

08 August 2022

Positive Gold Results at Yuinmery

Golden Mile Resources Limited ("Golden Mile"; "the Company"; ASX: "G88") is pleased to announce positive gold results from recently completed aircore drilling¹ at its 100% owned Yuinmery Project, in the Murchison region of Western Australia.

- Yuinmery Project upgraded by positive gold results
- Best Results include:
 - YAC032: 4m @ 2.69 g/t gold from 16m
 - o YAC018: 4m @ 2.27 g/t gold from 4m
- Drilling has confirmed the geological setting is highly prospective for gold
- In addition to gold there is anomalous nickel (up to 1758 ppm), a possible indicator that the geological setting is also prospective for nickel and copper.

Figure 1. Location of the Yuinmery Project, upgraded by positive gold results.

The Yuinmery Project is situated in the Youanmi Gold Mining District, approximately 10km east of the Youanmi Gold Mine (**Fig 1**), in the Murchison region of Western Australia.

Recently there has been several significant gold discoveries within the Youanmi district which include Rox Resources Ltd's Youanmi Gold project and Ramelius Resources Ltd's high grade Penny West project (**Fig 1**).

Figure 2. Location of aircore drilling by Golden Mile (coloured dots), historical RAB (coloured squares) and the geochemical gold targets (yellow areas) within the plan's view.

The Company previously announced the completion of an aircore drilling program comprising of 135-aircore holes for 2,271 m¹. The drilling was completed to test the Elephant Reef, Ladies Patch and Hammerhead gold geochemical targets (**Fig 2**). The holes were sampled by compositing 4m intervals ("4m composites") and

submitting them to the laboratory for multi-element analysis. The Company has now received all the assay results from the submitted 4m composite samples.

The results to date are positive with gold mineralization confirmed within a sequence of faulted mafic and ultramafic rocks, demonstrating a highly prospective gold setting. The best results include:

- YAC032: 4m @ 2.69 g/t gold from 16m
- YAC018: 4m @ 2.27 g/t gold from 4m

In addition to the above samples, there were also a number of anomalous results which require further followup and are summarized in Table 1 in Appendix 1. The Company considers 4m composite samples as indicative only for gold and that 1m resampling is required to determine width and grades definitively.

These latest drill results demonstrate that the Yuinmery geological setting is highly prospective for gold and that further follow up drilling is required at the Elephant Reef, Ladies Patch and Hammerhead geochemical targets.

The results also provide confidence to carry out initial aircore drilling at the 9 remaining untested geochemical targets; YU001, YU002, YU004, YU005, YU006, YU008, YU009, YU011 and YU012 as well as the Poppy's Patch gold reef (**Fig 4**). Furthermore, from initial observations there appears to be correlation between gold mineralisation and structures mapped by detailed ground magnetic geophysical data, potentially providing the Company a tool for further targeting (**Fig 3**).

Figure 3. Plan showing correlation of ground magnetic structures with max gold assays for both Golden Mile aircore and historical RAB. This correlation can used to identify potential new structural targets and help direct drilling going forward.

Figure 4. Location of Geochemical gold targets at Yuinmery

Managing Director Jordan Luckett commented "It is pleasing that the drilling has added further value to the project. These results confirm that there is gold mineralization associated with a geological setting which is typical for hosting significant gold deposits, both elsewhere within the Yilgarn and more specifically in the Sandstone – Youanmi region. This provides the Company with the evidence it needs to continue gold exploration with increasing confidence."

Golden Mile Resources Ltd www.goldenmileresources.com.au

In addition to the gold results there were also some anomalous nickel results up to 1758 ppm (0.17%) indicating the ultramafic may also be prospective for copper – nickel mineralisation, like what is being reported at Empire Resources Limited's (ASX: ERL) Smith Well prospect located 6km to the east. The ground magnetic data also appears to be mapping out several potential basalt/ultramafic contacts that could be targeted for potential nickel sulphide mineralisation.

Next Steps

Golden Mile will resample the anomalous 4m composite samples to 1m samples for assay, to determine the definitive width and grade of the gold mineralisation.

The Company will extend the ground magnetic geophysical survey northwest and southeast to cover all the geochemical targets.

