

13 October 2023

Iltani hits wide intersections of silver-lead-zinc-indium-antimony-tin mineralisation at Orient

Critical minerals and base metals explorer **Iltani Resources Limited** (ASX: ILT, "Iltani" or "the Company") is pleased to announce initial results from its recently completed Stage 1 Orient drilling program in North Queensland.

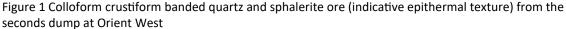
HIGHLIGHTS:

- Stage 1 Orient reverse circulation (RC) drilling program completed 14 drill holes for 2,034 metres drilled, with assay results received from seven drill holes (ORR001, ORR003, ORR004, ORR007, ORR013, ORR014 and ORR015), assay results are still pending from the remaining seven drill holes.
- Assay results from multiple holes confirm the presence of extensive silver-lead-zinc-indiumantimony-tin mineralisation with high grade veins surrounded by large zones of lower grade mineralisation. Notable results include:
- ORR001: 38m @ 69 g/t Ag, 1.3% Pb, 1.4% Zn, 7 g/t In, 319 g/t Sb & 0.1% Sn from 19m downhole inc. 4m @ 89 g/t Ag, 2.0% Zn, 2.1% Pb, 22 g/t In, 329 g/t Sb & 0.04% Sn from 20m downhole plus 7m @ 180 g/t Ag, 3.0% Pb, 3.2% Zn, 12 g/t In, 870 g/t Sb & 0.4% Sn from 27m downhole and 39m @ 22 g/t Ag, 0.6% Pb, 0.7% Zn, 2 g/t In, 191 g/t Sb & 0.02% Sn from 81m downhole
- ORR003: 41m @ 36 g/t Ag, 0.8% Pb, 0.8% Zn, 5 g/t In, 257 g/t Sb & 0.04% Sn from 39m downhole inc. 5m @ 122 g/t Ag, 2.4% Pb, 2.5% Zn, 27 g/t In, 731 g/t Sb & 0.1% Sn from 59m downhole plus 20m @ 20 g/t Ag, 0.5% Pb, 0.6% Zn, 3 g/t In, 109 g/t Sb & 0.02% Sn from 110m downhole
- ORR004: 5m @ 33 g/t Ag, 0.8% Pb, 2.0% Zn, 4 g/t In, 45 g/t Sb & 0.01% Sn from 21m downhole
- ORR013: **41m @ 21 g/t Ag, 0.5% Pb, 0.6% Zn, 6 g/t In, 36 g/t Sb & 0.03% Sn** from 55m downhole inc. **6m @ 49 g/t Ag, 1.1% Pb, 1.0% Zn, 19 g/t In, 64 g/t Sb & 0.04% Sn** from 80m downhole
- ORR014: 11m @ 25 g/t Ag, 0.6% Pb, 0.8% Zn, 9 g/t In, 81 g/t Sb & 0.02% Sn from 24m downhole, plus 7m @ 32 g/t Ag, 0.7% Pb, 0.7% Zn, 11 g/t In, 69 g/t Sb & 0.03% Sn from 47m downhole and 11m @ 34 g/t Ag, 0.6% Pb, 1.4% Zn, 54 g/t In, 48 g/t Sb & 0.03% Sn from 144m downhole inc. 2m @ 82 g/t Ag, 0.9% Pb, 4.7% Zn, 250 g/t In, 124 g/t Sb & 0.03% Sn from 148m downhole.
- Results confirm the potential for Orient to host near surface, potential bulk tonnage mineralisation which could be amenable to open pit mining.
- Assay results from remaining holes are expected within 2-3 weeks.
- Mapping carried out by a consultant geologist has confirmed the mineralisation is epithermal in nature and has highlighted the potential for multiple stockwork zones which have yet to be drill tested.
- Orient Deadman Creek system size (alteration and mineralisation) in excess of 3km².
- Iltani has commenced planning for a Stage 2 drilling campaign to follow up on the Stage 1 drilling (extend mineralisation) and test the new stockwork targets. Drilling to commence as soon as preparation is complete.

