

Exploration Update – Livingstone Project

Highlights

- 50 holes for 3,336m of Phase 2 drilling have been completed at Livingstone (assays awaited), including:
 - 12 holes for 750m at Kingsley East
 - 27 holes for 1,926m at Livingstone North to validate historical drill results, target known mineralised structures, and test significant gold-in-soil anomalism
 - o 11 holes for 660m at Stanley and Stella prospects
- Structural mapping has demonstrated that gold mineralisation in the Livingstone project occurs in the exposed footwalls of a series of thrust faults not previously recognized, with potential for the existence of blind mineralisation beneath the thrust structure
- New Phase 1 assay results received from 9 scout Aircore holes suggest a second parallel zone of gold mineralisation 200m south of Kingsley East and support this structural interpretation
- Initial results include 16m@ 0.37g/t (5.92 gram-meters) and 28m @ 0.26g/t (7.28 gram-meters) suggest mineralised strike of up to 1.2km

Metal Bank Limited (ASX: MBK) ('Metal Bank', 'MBK' or the 'Company') is pleased to provide an update on exploration at its Livingstone gold project in Western Australia (75% MBK).

50 holes for 3,336m of Phase 2 drilling have been completed at Livingstone (assays awaited), including:

- 12 holes for 750m at Kingsley East;
- 27 holes for 1,926m at Livingstone North to validate historical drill results, target known mineralised structures, and test significant gold-in-soil anomalism; and
- 11 holes for 660m at Stanley and Stella prospects.

Visual observations have been encouraging including widespread sericite, quartz and gold alteration.

Phase 2 drilling included 12 additional holes at Kingsley East to infill the Kingsley East extension area. As previously reported, the strike length of the gold mineralisation in the Kingsley system has been extended to more than 1800m following Phase 1 drilling results¹. The additional Phase 2 drilling will infill the Kingsley East extension area and an updated Kingsley Resource estimation is expected prior to the end of the year.

Figure 2: Livingstone Phase 1 & 2 drilling locations

¹ MBK ASX Release 24 August 2022 "Kingsley East aircore drilling results"

Structural mapping of the Livingstone drill targets and wider prospects, completed as part of the Phase 2 program, has demonstrated that known mineralisation is hosted in the footwall of newly recognised low angled thrust faults, with potential for the existence of blind mineralisation beneath the thrust structure.

New Phase 1 assay results have also been received from 9 scout aircore holes drilled to the south of Kingsley East extension area, which suggest a second parallel zone of gold mineralisation 200m south of Kingsley East. Initial results include 16m@ 0.37g/t (5.92 gram-meters) and 28m @ 0.26g/t (7.28 gram-meters). Together these results infer a 1.2km zone of gold anomalism that has very limited drilling to date. The results also highlight the potential of a splay, or repeat thrust, of the mineralised system at Kingsley, lending support to the new structural interpretation of the area.

Commenting on the structural study and assay results, Metal Bank's Chair, Inés Scotland said:

"Our exploration results continue to demonstrate the potential for Livingstone to be a significant gold project. We have already identified 1.8km of strike length at the Kingsley prospect and these latest results indicate a second parallel zone of mineralisation. In addition, the identification of this previously unrecognised thrust system as the primary control on gold mineralisation has opened up the prospectivety of the Livingstone project. While we continue to assess known mineralisation, we will turn our focus to targeting and testing the potential blind deposits within the project area."

Phase 1 aircore drilling results

Gold assays from Phase 1 scout aircore drilling south of the Kingsley East target have returned up to 7.28 gram-meters in broad zones of quartz-sericite-pyrite alteration. Shallow mineralised intervals up to 28m downhole width exist near surface, but higher-grade zones are postulated within quartz-tourmaline breccias and a re-split sampling program is underway to better define these Au mineralised zones.

Importantly, these results highlight the potential repeat or parallel splay of the Kingsley Au system¹. The new zone is very poorly drill tested and an exciting future drill target.

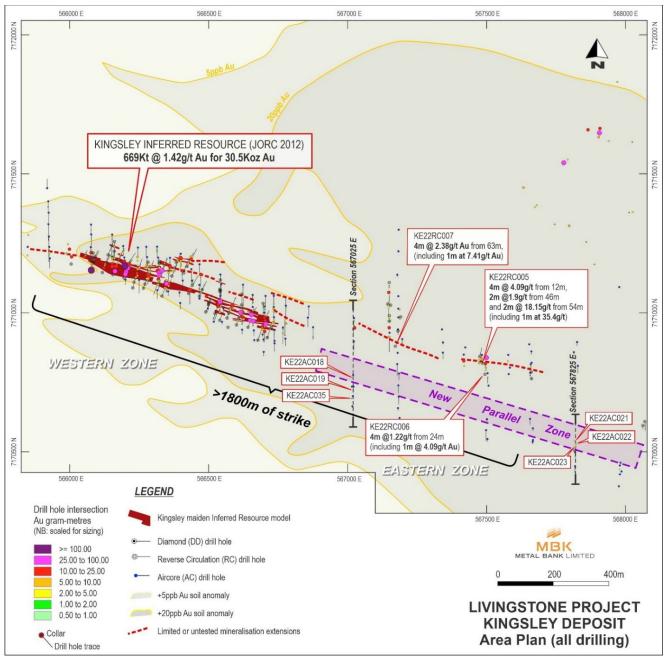


Figure 3: Location of new southern parallel zone at Kingsley East

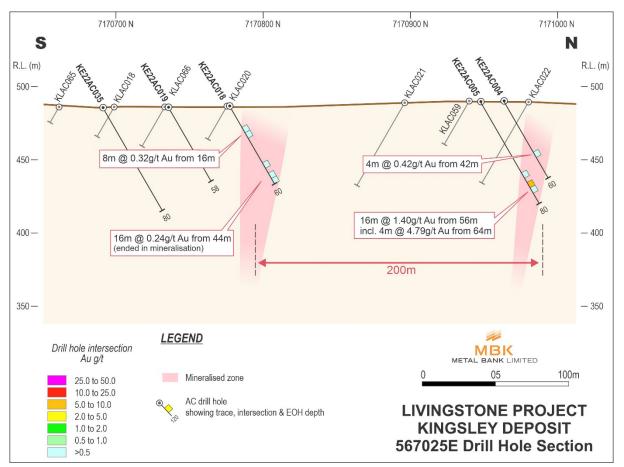


Figure 4: Kingsley East Cross section – 567025E

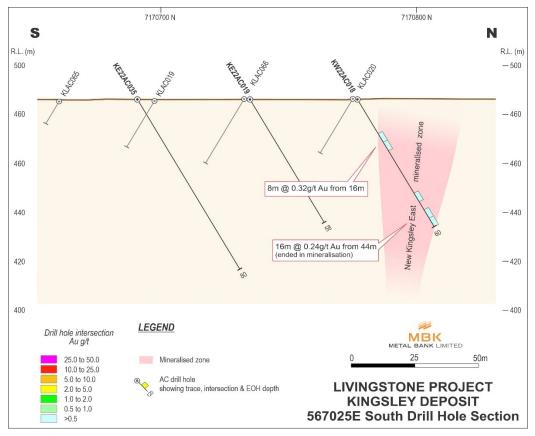
It should be noted that aircore drilling, as scout drilling, was sampled as 4m composites.