Further aircore drilling will be planned to infill areas of known gold mineralisation and continue testing the remaining geochemical gold targets prior to RC drilling to test the primary zones identified.

The Company will also carry out further assessment of the nickel potential of the mafic and ultramafic sequence.

References

¹ Aircore Drilling Completed at Yuinmery	24 MAY 2022
² Golden Mile Completes Purchase of Yuinmery Gold Project	23 SEP 2019
³ Soil Sampling Results at Yuinmery	30 JUN 2021
⁴ Aircore Drilling Commenced at Yuinmery	16 MAY 2022

This Announcement has been approved for release by the Board of Golden Mile Resources Limited.

For further information please contact:

Jordan Luckett – Managing Director

Golden Mile Resources Ltd (ASX: G88)

ABN 35 614 538 402

- T: (08) 6383 6508
- E: info@goldenmileresources.com.au
- W: www.goldenmileresources.com.au

Note 1: Refer ASX announcement on the said date for full details of these results. Golden Mile is not aware of any new information or data that materially affects the information included in the said announcement.

About Golden Mile Resources Ltd

Golden Mile Resources Ltd (Golden Mile; ASX: G88) is a Western Australian based mineral exploration company with a focus on precious & battery metals with projects located in the Eastern Goldfields, Murchison, Pilbara, and South-West regions.

The ~816km² Yarrambee Ni, Cu, Zn, PGE & Au Project within the Narndee Igneous Complex located in the Murchison region, WA.

At Quicksilver Ni-Co project, located about 350km southeast of Perth, the Company has delineated an Indicated and inferred Resource 26.3 Mt @ 0.64% Ni & 0.04% Co (cut-off grade >0.5% Ni or >0.05% Co) (

The Company's gold projects are in the highly prospective Eastern Goldfields region, that includes Yuinmery (100%) and the Leonora JV (Kin Mining earning up to 80%).

The Company has recently acquired the Marble Bar and Murchison greenfield lithium Projects.

Competent Persons Statement

The information in this report that relates to Exploration Results is based upon and fairly represents information compiled by Mr Jordan Luckett, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Luckett is a full-time employee of the Company and holds Share Options as well as participating in a performance-based Share Option plan as part of his renumeration.

Mr Luckett has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Luckett consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

The Company confirms it is not aware of any new information or data that materially affects the exploration results set out in the in the original announcements referenced in this announcement and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Golden Mile Resources Ltd (ASX: G88) planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Golden Mile Resources Ltd (ASX: G88) believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statement.

Appendix 1 – Drill Hole Tables

Table 1. Drilling Results Greater Than 0.1 g/t gold for 1m Resamples

Hole No	From	То	Interval	Grade (g/t Au)		Comments
YAC009	28	32	4	0.101		Bottom of Hole
YAC013	44	49	5	0.33		Bottom of Hole
YAC014	28	32	4	0.214		
YAC018	4	12	8	1.33	(Including 4m @ 2.27 g/t Au from 4m)	
YAC028	16	20	4	0.19		
YAC031	12	24	12	0.26	(Including 4m @ 0.40 g/t Au from 12m)	
YAC032	16	24	8	1.417	(Including 4m @ 2.70 g/t Au from 16m)	
YAC051	0	5	5	0.151		Bottom of Hole
YAC076	4	6	2	0.196		Bottom of Hole

Table 2. Drilling Results With Anomalous Nickel (> 1 000 ppm)

Hole No	From	То	Interval	Grade (Ni ppm)	
YAC001	8	12	4	1081	
YAC017	0	4	4	1066	
YAC022	16	20	4	1036	
YAC026	4	16	12	1159	(Including 4m @ 1375 from 4m)
YAC031	8	16	8	1677	(Including 4m @ 1758 from 8m)
YAC058	0	8	8	1231	(Including 4m @ 1347 from 0m)
YAC098	12	16	4	1327	

