

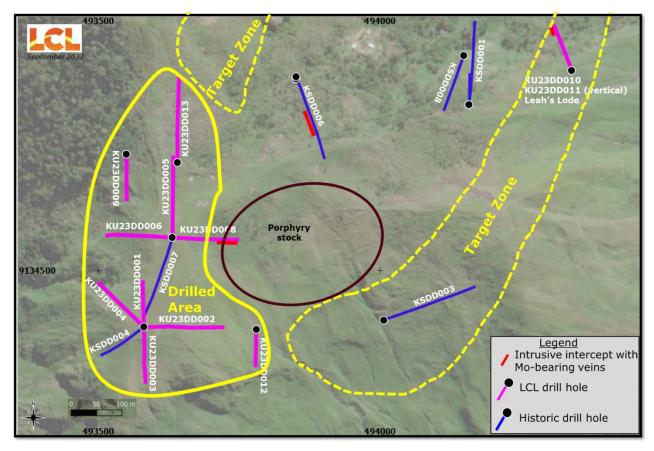
Kusi drilling update

LCL Resources Ltd **(ASX: LCL) (LCL or the Company)** is pleased to provide an update on its ongoing exploration program at the 100% owned Kusi gold-copper project (PNG). To date 14 diamond drill holes have been drilled, targeting gold-copper skarn mineralisation. Assays have now been received from drill cores KU23DD008-13, including two drill holes (KU23DD010 & '11) at Leah's Lode (Figure 1). Results are summarised in Table 1 and include:

- 25m @ 1.22g/t Au from 46m including <u>14m @ 2.1g/t Au</u> from 53m and 12m @ 0.94g/t Au from 95m in KU23DD010
- <u>23m @ 0.87g/t Au</u> from 78m in KU23DD011
- 5m @ 1.31g/t Au from 79m and <u>14m @ 1.44g/t Au</u> from 113m including 2m @ 7.83g/t Au from 117m in KU23DD012.

Assay results have served to illuminate local mineralisation controls. In particular, a porphyry stock with associated quartz-molybdenite veins, intercepted in KU23DD008, is believed to be part of a broader porphyry complex, and the likely source of local skarn alteration and associated gold-copper mineralisation, although the stock itself is not gold-copper mineralised where intersected. The stock is believed to be the same intrusive phase as a thin dyke reported in historical drill hole KSDD006 (Figure 1) and a porphyry intercepted at depth in KU23DD011 below the Leah's Lode skarn.

The stock is coincident with a magnetic high which is part of a larger northeast trending 2km x 1km geophysical anomaly (Figure 2a). Higher grade gold-copper mineralisation associated with skarn alteration intersected in drill core within the Upper Limestone, and adjoining phyllite horizons, appears to form within a halo conforming to the margins of the geophysical anomaly denoted by green shading in Figure 2a. This is further evidenced by lower gold grades reported from drill holes more distal to the geophysical anomaly such as KU23DD009 and '13. The halo wraps around the geophysical anomaly and extends to Leah's Lode in the east where it is also coincident with extensive surface gold anomalism (Figure 2b) and another magnetic high feature within the geophysical anomaly. This broad, mostly undrilled, halo especially proximal to magnetic high features, is therefore an exploration target of interest for future programs.


The extensive footprint of elevated surface gold in soils, grab samples and outcropping skarn at Kusi suggests additional causative sources for gold-copper mineralisation not related to the porphyry stock. This raises the possibility of a regional cluster of gold-copper occurrences which is common for mineralising events within PNG arc normal structures.

The 2023 Kusi field program has included mapping and sampling at several regional targets including nearby magnetic anomalies and surface indications of mineralisation. Drillhole KU23DD015 currently underway is testing one such target to the west, where a gold soil geochemistry anomaly is coincident with favourable Upper Limestone stratigraphy adjacent to a magnetic high feature (Figures 2a and 2b).

LCL Managing Director, Jason Stirbinskis added "The current drill hole, KU23DD015, marks the completion of the 3,000m maiden Kusi drill program. The program has served to define a substantial area (~300m x ~600m) of near surface gold mineralisation, southwest of the recently encountered intrusive porphyry stock and additional gold mineralisation at Leah's Lode ~1km to the east. Both mineralised zones are proximal to a geophysical anomaly and magnetic highs within the geophysical anomaly, therefore there remains potential for additional mineralisation at Kusi around the geophysical anomaly.

Likewise, other local magnetic highs coincident with gold surface anomalism along the major arc normal structure within LCL's Ono Project, of which Kusi is a small part, are also compelling targets to be considered for the 2024 work program.


Upon completion of the Kusi drilling program, field teams will advance other PNG prospects including the Company's Nickel Project which captures multiple nickel sulphide targets including Veri Veri, where LCL recently announced locating the source of high grade nickel sulphide float¹, and the recently acquired nearby nickel sulphide prospects at lyewe and Doriri²."

Figure 1: Plan view of Kusi showing location of historical and LCL drill holes, along with an interpreted intrusive body (porphyry stock) intersected in several holes. Area defined by solid yellow border is the main area of drilled mineralisation. Areas defined by dashed yellow lines are target areas - see Figures 2a and 2b for relationship of target areas to surface geochemical and magnetic response.

¹ See ASX announcement of 20 July 2023. The Company confirms that it is not aware of new information that affects the information contained in the original announcement.

² See ASX announcements 26 June 2023 (Iyewe) and 30 August 2023 (Doriri) for further information.

Figure 2a and 2b: Figure 2a is a plan view of magnetics (analytic signal) with metal factor results from intercepts within the Upper Limestone and adjoining phyllite units. Figure 2b is a synthesis map of the metal factor results from intercepts within the Upper Limestone and adjoining phyllite units, interpreted intrusive body, and magnetic footprint related to hydrothermal alteration and intrusives. Note target zones marginal to the magnetic feature at Kusi and Leah's Lode. Note that LCL's 2023 drilling program (denoted by solid grey boundary) has mostly focussed on a ~600m x 300m SW of the geophysical anomaly and thus far delivered multiple (9) 50+gram meter intercepts (Table 2) from this sub-region.

Hole ID	From (m)	To (m)	Interval (m)	Grade (g/t Au)
KU23DD009	213	228	15	0.73
	including			
	220	228	8	0.94
KU23DD010	46	71	25	1.22
	Including			
	53	67	14	2.1
	77.7	78.5	0.8	1.98
	95	107	12	0.94
	Including			
	99	101	2	4.4
KU23DD011	78	101	23	0.87
	Including			
	79	81	2	2.07
	86	98	12	1.16
KU23DD012	70	85	15	0.55
	Including			
	79	84	5	1.31
	113	127	14	1.44
	Including			
	117	119	2	7.83
	121	123	2	1.15
KU23DD013	270	312.1	42.1	0.33
	Including			
	270	275	5	1.44

Table 1: Material gold assay intercepts of diamond drill holes KU23DD009-13. Note multi-element assay results, including copper, remain pending, however are not expected to materially change the results or discussion in this release. KU23DD008 intercepted unmineralized porphyry stock at the target depths which is inferred to have stoped out (removed) the skarn Upper Limestone target at this location.

Hole_ID	Metal Factor gm (Au)	Estimated true thickness and weighted average Au grade
KU23DD001	92.7	69.2m @ 1.34 g/t Au
KU23DD002	59.6	32.2m @ 1.85 g/t Au
KU23DD003	66.4	36.9m @ 1.6 g/t Au 7m @ 1.05 g/t Au
KU23DD004	192.2	45m @ 3.65 g/t Au
		21.8m @ 1.28 g/t Au
KU23DD005	157.9	67.5m @ 1.53 g/t Au 10.6m @ 5.15 g/t Au

KU23DD006	65.4	27.3m @ 1.35 g/t Au
10200000		3m @ 6.15 g/t Au
		2.8m @ 3.6 g/t Au
KU23DD007	28	87.7m @ 0.32 g/t Au
KSDD004	59.9	47.5m @ 1.26g/t Au
KSDD007	130.9	70.4m @ 1.86g/t Au
KSDD003	21.0	8.8m @ 2.39g/t Au
LCL trench 1	58.9	15.3m @ 3.84g/t Au
KU23DD008	6.1	17.9m @ 0.34g/t Au
KU23DD009	10.3	14.1m @ 0.73g/t Au
KU23DD010	12.1	0.75m @ 1.98g/t Au
		11.3m @ 0.94g/t Au
KU23DD011	18.8	21.6m @ 0.87g/t Au
KU23DD012	30.2	4.7m @ 0.74g/t Au
		14.1m @ 0.55g/t Au
		13.2m @ 1.44 Au
KU23DD013	15.1	2.5m @ 0.82g/t Au
		39.6m @ 0.33g/t Au
KSDD001	1.5	3.3m @ 0.46g/t Au
KSDD002	0.0	43.2m @ 0g/t Au
KSDD006	2.7	4m @ 0.68/t Au
KSDD008	1.2	1.5m @ 0.78g/t Au

Table 2: Previously reported Kusi drill hole assay results from KU23DD001- 7³ together with KU23DD08-13 and LCL trench 1, expressed as metal factors (True Thickness (m) x Weighted Average gold grade (g/t)) from within the Upper Limestone. Note for drill holes KU23DD003, KU23DD004, KU23DD005, KU23DD010 & KU23DD013 the metal factors are calculated as the sum of two discrete intervals, while KU23DD006 & KU23DD012 is the sum of three discrete intervals, intercepted within the host limestone unit. KSDD001-8 were drilled by previous explorer Pacific Niugini Minerals (PNG) Ltd³.