KE22AC018 located 350m southeast of the Kingsley Resource (Figure 3), intercepted 8m @ 0.32g/t Au and 16m @ 0.24g/t Au.

KE22AC021 and 022 are located approximately 1.2km Southeast of the Kingsley Au Resource² along a similar trend. These holes intercepted 16m @ 0.37g/t Au (incl 4m @ 0.55g/t) and 28m @ 0.26g/t Au (incl 4m @ 0.63g/t Au) respectively.


Together these results infer a 1.2km zone of gold anomalism that has very limited drilling to date. The results also highlight the potential for a splay, or repeat thrust, of the mineralised system at Kingsley lending support to the new structural interpretation of the area.


Assay results from drilling at Kingsley East are now being considered in conjunction with the new structural interpretation of the mineralised system to refine the next drilling phase.


Re-split assay results will be included in a full review and update of the Kingsley Resource Estimation and Exploration Target before the end of the year.

² MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate"

HOLE ID	FROM	то	ΓΟ Au Grade (g/t)	4m Composite data	gram-meters
	FROIVI	10	Au Grade (g/t)	411 Composite data	
KE22AC011	8	12	0.52	4m @ 0.52 g/t Au	2.08
KE22AC012	0	4	0.22	4m @ 0.22 g/t Au	0.88
KE22AC013	0	4	0.4	4m @ 0.40 g/t Au	1.6
KE22AC013	36	48	0.39	12m @ 0.39 g/t Au	4.68
incl	44	48	0.63	4m @ 0.63 g/t Au	2.52
KE22AC014	32	36	0.34	4m @ 0.34 g/t Au	1.36
KE22AC014	52	56	0.45	4m @ 0.45 g/t Au	1.8
KE22AC015	0	4	0.29	4m @ 0.29 g/t Au	1.16
KE22AC016	-	-	-	NSM	NSM
KE22AC017	12	28	0.23	16m @ 0.23 g/t Au	3.68
KE22AC018	16	24	0.32	8m @ 0.32 g/t Au	2.56
KE22AC018	44	60	0.24	16m @ 0.24 g/t Au	3.84
KE22AC019	-	-	-	NSM	NSM
KE22AC020	-	-	-	NSM	NSM
KE22AC021	16	32	0.37	16m @ 0.37 g/t Au	5.92
incl	24	28	0.55	4m @ 0.55 g/t Au	2.2
KE22AC022	12	40	0.26	28m @ 0.26 g/t Au	7.28
incl	16	20	0.63	4m @ 0.63 g/t Au	2.52
KE22AC023	-	-	-	NSM	NSM
KE22AC024	24	28	0.25	4m @ 0.25 g/t Au	1
KE22AC025	-	-	-	NSM	NSM
KE22AC026	-	-	-	NSM	NSM
KE22AC027	-	-	-	NSM	NSM
KE22AC028	-	-	-	NSM	NSM
KE22AC029	-	-	-	NSM	NSM
KE22AC030	4	8	0.51	4m @ 0.51 g/t Au	2.04
KE22AC030	24	32	0.25	8m @ 0.25 g/t Au	2
KE22AC031	0	4	0.33	4m @ 0.33 g/t Au	1.32
KE22AC031	16	20	0.42	4m @ 0.42 g/t Au	1.68
KE22AC031	44	48	0.24	4m @ 0.24 g/t Au	0.96
KE22AC032	0	4	0.46	4m @ 0.46 g/t Au	1.84
KE22AC032	12	16	0.2	4m @ 0.20 g/t Au	0.8
KE22AC033	64	68	0.6	4m @ 0.60 g/t Au	2.4
KE22AC034	12	48	0.27	36m @ 0.27 g/t Au	9.72
incl	32	36	0.59	4m @ 0.59 g/t Au	2.36
KE22AC035	-	-	-	NSM	NSM

Table 1: Kingsley East drilling - Significant intercepts (4m composite samples > 0.2 g/t Au)

Structural review

MBK commissioned an expert structural geologist to review the project area as part of the Phase 2 program. Structural mapping of the drill targets and wider prospects and analysis demonstrates that known mineralisation is situated in the damaged footwall of newly recognised low angled thrust faults, which were previously interpreted as linear shear zones. This interpretation allows for the occurrence of blind deposits located beneath the hangingwall thrust sheet, which act as fluid pathway for gold bearing fluids, and presents significant potential for discovery and resource growth at the Livingstone Project.

The interaction of the thrust faults with the previously mapped folded rock sequence explains the location of known gold-bearing sites controlled by competent, brittle lithologies such as quartz veins, quartz pods, and psammite units, which are now interpreted to be located in the brecciated footwall of the newly identified thrust faults (Figures 7, 8 & 9).

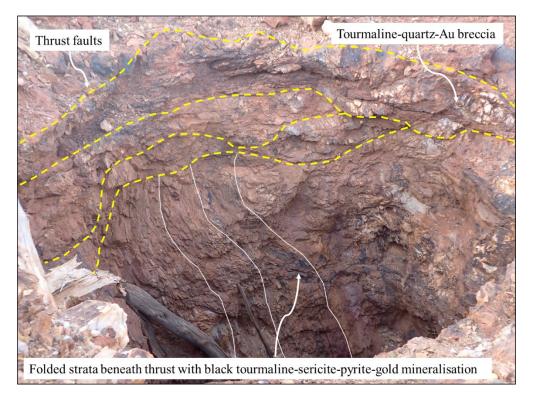


Figure 7: Historical mine shaft showing relationship between brecciated quartz-tourmaline-sericite-carbonate-gold assemblages and developing strong broad sericite-silica-pyrite alteration in reactive psammite units

While assays from recent Phase 2 drilling are awaited, field mapping will be carried out to further understand the location of the thrust faults and their interaction with the folded metasediments, to identify new structural targets for testing.

Sericite-pyrite alteration within psammite units and along breccia and vein margins coupled with stiff competent host rocks will be amenable to detection by induced polarisation (IP) exploration techniques and planning for an IP survey is in progress to assist with targeting.

