873	4085933	66	0.0	0.0	0	3	19	
CRL24-264	5647	Portable small drill sample	670505	4085908	71	0.0	0.0	0	4	95	
CRL24-263	5648	Portable small drill sample	670490	4085908	70	0.0	0.0	0	8	101	
CRL24-262	5649	Portable small drill sample	670475	4085905	68	0.0	0.0	0	8	81	
CRL24-261	5650	Portable small drill sample	670461	4085909	66	0.0	0.0	0	11	93	
CRL24-260	5651	Portable small drill sample	670453	4085905	65	0.0	0.0	0	55	157	
CRL24-259	5653	Portable small drill sample	670447	4085908	64	0.1	0.1	6	195	538	
CRL24-258	5654	Portable small drill sample	670442	4085908	63	0.0	0.0	0	113	168	
CRL24-257	5655	Portable small drill sample	670440	4085906	63	0.0	0.0	0	6	88	
CRL24-256	5656	Portable small drill sample	670434	4085905	62	0.0	0.0	0	13	174	
CRL24-255	5657	Portable small drill sample	670429	4085904	61	0.0	0.0	0	21	82	
CRL24-254	5658	Portable small drill sample	670414	4085903	60	0.0	0.0	0	6	90	
CRL23-253	5659	Portable small drill sample	670405	4085904	58	0.0	0.0	0	7	80	
CRL23-252	5661	Portable small drill sample	670395	4085899	56	0.0	0.0	1	106	210	
CRL23-251	5662	Portable small drill sample	670385	4085906	56	0.0	0.0	2	167	611	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CRL23-250	5663	Portable small drill sample	670377	4085896	56	0.0	0.0	0	8	86	
CRL23-249	5664	Portable small drill sample	670373	4085901	56	0.0	0.0	0	7	48	
CRL23-248	5665	Portable small drill sample	670366	4085898	55	0.0	0.0	0	6	104	
CRL23-247	5666	Portable small drill sample	670358	4085899	52	0.0	0.0	0	7	55	
CRL23-246	5667	Portable small drill sample	670352	4085892	48	0.0	0.0	0	179	328	
CRL23-245	5669	Portable small drill sample	670340	4085899	46	0.0	0.0	0	259	161	
CRL23-244	5670	Portable small drill sample	670329	4085896	40	0.0	0.0	0	27	91	
CRL27-291	5671	Portable small drill sample	670399	4085797	59	0.0	0.0	1	213	1595	
CRL27-290	5672	Portable small drill sample	670395	4085800	59	0.0	0.0	1	116	114	
CRL27-289	5673	Portable small drill sample	670393	4085801	59	0.0	0.0	0	185	352	
CRL27-288	5674	Portable small drill sample	670384	4085801	57	0.5	0.0	19	271	231	
CRL27-287	5675	Portable small drill sample	670384	4085804	57	0.1	0.0	1	5	84	
CRL26-285	5677	Portable small drill sample	670372	4085808	55	0.1	0.0	2	346	229	
CRL26-284	5678	Portable small drill sample	670371	4085811	55	0.0	0.0	0	4	149	
CRL26-283	5679	Portable small drill sample	670367	4085813	54	0.0	0.0	2	89	354	
CRL26-282	5680	Portable small drill sample	670365	4085813	53	0.0	0.0	1	8	118	
CRL26-281	5681	Portable small drill sample	670360	4085816	52	0.1	0.2	4	4510	10000	Zn Overlimit result pending
CRL26-280	5682	Portable small drill sample	670354	4085817	50	0.0	0.0	0	13	111	
CRL26-279	5683	Portable small drill sample	670349	4085815	48	0.0	0.0	0	84	544	
CRL26-277	5685	Portable small drill sample	670340	4085817	46	0.0	1.7	14	467	2990	
CRL26-276	5686	Portable small drill sample	670333	4085825	44	0.0	0.8	13	396	19	
CRL25-275	5687	Portable small drill sample	670327	4085828	42	0.0	0.0	1	46	104	
CRL25-274	5688	Portable small drill sample	670323	4085830	41	0.0	0.0	0	10	95	
CRL25-273	5689	Portable small drill sample	670316	4085831	40	0.0	0.0	0	11	77	
CRL25-272	5690	Portable small drill sample	670310	4085837	38	0.0	0.0	0	8	86	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CRL25-271	5691	Portable small drill sample	670285	4085842	35	0.0	0.0	0	5	83	
CRL25-270	5692	Portable small drill sample	670277	4085844	34	0.0	0.0	0	5	48	
CRL25-269	5693	Portable small drill sample	670271	4085841	34	0.0	0.0	0	36	110	
CRL25-268	5694	Portable small drill sample	670268	4085848	32	0.0	0.3	2	2360	2750	
CRL25-267	5695	Portable small drill sample	670264	4085853	31	0.0	0.0	0	37	177	
CRL25-266	5696	Portable small drill sample	670255	4085860	29	0.0	0.0	1	496	1175	
CRL25-265	5697	Portable small drill sample	670244	4085860	28	0.0	0.0	1	204	536	
CRL13-133	5698	Portable small drill sample	670194	4085816	32	0.0	0.0	0	60	162	
CRL13-134	5699	Portable small drill sample	670195	4085814	33	0.0	0.0	0	129	269	
CRL13-135	5701	Portable small drill sample	670201	4085807	34	0.0	0.1	8	147	346	
CRL13-136	5702	Portable small drill sample	670209	4085807	35	0.0	0.0	1	679	1210	
CRL13-137	5703	Portable small drill sample	670209	4085803	35	0.0	0.0	1	450	515	
CRL13-138	5704	Portable small drill sample	670215	4085802	36	0.0	0.0	0	23	89	
CRL13-139	5705	Portable small drill sample	670219	4085802	37	0.0	0.0	0	38	109	
CRL13-140	5706	Portable small drill sample	670227	4085803	37	0.0	0.0	0	11	89	
CRL13-141	5707	Portable small drill sample	670235	4085793	38	0.0	0.0	0	134	367	
CRL13-142	5708	Portable small drill sample	670238	4085795	38	0.0	0.1	0	691	1830	
CRL13-143	5709	Portable small drill sample	670243	4085789	39	0.0	0.0	0	5	116	
CRL14-144	5710	Portable small drill sample	670246	4085787	39	0.0	0.0	0	33	55	
CRL14-145	5711	Portable small drill sample	670246	4085784	39	0.0	0.0	0	7	64	
CRL14-146	5712	Portable small drill sample	670257	4085777	40	0.0	0.0	0	7	64	
CRL14-147	5713	Portable small drill sample	670265	4085769	40	0.0	0.0	0	9	82	
CRL14-148	5714	Portable small drill sample	670280	4085767	42	0.0	0.0	0	132	337	
CRL14-149	5715	Portable small drill sample	670282	4085766	42	0.0	0.0	0	185	411	
CRL14-150	5717	Portable small drill sample	670286	4085759	42	0.0	0.0	0	138	373	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CRL14-151	5718	Portable small drill sample	670296	4085759	43	0.0	0.0	0	11	113	
CRL14-152	5719	Portable small drill sample	670306	4085752	43	0.0	0.0	0	7	92	
CRL14-153	5720	Portable small drill sample	670310	4085747	43	0.0	0.0	0	7	75	
CRL14-154	5721	Portable small drill sample	670313	4085742	43	0.0	0.1	1	14	79	
CRL15-155	5722	Portable small drill sample	670318	4085743	43	0.0	0.0	0	5	87	
CRL15-156	5724	Portable small drill sample	670320	4085738	42	0.0	0.0	0	4	89	
CRL15-157	5725	Portable small drill sample	670336	4085732	42	0.0	0.0	0	17	85	
CRL15-158	5726	Portable small drill sample	670359	4085725	46	0.0	0.0	0	66	216	
CRL15-159	5727	Portable small drill sample	670359	4085721	45	0.0	0.3	3	3330	3300	
CRL15-159	5728	Portable small drill sample	670359	4085721	45	1.2	0.3	8	340	304	
CRL15-160	5729	Portable small drill sample	670364	4085722	47	1.3	5.8	221	10000	10000	Pb/Zn Overlimit result pending
CRL15-161	5730	Portable small drill sample	670368	4085721	48	0.0	9.5	11	232	188	
CCL49-498	5732	Portable small drill sample	670702	4085081	25	0.1	0.5	3	458	127	
CCL49-499	5733	Portable small drill sample	670707	4085088	26	0.0	0.0	0	70	91	
CCL49-500	5734	Portable small drill sample	670716	4085090	28	0.0	0.0	1	31	93	
CCL49-501	5735	Portable small drill sample	670720	4085093	29	0.0	0.0	1	12	134	
CCL49-502	5736	Portable small drill sample	670721	4085093	29	3.4	0.2	51	367	407	
CCL49-504	5737	Portable small drill sample	670734	4085102	33	0.0	0.0	0	84	423	
CCL49-505	5738	Portable small drill sample	670747	4085098	36	0.0	0.0	0	15	169	
CCL49-506	5739	Portable small drill sample	670757	4085108	40	0.0	0.0	0	16	160	
CCL49-508	5740	Portable small drill sample	670774	4085109	44	0.0	0.0	0	13	40	
CCL50-509	5741	Portable small drill sample	670780	4085112	47	0.0	0.0	2	77	143	
CCL50-510	5742	Portable small drill sample	670787	4085116	49	0.0	0.0	0	23	85	
CCL50-511	5743	Portable small drill sample	670788	4085119	49	0.1	0.0	1	20	66	
CCL50-512	5744	Portable small drill sample	670798	4085120	52	0.0	0.0	0	424	1055	