For the purpose of ASX Listing Rule 15.5, the Board has authorised this announcement to be released.

For further enquiries contact:

Jason Stirbinskis

Managing Director - LCL 3/88 William Street PERTH WA 6000 jason@lclresources.au

FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning LCL Resources. Forwardlooking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on LCL's beliefs, opinions and estimates of LCL as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if

³ Refer to ASX announcements 25 November 2022 (KSDD001 to '8 and LCL Trench 1), 24 April 2023 (KU23DD001), 18 May 2023 (KU23DD002 to '4), 5 July 2023 (KU23DD005) and 25 July 2023 (KU23DD006 to '7) for more information. The Company confirms that it is not aware of new information that affects the information contained in the original announcements.

these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

JORC STATEMENTS - COMPETENT PERSONS STATEMENTS

The technical information related to LCL's assets contained in this report that relates to Exploration Results is based on information compiled by Mr John Dobe, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by LCL on a full-time basis. Mr Dobe has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Dobe consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

Hole_ID	From	То	Lithology	Au g/t
KU23DD008	0	2	Colluvium	0.04
KU23DD008	2	4	Phyllite	0.04
KU23DD008	4	6	Phyllite	0.03
KU23DD008	6	8	Phyllite	0.05
KU23DD008	8	10	Phyllite	0.02
KU23DD008	10	12	Phyllite	0.01
KU23DD008	12	14	Phyllite	0.01
KU23DD008	14	16	Phyllite	<0.005
KU23DD008	16	18	Phyllite	0.01
KU23DD008	18	20	Phyllite	0.02
KU23DD008	20	22	Phyllite	0.03
KU23DD008	22	24	Phyllite	0.01
KU23DD008	24	26	Phyllite	<0.005
KU23DD008	26	28	Phyllite	0.07
KU23DD008	28	30	Phyllite	0.02
KU23DD008	30	32	Phyllite	<0.005
KU23DD008	32	34	Phyllite	<0.005
KU23DD008	24	36	Phyllite	0.01
KU23DD008	36	38	Phyllite	0.01
KU23DD008	38	40	Phyllite	<0.005
KU23DD008	40	42	Phyllite	0.12
KU23DD008	42	44	Phyllite	<0.005
KU23DD008	44	46	Phyllite	<0.005
KU23DD008	46	48	Phyllite	<0.005
KU23DD008	48	50	Phyllite	0.04
KU23DD008	50	52	Phyllite	0.03
KU23DD008	52	54	Phyllite	0.07
KU23DD008	54	56	Phyllite	0.07
KU23DD008	56	58	Phyllite	0.17
KU23DD008	58	60	Phyllite	0.07
KU23DD008	60	62	Phyllite	0.15
KU23DD008	62	64	Porphyry	0.15
KU23DD008	64	66	Porphyry	0.11
KU23DD008	66	68	Porphyry	0.07
KU23DD008	68	70	Porphyry	0.08
KU23DD008	70	72	Phyllite	0.18
KU23DD008	72	74	Porphyry	0.29
KU23DD008	74	76	Phyllite	0.07
KU23DD008	76	78	Phyllite	0.39
KU23DD008	78	80	Phyllite	0.08
KU23DD008	80	82	Phyllite	0.04
KU23DD008	82	84	Phyllite	0.08
KU23DD008	84	86	Phyllite	0.22

Hole_ID	From	То	Lithology	Au g/t
KU23DD008	86	87	Phyllite	0.04
KU23DD008	87	88	Porphyry	0.03
KU23DD008	88	89	Porphyry	0.02
KU23DD008	89	90	Porphyry	0.04
KU23DD008	90	91	Porphyry	0.08
KU23DD008	91	92	Porphyry	0.04
KU23DD008	92	93	Porphyry	0.03
KU23DD008	93	94	Porphyry	0.04
KU23DD008	94	96	Porphyry	0.04
KU23DD008	96	98	Porphyry	0.13
KU23DD008	98	100	Porphyry	0.08
KU23DD008	100	102	Phyllite	1.37
KU23DD008	102	104	Phyllite	0.06
KU23DD008	104	106	Phyllite	0.03
KU23DD008	106	108	Porphyry	0.05
KU23DD008	108	110	Porphyry	0.09
KU23DD008	110	112	Fault	0.08
KU23DD008	112	114	Fault	0.06
KU23DD008	114	116	Phyllite	0.06
KU23DD008	116	118	Phyllite	0.05
KU23DD008	118	120	Phyllite	0.07
KU23DD008	120	122	Phyllite	0.08
KU23DD008	122	124	Phyllite	0.04
KU23DD008	124	126	Phyllite	0.03
KU23DD008	126	128	Phyllite	0.06
KU23DD008	128	130	Phyllite	0.07
KU23DD008	130	132	Phyllite	0.07
KU23DD008	132	134	Phyllite	0.08
KU23DD008	134	136	Porphyry	0.06
KU23DD008	136	137.9	Phyllite	0.07
KU23DD008	137.9	139	Phyllite	0.10
KU23DD008	139	140	Phyllite	0.13
KU23DD008	140	141.2	Fault	0.23
KU23DD008	141.2	142	Breccia	0.54
KU23DD008	142	143	Breccia	0.18
KU23DD008	143	144	Breccia	0.17
KU23DD008	144	145.3	Breccia	0.41
KU23DD008	145.3	146.2	Skarn	2.44
KU23DD008	146.2	147	Skarn	0.51
KU23DD008	147	148	Skarn	0.10
KU23DD008	148	148.6	Skarn	0.20
KU23DD008	148.6	150	Porphyry	0.10
KU23DD008	150	152	Porphyry	0.12

Hole_ID	From	То	Lithology	Au g/t
KU23DD008	152	154	Porphyry	0.16
KU23DD008	154	156	Porphyry	0.05
KU23DD008	156	158	Porphyry	0.16
KU23DD008	158	160	Porphyry	0.07
KU23DD008	160	162	Porphyry	0.06
KU23DD008	162	164	Porphyry	0.06
KU23DD008	164	166	Porphyry	0.06
KU23DD008	166	168	Porphyry	0.13
KU23DD008	168	170	Porphyry	0.12
KU23DD008	170	172	Porphyry	0.09
KU23DD008	172	174	Porphyry	0.11
KU23DD008	174	176	Porphyry	0.11
KU23DD008	176	178	Porphyry	0.07
KU23DD008	178	180	Porphyry	0.05
KU23DD008	180	182	Porphyry	0.14
KU23DD008	182	184	Porphyry	0.16
KU23DD008	184	186	Porphyry	0.13
KU23DD008	186	188	Porphyry	0.17
KU23DD008	188	190	Porphyry	0.18
KU23DD008	190	192	Porphyry	0.12
KU23DD008	192	194	Porphyry	0.12
KU23DD008	194	196	Porphyry	0.05
KU23DD008	196	198	Porphyry	0.03
KU23DD008	198	200	Porphyry	0.05
KU23DD008	200	204	Porphyry	0.05
KU23DD008	204	206	Porphyry	0.05
KU23DD008	206	208	Porphyry	0.07
KU23DD008	208	210	Porphyry	0.04
KU23DD008	210	212	Porphyry	0.07
KU23DD008	212	214	Porphyry	0.06
KU23DD008	212	214	Porphyry	0.03
KU23DD008	214	210	Porphyry	0.03
KU23DD008	210	210	Porphyry	0.04
KU23DD008	210	220	Porphyry	0.14
KU23DD008	220	224	Porphyry	0.05
KU23DD008	224	224	Porphyry	0.03
KU23DD008	224	228	Porphyry	0.03
KU23DD008	228	230	Porphyry	0.04
KU23DD008	230	230	Porphyry	0.13
KU23DD008	230	232	Porphyry	0.13
KU23DD008	232	234	Porphyry	0.11
KU23DD008	234	230	Colluvium	0.04
KU23DD009	2	4	Colluvium	0.01

Hole_ID	From	То	Lithology	Au g/t
KU23DD009	4	6	Phyllite	0.01
KU23DD009	6	8	Phyllite	0.01
KU23DD009	8	10	Phyllite	0.01
KU23DD009	10	11	Phyllite	<0.005
KU23DD009	11	12.4	Phyllite	0.01
KU23DD009	12.4	13.1	Fault	0.24
KU23DD009	13.1	14	Fault	0.12
KU23DD009	14	15	Fault	0.04
KU23DD009	15	16	Fault	0.05
KU23DD009	16	17	Fault	0.09
KU23DD009	17	18	Fault	0.04
KU23DD009	18	19	Fault	0.26
KU23DD009	19	20	Fault	0.07
KU23DD009	20	21	Fault	0.04
KU23DD009	21	22	Fault	0.05
KU23DD009	22	23	Fault	0.03
KU23DD009	23	24	Fault	0.04
KU23DD009	24	25	Fault	0.02
KU23DD009	25	25.8	Fault	0.04
KU23DD009	25.8	27.2	Fault	0.35
KU23DD009	27.2	28	Phyllite	0.04
KU23DD009	28	30	Phyllite	0.36
KU23DD009	30	32	Phyllite	0.11
KU23DD009	32	34	Phyllite	0.16
KU23DD009	34	36	Phyllite	0.11
KU23DD009	36	38	Phyllite	0.36
KU23DD009	38	40	Phyllite	0.13
KU23DD009	40	42	Phyllite	0.23
KU23DD009	42	44	Breccia	0.12
KU23DD009	44	46	Phyllite	0.07
KU23DD009	46	48	Phyllite	0.09
KU23DD009	48	50	Phyllite	0.10
KU23DD009	50	52	Fault	0.11
KU23DD009	52	54	Fault	0.11
KU23DD009	54	56	Fault	0.19
KU23DD009	56	58	Phyllite	0.14
KU23DD009	58	60	Phyllite	0.19
KU23DD009	60	62	Phyllite	0.07
KU23DD009	62	64	Phyllite	0.06
KU23DD009	64	66	Phyllite	0.08
KU23DD009	66	68	Phyllite	0.09
KU23DD009	68	70	Phyllite	0.09
KU23DD009	70	72	Fault	0.19