Table 3. Drill Hole Ledger

Hole No	Hole Type	Depth	Easting	Northing	RL	Dip	Azimuth
YAC001	AC	33	692449	6839605	412	-60	90
YAC002	AC	37	692403	6839602	518	-60	90
YAC003	AC	20	692354	6839600	520	-60	90
YAC004	AC	24	692304	6839601	520	-60	90
YAC005	AC	23	692254	6839602	522	-60	90
YAC006	AC	27	692204	6839601	525	-60	90
YAC007	AC	26	692457	6839403	517	-60	90
YAC008	AC	30	692400	6839402	518	-60	90
YAC009	AC	32	692351	6839400	518	-60	90
YAC010	AC	29	692302	6839401	519	-60	90
YAC011	AC	25	692251	6839400	521	-60	90
YAC012	AC	28	692203	6839402	523	-60	90
YAC013	AC	49	692151	6839402	522	-60	90

Golden Mile Resources Ltd

www.goldenmileresources.com.au

_

Hole No	Hole Type	Depth	Easting	Northing	RL	Dip	Azimuth
YAC014	AC	52	692101	6839402	523	-60	90
YAC015	AC	15	692452	6839202	519	-60	90
YAC016	AC	47	692199	6839204	521	-60	90
YAC017	AC	16	692150	6839202	520	-60	90
YAC018	AC	36	692097	6839202	521	-60	90
YAC019	AC	31	692503	6839003	519	-60	90
YAC020	AC	26	692447	6839005	521	-60	90
YAC021	AC	33	692399	6839005	521	-60	90
YAC022	AC	31	692348	6839003	522	-60	90
YAC023	AC	48	692297	6839002	523	-60	90
YAC024	AC	51	692250	6839003	522	-60	90
YAC025	AC	15	692198	6839001	523	-60	90
YAC026	AC	33	692552	6838799	519	-60	90
YAC027	AC	29	692504	6838803	521	-60	90
YAC028	AC	32	692450	6838802	523	-60	90
YAC029	AC	54	692401	6838802	522	-60	90
YAC030	AC	11	692351	6838803	523	-60	90
YAC031	AC	63	692554	6838705	521	-60	90
YAC032	AC	33	692499	6838706	522	-60	90
YAC033	AC	10	692451	6838704	522	-60	90
YAC034	AC	45	692400	6838703	523	-60	90
YAC035	AC	44	692351	6838704	524	-60	90
YAC036	AC	11	692295	6838704	525	-60	90
YAC037	AC	22	692248	6838702	528	-60	90
YAC038	AC	24	692204	6838704	527	-60	90
YAC039	AC	50	692148	6838704	528	-60	90
YAC040	AC	47	692095	6838704	531	-60	90
YAC041	AC	57	692052	6838700	533	-60	90
YAC042	AC	12	693355	6838604	516	-60	90
YAC043	AC	17	693300	6838605	517	-60	90
YAC044	AC	16	693251	6838603	518	-60	90
YAC045	AC	24	693204	6838604	519	-60	90
YAC046	AC	4	693152	6838606	519	-60	90
YAC047	AC	11	693102	6838607	520	-60	90
YAC048	AC	8	693053	6838606	520	-60	90
YAC049	AC	4	693000	6838605	521	-60	90
YAC050	AC	13	692952	6838603	524	-60	90
YAC051	AC	5	692901	6838605	523	-60	90
YAC052	AC	16	692853	6838610	525	-60	90