Iltani Managing Director Donald Garner commented:

"It gives the Iltani team great pleasure to announce initial drilling results from our recently completed Stage1 drilling program at the Orient Project in Northern Queensland.

The drilling has intersected multiple zones of extensive silver-lead-zinc-indium-antimony-tin mineralisation, with particular note being the thick zones of stockwork style mineralisation intersected in multiple holes at shallow depths.


Mapping carried out by a consultant geologist Nick Tate has confirmed the Orient mineralisation is epithermal in origin and indicated potential for additional zones of sheeted veins and stockwork mineralisation associated with Vein 1 and a large ($500m \times 750m$) area of stockwork mineralisation at Deadman Creek.

Drilling and mapping results have confirmed our view that we are dealing with a very large mineralised system at Orient, with the epithermal component of the system exposed at surface and the potential for a mineralised porphyry at depth.

Iltani has started planning a Stage 2 drill program at Orient – following up on Stage 1 drilling, where we will seek to extend the mineralisation intersected in Stage 1 and test the high priority targets at Vein 1 and Deadman Creek.

Stage 2 drilling aims to better understand the extent of the mineralisation intersected in Stage 1 plus delineate additional bulk tonnage mineralisation at Vein 1 and Deadman Creek as we move forward in our understanding of the Orient Project.

Subject to availability and permitting, we intend to mobilise a rig to site as soon as possible."

1. Orient Project

Iltani is pleased to report the initial results of a recently completed reverse circulation (RC) drilling program at the Orient silver-lead-zinc-indium-antimony-tin project.

The Orient project is located on Iltani's wholly owned tenement EPM27223 which is approximately 20km west of the historic mining town of Herberton and 9km north of Irvinebank in North Queensland (Figure 2). Access to the tenement is gained from Herberton via the sealed Herberton Petford Road and then unsealed Hales Siding Road, from here prospects can be accessed via unsealed roads and established tracks.

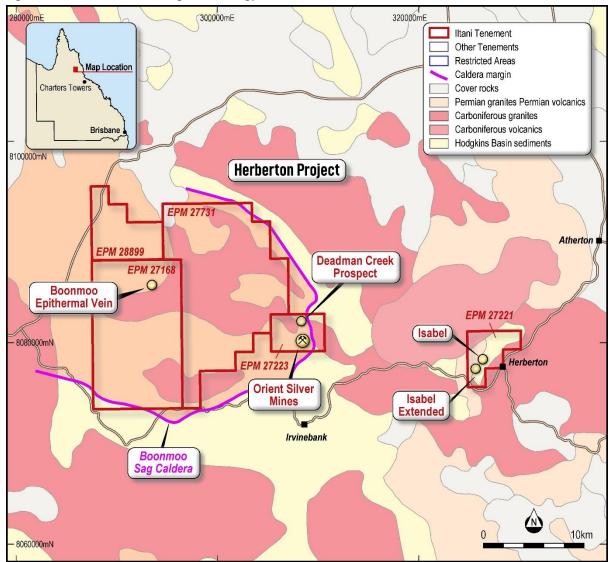


Figure 2 Orient Location and Regional Geology

Mineralisation in the project area was discovered in 1886 and was mined until 1924, with historic mining activities occurring at both Orient West and Orient East which are located approximately 2km apart. Mining was conducted intermittently on lodes continuing for over 600m at Orient East and mineralised veins have been mapped for over 900m at Orient West. Production figures are incomplete but records from the Queensland Mines Department include 6,600 tons of high-grade ore averaging 46 ounces of silver and 40% lead per ton.

The veins are variably mineralised with sphalerite, galena, chalcopyrite, arsenopyrite, stannite-cassiterite, boulangerite (Pb-Sb-Ag) and tetrahedrite (Cu-Sb-Ag). Indium as well as minor gallium and cadmium are also associated with the various ore minerals. Mineralisation has a close association with pyrrhotite.