Hole_ID	From	То	Lithology	Au g/t
KU23DD009	72	74	Fault	0.14
KU23DD009	74	76	Fault	0.06
KU23DD009	76	78	Phyllite	0.04
KU23DD009	78	80	Fault	0.16
KU23DD009	80	82	Phyllite	0.10
KU23DD009	82	84	Phyllite	0.20
KU23DD009	84	86	Phyllite	0.22
KU23DD009	86	88	, Phyllite	0.18
KU23DD009	88	90	Phyllite	0.20
KU23DD009	90	92	Phyllite	0.25
KU23DD009	92	94	Phyllite	0.09
KU23DD009	94	96	Phyllite	0.08
KU23DD009	96	98	Phyllite	0.10
KU23DD009	98	100	Phyllite	0.07
KU23DD009	100	100.8	Porphyry	0.06
KU23DD009	100.8	102	BMC	0.05
KU23DD009	102	103	Fault	0.06
KU23DD009	103	104	Fault	0.18
KU23DD009	104	106	Marble	0.07
KU23DD009	106	108	Marble	0.02
KU23DD009	108	110	Marble	0.02
KU23DD009	110	112	Marble	0.01
KU23DD009	112	114	Marble	0.02
KU23DD009	114	116	Marble	0.02
KU23DD009	116	118	Marble	0.08
KU23DD009	118	120	Marble	0.01
KU23DD009	120	121	Marble	0.01
KU23DD009	121	122	Marble	0.05
KU23DD009	122	123	Marble	0.03
KU23DD009	123	124	Marble	0.02
KU23DD009	124	125	Marble	0.02
KU23DD009	125	126	Marble	0.06
KU23DD009	126	127	Marble	0.01
KU23DD009	127	128	Marble	0.09
KU23DD009	128	128.8	Marble	0.02
KU23DD009	128.8	130	Marble	0.02
KU23DD009	130	131	Marble	0.03
KU23DD009	131	132	Marble	0.03
KU23DD009	132	133	Marble	0.02
KU23DD009	133	133.7	Marble	0.02
KU23DD009	133.7	134.4	Skarn	0.20
KU23DD009	134.4	135.1	Skarn	0.17
KU23DD009	135.1	136	Marble	0.02

Hole_ID	From	То	Lithology	Au g/t
KU23DD009	136	137	Marble	0.02
KU23DD009	137	138	Marble	<0.005
KU23DD009	138	139	Marble	0.01
KU23DD009	139	140	Marble	0.02
KU23DD009	140	141	Marble	<0.005
KU23DD009	141	142	Marble	0.06
KU23DD009	142	143	Marble	0.05
KU23DD009	143	144	Marble	0.05
KU23DD009	144	145	Marble	0.01
KU23DD009	145	146	Marble	0.01
KU23DD009	146	147	Marble	0.01
KU23DD009	147	148	Marble	0.01
KU23DD009	148	149	Marble	0.01
KU23DD009	149	150	Marble	0.01
KU23DD009	150	151	Marble	0.01
KU23DD009	151	152	Marble	0.01
KU23DD009	152	153	Marble	0.01
KU23DD009	153	154	Marble	0.01
KU23DD009	154	155	Marble	<0.005
KU23DD009	155	156	Marble	<0.005
KU23DD009	156	157	Marble	0.01
KU23DD009	157	158	Marble	0.01
KU23DD009	158	159	Marble	0.09
KU23DD009	159	160	Marble	0.01
KU23DD009	160	161	Marble	0.01
KU23DD009	161	162	Marble	<0.005
KU23DD009	162	163	Marble	0.01
KU23DD009	163	164	Marble	0.01
KU23DD009	164	165	Marble	<0.005
KU23DD009	165	166	Marble	0.02
KU23DD009	166	167	Marble	0.02
KU23DD009	167	168	Marble	0.02
KU23DD009	168	169	Marble	0.01
KU23DD009	169	170.7	Marble	0.01
KU23DD009	170.7	171.2	Skarn	0.02
KU23DD009	171.2	172	Marble	0.01
KU23DD009	172	173	Marble	0.01
KU23DD009	173	174	Marble	0.02
KU23DD009	174	175	Marble	0.03
KU23DD009	175	176	Marble	0.01
KU23DD009	176	177	Marble	0.09
KU23DD009	177	178	Marble	0.02
KU23DD009	178	179	Marble	0.07

Hole_ID	From	То	Lithology	Au g/t
KU23DD009	179	180	Marble	0.06
KU23DD009	180	181	Marble	0.17
KU23DD009	181	182	Marble	0.04
KU23DD009	182	183	Marble	0.02
KU23DD009	183	184	Marble	<0.005
KU23DD009	184	185	Marble	0.01
KU23DD009	185	186	Marble	0.02
KU23DD009	186	187	Marble	0.01
KU23DD009	187	188	Marble	0.01
KU23DD009	188	189	Marble	0.03
KU23DD009	189	190	Marble	0.05
KU23DD009	190	191.05	Marble	0.04
KU23DD009	191.05	191.6	Marble	0.12
KU23DD009	191.6	193	Marble	0.01
KU23DD009	193	194	Marble	0.02
KU23DD009	194	195	Marble	<0.005
KU23DD009	195	196	Marble	0.01
KU23DD009	196	197	Marble	0.01
KU23DD009	197	198	Marble	0.01
KU23DD009	198	199	Marble	0.01
KU23DD009	199	200	Marble	0.01
KU23DD009	200	201	Marble	<0.005
KU23DD009	201	202	Marble	0.01
KU23DD009	202	203	Marble	0.01
KU23DD009	203	203.8	Marble	<0.005
KU23DD009	203.8	204.41	Skarn	0.25
KU23DD009	204.41	205.08	Skarn	0.93
KU23DD009	205.08	206	Marble	0.04
KU23DD009	206	207	Marble	<0.005
KU23DD009	207	208	Marble	0.05
KU23DD009	208	209	Marble	0.01
KU23DD009	209	210	Marble	0.17
KU23DD009	210	211	Marble	0.04
KU23DD009	211	212	Marble	0.04
KU23DD009	212	213	Marble	0.02
KU23DD009	213	214	Fault	0.47
KU23DD009	214	215	Fault	0.74
KU23DD009	215	216	Fault	0.30
KU23DD009	216	217	Fault	0.50
KU23DD009	217	218	Fault	0.46
KU23DD009	218	219	Fault	0.19
KU23DD009	219	220	Fault	0.22
KU23DD009	220	221	Fault	0.17

Hole_ID	From	То	Lithology	Au g/t
KU23DD009	221	222	Phyllite	0.64
KU23DD009	222	223	Phyllite	0.89
KU23DD009	223	224	Phyllite	0.15
KU23DD009	224	225	Phyllite	1.33
KU23DD009	225	225.7	Phyllite	1.72
KU23DD009	225.7	227	Phyllite	0.33
KU23DD009	227	228	Phyllite	0.50
KU23DD009	228	229	Phyllite	0.26
KU23DD009	229	230	Phyllite	0.15
KU23DD009	230	231	Phyllite	0.12
KU23DD009	231	232	Phyllite	0.07
KU23DD009	232	233	Phyllite	0.50
KU23DD009	233	234	Phyllite	0.10
KU23DD009	234	235	Phyllite	0.06
KU23DD009	235	236	Phyllite	0.22
KU23DD009	236	237	Phyllite	0.07
KU23DD009	237	238	Phyllite	0.06
KU23DD009	238	239	Phyllite	0.05
KU23DD009	239	240.5	Phyllite	0.14
KU23DD010	0	1	Phyllite	0.28
KU23DD010	1	2	Phyllite	0.15
KU23DD010	2	3	Phyllite	0.21
KU23DD010	3	5	Phyllite	0.17
KU23DD010	5	7	Phyllite	0.28
KU23DD010	7	8	Phyllite	0.17
KU23DD010	8	9	Phyllite	0.04
KU23DD010	9	10	Phyllite	0.14
KU23DD010	10	11	Phyllite	0.53
KU23DD010	11	12	Phyllite	0.56
KU23DD010	12	13	Phyllite	0.14
KU23DD010	13	14	Phyllite	0.22
KU23DD010	14	15	Phyllite	0.20
KU23DD010	15	16	Phyllite	0.35
KU23DD010	16	17	Phyllite	0.24
KU23DD010	17	18	Phyllite	0.34
KU23DD010	18	19	Phyllite	0.16
KU23DD010	19	20	Phyllite	0.12
KU23DD010	20	21	Phyllite	0.08
KU23DD010	21	22	Phyllite	0.04
KU23DD010	22	23	Phyllite	0.08
KU23DD010	23	24	Phyllite	0.02
KU23DD010	24	25	Phyllite	0.09
KU23DD010	25	26	Phyllite	0.06