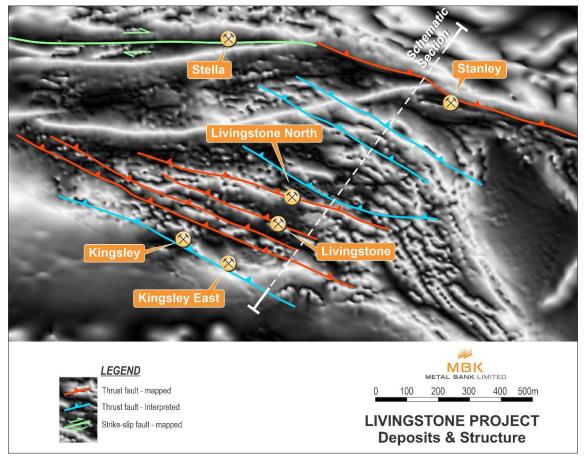


Figure 8: RTP magnetic image showing mapped and interpreted thrust planes controlling mineralisation

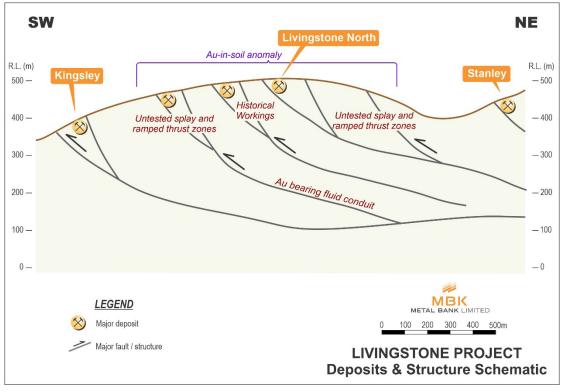


Figure 9: Cross sectional schematic interpretation of thrusting system and known gold deposits

Livingstone Project

The Livingstone Project is an advanced gold exploration project with ~80,000oz³ of defined gold resources and multiple exploration targets. Located 140km northwest of Meekatharra in Western Australia, it includes 395 km² of granted exploration licences covering the entire western arm of the Proterozoic Bryah-Padbury Basin (host to the Fortnum, Horseshoe and Peak Hill gold deposits and >2Moz Au endowment) (Figure 10).

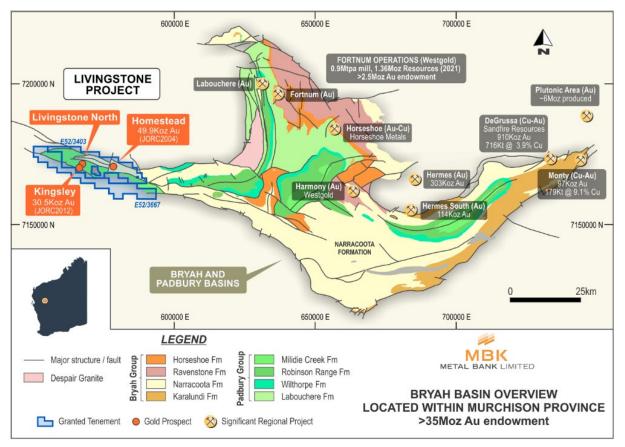


Figure 10: Livingstone Project location within Bryah Basin and relative to other gold operations.

The Livingstone Project provides:

- a JORC 2004 Inferred Resource of 49,900oz Au⁴ at the Homestead prospect with potential for expansion;
- the Kingsley deposit hosting JORC 2012 Inferred Resource of 30,500oz Au⁵;
- the Kingsley Exploration Target of 290 400kt at 1.8 2.0 g/t for 16,800 25,700oz Au⁵;
- the Livingstone North prospect with extensive Au-in soil anomaly, historical mining activities and historical high-grade drilling intersections;

³ MBK ASX Release 26 October 2021 "Livingstone Acquisition and Entitlement Offer to raise \$6.34M" and 070301_HC_TR_BoundaryResourceEstimate_R2004 – Talisman Mining Ltd, and KSN ASX Announcement dated 2 December 2020 and MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate"

⁴ MBK ASX Release 26 October 2021 "Livingstone Acquisition and Entitlement Offer to raise \$6.34M" and

⁰⁷⁰³⁰¹_HC_TR_BoundaryResourceEstimate_R2004 – Talisman Mining Ltd, and KSN ASX Announcement dated 2 December 2020 ⁵ MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate"

- multiple advanced gold targets (Figure 6), inadequately tested to date including Hilltop, Stanley, Winja, Winja West, VHF
- multi element targets including Kirba (Ni) and Iron Ore (Fe); and
- over 10 regional greenfields targets identified by independent experts with 40km prospective strike length.

Authorised by the Board

For further information contact:

Inés Scotland – Executive Chair: ines@metalbank.com.au

or

Sue-Ann Higgins - Director and Company Secretary: <u>sue-ann@metalbank.com.au</u>

About Metal Bank

Metal Bank Limited is an ASX-listed minerals exploration company (ASX: MBK) holding a significant portfolio of advanced gold and copper exploration projects with substantial growth upside, including:

- the right to earn up to 80% of the Millennium Copper & Cobalt project which holds an inferred 2012 JORC resource of 5.9Mt @ 1.08% CuEq^{6,} across 5 granted Mining Leases with significant potential for expansion;
- a 75% interest in the advanced Livingstone Gold Project in WA which holds a JORC 2004 Inferred Resource of 49,900oz Au⁷ at the Homestead prospect, a JORC 2012 Inferred Resource of 30,500oz⁸ Au at Kingsley, and an Exploration Target⁸ of 290 – 400Kt at 1.8 – 2.0 g/t Au for 16,800 – 25,700oz Au at Kingsley; and
- the 8 Mile, Wild Irishman and Eidsvold Gold projects in South East Queensland where considerable work by MBK to date has drill-proven both high grade vein-style and bulk tonnage intrusion-related Au mineralisation.

Metal Bank's exploration programs at these projects are focussed on:

- short term resource growth advancing existing projects to substantially increase JORC Resources;
- identifying additional mineralisation at each of its projects; and
- assessing development potential and including fast tracking projects through feasibility and development to production.

Metal Bank is also committed to a strategy of diversification and growth through identification of new exploration opportunities which complement its existing portfolio and pursuit of other opportunities to diversify the Company's assets through acquisition of advanced projects or cash-flow generating assets to assist with funding of the exploration portfolio.

⁶HMX ASX Announcement dated 6 December 2016 and MBK ASX Release dated 13 December 2021 "MBK signs Earn-in and JV Agreement for the Millennium Project

⁷ As per footnote 4 on Page 11

⁸ As per footnote 5 on Page 11

Competent Person Statements

The information in this announcement, that relates to MBK Exploration Results, Mineral Resources and Exploration Target statements is based on information compiled or reviewed by Mr Rhys Davies. Mr Davies is a contractor to the Company and eligible to participate in the Company's equity incentive plan. Mr Davies is a Member of The Australasian Institute of Geoscientists has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Davies consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant ASX announcements and News Releases. In the case of Mineral Resource estimates and Ore Reserve estimates, all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcements or News Releases.