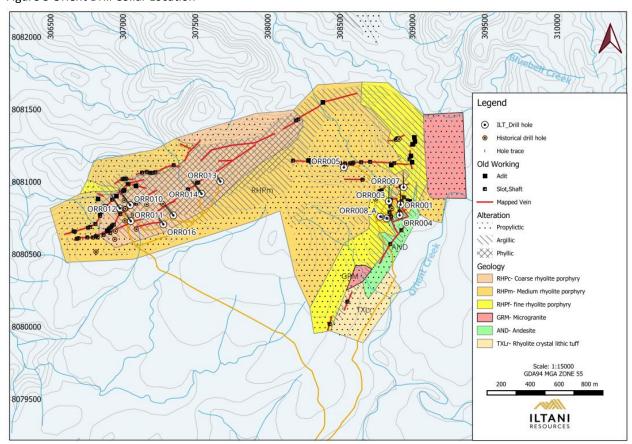
The majority of the exploration in the tenement area was carried out by Great Northern Mining Corporation (GNMC), Mareeba Mining and Exploration (MME) and Getty Oil Development Co Ltd. (Getty) between 1969 and 1990. During this time, the area was covered by mining leases and as a result, there is limited reporting and much of the raw data is unavailable.

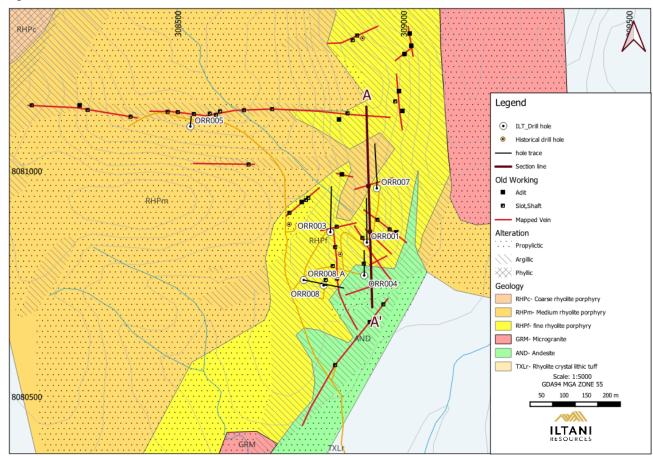
GNMC completed 16 diamond drill holes at Orient West. The drilling carried out by GNMC indicated there are four main and two minor mineralised vein systems in a north-east-trending shear zone. Individual veins have a strike length of up to 900m, and an average width of 0.6m. Dips range from 40° to almost vertical but are most commonly between 45°– 60° south. GNMC also completed an exploration adit into Orient West which intersected the No2 vein system.

At Orient East, detailed mapping identified argillic and advanced argillic alteration associated with mineralisation. Subsequent geochemical and geophysical surveys were completed over the area, identifying several drill targets (data from these surveys is unavailable).

Four drill holes were successfully drilled targeting the coincident geological/geochemical and IP anomalies at Orient East in 1998. Drilling intercepted propylitic, argillic and advanced argillic alteration. These styles of alteration are indicative of a significant epithermal mineralised system and combined with the presence of Pb-Zn vein structures make it a highly prospective exploration target.

Iltani has completed fourteen RC holes for a total of 2,034m drilled (refer to Table 3 for further information). Seven RC holes (804 metres drilled) were completed at Orient East and seven RC holes (1,224m drilled) were completed at Orient West.




Figure 3 Orient Drill Collar Location

2. Orient East

Iltani completed seven RC drillholes at Orient East for 804 metres drilled and has received assay results for ORR001, ORR003, ORR004 and ORR007 and results are still pending for ORR005, ORR008 and ORR008A.