ASX Announcement ASX: C88

Hole No	Hole Type	Depth	Easting	Northing	RL	Dip	Azimuth
YAC053	AC	7	692803	6838606	526	-60	90
YAC054	AC	10	692752	6838606	525	-60	90
YAC055	AC	33	692705	6838607	526	-60	90
YAC056	AC	13	692653	6838609	526	-60	90
YAC057	AC	57	692602	6838606	529	-60	90
YAC058	AC	36	692554	6838607	530	-60	90
YAC059	AC	23	692503	6838605	532	-60	90
YAC060	AC	52	692451	6838606	530	-60	90
YAC061	AC	54	692400	6838605	536	-60	90
YAC062	AC	47	692350	6838603	535	-60	90
YAC063	AC	6	692299	6838603	535	-60	90
YAC064	AC	3	693504	6838450	531	-60	90
YAC065	AC	1	693451	6838447	525	-60	90
YAC066	AC	3	693402	6838447	529	-60	90
YAC067	AC	3	693349	6838449	529	-60	90
YAC068	AC	12	693301	6838450	534	-60	90
YAC069	AC	9	693251	6838449	531	-60	90
YAC070	AC	2	693202	6838449	530	-60	90
YAC071	AC	7	693150	6838452	533	-60	90
YAC072	AC	6	693101	6838452	534	-60	90
YAC073	AC	9	693051	6838450	536	-60	90
YAC074	AC	2	693000	6838448	536	-60	90
YAC075	AC	2	692947	6838448	538	-60	90
YAC076	AC	6	692901	6838448	539	-60	90
YAC077	AC	16	692850	6838446	539	-60	90
YAC078	AC	3	693298	6838250	538	-60	90
YAC079	AC	4	693249	6838254	538	-60	90
YAC080	AC	1	693196	6838251	539	-60	90
YAC081	AC	1	693148	6838250	538	-60	90
YAC082	AC	1	693099	6838251	539	-60	90
YAC083	AC	1	693046	6838252	539	-60	90
YAC084	AC	3	693002	6838250	538	-60	90
YAC085	AC	19	692950	6838249	539	-60	90
YAC086	AC	2	693601	6838347	533	-60	90
YAC087	AC	3	693551	6838345	534	-60	90
YAC088	AC	3	693501	6838345	535	-60	90
YAC089	AC	1	693449	6838344	535	-60	90
YAC090	AC	1	693401	6838345	535	-60	90
YAC091	AC	28	692349	6838402	537	-60	90

Hole No	Hole Type	Depth	Easting	Northing	RL	Dip	Azimuth
YAC092	AC	2	692301	6838402	538	-60	90
YAC093	AC	3	692253	6838405	539	-60	90
YAC094	AC	1	693149	6838044	537	-60	90
YAC095	AC	3	693100	6838052	537	-60	90
YAC096	AC	6	693051	6838052	538	-60	90
YAC097	AC	3	692999	6838053	537	-60	90
YAC098	AC	38	692951	6838053	539	-60	90
YAC099	AC	16	693049	6837849	542	-60	90
YAC100	AC	22	692999	6837850	541	-60	90
YAC101	AC	14	692952	6837852	541	-60	90
YAC102	AC	7	692901	6837850	538	-60	90
YAC103	AC	7	693451	6835996	542	-60	90
YAC104	AC	7	693398	6835998	541	-60	90
YAC105	AC	7	693351	6835998	539	-60	90
YAC106	AC	7	693300	6835998	540	-60	90
YAC107	AC	7	694751	6835652	532	-60	90
YAC108	AC	7	694700	6835652	534	-60	90
YAC109	AC	7	694651	6835647	533	-60	90
YAC110	AC	7	694600	6835648	533	-60	90
YAC111	AC	7	694549	6835648	533	-60	90
YAC112	AC	7	694502	6835649	532	-60	90
YAC113	AC	10	694452	6835648	533	-60	90
YAC114	AC	7	694401	6835647	533	-60	90
YAC115	AC	4	694351	6835648	536	-60	90
YAC116	AC	4	694700	6835251	534	-60	90
YAC117	AC	4	694647	6835252	533	-60	90
YAC118	AC	4	694597	6835253	533	-60	90
YAC119	AC	4	694546	6835254	536	-60	90
YAC120	AC	4	694498	6835255	538	-60	90
YAC121	AC	4	694447	6835253	538	-60	90
YAC122	AC	4	694397	6835252	540	-60	90
YAC123	AC	4	694345	6835252	540	-60	90
YAC124	AC	6	694298	6835252	537	-60	90
YAC125	AC	10	694247	6835250	537	-60	90
YAC126	AC	4	694197	6835248	540	-60	90
YAC127	AC	4	694148	6835249	541	-60	90
YAC128	AC	4	694098	6835250	540	-60	90
YAC129	AC	4	694046	6835252	540	-60	90