Hole ID	Lab sample	Туре	Easting	Northing	RL	Cu	Au	Ag	Pb	Zn	Comment
			WGGS84	WGGS84	MSL	%	g/t	g/t	ppm	ppm	
CCL50-514	5745	Portable small drill sample	670810	4085128	54	0.0	0.0	0	4	99	
CCL50-515	5746	Portable small drill sample	670825	4085134	52	0.0	0.0	0	122	380	
CCL51-516	5747	Portable small drill sample	670833	4085137	50	0.7	0.0	8	26	103	
CCL51-517	5749	Portable small drill sample	670841	4085132	52	0.1	0.0	4	1910	4190	
CCL51-518	5750	Portable small drill sample	670849	4085132	52	0.0	0.0	0	11	102	
CCL51-519	5751	Portable small drill sample	670858	4085129	54	0.0	0.0	0	104	164	
CCL51-520	5752	Portable small drill sample	670871	4085128	52	0.0	0.0	0	48	388	
CCL51-521	5753	Portable small drill sample	670879	4085126	51	0.0	0.0	0	20	65	
CCL51-522	5755	Portable small drill sample	670882	4085125	51	0.0	0.0	0	37	94	
CCL51-523	5756	Portable small drill sample	670886	4085127	51	0.0	0.0	0	172	300	
CCL51-524	5757	Portable small drill sample	670891	4085127	51	0.0	0.0	0	350	672	
CCL51-525	5758	Portable small drill sample	670893	4085126	51	0.0	0.1	0	9	36	
CCL52-528	5759	Portable small drill sample	670906	4085105	50	0.0	0.0	0	15	153	
CCL52-529	5760	Portable small drill sample	670909	4085106	50	0.1	0.0	1	18	135	
CCL52-530	5761	Portable small drill sample	670912	4085098	49	0.0	0.0	1	451	1325	
CCL52-531	5762	Portable small drill sample	670915	4085100	49	0.0	0.0	0	9	79	
CUL61-630	5764	Portable small drill sample	671429	4085107	73	0.0	0.0	0	5	52	
CUL61-632	5765	Portable small drill sample	671446	4085113	77	0.1	0.0	1	9	70	

Appendix 4: JORC Code Table 1 disclosures – Esperanza South Drilling Campaign

Section 1 - Sampling Techniques and Data

Note: Abbreviations used in these JORC Code Table 1 disclosures:

- ESS Esperanza South resource area
- **GST** Greenstone resource area
- PTO Pluto resource area
- MAM Mammoth Deeps resource area
- **ESP** Esperanza sub-pit resource area
- CC Capricorn Copper / Capricorn Copper Pty Ltd
- **RC** Reverse Circulation Drill Hole
- DD Diamond Core Drill hole

CRITERIA	COMMENTARY						
Sampling techniques	Samples have been collected diamond drilling (DD), from underground and surface in 2021 and 2022.						
	No information has been provided concerning the historical RC drill hole analysis.						
	 Sample length is preferentially set to 1m and ranges from 0.3m to 1.5m of half and full core. Sample intervals do not cross geological boundaries; this ensure samples are representative of the lithological unit without mixing of grade at lithological boundaries. 						
	 For core that was half core sampled, the sample is taken consistently from the right-hand side (RHS) half (looking down-hole) and placed into a calico bag marked with a unique sample ID. 						
	 Areas of core loss were typically omitted where possible, but in runs of core <0.5m in length with multiple core loss either side, some core loss had to be included in the sample length. These were then noted in the cut sheet and sample register. 						
	Core samples are crushed and pulverised to 85% passing 75μm.						
	Measures taken to ensure sample representativity include the collection, and analysis of field duplicates.						

COMMENTARY

Drilling techniques

CRITERIA

• Pre 2016: The deposit has historically been drilled and sampled by previous operators. This data has been compiled and validated

- Post 2016: Diamond and RC drilling. DD diameter drilled includes PQ, HQ and NQ2
- All holes are surveyed at 15 m, at 30 m and every 30 m thereafter, and at the end of the hole using a REFLEX™ EZ-TRAC single/multishot survey tool or from 2021 by a REFLEX™ EZ-GYRO gyroscopic survey tool.
- The majority of drill holes were fully grouted upon completion due to mine requirements.

• Drill totals for each deposit are as follows:

Deposit		Pre-20	16	2016-2022		
Deposit	поте туре	Count	Metres	Count	Metres	
ESS	RC	10	1,150	3	302	
ESS	DD	109	27,466	126	53,319	
Esperanza South	Total	119	28,616	129	53,621	
Greenstone	Total	48	17,151	121	21,198	
PTO	RC	1	42	0	0	
PTO	DD	31	15,229	21	12,492	
Pluto	Total	32	15,271	21	12,492	
MAM	Not Recorded	10	3,407	0	0	
MAM	Percussion / RC	63	2,339	0	0	
MAM	DD	1,502	251,587	46	17,991	
Mammoth	Total	1,575	257,333	46	17,991	
ESP	Not Recorded	44	1,676	0	0	
ESP	Percussion / RC	6	235	0	0	
ESP	DD	206	38,524	5	2,977	
Esperanza	Total	256	40,435	5	2,977	
Total		2,030	358,806	322	108,279	

Drill sample recovery

•

• Pre-2016: Reported historical core recovery averaged 94% in the Aditya Birla 2013 resource estimation. For the historical drilling there is no supporting documentation detailing drilling measures taken to maximise sample recovery.