Figure 4 Orient East Drill Collar Location

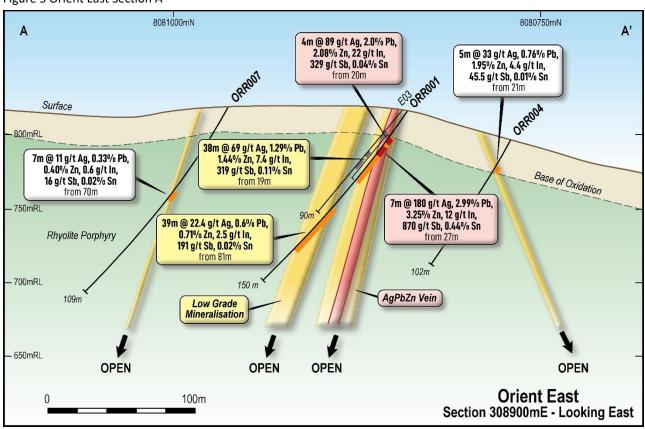
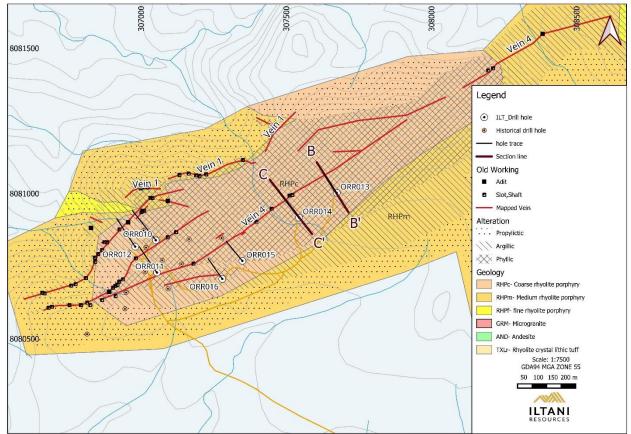

The drillholes were designed to test the area of stockwork mineralisation at Orient East and to date, notable results have been received from ORR001 and ORR003, with two thick downhole intercepts (38m and 39m) of extensive silver-lead-zinc-indium-antimony-tin mineralisation in ORR001 plus two thick downhole intercepts (41m and 20m) of similar mineralisation in ORR003 (refer to Table 1). The mineralisation intersected in ORR001 and ORR003 is relatively shallow (potentially amenable to open pit mining) and open at depth and along strike.

Table 1 Orient East Stage 1 RC Drill Program Material Intercepts

Hole	From (m)	To (m)	Intersect (m)	Ag g/t	Pb %	Zn %	In g/t	Sb g/t	Sn g/t	Sn %
ORR001	19	57	38	69	1.29%	1.44%	7	319	1,084	0.11%
incl.	20	24	4	89	2.00%	2.08%	22	329	353	0.04%
and	27	34	7	180	2.99%	3.25%	12	870	4,353	0.44%
	81	120	39	22	0.58%	0.71%	2	191	221	0.02%
incl.	99	100	1	118	2.81%	2.87%	33	217	390	0.04%
ORR003	39	80	41	36	0.78%	0.83%	5	257	444	0.04%
incl.	50	52	2	95	1.89%	1.59%	11	843	855	0.09%
and	59	64	5	122	2.45%	2.48%	27	731	1,302	0.13%
	110	130	20	20	0.52%	0.60%	3	109	235	0.02%
ORR004	21	26	5	33	0.76%	1.95%	4	45	109	0.01%
Intersecti	on width (m)	is downho	le width not true	width						

Figure 5 Orient East Section A


Note: EO3 was drilled by Great Northern Mining Corporation in 1988 and only partial assay results are available

3. Orient West

Seven RC drillholes were completed at Orient West for 1,224 metres drilled. Assay results have been received for ORR013, ORR014 and ORR015 and assay results are still pending for ORR010, ORR011, ORR012 and ORR016.

Figure 6 Orient West Drill Collar Location

The drillholes were designed to test a number of the high-grade vein systems in Orient West (refer to Figure 5). To date, extensive silver-lead-zinc-antimony mineralisation has been intersected in multiple holes, with notable intersections in ORR013 and ORR014 which tested Vein 4. Surface mapping indicates that Vein 4 has a strike length in excess of 2km and as such represents a high priority target for additional drilling.