Hole Type	Depth	Easting	Northing	RL	Dip	Azimuth
AC	4	693999	6835248	539	-60	90
AC	12	694302	6835052	538	-60	90
AC	4	694248	6835052	537	-60	90
AC	4	694201	6835052	537	-60	90
AC	4	694150	6835052	537	-60	90
AC	4	694101	6835056	536	-60	90
	Hole Type AC AC AC AC AC AC AC	Hole Type Depth AC 4 AC 12 AC 4 AC 4	Hole Type Depth Easting AC 4 693999 AC 12 694302 AC 4 694248 AC 4 694201 AC 4 694101 AC 4 694101	Hole Type Depth Easting Northing AC 4 693999 6835248 AC 12 694302 6835052 AC 4 694248 6835052 AC 4 694201 6835052 AC 4 694201 6835052 AC 4 694150 6835052 AC 4 694101 6835052	Hole Type Depth Easting Northing RL AC 4 693999 6835248 539 AC 12 694302 6835052 538 AC 4 694248 6835052 537 AC 4 694201 6835052 537 AC 4 694101 6835052 537 AC 4 694101 6835052 537	Hole Type Depth Easting Northing RL Dip AC 4 693999 6835248 539 -60 AC 12 694302 6835052 538 -60 AC 4 694248 6835052 537 -60 AC 4 694201 6835052 537 -60 AC 4 694201 6835052 537 -60 AC 4 694101 6835052 537 -60 AC 4 694101 6835052 537 -60 AC 4 694101 6835056 536 -60

Appendix – 2 – Drill Plan & Sections

Figure 5. Drill Hole plan – Northern Area (Elephant Reef & Ladies Patch)

Figure 6. Drill Hole Plan – Southern Area (Hammerhead)

Figure 7. Section showing YAC018: 4m @ 2.27 g/t gold

www.goldenmileresources.com.au

Figure 8. Section showing YAC032: 4m @ 2.7 g/t gold

Golden Mile Resources Ltd

www.goldenmileresources.com.au

Appendix 3: JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation. 	 Air core drilling to obtain 1m drill sample placed on the ground Sample representivity – the 85mm diameter hole of 1m expected to produce a sample of ~15kg. Initial samples for assay were 4m composites, a 2kg sample was formed by individually spearing 1m samples with a 500g scoop, where possible as pile with low sample return produced lower weights in some circumstances. For each 1m sample, a spear of 500g per sample was collected directly from the sample pile and placed into a calico bag. Before each drill hole the cyclone and splitter were inspected for damage, cleanliness, and correct set-up. The cyclone was cleaned at the end of each hole by using a mixture of compressed air (primary cleaning method) and water wash.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The rig utilised an air pressure of 250psi, 700cfm Air core drilling was completed using a 3 1/32 inch (85mm) face sampling drill bit head of steel teeth tungsten
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery, moisture and contamination was visually assessed on a per metre basis and recorded by the field geologist. There was no apparent relationship between sample recovery and grade bias due to preferential loss/gain of fine/coarse material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each air core sample has been sieved (wet and dry), and regolith horizons, lithology, alteration, sulphides and veining recorded in Ocris Mobile digital logging software. Drill hole logging data has been recorded within a relational database. Logging was qualitative. Chip-trays were collected and have been stored in a secure location for future reference. Photographs of the chip trays for each hole have been taken and stored on a secure data server for future reference. All drill holes were geological logged on site by a qualified geologist. Logging was

Criteria	JORC Code explanation	Commentary
		on a 1m scale.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples submitted to assay represented 4m intervals by compositing 1m intervals using a spear The sampling took place immediately after drilling and therefore some 1m intervals sampled would be wet when speared No further sample preparation was conducted in the field with ~ 2kg samples in calico bags submitted to the laboratory for assay.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were sent to Intertek Genalysis laboratory in Kalgoorlie for sample preparation, prior to being freighted in pulp form to Perth for analysis. Elemental analysis was using an aqua regia digest of a 25g charge weight, analysed by Inductively Coupled Plasma Mass Spectrometry (ICPMS). Where gold results reached the upper limit by this method, an overrange method of fire assay with a 50g charge weight, analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES). GMR inserted certified standards and quartz blanks in the sample batch in the field, at a rate of 1 in 50 samples. No field duplicates were taken. Intertek Genalysis laboratory also included a series of in-house standards, blanks and lab checks in the analytical process, at a rate of 1 in 30 samples. Analysis of the standard blank and duplicate results confirmed an acceptable level of accuracy and precision from the laboratory for this style of drilling, which is not expected to be included in a resource calculation
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been calculated downhole (no adjustment for true thickness), using a minimum grade of 0.2ppm Au, a minimum interval of 1m and with no internal waste. The significant intersections have calculated within the company's relational database DataShed, which is managed externally. The significant intersections have been verified separately within the Company using Micromine software. Twinned holes were not completed. Documentation of all field data was undertaken in Ocris mobile digital logging format with live validations prior to being entered into the Company's relational database, DataShed, which is managed externally. The database is backed up regularly by the external consultant and stored in a