Recoveries of DD core are recorded as percentages calculated from measured core versus drilled metres. The final recovery of a particular run is then
documented on a Geotechnical log sheet along with a "From and To" of any core loss zones. From 2021 Core loss is recorded in the lithology table as NR

At ESS, CC drill core has averaged 97.7% recovery; an average recovery of 96.7% at Greenstone; a 93.7% average recovery at Pluto; a 98.9% average recovery at Mammoth; and an average of 97.1% recovery at Esperanza. Recoveries are slightly lower in the Pluto drilling compared to other deposits for two primary reasons – almost all holes collared within the Esperanza Waste Dump material and as such recoveries were lower in the upper PQ3 part of the hole as it drilled through the loose waste fill, which in some places exceeded 70m in length; and the second reason being the highly oxidised and leached nature of orebody

CRITERIA	COMMENTARY
	resulting in a softer and looser rock type to drill. Grade is not deemed to have a significant effect on recoveries in MAM, GST or ESP. It can be suggested that the mineralised zones are, at times, more prone to lower recoveries in the ore zones for ESS and PTO due to localised oxidation and leaching.
	• Drilling process was controlled by the drill crew and geological supervision provides a means for maximising sample recovery and ensures suitable core presentation. Depth is checked against depth provided on core blocks.
Logging	 All (100%) drill core are logged in full detail from start to finish using laptop computers for import into the Micromine Geobank[™] database software package. All (100%) DD UG core is geotechnically logged to record core recovery, including documented core loss areas and RQD, as well as parameters such as UCS, LUP, fracture count, and joint set data. Surface parent holes are All (100%) geotechnically logged. ESS daughter holes are logged 50m past the stratigraphic unit that hosts the Esperanza South deposit. DD cores are photographed wet and dry. Logging is both qualitative and quantitative (percentage of sulphide minerals present). Standard rock codes are used. Standard weathering, alteration, structural and appropriate geological comments are entered.
	• The detail and coverage of logging has provided appreciable understanding of each orebody to a level which is able to support geological modelling and mineral resource estimation and therefore subsequent mining and metallurgical studies. Further metallurgical test work has been completed on ore types across all of the deposits.
Sub-sampling techniques and sample preparation	• Pre-2016: Core was sawn by automated core saw for analysis. There is no record of whether the core was consistently sampled on one side or how RC samples and sub- samples were collected. The percussion and RC drill hole data has been used for the resource estimate, however, these holes are a relatively small part of the inventory and the areas where they have been drilled are predominantly mined out currently.
	 All DD core is either full core or half core sampled, in rare occasions quarter core sampling has occurred. Core is cut onsite using an automatic core saw with samples always taken from the same side. Half core is used for field duplicates. Current sample length ranges between 0.3 and 1.5m adjusted to geological boundaries. No CC RC drill holes were sampled and do not form part of the resource estimates.
	 The sample preparation DD core adheres to industry best practice. A commercial laboratory is used which involves: Weighing Oven dried between 90 and 105°C until an acceptable moisture content of <0.5% is achieved The samples are crushed using a terminator crusher so that 70% passes 2mm and then rotary split to form a nominal 1kg sub-sample and coarse reject The sub-sample is then pulverised using a ring mill so that 85% passes 75µm.Samples > 3kg crushed to 2mm and split using a rotary splitter A representative 20 – 60g pulp is then shipped to the analysis laboratory in Brisbane. The unused pulps (upon completion of the analysis) are returned to the CC mine site and stored at the core shed facility. Field duplicates are taken every 30 samples; the complementary half core of an original sample is sampled and placed in a sample bag with a unique sample

CRITERIA	COMMENTARY
Quality of assay data and laboratory tests	 Upon arrival at the analysis laboratory, a 0.5g sample charge undergoes a four-acid near-total digest followed by ICP-AES determination for twelve elements – Cu, As, Ag, Bi, Co, Fe, Mg, Mo, Ni, S, Pb and Zn. Overrange analysis is undertaken on primarily on Cu, As, Ag, Co and S, which exceed initial upper limits (including 1% for Cu, Co and As, 10% for S, and 100g/t for Ag) by using a further four-acid digest and ICP-AES analysis.
	 The assay results are finalised by the laboratory upon completion of the analyses and review of the internal QAQC processes and are delivered to CC in digital spreadsheet and PDF formats. Any abnormalities, such as possible contamination, are flagged by the laboratory prior to delivery of the results and assays are re- run on areas identified to be affected.
	• Certified reference material (CRMs), with a range of values are inserted at a rate of 1:30 into every DD hole to assess laboratory accuracy, precision and possible contamination. Blanks is inserted at a rate of 1:30 and field duplicate samples assigned with unique sample numbers and placed into the sample stream at a rate of 1:30.
	QAQC data returned are checked against pass/fail limits. QAQC data is reported annually and demonstrates sufficient levels of accuracy and precision.
	The laboratory performs internal QC including standards, blanks, repeats and checks.
Verification of sampling	Significant intersections are reviewed by site geologists.
and assaying	No specific twinned holes have been drilled as a part of this program. However nearby drill holes show compatible geology and results.
	Assay data is retained in (CSV) files and stored once loaded into the database.
	An 80*100m minimum spacing of drill core is stored for posterity at the onsite core farm.
	 Pre-2016: Drill hole and assay data was stored in a SQL server database (Datashed) which was validated by a database manager. Hard copies of drill logging data remains for some drill holes.
	 In 2022 the data was migrated to a Micromine Geobank™ database. Validation of data was performed during this migration.
	 No adjustments have been made to the received assay data, except for assays below the lower detection limit (for Ag, As, Co, Cu, Fe and S), and assays above the upper detection limit (for S).

CRITERIA	COMMENTARY
Location of data points	 Before 2016 drill holes were either surveyed in or converted to the local grid around the time of drilling. Where older drill collars have been able to be located by CC, they have been resurveyed using DGPS, compared and updated to ensure that the most recent data is that which is used, as positioning accuracies have improved over time. Furthermore, electronic and hard copy data has been reviewed by CC to ensure that the most accurate pickup data has been made available for other historic holes. It is believed by CC that the existing collar positions of historical holes is as accurate in the current database with the data that is available. Downhole surveys recorded in the database have been compared to known hard copy data to ensure the reliability of the data.
	Post 2016: CC drill collar positions were initially placed by handheld GPS if on surface, or by underground surveying for subsurface holes. Surface drill rigs were aligned at the collar prior to drilling using a line-of-sight Suunto compass and clinometer by the site Geologist. From 2022 holes were aligned using a gyroscopic camera. Underground holes were aligned using a string line connecting foresight and backsight marker placed by the UG Surveyor for azimuth and a clinometer for dip. From 2021 holes were aligned using a gyroscopic camera. Surveys measuring hole azimuth and dip were taken at 15m, 30m, and 30m thereafter through to end of hole. A final survey was taken at end of hole. The surveys were taken using either a REFLEX™ EZ-TRAC single/multishot or REFLEX™ gyroscopic survey tool. Upon completion of surface drill holes, the holes were picked up by DGPS. In rare occasions where multiple holes were drilled at the same location, the hole collar may not have been located upon completion and as such the original collar coordinate is used. This is the case for twelve surface holes and twenty-one underground holes. The surface collar coordinates have also been validated against mine site Lidar data which provides accurate topographic data to an accuracy of roughly +/- 0.2m.
	 The DGPS coordinates are recorded in both Local Mammoth Mine Grid and MGA 94 (Zone 54). The Local Mammoth Mine grid is a local grid derived from the AGD84 datum and roughly equates to – MAM_E = (AGD84_E – 300,000); MAM_N = (AGD84 – 7,800,000); and MAM_RL = (AGD84 + 5000). Underground coordinates are recorded solely in Local Mammoth Mine grid.
	Local Grid Azimuth to Magnetic North conversion: Local Azimuth – 4.94 = Magnetic Azimuth
	Local Grid Azimuth to True North conversion: Local Azimuth + 0.55 = True Azimuth
	 Underground drillhole collars are picked up by 29Metals surveyors using a Leica TS-16 (total station) with an expected accuracy of 10mm. All new surface holes on the mining lease since 2021 have been surveyed using a Leica RTK GS18 with CS20 controller with an expected accuracy of 40mm.
Data spacing and distribution	 Due to the steep terrain and existing infrastructure at surface in many locations, drill hole orientation and spacing is dependent on accessibility of drilling sites. Drill hole spacing varies from 10 m to 35 m centres in more well-defined parts of the orebodies, increasing out and at depth to between 30 m to 90 m spacing. Both historical and CC drilling has occasionally used drill fans with multiple holes collared from a single drill pad with no regular gridding due to collar site limitations. Infill drilling undertaken between 2018 – 2022 has aimed to reduce drill spacing of the ESS, GST and MAM ore bodies to between 20 – 25m for ESS, 10 – 20m for GST, and 20 – 25m for MAM. For the majority of drill holes, the drilling has intersected at least some grade in the targeted locations. This is supportive of a high degree of confidence in the geological continuity and understanding of the orebody. Sampling has been undertaken to reflect the variability in the geological conditions and to meet the precision required for resource models and mine planning. The data spacing, particularly when coupled with grade control data, is sufficient to establish geological domains and is appropriate for the style of mineralisation. For mineral resource estimation, samples were composited to 2 m for all deposits except Pluto where samples were composited to 5 m due to the lower drilling intercept angles