Table 2 Orient West Stage 1 RC Drill Program Material Intercepts

Hole	From (m)	To (m)	Intersect (m)	Ag g/t	Pb %	Zn %	In g/t	Sb g/t	Sn g/t	Sn %
ORR013	15	17	2	173	3.76%	0.03%	17	153	364	0.04%
	55	96	41	21	0.53%	0.57%	6	36	257	0.03%
incl.	55	62	7	28	0.72%	0.83%	8	70	281	0.03%
and	80	86	6	49	1.09%	0.98%	19	64	371	0.04%
and	94	96	2	45	1.17%	1.51%	20	63	974	0.10%
	131	132	1	32	0.86%	1.16%	22	39	359	0.04%
ORR014	2	15	13	13	0.34%	0.12%	2	44	60	0.01%
	24	35	11	25	0.62%	0.78%	9	81	249	0.02%
	47	54	7	32	0.75%	0.74%	11	69	296	0.03%
	95	96	1	46	1.22%	1.35%	19	67	181	0.02%
	124	126	2	38	1.00%	1.21%	30	55	333	0.03%
	144	155	11	34	0.63%	1.32%	54	48	322	0.03%
incl.	148	150	2	82	0.87%	4.68%	250	124	348	0.03%
Intersect	width (m) is a	downhole v	vidth not true wid	dth	•	•	•	•	•	

Figure 7 Orient West Section B (Vein 4)

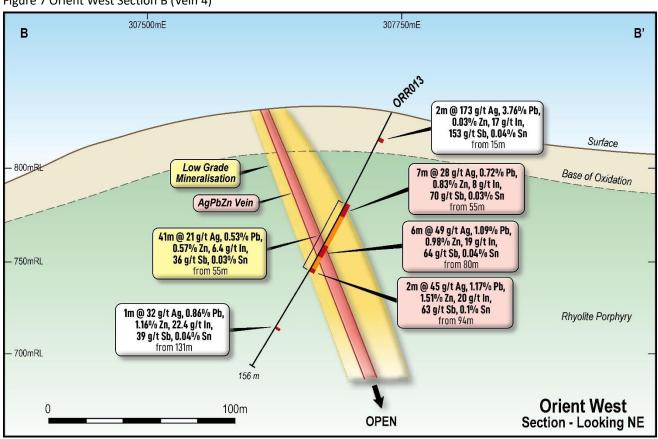
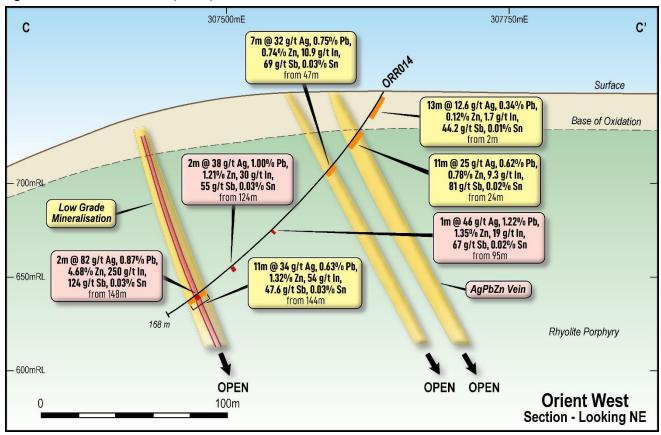
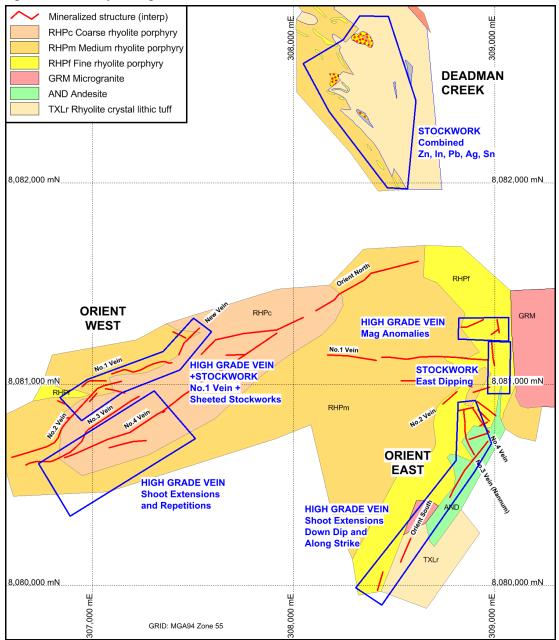



Figure 8 Orient West Section C (Vein 4)



4. Orient Mapping

Iltani engaged consultant geologist Nick Tate to map the Orient target area, who confirmed the presence of a large scale system (>3km² of alteration and mineralisation) at Orient to Deadman Creek. The Orient and associated Deadman Creek prospects have potential for high grade vein style and low grade bulk tonnage style Ag, Pb, Zn, In, Sn mineralisation.