Hole_ID	From	То	Lithology	Au g/t
KU23DD010	26	27	Phyllite	0.06
KU23DD010	27	28	Phyllite	0.03
KU23DD010	28	29	Phyllite	0.18
KU23DD010	29	30	Phyllite	0.05
KU23DD010	30	31	Phyllite	0.07
KU23DD010	31	32	Phyllite	0.05
KU23DD010	32	33	Phyllite	0.08
KU23DD010	33	34	Phyllite	0.04
KU23DD010	34	35	Phyllite	0.06
KU23DD010	35	36.2	Phyllite	0.11
KU23DD010	36.2	37.3	Phyllite	0.08
KU23DD010	37.3	38	Phyllite	0.05
KU23DD010	38	39	Phyllite	0.04
KU23DD010	39	40	Phyllite	0.07
KU23DD010	40	41	Phyllite	0.37
KU23DD010	41	42	Phyllite	0.29
KU23DD010	42	43	Phyllite	0.04
KU23DD010	43	44	Phyllite	0.04
KU23DD010	44	45	Phyllite	0.09
KU23DD010	45	46	Phyllite	0.07
KU23DD010	46	47	Phyllite	0.12
KU23DD010	47	48	Phyllite	0.03
KU23DD010	48	49	Phyllite	0.04
KU23DD010	49	50	Phyllite	0.22
KU23DD010	50	51	Phyllite	0.08
KU23DD010	51	52	Phyllite	0.08
KU23DD010	52	53	Phyllite	0.17
KU23DD010	53	54	Phyllite	0.73
KU23DD010	54	55	Skarn	3.94
KU23DD010	55	56.2	Skarn	2.34
KU23DD010	56.2	57	Phyllite	1.10
KU23DD010	57	58	Skarn	2.74
KU23DD010	58	59	Skarn	7.99
KU23DD010	59	60	Skarn	2.76
KU23DD010	60	61	Skarn	0.93
KU23DD010	61	62	Skarn	1.13
KU23DD010	62	63	Skarn	1.50
KU23DD010	63	64	Skarn	1.41
KU23DD010	64	65	Skarn	0.42
KU23DD010	65	66	Skarn	0.87
KU23DD010	66	67	Skarn	0.80
KU23DD010	67	68	Skarn	0.25
KU23DD010	68	69	Skarn	0.22

Hole ID	From	То	Lithology	Au g/t
KU23DD010	69	70	Skarn	0.13
KU23DD010	70	71	Skarn	0.33
KU23DD010	71	72	Skarn	0.03
KU23DD010	72	73	Skarn	0.04
KU23DD010	73	74	Skarn	0.08
KU23DD010	74	75	Skarn	0.09
KU23DD010	75	76	Skarn	0.04
KU23DD010	76	77	Skarn	0.02
KU23DD010	77	77.7	Skarn	0.07
KU23DD010	77.7	78.5	Marble	1.98
KU23DD010	78.5	79.4	Marble	0.08
KU23DD010	79.4	80	Marble	0.01
KU23DD010	80	81	Marble	0.01
KU23DD010	81	82.3	Marble	0.01
KU23DD010	82.3	83.1	Marble	0.04
KU23DD010	83.1	84	Marble	0.02
KU23DD010	84	85	Marble	0.02
KU23DD010	85	86	Marble	0.01
KU23DD010	86	87	Marble	0.01
KU23DD010	87	88	Marble	0.02
KU23DD010	88	89	Marble	0.02
KU23DD010	89	90	Marble	0.02
KU23DD010	90	91	Marble	0.01
KU23DD010	91	92	Marble	0.02
KU23DD010	92	93	Marble	0.07
KU23DD010	93	94	Marble	0.01
KU23DD010	94	95	Marble	0.10
KU23DD010	95	96.35	Marble	0.30
KU23DD010	96.35	97	Skarn	0.41
KU23DD010	97	98	Skarn	0.02
KU23DD010	98	99	Skarn	0.17
KU23DD010	99	100	Skarn	1.82
KU23DD010	100	101	Skarn	6.97
KU23DD010	101	102	Skarn	0.12
KU23DD010	102	103	Skarn	0.18
KU23DD010	103	104	Skarn	0.12
KU23DD010	104	105	Skarn	0.05
KU23DD010	105	106	Skarn	0.06
KU23DD010	106	107	Skarn	1.11
KU23DD010	107	108	Skarn	0.01
KU23DD010	108	109	Skarn	0.01
KU23DD010	109	110	Skarn	0.01
KU23DD010	110	111	Skarn	0.04

Hole_ID	From	То	Lithology	Au g/t
KU23DD010	111	112	Skarn	0.03
KU23DD010	112	113	Skarn	0.30
KU23DD010	113	114	Skarn	0.23
KU23DD010	114	115	Skarn	0.40
KU23DD010	115	116	Skarn	0.04
KU23DD010	116	117	Skarn	0.01
KU23DD010	117	118	Skarn	0.01
KU23DD010	118	119	Skarn	0.02
KU23DD010	119	120	Skarn	0.11
KU23DD010	120	121	Skarn	0.05
KU23DD010	121	122	Skarn	0.01
KU23DD010	122	123	Skarn	0.01
KU23DD010	123	124	Skarn	0.03
KU23DD010	124	125	Skarn	<0.005
KU23DD010	125	126	Skarn	0.07
KU23DD010	126	127	Skarn	0.29
KU23DD010	127	128	Skarn	0.10
KU23DD010	128	129	Skarn	0.12
KU23DD010	129	130	Skarn	0.19
KU23DD010	130	131	Skarn	0.17
KU23DD010	131	132	Skarn	0.01
KU23DD010	132	133	Skarn	<0.005
KU23DD010	133	134	Skarn	0.01
KU23DD010	134	135	Skarn	<0.005
KU23DD010	135	136	Skarn	0.01
KU23DD010	136	137	Skarn	<0.005
KU23DD010	137	138	Skarn	0.01
KU23DD010	138	139	Skarn	<0.005
KU23DD010	139	140.35	Skarn	<0.005
KU23DD010	140.35	141	Porphyry	0.01
KU23DD010	141	142	Porphyry	<0.005
KU23DD010	142	143	Porphyry	<0.005
KU23DD010	143	144	Porphyry	0.01
KU23DD010	144	145	Porphyry	<0.005
KU23DD010	145	146	Porphyry	0.01
KU23DD010	146	146.75	Porphyry	0.03
KU23DD010	146.75	148	Skarn	0.01
KU23DD010	148	149	Skarn	<0.005
KU23DD010	149	149.75	Skarn	0.02
KU23DD010	149.75	151	Porphyry	0.33
KU23DD010	151	152.5	Porphyry	0.01
KU23DD011	0	1	Phyllite	0.19
KU23DD011	1	2	Phyllite	0.17

Hole_ID	From	То	Lithology	Au g/t
KU23DD011	2	3	Phyllite	0.21
KU23DD011	3	4	Phyllite	0.18
KU23DD011	4	5	Phyllite	0.24
KU23DD011	5	6	Phyllite	0.41
KU23DD011	6	7	Phyllite	0.13
KU23DD011	7	8	Phyllite	0.07
KU23DD011	8	9	Phyllite	0.34
KU23DD011	9	10	Phyllite	0.14
KU23DD011	10	11	Phyllite	0.32
KU23DD011	11	12	Phyllite	0.14
KU23DD011	12	13	Phyllite	0.14
KU23DD011	13	14	Phyllite	0.23
KU23DD011	14	15	Phyllite	0.19
KU23DD011	15	16	Phyllite	0.12
KU23DD011	16	17	Phyllite	0.15
KU23DD011	17	18	Phyllite	0.11
KU23DD011	18	19	Phyllite	0.12
KU23DD011	19	20	Phyllite	0.26
KU23DD011	20	21	Phyllite	0.19
KU23DD011	21	22	Phyllite	0.44
KU23DD011	22	23	Phyllite	0.22
KU23DD011	23	24	Phyllite	0.10
KU23DD011	24	25	Phyllite	0.24
KU23DD011	25	26	Phyllite	0.16
KU23DD011	26	27	Phyllite	0.13
KU23DD011	27	28	Phyllite	0.13
KU23DD011	28	29	Phyllite	0.08
KU23DD011	29	30	Phyllite	0.28
KU23DD011	30	31	Phyllite	0.35
KU23DD011	31	32	Phyllite	0.42
KU23DD011	32	33	Phyllite	0.31
KU23DD011	33	34	Phyllite	0.18
KU23DD011	34	35	Phyllite	0.10
KU23DD011	35	36	Phyllite	0.10
KU23DD011	36	37	Phyllite	0.17
KU23DD011	37	38	Phyllite	0.07
KU23DD011	38	39	Phyllite	0.08
KU23DD011	39	40	Phyllite	0.12
KU23DD011	40	41	Phyllite	0.15
KU23DD011	41	42	Phyllite	0.06
KU23DD011	42	43	Phyllite	0.02
KU23DD011	43	44	Phyllite	0.05
KU23DD011	44	45	Phyllite	0.13