CRITERIA	COMMENTARY
Orientation of data in relation to geological structure	 Drilling has been conducted at the most optimal angle for the interpreted orebody orientation as possible with the collar locations available. At ESS, most drill holes intersect the orebody optimal to dip and strike of the orebody, with surface holes drilled from west to east to intersect the westerly dipping orebody as orthogonal possible. A few exceptions are those drilled at steep dips (>80°) from surface prior to 2019. The 2020 to 2022 underground drill holes drill from the eastern (footwall) side back to the west (hangingwall) with the natural dip (roughly 75°W), but all holes are designed to dip much shallower than the orebody and so intersect it at an angle which is appropriate for reliable modelling. At GST, surface holes were highly limited by the availability of drill sites and as such most drill from the northwest to the southeast, which intersected the orebody at a suitable angle. Underground drilling since 2018 has allowed optimal targeting from the sub-surface, which is more suited to the deeper parts of the orebody which appears to have a plunging nature as opposed to the sub-vertical upper section as defined by the surface holes.
	 Drilling at Mammoth has been undertaken at a large variety of orientations and is based on the specific orientation of the local lenses and underground drill sites and are deemed appropriate for the areas in which they were targeting.
	• At Pluto and Esperanza, the drill holes intersect many of the steeply dipping mineralised domains at relatively low angles (less than 30°) which can introduce larger errors in the location of the domain boundaries and samples than for holes that intersect domains at higher angles. Down-hole surveys have been done as carefully as possible to mitigate this risk. Future drilling at Pluto is recommended from underground.
Sample security	 Measures to provide sample security included: Adequately trained and supervised sampling personnel. Samples placed in a numbered and tied calico sample bags. Sample numbers are entered into Geobank database. Samples are couriered to assay laboratory via truck or site personnel in plastic bulker bags. Assay laboratory checks off sample dispatch numbers against submission documents and reports any inconsistencies. Coarse reject samples are stored at the sample preparation laboratory until final assays have been received, checked against standards, blanks and duplicates and passed.
Audits or reviews	 Internal auditing procedures and reviews were regularly undertaken on standard operating procedures and laboratory processes. Data and technical reviews are triggered when QAQC protocols identified imprecise or inaccurate sample assay results. In 2016, new sourcing of blank reference material was implemented due to minor variability identified in historic blank material. New blank reference material has performed well. External reviews/ audits have been conducted by SRK Consulting. Mr Mark Noppé has reviewed logging, QAQC and data management procedures. He also reviewed the ALS Laboratory in Mt Isa in 2017 and again in October 2018 to review sample preparation techniques. The Laboratory procedures for receipt of samples and sample preparation are as per industry best practice. The ALS Laboratory QAQC results and performance such as pulp duplicates, round robin performance and performance against standards are also supplied to CC. Mr Stuart Munroe and Mr Benn Jupp from SRK Consulting have reviewed the sample receipt and assay procedure for fire assay and four-acid digest with ICP-AES determination at the ALS Laboratory in Townsville in January 2019.

Section 2 – Reporting of Exploration Results

(Criteria listed in the preceding section also applies to this section)

CRITERIA	COMMENTARY									
Mineral tenement and land	Table A. List of active Mining Leases at the CC Mine									
enure status	Permit	Status	Grant	Expiry	Authorised Holder	Native Title	Minerals / Use	Area	Resource	
	ML 5407	Granted	2/11/1972	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	4.1		
	ML 5412	Granted	7/03/1974	31/03/2028	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	2.02		
	ML 5413	Granted	7/03/1974	31/03/2027	Capricorn Copper Pty Ltd	Pre 1996 Grant	Cu, U	4.05	MAM	
	ML 5418	Granted	7/03/1974	31/03/2027	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	8.09	MAM	
	ML 5419	Granted	7/03/1974	31/03/2027	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	36.03	MAM	
	ML 5420	Granted	7/03/1974	31/03/2027	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	6.22	MAM	
	ML 5429	Granted	7/03/1974	31/03/2032	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	5.67		
	ML 5430	Granted	7/03/1974	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	9.17	ESP, PTO	
	ML 5441	Granted	7/03/1974	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu, Mo, Pb, Zn, Ag	32.42	ESS	
	ML 5442	Granted	7/03/1974	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu, Mo, Pb, Zn, Ag	32.39	ESS	
	ML 5443	Granted	7/03/1974	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu, Mo, Pb, Zn, Ag	14.4	ESP	
	ML 5444	Granted	7/03/1974	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	20.64	GST	
	ML 5451	Granted	7/03/1974	31/03/2030	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	15.68	MAM	
	ML 5454	Granted	7/03/1974	31/03/2028	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	3.97		
	ML 5457	Granted	7/03/1974	31/03/2028	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu, Mo, Pb, Zn, Ag	11.5		
	ML 5459	Granted	7/03/1974	31/03/2028	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu, Mo, Pb, Zn, Ag	8.09		
	ML 5467	Granted	7/03/1974	31/03/2028	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	40.45		
	ML 5485	Granted	30/5/1974	31/03/2026	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	9.7		
	ML 5486	Granted	10/1/1974	31/03/2027	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	76.9	PTO	
	ML 5500	Granted	17/1/1974	31/03/2026	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	6.1	MAM	
	ML 5549	Granted	13/02/1975	31/03/2029	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	0.01		
	ML 5548	Renewal Lodged	12/06/1975	30/06/2017	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	110.5	GST, MAM	
	ML 5550	Renewal Lodged	12/02/1976	28/02/2017	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu	108		
	ML 5563	Granted	21/01/1982	31/01/2024	Capricorn Copper Pty Ltd	Pre 1996 Grant	Co, Cu, Mo, Pb, Zn, Ag	4.25	PTO	
	ML 5562	Granted	8/10/1981	31/10/2023	Capricorn Copper Pty Ltd	Pre 1996 Grant	TAILDM	60.5		
	ML 5489	Granted	27/09/1973	31/03/2026	Capricorn Copper Pty Ltd	Pre 1996 Grant	LIVQTR, TAILDM,	47.7		
	ML 90178	Granted	9/08/2007	31/08/2028	CST Minerals Lady Annie Pty	Infrastructure	PIPWAO, POWERL	354		
	ML 90180	Granted	5/01/2018	31/01/2033	Capricorn Copper Pty Ltd	RTN	STKPIL, TAILDM	49.92		
	ML 90181	Granted	5/01/2018	31/01/2033	Capricorn Copper Pty Ltd	RTN	STKPIL, TAILDM	49.96		
	ML 90182	Granted	5/01/2018	31/01/2033	Capricorn Copper Pty Ltd	RTN	STKPIL, TAILDM	49.95		
	MI 90184	Granted	17/07/2008	31/07/2029	CST Minerals Lady Annie Ptv	Infrastructure	PIPWAO POWERI	9		

- Mining Lease are surrounded by Exploration Permit EPM 26421, granted 8 December 2017, with a current expiry date of 7 December 2022. 29Metals intends to renew all EPM's associated with Capricorn Copper.
- Capricorn Copper Pty Ltd (CC) is a wholly owned subsidiary of 29Metals Limited.
- Table A (above) lists the Mining Leases (ML) at the mining operations which cover a total area of 1,082.5 hectares (10.8 km2). The resources are confined to eight of the MLs as indicated in Table A. All tenements are in good standing and are supporting by applicable environmental and other approvals, consents and clearances.