The implication of epithermal conditions of formation suggests that the system is likely to exhibit vertical zonation from lead-silver dominant in upper parts to zinc rich in deeper parts and possibly to copper dominant at greater depths. There is also some potential for gold enrichment at very high levels or peripheral parts of the system. A broad area of hydrothermal alteration envelopes the mineralised structures at the Orient prospect. Much of the coarse grained rhyolite porphyry has been affected by strong phyllic (sericite-quartz-carbonate) alteration. Hydrothermal alteration facies at the Orient prospect form a zoned envelope around the mineralised structures.

Figure 9 Orient Project Target Zones

The Deadman Creek prospect, approximately 2km north of Orient East, appears to have very similar geology and mineralisation style to the Orient East prospect except that the mineralisation is dominated by stockworks rather than discrete veins. The scale of the stockwork zone is an order of magnitude larger than those at Orient and it potentially approaches the size of some porphyry copper type systems.

Significant stockworks and subparallel sheeted veins occur in the hanging and footwall of Vein 1. Historical workings indicate that the vein itself is actually a series of lenses on several different parallel structures. The fresh pyrrhotite and sphalerite veins outcropping in the creek at the northeast end of the vein suggest that the stockworks extend at least 20m into the footwall. Outcrops in the hanging wall suggest stockworks extend even further above the vein. Orange and white sulphate precipitates in the creek at the northeast end of the vein indicate a substantial source of oxidising sulphide.

5. Next Steps

Iltani is currently planning the next stages of exploration at the Orient project, following up on the Stage 1 RC drilling program and the recently completed mapping. The objective will be to extend the mineralisation intersected in Stage 1 and test stockwork targets generated by mapping.

Stockwork Target Definition

Follow up mapping and sampling on the stockwork targets (Vein 1 Orient West, Deadman Creek and Orient South) to generate drill targets.

Stage 2 RC drilling program

Iltani has commenced designing the Stage 2 RC program, and the program will be designed to follow up the most promising results from Stage 1 plus test stockwork targets (Vein 1 Orient West, Deadman Creek and Orient South). Subject to drill rig availability, approvals and clearance, Iltani anticipates commencing the Stage 2 RC program as soon as preparation is complete.

Authorisation

This announcement has been approved for issue by Donald Garner, Iltani Resources Managing Director.

Contact Details

For further information, please contact:

Donald Garner

Managing Director Iltani Resources Limited +61 438 338 496 dgarner@iltaniresources.com.au **Nathan Ryan**

Investor Relations NWR Communications +61 420 582 887

nathan.ryan@nwrcommunications.com.au

Competent Persons Statement

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Carlos Duran who is a member of The Australasian Institute of Geologists (AIG), and is a consultant engaged by Iltani Resources Limited., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Duran consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

About Iltani

Iltani Resources (ASX: ILT) is a recently listed ASX company focused on the base metals and critical raw materials required to create a low emission future. It has built a portfolio of advanced exploration projects in Queensland and Tasmania with multiple high quality, drill-ready targets, including a high priority silver target at Orient, part of its Herberton Project, which will be its initial focus for exploration.

Other projects include the Northern Base Metal, Southern Gold and Rookwood projects in Queensland and its Mt Read Project is in application over a highly strategic 99km² licence in Tasmania's Mt Read Volcanics (MRV) Belt, located between the world-class Rosebery and Hellyer-Que River VHMS deposits.