It should be noted that the MBK Exploration Targets described in this announcement are conceptual in nature and there is insufficient information to establish whether further exploration will result in the determination of Mineral Resources. As a Cautionary Statement, an Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade, relates to mineralization where there has been insufficient exploration to estimate a Mineral Resource. The potential quantity and grade of the Exploration Targets is conceptual in nature, there has been insufficient exploration to estimate an additional Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Targets take no account of geological complexity that may be encountered, possible mining method or metallurgical recovery factors. It is acknowledged that the currently available data is insufficient spatially in terms of the density of drill holes, and in quality, in terms of MBK's final audit procedures for down hole data, data acquisition and processing, for the results of this analysis to be classified as Mineral Resources in accordance with the JORC Code.

APPENDIX 1

DRILLHOLE COLLAR LOCATIONS

Table 2: Kingsley Drillhole details

Hole ID	GPS_E	GPS_N	RL	Dip	Azi	Max_depth	Hole Type
KL22RC001	566080	7171179	504	-60	180	89	RC
KL22RC003	566199	7171184	506	-60	20	70	RC
KL22RC002	566202	7171162	506	-60	180	80	RC
KL22RC004	566315	7171158	500	-60	180	100	RC
KL22RC005	566464	7171100	500	-60	20	90	RC

Table 3: Kingsley East Drillhole details

Hole_ID	GPS_E	GPS_N	DIP	AZI	Hole_Type	Max_Depth
KE22AC001	566776	7171052	-60	360	AC	63
KE22AC002	566779	7170964	-60	360	AC	60
KE22AC003	566777	7170920	-60	360	AC	60
KE22AC004	567023	7170963	-60	360	AC	60
KE22AC005	567024	7170947	-60	360	AC	80
KE22AC006	567145	7171072	-60	360	AC	80
KE22AC007	567152	7170930	-60	360	AC	60
KE22AC008	567423	7170876	-60	360	AC	60
KE22AC009	567419	7170851	-60	360	AC	60
KE22AC010	567419	7170828	-60	360	AC	60
KE22AC011	567421	7170809	-60	360	AC	60
KE22AC012	567577	7170849	-60	360	AC	60
KE22AC013	567578	7170827	-60	360	AC	60
KE22AC014	567585	7170803	-60	360	AC	60
KE22AC015	567580	7170780	-60	360	AC	60
KE22AC016	567663	7170820	-60	360	AC	60
KE22AC017	567508	7170739	-60	360	AC	60
KE22AC018	567022	7170777	-60	360	AC	60
KE22AC019	567019	7170735	-60	360	AC	58
KE22AC020	567667	7170544	-60	360	AC	60
KE22AC021	567819	7170543	-60	360	AC	60
KE22AC022	567822	7170521	-60	360	AC	60
KE22AC023	567819	7170501	-60	360	RC	69
KE22AC024	567982	7170461	-60	360	AC	50
KE22AC025	567986	7170430	-60	360	AC	50
KE22AC026	568292	7170382	-60	360	AC	80
KE22AC027	568290	7170344	-60	360	AC	80
KE22AC028	567180	7170858	-60	360	AC	70
KE22AC029	567181	7171058	-60	360	AC	60

KE22AC030	567187	7171014	-60	360	AC	60
KE22AC031	567189	7170984	-60	360	RC	60
KE22AC032	567182	7170936	-60	360	RC	90
KE22AC033	567147	7171031	-60	360	RC	120
KE22AC034	567153	7170974	-60	360	RC	90
KE22AC035	567015	7170691	-60	360	RC	80
KE22RC001	567659	7170784	-60	360	RC	65
KE22RC002	567663	7170765	-60	360	RC	100
KE22RC003	567479	7170842	-60	180	RC	60
KE22RC004	567479	7170845	-60	360	RC	60
KE22RC005	567497	7170813	-60	360	RC	60
KE22RC006	567497	7170781	-60	360	RC	130
KE22RC007	567149	7170950	-60	180	RC	100

Table 4: RECENT ASSAY RESULTS TABLE – KINGSLEY EAST AIRCORE

Hole ID	Sample ID	From	То	Au ppm
KE22AC011	L10893	0	4	0.06
KE22AC011	L10894	4	8	0.02
KE22AC011	L10895	8	12	0.52
KE22AC011	L10896	12	16	0.05
KE22AC011	L10897	16	20	0.05
KE22AC011	L10898	20	24	0.02
KE22AC011	L10899	24	28	0.05
KE22AC011	L10900	24	28	0.06
KE22AC011	L10901	28	32	0.02
KE22AC011	L10902	32	36	0.02
KE22AC011	L10903	36	40	0.01
KE22AC011	L10904	40	44	0.15
KE22AC011	L10905	44	48	0.02
KE22AC011	L10906	48	52	0.04
KE22AC011	L10907	52	56	0.06
KE22AC011	L10908	56	60	0.02
KE22AC012	L10910	0	4	0.22
KE22AC012	L10911	4	8	0.04
KE22AC012	L10912	8	12	0.14
KE22AC012	L10913	12	16	0.05
KE22AC012	L10914	16	20	0.03
KE22AC012	L10915	20	24	0.15
KE22AC012	L10916	24	28	0.07
KE22AC012	L10917	28	32	0.09
KE22AC012	L10918	32	36	0.11
KE22AC012	L10919	36	40	0.04
KE22AC012	L10921	40	44	0.05
KE22AC012	L10922	44	48	0.07
KE22AC012	L10923	48	52	0.14
KE22AC012	L10924	52	56	0.05
KE22AC012	L10925	56	60	0.14

KE22AC013	L10927	0	4	0.4
KE22AC013	L10928	4	8	0.05
KE22AC013	L10929	8	12	0.04
KE22AC013	L10930	12	16	0.01
KE22AC013	L10931	16	20	0.06
KE22AC013	L10932	20	24	0.03
KE22AC013	L10933	24	28	0.07
KE22AC013	L10934	28	32	0.01
KE22AC013	L10935	32	36	0.02
KE22AC013	L10936	36	40	0.25
KE22AC013	L10937	40	44	0.3
KE22AC013	L10938	44	48	0.63
KE22AC013	L10939	48	52	0.08
KE22AC013	L10941	52	56	0.04
KE22AC013	L10941	56	60	0.15
KE22AC013	L10942	0	4	0.13
KE22AC014	L10945	4	8	0.13
KE22AC014 KE22AC014	L10945	8	12	0.02
		° 12		
KE22AC014	L10947		16	0.18
KE22AC014	L10948	16	20	0.04
KE22AC014	L10949	20	24	0.01
KE22AC014	L10950	20	24	0.02
KE22AC014	L10951	24	28	0.06
KE22AC014	L10952	28	32	0.01
KE22AC014	L10953	32	36	0.34
KE22AC014	L10954	36	40	0.11
KE22AC014	L10955	40	44	0.01
KE22AC014	L10956	44	48	0.03
KE22AC014	L10957	48	52	0.03
KE22AC014	L10958	52	56	0.45
KE22AC014	L10959	56	60	0.07
KE22AC015	L10962	0	4	0.29
KE22AC015	L10963	4	8	0.06
KE22AC015	L10964	8	12	0.09
KE22AC015	L10965	12	16	0.03
KE22AC015	L10966	16	20	0.15
KE22AC015	L10967	20	24	0.02
KE22AC015	L10968	24	28	0.04
KE22AC015	L10969	28	32	0.03
KE22AC015	L10970	32	36	0.02
KE22AC015	L10971	36	40	0.005
KE22AC015	L10972	40	44	0.11
KE22AC015	L10973	44	48	0.01
KE22AC015	L10974	48	52	0.01
KE22AC015	L10975	52	56	0.01
KE22AC015	L10976	56	60	0.04
KE22AC016	L10978	0	4	0.1
KE22AC016	L10979	4	8	0.01
KE22AC016	L10981	8	12	0.01
KE22AC010 KE22AC016	L10981	12	12	0.05
KE22AC010 KE22AC016	L10982	12	20	0.19
KE22AC016 KE22AC016	L10983 L10984	20	20	0.19
KE22AC016	L10985	24	28	0.01