Criteria	JORC Code explanation	Commentary
		 secure location. No adjustments have been made to the original assay data files prior to import into the Company's database. The ore grade/over range fire assay results have been made preferential to the aqua regia results where >2000ppm Au (2000ppm was the upper limit of for aqua regia digest)
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars have been surveyed using a handheld GPS to obtain easting, northing and RL data. The grid system used is the Geocentric Datum of Australia 1994 (GDA 94), projected to UTM Zone 50 South Topographic control is adequate and based on handheld GPS Downhole surveys were not completed due to the short depth of the holes. All drill holes have a nominal dip of -60 and azimuth of 090 (MGA94z50), with the drill mast aligned using a compass and clinometer.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing was generally along 200m spaced northing lines, although there was some 100m spacing at Elephant Reef and 400m spacing at Hammerhead, and generally 50m drill spacing across strike. Drill hole spacing was limited by shallow regolith and outcrop at surface, as well as creek lines which were to be avoided due to environmental obligations The type of and spacing of the drill samples is applicable only for exploratory purposes and is not appropriate for Mineral Resource estimation. Samples have been composited to typically 4m, however, where the hole did not end in a multiple of 4, the occasional 2, 3 and 5m samples were collected at end of hole. The 1m splits will soon be analysed for better granularity of the significant intersections identified within the composite samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling orientation is towards to east: drill hole orientations are assumed orthogonal to interpreted structures and lithological contacts, which is in preliminary stages of understanding.
Sample security	The measures taken to ensure sample security.	• Samples were bagged and secured by the Company's field geologist and freighted directly to the laboratory in Kalgoorlie for sample preparation, prior to being freighted to Perth for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• No audits of sampling preparation or analytical techniques and data processes have been completed.

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Yuinmery Project comprises granted exploration tenement E37/1043 The Company has 100% ownership of the tenements, which overlays Crown Land with active pastoral leases. The Company is in compliance with the statutory requirements and expenditure commitments for its tenements, which are secure at the time of this announcement There are no demonstrated or anticipated impediments to operating in the area
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Several different companies have completed exploration in the current area of E57/1043 over the past 30 years including: Eastmet/Metana/Gold Mines of Australia were active 1989-98 and completed geochemical soil sampling which identified significant gold anomalies. Shallow RAB drilling was subsequently completed over a number of prospect areas in 1993-94 and low-grade gold mineralisation was intersected associated with shear zone structures. The area was subsequently explored by Mines and Resources Australia/La Mancha in 2002-09, who completed a program of auger sampling which also identified and extended gold geochemical anomalies, but this was never followed-up with drilling Empire Resources held the area 2010-14, extending their exploration effort for VMS-hosted copper-gold mineralisation. Since 2016 the ground has been held by Legend Resources Pty Ltd, who successfully prospected the area for near-surface gold occurrences.
Geology	• Deposit type, geological setting and style of mineralisation.	 Archaean greenstone gold deposits occurring as either shear-zone hosted mineralisation or lode quartz hosted mineralisation
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See of significant intersections within body of the report for drill hole locations, orientations, max depth and location of significant intersections down hole.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	No weighted averaging or grade cutoffs were applicable.

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• The geometry of the mineralisation is unknown at this stage, although it is believed the stratigraphy is dipping steeply to the west, with drilling oblique to the east.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and tabulations are presented in the body of the announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other material exploration data to be reported
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work is discussed in the body of the announcement.