CRITERIA	COMMENTARY
Exploration done by other parties	 Mineralisation was found at Mt Gordon in 1882 The Mammoth deposit was found by the Shah brothers in 1927 and open cut mining soon followed. The deposit was intermittently mined by various small- to large-scale producers until 2013 with companies including Surveys and Mining Ltd (1969–1971), Gunpowder Copper Ltd (JV between Consolidated Gold Fields Australia Ltd and Mitsubishi (1971-1977)), Renison Goldfield Consolidated Ltd (1979-1982), Trammelling Pty Ltd (1988-1989), Adelaide Brighton Cement Holdings Ltd (1989- 1996), Aberfoyle Resources Ltd / Western Metals (1996-2003) and Aditya Birla Minerals (2003- 2015). Exploration activities have been completed by multiple operators since the 1970's. Work completed includes geological mapping, geochemical sampling, geophysical surveys (including magnetics, EM, IP, gravity) and drilling. These activities have been successful in identifying mineralisation, with drilling results providing the most valuable tool for delineating mineralisation.
Geology	 The CC deposits are structurally controlled, sediment-hosted copper deposits located within the Western Fold Bell of the Mount Isa Inlier. ESS: Hosted by carbonaceous on silicous silistone to shale breccia of the Esperanza Formation. This formation is a sequence of well bedded to locally massive, black carbonaceous to locally grey or grey-green, weakly dolomitic silistones, stromatolitic silistones and pyritic shale. Carbonaceous, stromatolitic and silicous rocks are dominant, especially in the vicinity of mineralisation. Esperanza South is a steeply plunging breccia located between the NNE-SSW-striking hangingwall and footwall margins of the Esperanza Fault zone. The fault brings Eastern Creek Volcanics rocks into contact with the Esperanza Formation. The fault zone envelope is approximately 50 – 70m wide. Mineralisation dips sub-parallel to the hangingwall at around -75' to the west, with a SSW plunge which steepens at depth from around -50' to -75'. The hypogene mineralisation at depth consists of chalcopyrite and pyrite exhibited as fracture fill, breccia matrix and massive forms. Supegnee enrichment proteoses play a significant part of localising mineralisation at ESS, particularly in the upper 500m of the orebody. This weathering profile is represented by a broad weathering cap to the base of oxidation under which structural zone), peripheral haematite and chalcocite ("chalcocite grup" mineralis, grading outburst sto chalcocite-pyrite and ventually chalcopyrite-pyrite. Bevelopment of these zones lessem with depth but remains present in variable amounts to the deeper portions of the orebody, where the primary chalcopyrite-pyrite assemblage becomes more dominant. GST: The orebody is located within a wedge of Whitworth Quartzite constrained by the Mammoth Extended Fault. Here, the fault strikes roughly ENE and dilates sinusoidally in the vicinity of the GST orebody, with apparent dextrai movement. This has brought a fault bounded block of Whitw

CRITERIA	COMMENTARY
	 MAM: The Mammoth orebodies occur within the Whitworth Quartzite of the Myally Sub-Group. The sequence strikes North-northeast dipping 65-85°W and is dominated by massive pink to grey felspathic, medium to coarse grained, poorly bedded and homogenous quartzite. Localised siltstones are present within the unit. Three major faults are important in localizing mineralisation at the Mammoth Mine – the Mammoth Fault, the Portal Fault and the Mammoth Extended Fault. The Mammoth Extended Fault bounds the overall zone to the north and west, the Mammoth Fault localises the main strike of mineralisation which can occur either side of the fault, and the Portal Fault acts as a hard boundary on the east and controls the plunge of the mineralisation. The overall Mammoth domain plunges roughly at 65° to the SW. Mineralisation at Mammoth is found in three styles: massive, brecciated and veined; Massive mineralisation occurs adjacent to the Mammoth and Portal Faults and contains minor host rock fragments. Brecciated mineralisation occurs further away from the major faults and consists of angular and sometime fragmented clasts; Veined mineralisation is the most distal mineralising style from the faults. Individual ore lodes ("lenses") are locally controlled by the interplay between these major faults, minor local faults and shears, structural permeability and bedding. ESP: Hosted by the Esperanza Formation at the confluence of the Mammoth, Mammoth Extended and Foschi's faults. This formation is a sequence of well bedded to locally massive, black carbonaceous to locally grey or grey-green, weakly dolomitic siltstone and pyritic shale. A silica cap (referred to in literature as a "chert" body) historically overlay the deposit, hosting minor supergene mineralisation and is thought to represent a weathering horizon. Primary mineralisation is recorded as chalcopyrite and pyrite veining with locally massive zones. Supergene mineralisation is typically located in the upper and northern parts of the orebody (larg
Drill hole Information	 Complete table of Resource Definition and Resource extension drill hole information for ESS since the 2021 Resource update is listed in appendix 1 of this document.
Data aggregation methods	 Assay results are exported from the Geobank Database. Weighted averages are calculated using Micromine software to generate downhole grade intervals. General guidelines for weighted averages as follows: Copper intersections Trigger value: 0.5% Cu Minimum Interval length 3m Minimum grade of final composite 0.8% Cu Max consecutive waste interval 6m Short high-grade intervals can only be included if they exceed a minimum grade x length of 6%m No top-cut value has been applied to any element.

CRITERIA	COMMENTARY
Relationship between mineralisation widths and intercept lengths	 All drilling reported as downhole length. District drilling confirms mineralisation is hosted within the same stratigraphic sequence as the operating mines and no fundamental change has occurred to the structural framework of the host sequence. ESS: Esperanza South is a steeply plunging breccia located between the North – South trending footwall and hanging wall margins of the Esperanza Fault zone. This fault zone dips ~75° towards the west, with a mineralisation plunging SSW at 50° to 75°. Surface drilling has typically been undertaken from west to east at inclinations of -50° to -80° to best optimise the angle against mineralisation. Underground drilling has drilled from east to west, but at much shallower angles (+17° to -45°) to ensure the mineralised zone is intersected as orthogonal as possible. Underground intersections in Appendix 1 have been drilled at angles between (0° to -45°). Surface intersections in this appendix 1 have been drilled at angles between (-45° to -75°) GST: Greenstone consists of irregular breccia and vein zones located within the Marmoth Extended Fault striking to the NE, with the upper core of the orebody oriented sub-vertical and the northern, deeper portion of the orebody dipping roughly -50° toward the south. Surface offil holes which largely targeted the uiper core drilled for NW to SE. orthogonal to the strike of the fault zone and were inclined at -50° to -80°. Due to sheet the difficulties in locating drill pads in locally steep terrain and with surface infrastructure, some historic drilling has been east directed at dips of -50° to -80°. Due to the difficulties in locating drill pads in locally steep terrain and with surface infrastructure, some historic drill holes, and one CC hole, have drilled toward the west at similar inclinations. Mary holes have intersected at wound 70°. The majority of drilling has been east directed at dips of -50° to -80°. Due to the difficulties in locating drill pads in locally steep terrain and with surface i
Diagrams	See diagrams within the body of this report
Balanced reporting	• All drilling results for activities covered in this announcement have been reported without exception within Appendix 1.