		-		-
KE22AC016	L10986	28	32	0.01
KE22AC016	L10987	32	36	0.01
KE22AC016	L10988	36	40	0.01
KE22AC016	L10989	40	44	0.01
KE22AC016	L10990	44	48	0.01
KE22AC016	L10991	48	52	0.01
KE22AC016	L10992	52	56	0.01
KE22AC016	L10993	56	60	0.02
KE22AC017	L10995	0	4	0.14
KE22AC017	L10996	4	8	0.07
KE22AC017	L10997	8	12	0.03
KE22AC017	L10998	12	16	0.34
KE22AC017	L10999	16	20	0.17
KE22AC017	L11000	16	20	0.17
KE22AC017	L11001	20	24	0.22
KE22AC017	L11001	24	28	0.19
KE22AC017	L11002	28	32	0.01
KE22AC017	L11003	32	36	0.01
KE22AC017 KE22AC017	L11004	36	40	0.03
KE22AC017 KE22AC017	L11005	40	40	0.05
		40	44	0.03
KE22AC017	L11007	44	48 52	
KE22AC017	L11008			0.01
KE22AC017	L11009	52	56	0.01
KE22AC017	L11010	56	60	0.01
KE22AC018	L11012	0	4	0.03
KE22AC018	L11013	4	8	0.04
KE22AC018	L11014	8	12	0.01
KE22AC018	L11015	12	16	0.01
KE22AC018	L11016	16	20	0.29
KE22AC018	L11017	20	24	0.34
KE22AC018	L11018	24	28	0.03
KE22AC018	L11019	28	32	0.01
KE22AC018	L11021	32	36	0.01
KE22AC018	L11022	36	40	0.01
KE22AC018	L11023	40	44	0.02
KE22AC018	L11024	44	48	0.26
KE22AC018	L11025	48	52	0.03
KE22AC018	L11026	52	56	0.24
KE22AC018	L11027	56	60	0.43
KE22AC019	L11029	0	4	0.07
KE22AC019	L11030	4	8	0.02
KE22AC019	L11031	8	12	0.02
KE22AC019	L11032	12	16	0.03
KE22AC019	L11033	16	20	0.05
KE22AC019	L11034	20	24	0.04
KE22AC019	L11035	24	28	0.1
KE22AC019	L11036	28	32	0.05
KE22AC019	L11037	32	36	0.01
KE22AC019	L11038	36	40	0.01
KE22AC019	L11039	40	44	0.03
KE22AC019	L11041	44	48	0.01
KE22AC019	L11042	48	52	0.01
KE22AC019	L11043	52	56	0.01
NLZZACU19	LII043	52	50	0.01

				-
KE22AC019	L11044	56	58	0.01
KE22AC020	L11054	0	4	0.06
KE22AC020	L11055	4	8	0.18
KE22AC020	L11056	8	12	0.11
KE22AC020	L11057	12	16	0.04
KE22AC020	L11058	16	20	0.04
KE22AC020	L11059	20	24	0.01
KE22AC020	L11061	24	28	0.02
KE22AC020	L11062	28	32	0.01
KE22AC020	L11063	32	36	0.02
KE22AC020	L11064	36	40	0.03
KE22AC020	L11065	40	44	0.02
KE22AC020	L11066	44	48	0.02
KE22AC020	L11067	48	52	0.01
KE22AC020	L11068	52	56	0.01
KE22AC020	L11069	56	60	0.01
KE22AC021	L11005	0	4	0.01
KE22AC021	L11071	4	8	0.03
KE22AC021	L11072	8	12	0.02
KE22AC021 KE22AC021	L11073	ہ 12	12	0.04
KE22AC021 KE22AC021	L11074 L11075	12	20	0.04
		20	20	0.41
KE22AC021	L11076			
KE22AC021	L11077	24	28	0.55
KE22AC021	L11078	28	32	0.25
KE22AC021	L11079	32	36	0.14
KE22AC021	L11081	36	40	0.14
KE22AC021	L11082	40	44	0.09
KE22AC021	L11083	44	48	0.05
KE22AC021	L11084	48	52	0.13
KE22AC021	L11085	52	56	0.04
KE22AC021	L11086	56	60	0.1
KE22AC022	L11088	0	4	0.03
KE22AC022	L11089	4	8	0.01
KE22AC022	L11090	8	12	0.01
KE22AC022	L11091	12	16	0.26
KE22AC022	L11092	16	20	0.63
KE22AC022	L11093	20	24	0.39
KE22AC022	L11094	24	28	0.11
KE22AC022	L11095	28	32	0.14
KE22AC022	L11096	32	36	0.14
KE22AC022	L11097	36	40	0.31
KE22AC022	L11098	40	44	0.1
KE22AC022	L11099	44	48	0.08
KE22AC022	L11100	44	48	0.09
KE22AC022	L11101	48	52	0.04
KE22AC022	L11102	52	56	0.18
KE22AC022	L11103	56	60	0.06
KE22AC023	L11105	0	4	0.02
KE22AC023	L11106	4	8	0.005
KE22AC023	L11107	8	12	0.005
KE22AC023	L11108	12	16	0.01
KE22AC023	L11109	16	20	0.03
KE22AC023	L11110	20	24	0.04