Hole_ID	From	То	Lithology	Au g/t
KU23DD011	45	46	Phyllite	0.12
KU23DD011	46	47	Phyllite	0.09
KU23DD011	47	48	Phyllite	0.08
KU23DD011	48	49	Phyllite	0.09
KU23DD011	49	50	Phyllite	0.22
KU23DD011	50	51	Phyllite	0.04
KU23DD011	51	52	Phyllite	0.09
KU23DD011	52	53	Phyllite	0.20
KU23DD011	53	54	Phyllite	0.25
KU23DD011	54	55	Phyllite	0.04
KU23DD011	55	56	Phyllite	0.06
KU23DD011	56	57	Phyllite	0.08
KU23DD011	57	58	Phyllite	0.11
KU23DD011	58	59	Phyllite	1.44
KU23DD011	59	60	Skarn	0.34
KU23DD011	60	61	Skarn	0.32
KU23DD011	61	62	Skarn	0.20
KU23DD011	62	63	Phyllite	0.23
KU23DD011	63	64	Phyllite	0.13
KU23DD011	64	65	Phyllite	0.12
KU23DD011	65	66	Phyllite	0.07
KU23DD011	66	67	Phyllite	0.04
KU23DD011	67	68	Phyllite	0.03
KU23DD011	68	69	Phyllite	0.09
KU23DD011	69	70	Phyllite	0.05
KU23DD011	70	71	Phyllite	0.06
KU23DD011	71	72	Phyllite	0.28
KU23DD011	72	73	Phyllite	0.06
KU23DD011	73	74	Phyllite	0.06
KU23DD011	74	75	Phyllite	0.08
KU23DD011	75	76	Phyllite	0.06
KU23DD011	76	77	Phyllite	0.04
KU23DD011	77	78	Phyllite	0.06
KU23DD011	78	79	Skarn	0.34
KU23DD011	79	80	Skarn	1.77
KU23DD011	80	81	Skarn	2.36
KU23DD011	81	82.4	Skarn	0.39
KU23DD011	82.4	83	Skarn	0.11
KU23DD011	83	84	Skarn	0.10
KU23DD011	84	85	Skarn	0.14
KU23DD011	85	86	Skarn	0.31
KU23DD011	86	87	Skarn	0.89
KU23DD011	87	88	Skarn	1.58

Hole_ID	From	То	Lithology	Au g/t
KU23DD011	88	89	Skarn	1.92
KU23DD011	89	90	Skarn	0.70
KU23DD011	90	91	Skarn	0.28
KU23DD011	91	92	Skarn	0.40
KU23DD011	92	93	Skarn	1.12
KU23DD011	93	94	Skarn	1.87
KU23DD011	94	95	Skarn	2.14
KU23DD011	95	96	Skarn	1.03
KU23DD011	96	97	Skarn	1.46
KU23DD011	97	98	Skarn	0.55
KU23DD011	98	99	Skarn	0.08
KU23DD011	99	100	Skarn	0.18
KU23DD011	100	101	Porphyry	0.13
KU23DD011	101	102	Porphyry	<0.005
KU23DD011	102	103	Porphyry	<0.005
KU23DD011	103	104	Porphyry	<0.005
KU23DD011	104	105	Porphyry	0.02
KU23DD011	105	106	Porphyry	0.01
KU23DD011	106	107	Porphyry	<0.005
KU23DD011	107	108.1	Porphyry	0.01
KU23DD011	108.1	109	Skarn	0.01
KU23DD011	109	110	Skarn	0.02
KU23DD011	110	110.3	Skarn	0.04
KU23DD012	0	1	Colluvium	0.07
KU23DD012	1	2	Colluvium	0.10
KU23DD012	2	3	Colluvium	0.11
KU23DD012	3	4	Colluvium	0.52
KU23DD012	4	5	Colluvium	0.16
KU23DD012	5	6	Colluvium	0.12
KU23DD012	6	7	Colluvium	0.05
KU23DD012	7	8.6	Colluvium	0.07
KU23DD012	8.6	10	Colluvium	0.10
KU23DD012	10	11	Phyllite	0.05
KU23DD012	11	12	Phyllite	0.05
KU23DD012	12	14	Phyllite	0.06
KU23DD012	14	15	Phyllite	0.06
KU23DD012	15	16	Phyllite	0.05
KU23DD012	16	17	Phyllite	0.16
KU23DD012	17	18	Phyllite	0.06
KU23DD012	18	19	Phyllite	0.06
KU23DD012	19	20	Phyllite	0.07
KU23DD012	20	21	Phyllite	0.04
KU23DD012	21	22	Phyllite	0.03

Hole_ID	From	То	Lithology	Au g/t
KU23DD012	22	23	Phyllite	0.04
KU23DD012	23	24	Phyllite	0.05
KU23DD012	24	25	Phyllite	0.03
KU23DD012	25	26	Phyllite	0.05
KU23DD012	26	27	Phyllite	0.08
KU23DD012	27	28	Phyllite	0.07
KU23DD012	28	29	Phyllite	0.08
KU23DD012	29	30	Phyllite	0.09
KU23DD012	30	31	Phyllite	0.09
KU23DD012	31	32	Phyllite	0.32
KU23DD012	32	33	Phyllite	0.16
KU23DD012	33	34	, Phyllite	0.09
KU23DD012	34	35	, Phyllite	0.05
KU23DD012	35	36	Phyllite	0.07
KU23DD012	36	37	Phyllite	0.06
KU23DD012	37	38	Phyllite	0.04
KU23DD012	38	39	Phyllite	0.05
KU23DD012	39	40	Fault	0.11
KU23DD012	40	41	Fault	0.20
KU23DD012	41	42	Fault	0.15
KU23DD012	42	43.2	Fault	0.11
KU23DD012	43.2	44.2	Skarn	0.46
KU23DD012	44.2	45	Skarn	0.03
KU23DD012	45	46	Marble	0.02
KU23DD012	46	47	Marble	0.04
KU23DD012	47	48	Marble	0.11
KU23DD012	48	49	Marble	0.02
KU23DD012	49	49.6	Marble	<0.005
KU23DD012	49.6	50.2	Marble	0.01
KU23DD012	50.2	51.2	Skarn	0.01
KU23DD012	51.2	52.3	Marble	0.02
KU23DD012	52.3	53.5	Marble	0.01
KU23DD012	53.5	54.3	Marble	0.07
KU23DD012	54.3	55	Marble	0.08
KU23DD012	55	56	Marble	0.01
KU23DD012	56	57	Marble	0.01
KU23DD012	57	58	Marble	0.04
KU23DD012	58	59	Marble	0.08
KU23DD012	59	60	Marble	0.03
KU23DD012	60	61	Marble	0.03
KU23DD012	61	61.8	Marble	0.25
KU23DD012	61.8	62.6	Marble	1.85
KU23DD012	62.6	63.25	Skarn	0.22

Hole_ID	From	То	Lithology	Au g/t
KU23DD012	63.25	64	Skarn	0.02
KU23DD012	64	65	Skarn	0.03
KU23DD012	65	66	Marble	1.83
KU23DD012	66	67	Marble	0.02
KU23DD012	67	68	Marble	0.04
KU23DD012	68	69	Marble	0.05
KU23DD012	69	70	Marble	0.02
KU23DD012	70	71	Marble	0.14
KU23DD012	71	72	Marble	0.04
KU23DD012	72	72.9	Marble	0.06
KU23DD012	72.9	73.9	Marble	0.37
KU23DD012	73.9	75	Marble	0.45
KU23DD012	75	76	Marble	0.02
KU23DD012	76	77	Marble	0.03
KU23DD012	77	78	Marble	0.10
KU23DD012	78	79	Marble	0.33
KU23DD012	79	80	Marble	1.02
KU23DD012	80	81	Skarn	0.29
KU23DD012	81	82	Skarn	0.02
KU23DD012	82	83	Skarn	4.66
KU23DD012	83	84	Skarn	0.58
KU23DD012	84	85	Marble	0.13
KU23DD012	85	86	Marble	0.06
KU23DD012	86	87	Marble	0.09
KU23DD012	87	88	Marble	0.04
KU23DD012	88	89	Marble	0.18
KU23DD012	89	90	Marble	0.04
KU23DD012	90	91	Marble	0.21
KU23DD012	91	91.8	Marble	0.03
KU23DD012	91.8	92.7	Marble	0.05
KU23DD012	92.7	93.5	Marble	0.03
KU23DD012	93.5	94.5	Marble	0.02
KU23DD012	94.5	95.5	Marble	0.02
KU23DD012	95.5	96.5	Marble	0.01
KU23DD012	96.5	97.5	Marble	0.02
KU23DD012	97.5	98.5	Marble	0.03
KU23DD012	98.5	99	Marble	0.08
KU23DD012	99	99.7	Skarn	0.05
KU23DD012	99.7	100.35	Skarn	0.10
KU23DD012	100.35	101	Marble	0.03
KU23DD012	101	102	Marble	0.05
KU23DD012	102	103	Marble	0.09
KU23DD012	103	104	Marble	0.03

Hole_ID	From	То	Lithology	Au g/t
KU23DD012	104	105	Marble	0.04
KU23DD012	105	106	Marble	0.15
KU23DD012	106	106.7	Marble	0.05
KU23DD012	106.7	107.7	Skarn	0.01
KU23DD012	107.7	108.5	Skarn	0.53
KU23DD012	108.5	109	Skarn	0.29
KU23DD012	109	110	Skarn	0.22
KU23DD012	110	111	Marble	0.01
KU23DD012	111	112	Marble	0.03
KU23DD012	112	113	Marble	0.02
KU23DD012	113	114	Skarn	0.17
KU23DD012	114	115	Skarn	0.11
KU23DD012	115	116	Skarn	0.09
KU23DD012	116	117	Skarn	0.12
KU23DD012	117	118	Skarn	3.86
KU23DD012	118	119	Skarn	11.80
KU23DD012	119	120	Skarn	0.39
KU23DD012	120	121	Skarn	0.49
KU23DD012	121	122	Skarn	1.13
KU23DD012	122	123	Skarn	1.17
KU23DD012	123	124	Skarn	0.14
KU23DD012	124	125	Skarn	0.16
KU23DD012	125	126	Skarn	0.33
KU23DD012	126	127	Skarn	0.13
KU23DD012	127	128	Skarn	0.08
KU23DD012	128	129	Skarn	0.06
KU23DD012	129	130	Skarn	0.08
KU23DD012	130	130.6	Skarn	0.14
KU23DD013	0	1.5	Colluvium	<0.005
KU23DD013	1.5	3	Colluvium	<0.005
KU23DD013	3	4	Colluvium	<0.005
KU23DD013	4	5	Colluvium	<0.005
KU23DD013	5	6	Phyllite	0.01
KU23DD013	6	7	Phyllite	<0.005
KU23DD013	7	8	Phyllite	0.02
KU23DD013	8	9	Phyllite	0.01
KU23DD013	9	10	Phyllite	<0.005
KU23DD013	10	11	Phyllite	<0.005
KU23DD013	11	12	Phyllite	<0.005
KU23DD013	12	13	Phyllite	<0.005
KU23DD013	13	14	Phyllite	0.01
KU23DD013	14	15	Phyllite	0.01
KU23DD013	15	16	Phyllite	0.01