CRITERIA	COMMENTARY
Other substantive exploration data	• Surface and underground geological mapping have been completed at various degrees of detail both historically and during the CC tenure. Mapped underground trends have assisted in determining localised trends, particularly at Greenstone and the G-Lens area of Mammoth.
	 Since 2016, geotechnical information is taken routinely across every drill hole for fracture sets and joint characterisation. More detailed work has been undertaken on selected holes across all deposits, primarily Point Load Test (PLT) measurements.
	 Metallurgical test work has been undertaken across all deposits during the CC tenure. Since 2016, bulk metallurgical samples have been taken in twenty- three holes from ESS for over 870m; six holes from GST for over 740m; six holes from MAM for over 440m; four holes from PTO for over 795m; and three holes from ESP for over 250m.
	Specific Gravity's are taken routinely across all drill holes and provide a detailed database of density measurements across all orebodies.
	The resource estimate uses cut-off grades that are guided by the mining and processing experience
Further work	• Future work will entail continued diamond drilling across all areas discussed in this report.

Appendix 5: JORC Code Table 1 disclosures – Cervantes Drilling Campaign

CRITERIA	COMMENTARY
Sampling techniques	 Samples have been collected diamond drilling (DD), from underground. Sample length is preferentially set to 1m and ranges from 0.5m to 1.0m of half core. Sample intervals do not cross geological boundaries; this ensures samples were representative of the lithological unit without mixing of grade at lithological boundaries. There is no limit for shortest sample interval in the database controls currently, though Geologists are recommended to not sample intervals shorter than 0.5m. Entire half core samples are crushed and pulverised to 85% passing 75µm. Measures taken to ensure sample representativity include the collection, and analysis of field and coarse crush duplicates.
Drilling techniques	 DD diameter drilled HQ and NQ2, The Reflex Act II[™] tool is used for core orientation marks on all DD holes.
Drill sample recovery	 Recoveries of DD core are recorded as percentages calculated from measured core versus drilled metres. The intervals are logged and recorded in the database. The rocks are very competent, and recoveries are very high with average core recovery greater than 99.5% for both mineralised and non-mineralized material. Drilling process was controlled by the drill crew and geological supervision provides a means for maximising sample recovery and ensures suitable core presentation. Drilled core is reconstructed into a continuous run on an angled iron cradle for orientation marking. Depth is checked against depth provided on core blocks. No other measures are taken to maximise core recovery.
Logging	 All (100%) drill core are logged geologically using codes set up for direct computer input into the Micromine Geobank[™] database software package. All (100%) DD cores are geotechnically logged to record recovery, RQD, Structural logging is recorded for all oriented cores. DD cores are photographed wet. Logging is both qualitative and quantitative (percentage of sulphide minerals present). Underground drill holes (100%) are logged in full detail from start to finish using laptop computers directly into the drillhole (Geobank) database. Standard mineralised rock codes used. Standard weathering, alteration and appropriate geological comments entered.
Sub-sampling techniques and sample preparation	 All DD core is half-cut onsite using an automatic core saw with samples always taken from the same side. Half core is used for routine sampling and quarter core for field duplicates. Current sample length ranges between 0.5 and 1m (historically this can have been from 0.2m to 1.5m) and is adjusted to geological boundaries. The sample preparation DD core adheres to industry best practice. A commercial laboratory is used which involves: Weighing Oven drying at 90° C Coarse crushing to 6mm Pulverising in an LM5 to a grind size of 85% passing 75µm. Samples > 3kg crushed to 2mm and split using a rotary splitter (this represents < 0.01% of total sample used for Mineral Resource estimation).

Section 1 - Sampling Techniques and Data

CRITERIA	COMMENTARY
	 Collection of 400g pulp from each sample; rejects kept or discarded depending on drilling programme.
	• Duplicates are taken after coarse crushing and pulverisation at a rate of 1:20 alternating between the two. These are subject to the same assay process as routine samples.
Quality of assay data and laboratory tests	• A four acid "near-total" digestion is used to determine concentrations for silver, copper, iron, lead, sulphur and zinc. This method underwent a change in October 2014 after extensive test work was conducted. Previously it used a 0.4g sample in a HF-HNO3-HCIO4 digestion, with HCI leach and finished using ICP-AES. Since October 2014, the sample charge weight is 0.2g in the same acid digestion maintaining the sample/solution ratio as the previous method. There is no material impact as a result of this change and is an ore grade method suitable for use in VHMS deposits.
	 a 30g fire assay with ICP-AES finish is used to determine the gold concentration DD core samples. This method was considered most suitable for determining gold concentrations in rock with sulphide rich material and is a total digest method. Grades above 10g/t are then determined using AAS.
	No geophysical tools, spectrometers or handheld XRF instruments have been used.
	 Matrix-matched certified reference materials (sourced from Golden Grove and prepared by Ore Research Pty. Ltd.) with a wide range of values are inserted at a rate of 1:20 into every RC and DD to assess laboratory accuracy, precision and possible contamination. A certified blank is inserted at a rate of 1:50. Five Quartz flushes are inserted at the end of any significant ore horizon.
	 QAQC data returned are checked against pass/fail limits once the results have been loaded into the database. QAQC data is reported quarterly and demonstrates sufficient levels of accuracy and precision.
	 Sizing tests ensure the grind size of 85% passing 75μm is achieved.
	The laboratory performs internal QC including standards, blanks, repeats and checks.
Verification of sampling	Significant intersections are reviewed by a senior geologist and other site geologists.
and assaying	• No specific twinned holes have been drilled as a part of this program, as all core is diamond and has been orientated. However nearby drill holes show compatible geology and results.
	Assay data is retained in text files (.SIF) and stored once loaded into the database.
	All drill core is stored for posterity at the onsite core farm.
	• The database has grown as each previous owner added data to it. During the 1990's the database was in Explorer III, a Microsoft Access™-based application. In 2008 the data was migrated to a Micromine Geobank™ database. Validation of data has been performed during each migration and is periodically reviewed against hardcopy records
	 An additional field in the results table is used to ensure all data is displayed in the appropriate units. This allows comparison of the data in standard units and aids in calculating Mineral Resource models.
	All re-assayed data will replace original results that failed QAQC; both results are retained in the database, with the results that failed QC being excluded from general use and export.
	Use of both DD and RC Historically indicates there is no significant bias between drilling methods
	All assay data remains in its original state and has not been adjusted.

CRITERIA		COMMENTARY						
Location of data points	 All u expli Befo This out e Sinc surv 30m 	All underground drillhole collars are picked up by 29Metals surveyors using a Leica TS-15 (total station) with an expected accuracy of 10mm. Surface exploration drillhole collars are picked up by company surveyor using a Trimble RTK R8 GPS with an expected accuracy of 40mm. Before 2016 all drillholes were down hole surveyed gyroscopically by the drilling companies (currently Boart Longyear) once each drillhole was completed. This was tied into a starting azimuth and dip picked up off the rod string by our onsite survey department while the rig was drilling. Surveys were also carried out every 30m using an Eastman single shot camera while the hole is in progress in order to track deviation. Since 2016 the Champ and Reflex north seeking tools have been utilised for both our rig alignment and surveying. Holes outside of 20 degrees dip are surveyed every 12m using the north seeking function while holes inside +/- 20 degrees are surveyed using the gyroscopic components of the tool every 30m while drilling and then at end of hole every 10m. The accuracy and quality of historic surveys is generally unknown.						
	 A loc 	cal grid system (G	GMINE) is used. It is ro	tated 52.4 deg	grees west of M	1GA94 zone 50. Th	e two-point conversion is as	follows:
	• 10,0	00m is added to e. Mine Crid to MC	levation in order to obta	in Local RL				
	• 2008			5011				
	F	Point GGMINE	East GGMINE North	MGA East	MGA North	-		
	1	3644.47	10108.13	502093.5	6810260.7			
	2	9343.2	29162.02	490480.1	6826394.2	_		
	• Topo mine	ographic measurer areas is by GPS	nent on most of the leas with surface control poi	ses is by 1m co nt with an accu	ontour generate uracy of 10mm.	ed from aerial photo	graphy, however topographic	measurement within the active
Data spacing and distribution	DrillTheDrill	data spacing rang table below shows spacing classificat	es from less than 10m s drill spacing classificat ion by ore type	< 10m in the ac ion by ore type	ctive mining are e	eas to greater 80m .	x 80m in exploration areas.	
		_			Drill Spacing C	lassification Crite	ria	
	0	re Туре		Measu	red	Indicated	Inferred	
	Pr	imary Sulphide		20		40	60	
	Pa	artial Oxide Zinc		20 40 60				
	Pa	artial Oxide Zinc		20 40 60				
	O	Oxide Copper		20		40	60	
	 Data Drill the of the official sectors of the official secto	a spacing is sufficie holes greater than pre body under stu	ent to establish geologic 60m x 60m may not no dy.	al and grade o ecessarily be o	continuity for the classified as Mi	e appropriate class ineral Resources. T	ification of the Mineral Resou his will be dependent on the	rces. geometry of the drill holes and

• DD samples are not composited prior to being sent to the laboratory however the sample lengths taken by Geologists currently range from 0.5m to 1.0m.