KE22AC023	L11111	24	28	0.15
KE22AC023	L11112	28	32	0.04
KE22AC023	L11113	32	36	0.08
KE22AC023	L11114	36	40	0.15
KE22AC023	L11115	40	44	0.07
KE22AC023	L11116	44	48	0.005
KE22AC023	L11117	48	52	0.01
KE22AC023	L11118	52	56	0.01
KE22AC023	L11119	56	60	0.005
KE22AC023	L11121	60	62	0.005
KE22AC023	L11122	61	62	0.005
KE22AC024	L11123	0	4	0.06
KE22AC024	L11124	4	8	0.01
KE22AC024	L11125	8	12	0.005
KE22AC024	L11126	12	16	0.02
KE22AC024	L11127	16	20	0.02
KE22AC024	L11128	20	24	0.01
KE22AC024	L11129	24	28	0.25
KE22AC024	L11130	28	32	0.01
KE22AC024	L11131	32	36	0.005
KE22AC024	L11132	36	40	0.005
KE22AC024	L11133	40	44	0.005
KE22AC024	L11134	44	48	0.005
KE22AC024	L11135	48	50	0.005
KE22AC025	L11137	0	4	0.04
KE22AC025	L11138	4	8	0.05
KE22AC025	L11139	8	12	0.02
KE22AC025	L11141	12	16	0.01
KE22AC025	L11142	16	20	0.005
KE22AC025	L11143	20	24	0.01
KE22AC025	L11144	24	28	0.01
KE22AC025	L11145	28	32	0.18
KE22AC025	L11146	32	36	0.04
KE22AC025	L11147	36	40	0.01
KE22AC025	L11148	40	44	0.01
KE22AC025	L11149	44	48	0.01
KE22AC025	L11150	44	48	0.01
KE22AC025	L11151	48	50	0.005
KE22AC026	L11153	0	4	0.02
KE22AC026	L11154	4	8	0.04
KE22AC026	L11155	8	12	0.02
KE22AC026	L11156	12	16	0.03
KE22AC026	L11157	16	20	0.17
KE22AC026	L11158	20	24	0.07
KE22AC026	L11159	24	28	0.18
KE22AC026	L11161	28	32	0.13
KE22AC026	L11162	32	36	0.01
KE22AC026	L11163	36	40	0.005
KE22AC026	L11164	40	44	0.005
KE22AC026	L11165	44	48	0.005
KE22AC026	L11166	48	52	0.005
KE22AC026	L11167	52	56	0.005
KE22AC026	L11168	56	60	0.005
	00			0.000

KE22AC026	L11169	60	64	0.005
KE22AC026	L11170	64	68	0.005
KE22AC026	L11171	68	72	0.005
KE22AC026	L11172	72	76	0.04
KE22AC026	L11173	76	80	0.02
KE22AC027	L11175	0	4	0.01
KE22AC027	L11176	4	8	0.005
KE22AC027	L11177	8	12	0.01
KE22AC027	L11178	12	16	0.005
KE22AC027	L11179	16	20	0.005
KE22AC027	L11181	20	24	0.005
KE22AC027	L11182	24	28	0.005
KE22AC027	L11183	28	32	0.01
KE22AC027	L11184	32	36	0.01
KE22AC027	L11185	36	40	0.02
KE22AC027	L11185	40	40	0.001
	L11180	40	44	
KE22AC027				0.005
KE22AC027	L11188	48	52	0.005
KE22AC027	L11189	52	56	0.01
KE22AC027	L11190	56	60	0.005
KE22AC027	L11191	60	64	0.14
KE22AC027	L11192	64	68	0.01
KE22AC027	L11193	68	72	0.02
KE22AC027	L11194	72	76	0.01
KE22AC027	L11195	76	80	0.005
KE22AC028	L11197	0	4	0.16
KE22AC028	L11198	4	8	0.01
KE22AC028	L11199	8	12	0.03
KE22AC028	L11200	8	12	0.03
KE22AC028	L11201	12	16	0.05
KE22AC028	L11202	16	20	0.08
KE22AC028	L11203	20	24	0.02
KE22AC028	L11204	24	28	0.13
KE22AC028	L11205	28	32	0.08
KE22AC028	L11206	32	36	0.02
KE22AC028	L11207	36	40	0.03
KE22AC028	L11208	40	44	0.03
KE22AC028	L11209	44	48	0.14
KE22AC028	L11210	48	52	0.01
KE22AC028	L11211	52	56	0.01
KE22AC028	L11212	56	60	0.02
KE22AC028	L11213	60	64	0.01
KE22AC028	L11214	64	68	0.03
KE22AC028	L11215	68	70	0.01
KE22AC029	L11217	0	4	0.005
KE22AC029	L11218	4	8	0.005
KE22AC029	L11219	8	12	0.04
KE22AC029	L11221	12	16	0.03
KE22AC029	L11221	16	20	0.08
KE22AC029 KE22AC029	L11222	20	20	0.005
KE22AC029 KE22AC029	L11223	20	24	0.003
KE22AC029 KE22AC029		24	32	0.01
	L11225			
KE22AC029	L11226	32	36	0.005

KE22AC029	L11227	36	40	0.005
KE22AC029	L11228	40	44	0.005
KE22AC029	L11229	44	48	0.01
KE22AC029	L11230	48	52	0.01
KE22AC029	L11231	52	56	0.03
KE22AC029	L11232	56	60	0.02
KE22AC030	L11234	0	4	0.18
KE22AC030	L11235	4	8	0.51
KE22AC030	L11236	8	12	0.01
KE22AC030	L11237	12	16	0.01
KE22AC030	L11238	16	20	0.01
KE22AC030	L11239	20	24	0.07
KE22AC030	L11241	24	28	0.22
KE22AC030	L11242	28	32	0.27
KE22AC030	L11242	32	36	0.02
KE22AC030	L11243	36	40	0.002
KE22AC030	L11244	40	44	0.005
KE22AC030		40	44	1
	L11246			0.005
KE22AC030	L11247	48	52	0.005
KE22AC030	L11248	52	56	0.08
KE22AC030	L11249	56	60	0.01
KE22AC031	L11252	0	4	0.33
KE22AC031	L11253	4	8	0.02
KE22AC031	L11254	8	12	0.09
KE22AC031	L11255	12	16	0.03
KE22AC031	L11256	16	20	0.42
KE22AC031	L11257	20	24	0.17
KE22AC031	L11258	24	28	0.02
KE22AC031	L11259	28	32	0.02
KE22AC031	L11261	32	36	0.15
KE22AC031	L11262	36	40	0.02
KE22AC031	L11263	40	44	0.02
KE22AC031	L11264	44	48	0.24
KE22AC031	L11265	48	52	0.01
KE22AC031	L11266	52	56	0.01
KE22AC031	L11267	56	60	0.005
KE22AC032	L11269	0	4	0.46
KE22AC032	L11270	4	8	0.02
KE22AC032	L11271	8	12	0.02
KE22AC032	L11272	12	16	0.2
KE22AC032	L11273	16	20	0.02
KE22AC032	L11274	20	24	0.02
KE22AC032	L11275	24	28	0.05
KE22AC032	L11276	28	32	0.03
KE22AC032	L11277	32	36	0.03
KE22AC032	L11278	36	40	0.005
KE22AC032	L11279	40	44	0.005
KE22AC032	L11281	44	48	0.02
KE22AC032	L11282	48	52	0.01
KE22AC032	L11283	52	56	0.17
KE22AC032	L11284	56	60	0.02
KE22AC032	L11285	60	64	0.1
KE22AC032	L11285	64	68	0.13
ALZZACUJZ	111200	04	00	0.13