Hole ID	From	То	Lithology	Au g/t
	16	17	Phyllite	0.04
KU23DD013	17	18	Phyllite	0.09
KU23DD013	18	19	Phyllite	<0.005
KU23DD013	19	20	Phyllite	0.01
KU23DD013	20	21	Phyllite	0.02
KU23DD013	21	22	Phyllite	0.01
KU23DD013	22	23	Phyllite	<0.005
KU23DD013	23	24	Phyllite	0.01
KU23DD013	24	25	Phyllite	0.01
KU23DD013	25	26	Phyllite	0.01
KU23DD013	26	27	Phyllite	0.01
KU23DD013	27	28	Phyllite	0.02
KU23DD013	28	29	Phyllite	0.01
KU23DD013	29	30	Phyllite	0.01
KU23DD013	30	31	Phyllite	0.02
KU23DD013	31	32	Phyllite	0.02
KU23DD013	32	33	Phyllite	0.02
KU23DD013	33	34	Phyllite	0.04
KU23DD013	34	35	Phyllite	0.02
KU23DD013	35	36	Phyllite	0.07
KU23DD013	36	37	Phyllite	0.08
KU23DD013	37	38	Phyllite	0.02
KU23DD013	38	39	Phyllite	0.02
KU23DD013	39	40	Phyllite	0.02
KU23DD013	40	41	Phyllite	0.02
KU23DD013	41	42	Phyllite	0.03
KU23DD013	42	43	Phyllite	0.01
KU23DD013	43	44	Phyllite	0.02
KU23DD013	44	45	Phyllite	0.05
KU23DD013	45	46	Phyllite	0.05
KU23DD013	46	47	Phyllite	0.11
KU23DD013	47	48	Phyllite	0.03
KU23DD013	48	49	Phyllite	0.05
KU23DD013	49	50	Phyllite	0.03
KU23DD013	50	51	Phyllite	0.07
KU23DD013	51	52	Phyllite	0.04
KU23DD013	52	53	Phyllite	0.03
KU23DD013	53	54	Phyllite	0.03
KU23DD013	54	54.7	Phyllite	0.03
KU23DD013	54.7	55.3	Skarn	0.04
KU23DD013	55.3	55.8	Skarn	0.30
KU23DD013	55.8	56.3	Skarn	0.19
KU23DD013	56.3	56.7	Phyllite	0.12

Hole_ID	From	То	Lithology	Au g/t
KU23DD013	56.7	57.6	Phyllite	0.02
KU23DD013	57.6	58.6	Phyllite	0.02
KU23DD013	58.6	59.6	Phyllite	0.02
KU23DD013	59.6	60.3	Phyllite	0.10
KU23DD013	60.3	61.2	Phyllite	0.06
KU23DD013	61.2	62	Phyllite	0.14
KU23DD013	62	63	Phyllite	0.09
KU23DD013	63	64	Phyllite	0.07
KU23DD013	64	65	Phyllite	0.07
KU23DD013	65	66	Phyllite	0.12
KU23DD013	66	67	Phyllite	0.14
KU23DD013	67	68	Phyllite	0.11
KU23DD013	68	69	Phyllite	0.13
KU23DD013	69	70	Phyllite	0.09
KU23DD013	70	71	Phyllite	0.15
KU23DD013	71	72	Phyllite	0.09
KU23DD013	72	73	Phyllite	0.05
KU23DD013	73	74	Phyllite	0.05
KU23DD013	74	75	Phyllite	0.05
KU23DD013	75	76	Phyllite	0.06
KU23DD013	76	77	Phyllite	0.07
KU23DD013	77	78	Phyllite	0.04
KU23DD013	78	79	Phyllite	0.08
KU23DD013	79	80	Phyllite	0.05
KU23DD013	80	81	Phyllite	0.05
KU23DD013	81	82	Phyllite	0.04
KU23DD013	82	83	Phyllite	0.04
KU23DD013	83	84	Phyllite	0.06
KU23DD013	84	85	Phyllite	0.06
KU23DD013	85	86	Phyllite	0.10
KU23DD013	86	87	Phyllite	0.08
KU23DD013	87	88	Phyllite	0.07
KU23DD013	88	89	Phyllite	0.05
KU23DD013	89	90	Phyllite	0.10
KU23DD013	90	91	Phyllite	0.20
KU23DD013	91	92	Phyllite	0.10
KU23DD013	92	93	Phyllite	0.09
KU23DD013	93	94	Phyllite	0.07
KU23DD013	94	95	Phyllite	0.18
KU23DD013	95	96	Phyllite	0.11
KU23DD013	96	97	Phyllite	0.09
KU23DD013	97	98	Phyllite	0.06
KU23DD013	98	99	Phyllite	0.12

Hole_ID	From	То	Lithology	Au g/t
KU23DD013	99	100	Phyllite	0.13
KU23DD013	100	101	Phyllite	0.29
KU23DD013	101	102	Phyllite	0.28
KU23DD013	102	103	Phyllite	0.17
KU23DD013	103	104	Phyllite	0.17
KU23DD013	104	105	Phyllite	0.10
KU23DD013	105	106	Phyllite	0.10
KU23DD013	106	107	Phyllite	0.10
KU23DD013	107	108	Phyllite	0.10
KU23DD013	108	109	Phyllite	0.09
KU23DD013	109	110	Phyllite	0.08
KU23DD013	110	111	Phyllite	0.08
KU23DD013	111	112	Phyllite	0.05
KU23DD013	112	113	Phyllite	0.08
KU23DD013	113	114	Phyllite	0.08
KU23DD013	114	115	Phyllite	0.06
KU23DD013	115	116	Phyllite	0.07
KU23DD013	116	117	Phyllite	0.08
KU23DD013	117	118	Phyllite	0.07
KU23DD013	118	119	Phyllite	0.13
KU23DD013	119	120	Phyllite	0.06
KU23DD013	120	121	Phyllite	0.09
KU23DD013	121	122	Phyllite	0.11
KU23DD013	122	123	Phyllite	0.09
KU23DD013	123	124	Phyllite	0.07
KU23DD013	124	125	Phyllite	0.07
KU23DD013	125	126	Phyllite	0.13
KU23DD013	126	127	Phyllite	0.09
KU23DD013	127	128	Phyllite	0.07
KU23DD013	128	129	Phyllite	0.08
KU23DD013	129	130	Phyllite	0.10
KU23DD013	130	131	Phyllite	0.08
KU23DD013	131	132	Phyllite	0.11
KU23DD013	132	133	Phyllite	0.19
KU23DD013	133	134	Porphyry	0.02
KU23DD013	134	135	Porphyry	0.03
KU23DD013	135	136	Porphyry	0.05
KU23DD013	136	137	Porphyry	0.08
KU23DD013	137	138	Porphyry	0.03
KU23DD013	138	139	Porphyry	0.04
KU23DD013	139	140	Phyllite	0.19
KU23DD013	140	141	Phyllite	0.20
KU23DD013	141	142	Phyllite	0.11

Hole_ID	From	То	Lithology	Au g/t
KU23DD013	142	143	Phyllite	0.10
KU23DD013	143	144	Phyllite	0.06
KU23DD013	144	145	Phyllite	0.06
KU23DD013	145	146	, Phyllite	0.12
KU23DD013	146	147	Phyllite	0.11
KU23DD013	147	148	Phyllite	0.14
KU23DD013	148	149	Phyllite	0.11
KU23DD013	149	150	Phyllite	0.09
KU23DD013	150	151	Phyllite	0.11
KU23DD013	151	152	Phyllite	0.06
KU23DD013	152	153	Phyllite	0.06
KU23DD013	153	154	Phyllite	0.06
KU23DD013	154	155	Phyllite	0.08
KU23DD013	155	156	Phyllite	0.31
KU23DD013	156	157	Phyllite	0.14
KU23DD013	157	158	Phyllite	0.06
KU23DD013	158	159	Phyllite	0.11
KU23DD013	159	160	Phyllite	0.19
KU23DD013	160	161	Phyllite	0.18
KU23DD013	161	162	Porphyry	0.22
KU23DD013	162	163	Phyllite	0.38
KU23DD013	163	164	Phyllite	0.21
KU23DD013	164	165	Skarn	0.40
KU23DD013	165	166	Skarn	0.19
KU23DD013	166	167	Skarn	0.34
KU23DD013	167	168	Skarn	0.40
KU23DD013	168	169	Skarn	0.54
KU23DD013	169	170	Skarn	0.15
KU23DD013	170	171	Skarn	0.19
KU23DD013	171	172	Skarn	0.06
KU23DD013	172	173	Skarn	0.01
KU23DD013	173	174	Skarn	0.01
KU23DD013	174	175	Skarn	0.01
KU23DD013	175	176	Skarn	<0.005
KU23DD013	176	177	Skarn	<0.005
KU23DD013	177	178	Skarn	0.39
KU23DD013	178	179	Skarn	0.03
KU23DD013	179	180	Skarn	0.04
KU23DD013	180	181	Skarn	0.03
KU23DD013	181	182	Skarn	0.05
KU23DD013	182	183	Skarn	<0.005
KU23DD013	183	184	Skarn	0.07
KU23DD013	184	185	Skarn	0.02