CRITERIA	COMMENTARY						
	 Underground drive mapping below the surface deposits supports understanding of geological structure and strike continuity and this data is incorporated into the wireframes and domains modelled for Golden Grove Mineral Resource estimates (December 2021). 						
Orientation of data in relation to geological	• Drilling has mostly been oriented on sections that are orthogonal to the strike of mineralisation. Drill holes frequently overlap and are scissored as drilling is oriented from both footwall and hanging-wall directions.						
structure	No significant sampling bias has been recognised due to orientation of the drilling in regard to mineralised structures.						
Sample security	 Measures to provide sample security included: Adequately trained and supervised sampling personnel. Half-core samples placed in a numbered and tied calico sample bags. Bag and sample numbers are entered into Geobank database. Samples are couriered to assay laboratory via truck in plastic bulker containers. Assay laboratory checks off sample dispatch numbers against submission documents and reports any inconsistencies. Remaining DD core is stored within the Golden Grove core yard. 						
Audits or reviews	 The most recent laboratory audit was completed on 23 November 2021, while the previous one was conducted on 16 June 2020. No major concerns were raised. External Competent Person (CP) and peer review processes carried out. An internal review of RC and DD core sampling procedures were completed in 2014. The sampling procedures were found to meet industry standards. In 2012 Paul Blackney and David Gray of Optiro completed a review of the Gossan Hill gold oxide data. The review found there was no historic QAQC data (1990 to 2000) around Gossan Hill. This has now been rectified. 						

Section 2 – Reporting of Exploration Results

CRITERIA		COMMENTARY				
Mineral tenement and land tenure status	•	The mineral tenement and land tenure status of the Golden Grove operations are listed in the below table.				
		TENEMENT NO.	PROSPECT NAME	EXPIRY DATE		
		M59/03	Scuddles	08/12/2025		
		M59/88	Chellews	18/05/2030		
		M59/89	Coorinja	18/05/2030		
		M59/90	Cattle Well	18/05/2030		
		M59/91	Cullens	18/05/2030		
		M59/92	Felix	18/05/2030		
		M59/93	Flying Hi	18/05/2030		
		M59/94	Bassendean	18/05/2030		
		M59/95	Thundelarra	18/05/2030		
		M59/143	Bassendean	09/05/2031		
		M59/195	Gossan Hill	17/05/2032		
		M59/227	Crescent	07/05/2033		
		M59/361	Badja	01/03/2037		
		M59/362	Badja	01/03/2037		
		M59/363	Badja	01/03/2037		
		M59/543	Walgardy	04/02/2033		
		M59/480	Marloo	01/07/2029		
	•	There are no known im management, as well as All tenements are 100% o	pediments to operating in the area, but the adherence to cultural sensitivity pertaining to th owned by Golden Grove Operations Pty Ltd (a v	operation is subjected to environmental o e local indigenous people. vholly owned subsidiary of 29Metals)	conditions pertaining to land and water	
Exploration done by other parties	•	Original definition and exp From 1971 until 1992 mu Panel Zn and Cu discove Exploration and drilling w Operations Pty Ltd – inclu Exploration of the Golden	ploration drilling was performed by Joshua Pitt, tiple joint ventures continued the definition of th ries. Parties involved include Amax Exploration ithin the Golden Grove leases has been conduct Iding, Newmont, Normandy, Oxiana, OZ Minera Grove Tenements is ongoing and being condu	of Aztec Exploration, in 1971. ne Mineral Resource, with highlights being t , Esso Exploration, Australian Consolidatec cted on a near-continuous basis since 1991 als, MMG, EMR Capital, and, most recently icted by Golden Grove Operation Pty Ltd (a	he Scuddles, A Panel Zn, B Panel Zn, C I Minerals and Exxon. by successive owners of Golden Grove , 29Metals. wholly owned subsidiary of 29Metals).	

CRITERIA	COMMENTARY			
Geology	 The mineralisation style is volcanogenic hosted massive sulphide (VHMS) which occurs as sub-vertical lenses within layered sediments and volcanics. The Golden Grove deposits are located in the Murchison Province in the North-Western part of the Achaean Yilgarn Craton in Western Australia within the Yalgoo Greenstone Belt. Mineralisation occurs at the base of the Warriedar Fold Belt ("WFB") within a sequence of felsic to intermediate volcaniclastic sediments, lavas and associated autoclastic breccias. The Golden Grove Domain that hosts the Gossan Hill and Scuddles deposits lies along the northeast flank of the WFB. The Mougooderra Fault (west), recrystallised monzogranite (east) and post folding granites (north and south) bound the domain. The current interpretation of the structure places the Golden Grove Domain on the eastern limb of a syncline. The stratigraphy has a westerly younging direction and dips steeply west. 			
Drill hole Information	Complete table of drill hole information for this announcement is listed in appendix 2 of this document.			
Data aggregation methods	 Assay results are exported from the Geobank Database by Senior Geologists. The results are pasted into a weighted average excel spreadsheet to generate downhole grade intervals. General guidelines for weighted averages as follows: Copper intersections Trigger value: 0.4% Cu Minimum Interval length 4m Minimum grade of final composite 1.5% Cu Maximum total length of waste 2m Short high-grade intervals can only be included if they exceed a minimum grade x length of 6%m Zinc intersections Trigger value: 2% Zn Minimum Interval length 4m Minimum Interval length 4m Minimum Interval length 4m Minimum Interval composite 5% Zn Maximum consecutive length of waste 2m Short high-grade of final composite 5% Zn Maximum total length of waste 2m Short high-grade intervals can only be included if they exceed a minimum grade x length of 6%m Intervals with lower minimum final grades may be included if they exceed a minimum grade x length of 20%m Intervals with lower minimum final grades may be included in the results should they contain other base metals or precious metals in significant quantity.			
Relationship between mineralisation widths and intercept lengths	 All drilling reported as downhole length, true widths are estimated to range between 35-60% of down hole lengths. Host horizons are well understood with two underground mines in operation. District drilling confirms mineralisation is hosted within the same stratigraphic sequence as the operating mines and no fundamental change has occurred to the structural framework of the host sequence. Ore bodies tend to strike between 0-10 degrees in mine local grid and dip between 70-90 degrees to local grid west. 			

CRITERIA	COMMENTARY
Diagrams	See diagrams within the body of this report
Balanced reporting	• All drilling results for activities covered in this announcement have been reported without exception within Appendix 2.
Other substantive exploration data	 Geological framework for the broader leases has been developed through applying the geological model of the active mining areas along with surface mapping, and systematic diamond drilling. Sedimentary facies south of the active mines are consistent with the golden grove stratigraphy present at Gossan Hill and Scuddles Mines.
Further work	Future work will entail continued diamond drilling across all areas discussed in this report.