KE22AC032	L11287	68	72	0.01
KE22AC032	L11288	72	76	0.06
KE22AC032	L11289	76	80	0.04
KE22AC032	L11290	80	84	0.12
KE22AC032	L11291	84	88	0.04
KE22AC032	L11292	88	90	0.11
KE22AC033	L11294	0	4	0.13
KE22AC033	L11295	4	8	0.18
KE22AC033	L11296	8	12	0.13
KE22AC033	L11297	12	16	0.02
KE22AC033	L11298	16	20	0.01
KE22AC033	L11299	20	24	0.005
KE22AC033	L11300	20	24	0.01
KE22AC033	L11301	24	28	0.01
KE22AC033	L11301	24	32	0.01
KE22AC033	L11302	32	36	0.01
KE22AC033	L11303	36	40	0.01
			40	
KE22AC033 KE22AC033	L11305 L11306	40 44	44	0.01 0.05
KE22AC033	L11307	48	52	0.05
KE22AC033	L11308	52	56	0.04
KE22AC033	L11309	56	60	0.06
KE22AC033	L11310	60	64	0.12
KE22AC033	L11311	64	68	0.6
KE22AC033	L11312	68	72	0.05
KE22AC033	L11313	72	76	0.02
KE22AC033	L11314	76	80	0.02
KE22AC033	L11315	80	84	0.03
KE22AC033	L11316	84	88	0.03
KE22AC033	L11317	88	92	0.03
KE22AC033	L11318	92	96	0.06
KE22AC033	L11319	96	100	0.01
KE22AC033	L11321	100	104	0.01
KE22AC033	L11322	104	108	0.01
KE22AC033	L11323	108	112	0.18
KE22AC033	L11324	112	116	0.04
KE22AC033	L11325	116	120	0.03
KE22AC034	L11327	0	4	0.13
KE22AC034	L11328	4	8	0.09
KE22AC034	L11329	8	12	0.17
KE22AC034	L11330	12	16	0.33
KE22AC034	L11331	16	20	0.09
KE22AC034	L11332	20	24	0.02
KE22AC034	L11333	24	28	0.34
KE22AC034	L11334	28	32	0.19
KE22AC034	L11335	32	36	0.59
KE22AC034	L11336	36	40	0.34
KE22AC034	L11337	40	44	0.39
KE22AC034	L11338	44	48	0.06
KE22AC034	L11339	48	52	0.00
KE22AC034	L11335	52	52	0.13
KE22AC034 KE22AC034	L11341 L11342	56	60	0.13
KE22AC034 KE22AC034	L11342 L11343		64	
NEZZACU34	L11343	60	04	0.01

KE22AC034	L11344	64	68	0.03
KE22AC034	L11345	68	72	0.04
KE22AC034	L11346	72	76	0.01
KE22AC034	L11347	76	80	0.01
KE22AC034	L11348	80	84	0.01
KE22AC034	L11349	84	88	0.01
KE22AC034	L11350	84	88	0.01
KE22AC034	L11351	88	90	0.02
KE22AC035	L11353	0	4	0.03
KE22AC035	L11354	4	8	0.01
KE22AC035	L11355	8	12	0.01
KE22AC035	L11356	12	16	0.04
KE22AC035	L11357	16	20	0.03
KE22AC035	L11358	20	24	0.02
KE22AC035	L11359	24	28	0.01
KE22AC035	L11361	28	32	0.01
KE22AC035	L11362	32	36	0.01
KE22AC035	L11363	36	40	0.005
KE22AC035	L11364	40	44	0.005
KE22AC035	L11365	44	48	0.005
KE22AC035	L11366	48	52	0.005
KE22AC035	L11367	52	56	0.01
KE22AC035	L11368	56	60	0.005
KE22AC035	L11369	60	64	0.01
KE22AC035	L11370	64	68	0.01
KE22AC035	L11371	68	72	0.01
KE22AC035	L11372	72	76	0.005
KE22AC035	L11373	76	80	0.005

Table 5: Phase 2 Drill hole details

Hole ID	GDA94 GPS_E	GDA94 GPS_N	RL	Dip	Azi	Max_depth	Hole Type
KE22RC008	567179	7171135	491	60	180	78	RC
KE22RC009	567181	7171218	499	60	180	60	RC
KE22RC010	567181	7171300	502	60	180	66	RC
KE22RC011	567002	7171377	504	60	180	66	RC
KE22RC012	566999	7171400	500	60	180	60	RC
KE22RC013	566936	7170939	485	60	0	60	RC
KE22RC014	566954	7170963	490	60	0	60	RC
KE22RC015	566930	7170999	487	60	0	60	RC
KE22RC016	567090	7170973	491	60	0	60	RC
KE22RC017	567096	7170937	491	60	0	60	RC
KE22RC018	567095	7170914	490	60	0	60	RC
KE22RC019	567339	7170846	487	60	0	60	RC
LN22RC001	567977	7171378	515	60	20	100	RC
LN22RC002	567869	7171272	528	60	225	102	RC
LN22RC003	567819	7171334	526	60	225	80	RC
LN22RC004	567647	7171397	538	60	40	60	RC

		-		-			
LN22RC005	567666	7171410	536	60	40	60	RC
LN22RC006	567675	7171428	539	60	40	60	RC
LN22RC007	567647	7171469	536	60	220	66	RC
LN22RC008	567664	7171480	537	60	220	72	RC
LN22RC009	567611	7171474	535	60	220	60	RC
LN22RC010	567622	7171482	534	60	220	60	RC
LN22RC011	567722	7171549	530	60	40	60	RC
LN22RC012	567740	7171574	529	60	40	60	RC
LN22RC013	567754	7171598	530	60	40	66	RC
LN22RC014	567770	7171541	528	60	40	80	RC
LN22RC015	567775	7171524	527	60	220	66	RC
LN22RC016	567800	7171571	524	-60	40	60	RC
LN22RC017	567792	7171560	525	-60	220	80	RC
LN22RC018	567822	7171640	528	60	10	60	RC
LN22RC019	567822	7171666	543	60	10	60	RC
LN22RC020	567828	7171681	521	60	10	66	RC
LN22RC021	567856	7171624	529	60	10	110	RC
LN22RC022	567863	7171652	534	60	10	70	RC
LN22RC023	567865	7171677	535	60	10	60	RC
LN22RC024	567906	7171658	535	59	197	89	RC
LN22RC025	567895	7171640	531	60	18	79	RC
LN22RC026	567890	7171623	526	60	13	80	RC
LN22RC027	567937	7171636	525	60	10	60	RC
SA22RC001	566939	7173371	505	60	180	60	RC
SA22RC002	566938	7173392	505	60	180	60	RC
ST22RC001	570452	7172457	475	60	220	60	RC
ST22RC002	570484	7172502	476	60	220	60	RC
ST22RC003	570523	7172531	477	60	220	60	RC
ST22RC004	569846	7172656	484	60	180	60	RC
ST22RC005	569854	7172618	484	60	180	60	RC
ST22RC006	569846	7172577	483	60	180	60	RC
ST22RC007	569847	7172536	481	60	180	60	RC
ST22RC008	569193	7172948	480	60	180	60	RC
ST22RC009	569193	7172917	480	60	180	60	RC