Hole ID	From	То	Lithology	Au g/t
KU23DD013	185	186	Skarn	<0.005
KU23DD013	186	187	Skarn	<0.005
KU23DD013	187	188	Skarn	0.02
KU23DD013	188	189	Skarn	0.10
KU23DD013	189	190	Skarn	0.02
KU23DD013	190	191	Skarn	<0.005
KU23DD013	191	192	Skarn	0.07
KU23DD013	192	193	Skarn	0.02
KU23DD013	193	194	Skarn	0.01
KU23DD013	194	195	Skarn	0.01
KU23DD013	195	196	Marble	0.01
KU23DD013	196	197	Marble	0.02
KU23DD013	197	198	Marble	0.02
KU23DD013	198	199	Marble	0.02
KU23DD013	199	200	Marble	0.01
KU23DD013	200	201	Marble	0.02
KU23DD013	201	202	Marble	0.02
KU23DD013	202	203	Marble	0.02
KU23DD013	203	204	Marble	<0.005
KU23DD013	204	205.4	Marble	0.02
KU23DD013	205.4	206	BMC	1.37
KU23DD013	206	207	BMC	0.96
KU23DD013	207	208.1	BMC	0.40
KU23DD013	208.1	209	Marble	0.02
KU23DD013	209	210	Marble	0.02
KU23DD013	210	211	Marble	0.02
KU23DD013	211	212	Marble	0.01
KU23DD013	212	213	Marble	0.02
KU23DD013	213	214	Marble	0.01
KU23DD013	214	215	Marble	0.01
KU23DD013	215	216	Marble	0.01
KU23DD013	216	217	Marble	0.01
KU23DD013	217	218	Marble	0.02
KU23DD013	218	219	Marble	0.02
KU23DD013	219	220	Marble	0.02
KU23DD013	220	221	Marble	0.02
KU23DD013	221	222	Marble	0.01
KU23DD013	222	223	Marble	0.02
KU23DD013	223	224	Marble	0.01
KU23DD013	224	225	Marble	0.01
KU23DD013	225	226	Marble	0.02
KU23DD013	226	227	Marble	0.07
KU23DD013	227	228	Marble	0.02

Hole_ID	From	То	Lithology	Au g/t
KU23DD013	228	229	Marble	<0.005
KU23DD013	220	229	Marble	0.01
KU23DD013	230	231	Marble	0.01
KU23DD013	231	232	Marble	0.01
KU23DD013	232	233	Marble	0.02
KU23DD013	233	234	Marble	0.02
KU23DD013	234	235	Marble	0.01
KU23DD013	235	236	Marble	0.02
KU23DD013	236	237	Marble	0.01
KU23DD013	237	238	Marble	0.01
KU23DD013	238	239	Marble	0.02
KU23DD013	239	240	Marble	0.05
KU23DD013	240	241	Marble	0.41
KU23DD013	241	242	Marble	0.11
KU23DD013	242	243	Marble	0.10
KU23DD013	243	244	Marble	0.03
KU23DD013	244	245	Marble	0.03
KU23DD013	245	246	Marble	0.07
KU23DD013	246	247	Marble	0.03
KU23DD013	247	248	Marble	0.03
KU23DD013	248	249	Marble	0.04
KU23DD013	249	250	Marble	0.07
KU23DD013	250	251	Marble	0.05
KU23DD013	251	252	Marble	0.04
KU23DD013	252	253	Marble	0.03
KU23DD013	253	254	Marble	0.06
KU23DD013	254	255	Marble	0.51
KU23DD013	255	256	Marble	0.24
KU23DD013	256	257	Marble	0.10
KU23DD013	257	258	Marble	0.05
KU23DD013	258	259	Marble	0.04
KU23DD013	259	260	Marble	0.06
KU23DD013	260	261	Marble	0.02
KU23DD013	261	262	Marble	0.07
KU23DD013	262	263	Marble	0.34
KU23DD013	263	264	Marble	0.52
KU23DD013	264	265	Marble	0.09

Table 2: Diamond drill hole lithology and gold assays for the Kusi Prospect hole KU23DD008 - KU23DD013, contained within this report. Note BMC Vein = base metal carbonate vein.

Au g/t 0.03

0.02

0.04

0.64

1.40 2.07

0.10

3.00

0.20

0.12

0.11

0.14

0.37 0.40

0.30

0.24

0.30

0.23

0.20

0.09 0.19

0.12 <0.005

0.14

0.15

0.20

0.11

0.10 0.08

0.11

0.18

0.22

0.17

0.33

0.14

< 0.005 0.02

JORC Code, 2012 Edition – Table 1- Ono Licence EL2665 (Kusi Project)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling is carried out to produce PQ, HQ and NQ core. All holes have been drilled by LCL except KSDD001- KSDD008, which were drilled by Pacific Niugini Metals (PNM). Following verification of the integrity of stored core boxes and the core within them at the Company's core shed at Kusi, the core is logged by a geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QAQC samples, the core is cut by employees in the Company's facility within the core-shed. Nominally core is cut in half and sampled on 1m intervals, however the interval may be reduced by the geologist to no less than 30cm. Samples are bagged in numbered calico sacks with a sample tag. Groups of 5 samples are bagged in a heavy-duty plastic bag, labelled, weighed and sealed, for transport. Transport is via helicopter to the townships of either Wau or Lae, where the samples are couriered with a commercial transport group to the Intertek (ITS) Laboratory in Lae, PNG. Drill sample preparation (PB05) is carried out by ITS Laboratory in Lae, PNG where the whole sample is dried (105°C), crushed and pulverised (95%, 106µm). Splits are then generated for fire assay (FA50/AAS). Pulp samples (30g) are shipped by ITS to the ITS Laboratory in Townsville, Australia where the samples are analysed for an additional 48 elements using Four Acid ICP-OES & MS package 4A/OM10.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling program is a diamond drilling program using PQ, HQ, and NQ diameter core. Drilling was triple tube and was orientated via the Reflex tool and surveys undertaken every 30m using a multi-shot camera.

Criteria	JORC Code explanation	Commentary			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 The drillers are required to meet a minimum core recovery rate of 95%. Recoveries for KU23DD008-13 were satisfactory. 			
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	On site, a Drill Contractor employee is responsible for labelling core blocks the beginning and end depth of each drill run plus actual and expected recovery			
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	meters. This and other field processes are audited on a daily basis by a Company employee during drill core mark up.			
	preferential loss/gain of fine/coarse material.	• On receipt the core is visually verified for inconsistencies including depth labels, degree of fracturing (core breakage versus natural), lithology progression etc. If the core meets the required conditions it is cleaned, core pieces are orientated and joined, lengths and labelling are verified, and geotechnical observations made. The core box is then photographed.			
		Orientated sections of core are aligned and structural measurements taken.			
		 Following logging, sample intervals are determined and marked up and the cutting line transferred to the core. 			
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• Logging is carried out visually by the project geologists focusing on lithology, structure, alteration, veining, recovery RQD and mineralization characteristics. The level of logging is appropriate for exploration and initial resource estimation evaluation.			
	• Whether logging is qualitative or quantitative in nature. Core	Core is photographed following the core "mark up" stage.			
	 The total length and percentage of the relevant intersections logged. 	 Core is logged and sampled, nominally on 1m intervals respectively, but in areas of interest more detailed logging and sampling may be undertaken. 			
		No sample interval is ever less than 30cm of diamond core.			
		 On receipt of the multi-element geochemical data, it is interpreted for consistency with the geologic logging. 			
Sub- sampling	• If core, whether cut or sawn and whether quarter, half or all core taken.	• After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site.			
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Core is cut and sampled. The standard sample interval is 1m but may be varied by the geologist to reflect lithology, alteration or mineralization variations.			
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	• As appropriate, half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as a			

Criteria	JORC Code explanation	Commentary	
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 physical archive. The large size (4-8kg) of individual drill samples and continuous sample the drill hole, provides representative samples for exploration activities. Field duplicates were taken to test the geological homogeneity of the mineralization and the sample sizes and procedures. Duplicate sample core were obtained by cutting the reference half of the core in half agai diamond saw, and taking one of the quarter core samples as the field of sample, while leaving the other quarter core for reference. This method introduce a certain amount of additional variance due to the difference sample weights, and is a measure of the geological variability of the mineralization and the sample size. 	es of drill in with a duplicate d may
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Sample mediums were submitted to ITS laboratory in Lae for sample preparation and Au assay. Pulps are sent to ITS laboratory in Townsvill Australia for multi-element assays. ITS are ISO accredited. 	le,
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, 	Drill samples: Gold assays were obtained using a lead collection fire as technique (FA50/AAS) and analyses for an additional 48 elements obta Four Acid ICP-OES & MS package 4A/OM10. Fire assay for gold is con a "total" assay technique. An acid (4 acid) digest is considered a total d technique. However, for some resistant minerals, not considered of eco value at this time, the digestion may be partial e.g. Zr, Ti etc.	ained via nsidered ligestion
	blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	No field non-assay analysis instruments were used in the analyses rep	orted.
	have been established.	Certified reference material (OREAS) was used for drilling QAQC contr Sample blanks and field duplicates are also inserted into the sample se QAQC reference samples make up 15% of a sample batch, made up fr standards, blanks and duplicates.	equence.
		Geochemistry results are reviewed by the Company for indications of a significant analytical bias or preparation errors in the reported analyses	
		Internal laboratory QAQC checks are also reported by the laboratory ar reviewed as part of the Company's QAQC analysis. The geochemical of only accepted where the analyses are performed within acceptable limit	data is
		The parameters for the historic aeromagnetics survey with regards to n and model of tool, has not yet been sourced by LCL.	nake