Appendix 6: JORC Code Table 1 disclosures – Redhill Field Campaign

CRITERIA	COMMENTARY
Sampling techniques	 The Cutters Project has been sampled through four recent portable small drilling campaigns and surface sampling campaigns in 2022. Core samples were collected using a portable small drill at Angelica, Christina, Gorda, and Cutters The portable small drill is operated by two to three people and utilises an auger style bit to penetrate through the organic peat layer. Once the hole is drilled to fresh rock a diamond bit is placed on the drill and a small core sample can be obtained from the fresh rock where it interphases with the peat cover. These samples should be viewed as rock samples as opposed to drilling results. No interval thicknesses are implied through these results. The copper mineralization occurs mainly associated to quartz veins and subordinated as disseminations in the host rock. Approximately 5 – 20 cm of about 35 mm diameter core samples were taken from portable small drill holes just under the peat cover. This was done on 100 m profiles every 10 m, perpendicular to expected vein extensions. Approximately 0.1-1kg samples were obtained and sent for inductively coupled plasma mass spectroscopy (MS-ICP) at ALS Laboratories Chile. Surface samples were collected across selected outcrops and veins using a field hammer. samples were collected perpendicular to the structure or vein being sampled and attempts were made to ensure the sample collected was representative of the vein.
Drilling techniques	 The cores were drilled with a portable manual drill rotary machine with a diamond-tungsten bit. The cores are 35 mm in diameter, and approximately between 5 – 20cm in length. Cores not oriented.
Drill sample recovery	 The core was reconstituted, marked up, measured, photographed, and logged in all portable small drilling campaigns. Blind sampling under the peat cover. No relationship between recovery and grade was observed.
Logging	 Core and chip samples were logged, photographed, and detailed descriptions were done. Qualitative visual definition of lithology, alteration and mineralization. Logs loaded into excel spreadsheets and uploaded into access database. 100 % of the samples were logged.
Sub-sampling techniques and sample preparation	 The cores and chip samples were marked, ticketed, bagged, and delivered to ALS Laboratories in Santiago, Chile. The cores and chip samples were crushed entirely. Fine crushing 70% < 2mm. Crushed samples were quartered and pulverized up to 250g 85% < 75um.

Section 1 - Sampling Techniques and Data

CRITERIA	COMMENTARY
Quality of assay data and laboratory tests	• 48 elements including Cu and Ag analyzed by ICP-MS method, after four acid digestion at ALS laboratories. Analysis results for lead, zinc, bismuth, tin and arsenic that exceed the upper limit of the analytical method are reanalyzed with an ore grade inductively coupled plasma spectroscopy (ICP) method.
	Cu by Atomic Absorption Spectroscopy (AAS) method, after four acid digestion at ALS laboratories.
	 Au by fire assay with AAS method finish by ALS laboratories. Quality assessment & Quality Control (QA/QC) analysis with Certified Reference material inserted for all batches. QA/QC with blanks material inserted for all batches, insertion Insertion rate of 2 standards and 1 blank per 35 samples. Acceptable limits for accuracy and precision are established according to the mean +- 3 standard deviations of the values of the standards in use. Blanks are checked considering the informed average and detection limit for each element.
Verification of sampling and assaying	 Primary assay data received electronically and stored by geologist. All electronic data uploaded to access database.
Location of data points	 All hole collar surveys by handheld Geographic Positioning System (GPS). All coordinates in World Geographic System 94 (WGS94). Topography linked to the relative level of sea in meter above sea level (RL's as MSL).
Data spacing and distribution	 Portable small drilling lines were designed perpendicular to known veins where possible, with holes drilled and samples collected notionally every ten meters, if vein material was identified some infill may have occurred, Lines had to be adjusted for logistic reasons and access at times.
Orientation of data in relation to geological structure	 The majority of samples have been drilled in East West oriented profiles, vertically, mostly perpendicular to known vein system strike. The chip samples have been taken from outcrops in the field.
Sample security	 Samples marked, photographed, ticketed, and bagged on site. Delivered in sealed bags by Redhill Magallanes SpA (RHM) personnel, and over courier to ALS laboratories. All historic data captured and stored in customized access database. Manual check by reviewing cross sections with the historic drafted sections and plans. Basic statistical analysis supports data validation.
Audits or reviews	No audits or reviews of sampling data and techniques.

Section 2 – Reporting of Exploration Results

CRITERIA	COMMENTARY
Mineral tenement and land tenure status	 Redhill Magallanes SpA holds 65 exploration concessions in the Magallanes district of Chile. All concessions are granted, and payments are up to date. Details on specific tenure related to this announcement are tabulated below.
	Concession National Role Hectares Submission date Court Role Nº Approval Date Comment
	Cutter 2 1 AL 75 12205-0099-K 75 24-Jan14 2° Pta Arenas V-91 25-Jan16 Current, constituted and paid
	Cutter 3 1 AL 225 12205-0100-7 225 24-Jan14 2° Pta Arenas V-92 25-Jan16 Current, constituted and paid
	Cutter 4 1 AL 225 12205-0101-5 225 24-Jan14 2° Pta Arenas V-93 26-Jan16 Current, constituted and paid
	Cutter 5 1 AL 100 12205-0102-3 100 24-Jan14 2° Pta Arenas V-94 20-Jan16 Current, constituted and paid
	Cutter 6 1 AL 300 12205-0103-1 300 24-Jan14 2° Pta Arenas V-95 26-Jan16 Current, constituted and paid
	Cutter 16 1 AL 170 12205-0104-K 170 24-Jan14 2° Pta Arenas V-97 25-Jan16 Current, constituted and paid
	Cutter 17 1 AL 200 12205-0105-8 200 24-Jan14 2° Pta Arenas V-98 20-Jan16 Current, constituted and paid
	Poly 1 1 AL 200 12205-0098-1 200 24-Jan14 2° Pta Arenas V-99 20-Jan16 Current, constituted and paid
	Poly 2 1 AL 125 12205-0106-6 125 24-Jan14 2° Pta Arenas V-100 20-Jan16 Current, constituted and paid
Exploration done by other parties	 Cutters Cove is a historic mining centre that operated in the early 1900's and from 1970 to 1975. The majority of the mining occurred during the early 1970's until closure in 1975. Operations consisted of a 50 tpa crushing plant supplying two 8 tph ball mills and a 400 tpd flotation plant. Over the 2 years of operations, 211,754 tons of ore were extracted grading 1.72% Cu from a reserve of 237,654 @ 3.24% Cu. Previous modern exploration in the district was done by RHM.
Geology	 Geology dominated by 2 allochthonous thrust slices striking NNW and dipping approximately 45° SSW. Older Paleozoic sediments thrust over Jurassic rhyolitic volcaniclastics. Mineralization consists of late stage mesothermal and epithermal quartz-base metal and precious metal veins with associated sheeted veining and massive base metal sulfides.

CRITERIA	COMMENTARY
Drill hole Information	 This announcement refers to the portable small cores samples and chip sampling results, is not a report on Diamond Drill Hole campaign results. All collar information was taken in WGS84 UTM Zone18S datum. Table of all results are within Appendix 3 The portable small holes were drilled vertically. The short drill cores are 35 mm in diameter, and approximately between 5 – 20cm in length. Cores not oriented.
Data aggregation methods	 Mineralized domains are delineated from geological logs and assay data with generally hard boundaries. No Aggregation of portable small drilling samples has occurred. No metal equivalents were used.
Relationship between mineralization widths and intercept lengths	 Portable small drill holes have been drilled vertically; veins are typically steeply dipping. Portable small drills results should be viewed as rock samples as opposed to a drill core sample. Therefore, there is no implied intercept length. Portable small drills are not capable of drilling the full width of any vein when the vein have been intersected. Chip samples were taken from vein outcrops. There is no implied length.
Diagrams	See diagrams within the body of this report.
Balanced reporting	All results are reported in Appendix 3
Other substantive exploration data	All meaningful data has been included.
Further work	 Further resource extension and infill drilling is required to improve resource model and classification. Further mapping, field sampling, and small portable drilling is required to identify additional mineralisation. Further local regional exploration is required to increase the resource base. Further geophysics surveys may be required over the Cutters Cove area.