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 3.5" Reverse circulation (AC) drilling was used to obtain chip samples for geological logging and assaying. 5.5" Reverse circulation (RC) drilling was used to obtain chip samples for geological logging and assaying The drill holes were sited to test geophysical targets/surface geochemical targets as well as previous drilling results 4m AC samples were collected via a cyclone mounted rotary splitter for all samples. 1m RC samples were collected via a cyclone mounted rotary splitter for all samples. No composite samples were used. 4m composite samples were obtained from Aircore drilling. AC and RC samples were submitted to ALS Perth and sample preparation consisted of the drying of the sample, the entire sample being crushed to 70% passing 6mm and pulverized to 85% passing 75 microns in a ring and puck pulveriser. RC samples are assayed for gold by 50g fire assay with AAS finish. Multielement analysis is completed using an ICPAES analysis.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	• Phase 1 AC drilling used Model KD 150 RCA custom drill rig with a 3.5" face sampling hammer Austex medium duty track mounted RC rig was used for Phase 2 RC drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For AC and RC sample recoveries of less than approximately 80% are noted in the geological/sampling log with a visual estimate of the actual recovery. Very few samples were recorded with recoveries of less than 80%. No wet RC samples were recovered. No relationship has been observed between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was carried out on all AC and RC chips. This included lithology, alteration, sulphide percentages and vein percentages. Geological logging of alteration type, alteration intensity, vein type and textures, % of veining, and sulphide composition. All RC chip trays and all core trays are photographed. All drill holes are logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m primary RC samples were obtained using a cyclone mounted 87.5%:12.5% riffle splitter. No composite samples were taken for RC 4m Composite samples were taken for AC Duplicated samples were collected in visual ore zones and at a frequency of at least 1 in 20. QAQC samples (standards / blanks) were submitted at a frequency of at least 1 in 20. Regular reviews of the sampling were carried out by the Exploration Manager to ensure all procedures were followed and best industry practice carried out. Sample sizes and preparation techniques are considered appropriate. The sample sizes are considered to be appropriate for the nature of mineralisation within the project area. Duplicate RC sampling concentrated on potentially mineralised intervals.

Criteria	JORC Code explanation	Commentary
Quality of data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 No pXRF data reported. AC and RC samples were assayed for Au using 50g Au-AA26 fire assay which is considered appropriate for this style of mineralisation. Fire assay is considered total assay for gold. Multi-element analysis was conducted by standard ME-ICP61a protocol and considered appropriate for this style of mineralisation. It is considered a near-total assay for most relevant elements Monitoring of results of blanks and standards is conducted regularly. QAQC data is reviewed for bias prior to inclusion in any subsequent Mineral Resource estimate.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are routinely monitored through review of drill chip and drill core and by site visits when possible, by the Exploration Manager. Data is verified and checked in Micromine software. No twinned holes included. Primary data is collected via paper and 'tough book' laptops in the field in self-validating data entry forms. Data is subsequently uploaded into a corporate database for further validation/checking and data management. All original files are stored as a digital record. No adjustments have been applied to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations are pegged and checked on completion via handheld GPS with +/-5m accuracy using existing LiDAR and regional DTM data and considered appropriate for this level of exploration work Drill hole collar locations are initially set out (and reported) using a handheld GPS with a location error of +/- 5m. All holes are pegged and will be accurately surveyed (x,y,z) at a later date. Down hole surveys were completed using an Axis Champ Gyro digital survey system at a maximum interval of 30m. All drilling is conducted on the MGA94 Zone 50 grid. A topographic survey of the project area has not been conducted.
Data Spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes were sited to test along strike and down dip of previous drilling. Some drill holes have been collared off the same drill pads. The current drill hole spacing in some locations is of sufficient density to establish geological and grade continuity appropriate for a Mineral Resource. An updated mineral resource estimate will be considered once further drilling is completed. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling is oriented to intersect known and interpreted structures as perpendicular as possible in the XY plane and in the XZ plan as required to either infill spacing vertically as required or transect the structure at best possible true widths
Sample security	 The measures taken to ensure sample security. 	 Samples were delivered by staff directly to ALS Perth laboratory in sealed and zip-tied bags and bulk bags
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The sampling techniques are regularly reviewed.

Section 2 – Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Metal Bank Limited owns 75% interest in the Livingstone Gold Project from Trillbar Resources Pty Ltd. Livingstone (E52/3403) is located northwest of Meekatharra in Western Australia, is an advanced exploration project with an existing JORC2004 Inferred Au resource of 49,900 ounces and 30,500 ounces plus a number of high-grade drilling intersections that indicate excellent potential for additional discoveries. A review of environmental maps at the time of application did not identify any significant environmental restricted areas.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Several exploration companies have completed exploration work at Livingstone in recent years including Kingston Resources
Geology	 Deposit type, geological setting and style of mineralisation. 	 The target area sits within a west-northwest trending, western arm of the Palaeoproterozoic Padbury and Bryah Basins, enclosed to the north, west and south by Archaean rocks of the Yilgarn Craton. The sedimentary, volcanic and intrusive basin rocks lie in faulted contact with the Yarlaweelor Domain of the 16 Criteria Commentary Yilgarn Craton to the north, and the Narryer Terrane to the south. Gold deposits within the basins are typically structurally-controlled orogenic lodes, with the major deposits associated with units of the Narracoota Formation and its contacts with the adjacent formations of the Bryah Group (Harmony mine) and Padbury Group (Labouchere, Horseshoe and Fortnum mines). Structurally, there is a spatial correlation between known gold mineralisation and a series of west to north-northwest trending strike-parallel faults of the Livingstone shear zone.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• See Table 2,3 & 5 in document Appendix
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Samples are 1m or 4m composites, there is no weighting applied. Intervals are reported as a simple arithmetic mean grade. Unless specified otherwise, a nominal 0.5g/t Au lower cut-off has been applied incorporating up to 2m of continuous internal dilution below the reporting cut-off grade and minimum 1m downhole width used to highlight zones of mineralisation. Refer Table 1.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Downhole observation results are listed only and interpreted as approximately 70% true width The internal geometry of the mineralisation and grade distribution is not known in enough detail to determine the true width of the mineralisation. However in most cases a clear gross intersection angle between known mineralised structural corridor and drill hole orientation allows a reasonable estimation of interval true width should mineralisation match Refer Table 1.

Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures contained within this report showing the regional location of the drill holes and cross-sections.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results are presented in figures and tables contained within this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other material data collected by Metal Bank Limited is presented in this report.
Further Work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further interpretation and review of the data will be completed in conjunction with upcoming drilling.