Criteria	JORC Code explanation	Commentary
Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. 	 Digital data received is verified and validated by LCL management before loading into the assay database.
and assaying	• The use of twinned holes.	• Reported results are compiled by the Company's geologists and verified by the Company's database administrator and exploration manager.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 No adjustments to assay data were made.
	Discuss any adjustment to assay data.	 Data is stored digitally in a database which has access restricted to LCL database personnel.
		 Pulps from the ITS Laboratory for drilling, trenching and rock chips, are returned to LCL after 3 months. LCL then store the samples in a secure lock storage container in Lae, PNG.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	• The drill hole is located using a handheld GPS using the averaging function for a minimum of 10 minutes. This has an approximate accuracy of 3-5m, considered sufficient at this stage of exploration.
	• Specification of the grid system used.	• Downhole deviations of the drill hole are evaluated on a regular basis (30m) and recorded in a drill hole survey file to allow plotting in 3D.
	Quality and adequacy of topographic control.	 The grid system is WGS84 UTM zones Z55S.
		 Historical diamond drilling collar locations have been located on the ground and using GPS averaging function to record a point.
Data spacing	Data spacing for reporting of Exploration Results.	Drill spacing is variable due to topography access.
and distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	• The sampling of porphyry Cu-Au mineralisation and unmineralised lithologies is undertaken on 2m composites, while the skarn mineralisation is sampled on nominal 1m intervals, but depending on the geologist's logging, may be down to no less than 30cm of NQ half core.
	• Whether sample compositing has been applied.	
Orientation	• Whether the orientation of sampling achieves unbiased	Drill holes are preferentially located in prospective area.
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type.	• Drillholes are planned to best test the lithologies, mineralisation and structures as known, taking into account that steep topography limits alternatives for
structure	If the relationship between the drilling orientation and the arientation of key minoralized etructures is considered to	locating holes.
	orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed	• Efforts were made to intercept the mineralization as perpendicular as possible,

Criteria	JORC Code explanation	Commentary
	and reported if material.	but due to topographical challenges, drilling of multiple holes from a common pad has been undertaken. This results in some of the mineralised intercepts occurring oblique to the target unit. Assays are reported as drill core widths.
		 Exploration is at an early stage and, as such, knowledge on exact locations of mineralisation and its relation to structural boundaries is not accurately known. However, the sampling pattern is considered appropriate for the program to reasonably assess the prospectivity of known features interpreted from other data sources.
Sample security	• The measures taken to ensure sample security.	 Drill hole core boxes are stored on concrete platforms with lids and strapped down in a timber and wire frame.
		 On receipt at the core shed the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened, and the core is evaluated for consistency and integrity.
		 The core shed and core boxes, samples and pulps are secured in the Company core yard facility.
		 Sample dispatches are secured and labelled on site. Groups of 5 samples are bagged in a heavy-duty plastic bag, labelled, weighed and sealed, for transport.
		 Transport is via helicopter to the townships of Wau or Lae, where the samples are couriered with a commercial transport group to the ITS Laboratory in Lae, PNG.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	At this stage no audits have been undertaken.

Section 2 Reporting of Exploration Results - Ono Licence EL2665 (Kusi Project)

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, 	 The Exploration Titles were validly issued as Exploration Licences pursuant to the 1992 Mining Act. The Exploration Licence grants its holders the exclusive right to carrying out exploration for minerals on that land. There are no outstanding encumbrances or charges registered against the

Criteria	JORC Code explanation	Comment	ary					
land tenure status	overriding royalties, native title historical sites, wilderness or na park and environmental setting	ational	tion Title at the National Re	egistry.				
	• The security of the tenure held time of reporting along with any impediments to obtaining a lice operate in the area.	r known						
Exploration done by other parties	 Acknowledgment and appraisate exploration by other parties. 		oject: Pacific Niugini Minera Ig, aeromagnetics, 8 diamo				oils, rock cł	nips,
Geology	Deposit type, geological setting style of mineralisation.	units wit	ject: The Kusi Project is do hin the Owen Stanley Meta ct. Minor Intermediate Sul	amorphics. Numerous	s intermed	diate to felsic dy		
Drill hole	• A summary of all information m							
Information	the understanding of the explor		Easting	Northing	RL	Depth	Azi(grid)	Dip
	results including a tabulation of the following information for all Material drill holes:		0	9134400	1994	195.2m	0	-65
		KU23DD0		9134400	1994	239.7m	090	-55
	$\circ~$ easting and northing of the drill hole					-		-60
		drill hole KU23DDC	03 493580	9134400	1994	201.7m	180	-00
	 easting and northing of the c collar 	drill hole KU23DDC KU23DDC		9134400 9134400	1994 1994	201.7m 218.3m	180 315	
	collar o elevation or RL (Reduced Le	evel – KU23DDC	04 493580					-60 -60
	collar o elevation or RL (Reduced Lo elevation above sea level in	evel – KU23DDC	04 493580 05 493631	9134400	1994	218.3m	315	-60 -60
	 collar elevation or RL (Reduced Level in elevation above sea level in of the drill hole collar 	evel – KU23DDC metres)	044935800549363106493631	9134400 9134558	1994 2064	218.3m 291.8m	315 0	-6(-6(-6(
	 collar elevation or RL (Reduced Le elevation above sea level in of the drill hole collar dip and azimuth of the hole 	evel – metres) KU23DDC KU23DDC KU23DDC KU23DDC	04493580054936310649363107493631	9134400 9134558 9134558	1994 2064 2064	218.3m 291.8m 242.8m	315 0 270	-60
	 collar elevation or RL (Reduced Le elevation above sea level in of the drill hole collar dip and azimuth of the hole down hole length and interced 	evel – metres) KU23DDC KU23DDC KU23DDC KU23DDC	0449358005493631064936310749363108493631	9134400 9134558 9134558 9134558 9134558	1994 2064 2064 2064	218.3m 291.8m 242.8m 218.7m	315 0 270 0	-60 -60 -60 -90
	 collar elevation or RL (Reduced Le elevation above sea level in of the drill hole collar dip and azimuth of the hole down hole length and interce depth 	evel – metres) KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC	044935800549363106493631074936310849363109493548	9134400 9134558 9134558 9134558 9134558	1994 2064 2064 2064 2064	218.3m 291.8m 242.8m 218.7m 236	315 0 270 0 90	-60 -60 -90 -60 -70
	 collar elevation or RL (Reduced Le elevation above sea level in of the drill hole collar dip and azimuth of the hole down hole length and intercedepth hole length. 	evel – metres) Full state in the state in	04493580054936310649363107493631084936310949354810494339	9134400 9134558 9134558 9134558 9134558 9134558 9134705	1994 2064 2064 2064 2064 2121	218.3m 291.8m 242.8m 218.7m 236 240.5	315 0 270 0 90 180	-60 -60 -90 -60 -70 -55
	 collar elevation or RL (Reduced Le elevation above sea level in of the drill hole collar dip and azimuth of the hole down hole length and interce depth 	eption KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC KU23DDC	0449358005493631064936310749363108493631094935481049433911494339	9134400 9134558 9134558 9134558 9134558 9134558 9134705 9134855	1994 2064 2064 2064 2064 2121 1911	218.3m 291.8m 242.8m 218.7m 236 240.5 152.5	315 0 270 0 90 180 336.7	-60 -60 -60 -90 -60

Criteria	J(ORC Code explanation	С	ommentary
		should clearly explain why this is the case.		
Data	٠	In reporting Exploration Results,	٠	Quoted drill intervals use a weighted average compositing method of assays within the interval.
aggregation methods	maximum and/or minimu truncations (eg cutting o	weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades)	•	"Low grade Au intercept" is calculated using a 0.1g/t Au cut off with areas of up to 7m of internal dilution.
		and cut-off grades are usually Material and should be stated.		"High grade Au intercept" is calculated using a >0.5g/t Au cut off and less than 2m of internal dilution.
	•	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	No cut of high grades has been undertaken. Widths quoted are intercept widths, not true widths. Assays are reported as intercept widths, true widths are estimated to be 60% to 70% of reported value. Metal Factor calculations are based on True Thickness Intercepts x Weighted Average grade. Where there are multiple significant intersections from the same hole within the Upper Limestone Unit, these are combined to give an "Aggregated gram metre" intercept.
of m	The assumptions used for any reporting of metal equivalent values should be clearly stated.			
Relationship between mineralisation	•	These relationships are particularly important in the reporting of Exploration Results.	•	Efforts were made to intercept the mineralization as perpendicular as possible, but due to topographical challenges, drilling of multiple holes from one pad has been undertaken. This results in some of the mineralised intercepts occurring oblique to the target unit.
widths and intercept lengths	•	<i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i>		
	•	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').		
Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view	•	Tabulations of drill hole assays provided as Table 3 in this ASX release.

Criteria	JORC Code explanation	Commentary
	of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reporting is considered balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Aeromagnetics images supplied in this report are from 2012 survey conducted by PNM and was flown at 100m line spacing.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Drilling of the current hole KU23DD015 to the west of Kusi is underway and the last drill hole of the current 3000m, 2023 program. Further surface sampling and mapping is ongoing within the Kusi project area.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	