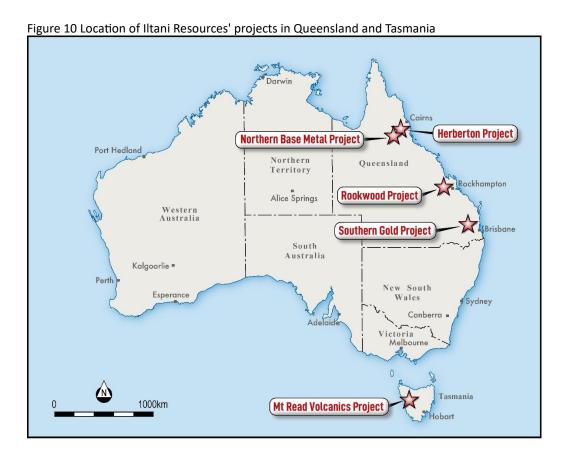


Table 3 Orient Stage 1 RC Drill Program Drillhole Data

DH ID	Easting	Northing	Elevation (m)	Dip	Azimuth (Mag)	Azimuth (Grid)	Depth (m)
ORR001	308918	8080842	815	-60	353.5	0	150
ORR003	308837	8080865	798	-60	353.5	0	150
ORR004	308912	8080769	798	-60	353.5	0	102
ORR005	308527	8081099	756	-60	353.5	0	72
ORR007	308940	8080962	821	-60	353.5	0	162
ORR008	308822	8080747	791	-60	353.5	90	18
ORR008_A	308778	8080759	790	-60	83.5	90	156
ORR010	307051	8080839	809	-60	313.5	320	204
ORR011	307055	8080728	796	-60	313.5	320	198
ORR012	306980	8080817	805	-60	313.5	320	198
ORR013	307674	8081002	826	-60	313.5	320	156
ORR014	307544	8080917	799	-60	313.5	320	168
ORR015	307349	8080768	803	-60	313.5	320	150
ORR016	307280	8080706	801	-60	313.5	320	150

Table 4 Orient Stage 1 RC Drill Assay Data (ORR001)

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR001	0	1	1	121406	0.79	8.6	0.05%	0.02%	0.054	3.36	3.7
ORR001	1	2	1	121407	0.82	11.8	0.05%	0.03%	0.04	3.39	3
ORR001	2	3	1	121408	1.06	27.2	0.12%	0.03%	0.058	5.05	3.5
ORR001	3	4	1	121409	0.89	26.2	0.12%	0.05%	0.042	3.98	3.2
ORR001	4	5	1	121410	0.89	35.3	0.13%	0.06%	0.038	5.05	5
ORR001	5	6	1	121411	1.09	16.6	0.11%	0.05%	0.033	2.25	4.6
ORR001	6	7	1	121412	1.86	52.9	0.17%	0.05%	0.069	5.85	4.1
ORR001	7	8	1	121413	3.49	41.9	0.12%	0.05%	0.045	3.92	3.5
ORR001	8	9	1	121414	3.76	67.7	0.07%	0.03%	0.03	19.95	3
ORR001	9	10	1	121415	3.36	30.2	0.05%	0.01%	0.054	27.2	3.6
ORR001	10	11	1	121417	2.67	14.6	0.04%	0.01%	0.077	13.6	4.9
ORR001	11	12	1	121418	1.67	15.2	0.07%	0.01%	0.6	22	16.4
ORR001	12	13	1	121419	3.86	8	0.10%	0.01%	2.63	32.8	155.5
ORR001	13	14	1	121420	1.85	10	0.08%	0.01%	0.992	22	71.9
ORR001	14	15	1	121421	1.76	8	0.10%	0.01%	0.438	21.4	37.9
ORR001	15	16	1	121422	1.63	21	0.11%	0.01%	0.144	19.4	14.4
ORR001	16	17	1	121423	1.99	14.6	0.09%	0.01%	0.108	20.5	17.7
ORR001	17	18	1	121424	5.21	178.5	0.14%	0.02%	0.117	25.9	7.9
ORR001	18	19	1	121425	7.2	25.5	0.18%	0.04%	0.201	16.2	32.3
ORR001	19	20	1	121426	24.3	6.2	0.35%	0.03%	0.797	26.7	186
ORR001	20	21	1	121427	84.5	324	2.02%	0.33%	21.8	151	261
ORR001	21	22	1	121428	140	7270	3.09%	4.33%	40.4	327	480
ORR001	22	23	1	121429	71.1	4800	1.62%	2.42%	18.1	303	308
ORR001	23	24	1	121430	61.7	1670	1.29%	1.26%	7.58	535	361
ORR001	24	25	1	121431	25.2	>10000	0.46%	0.72%	2.01	1060	310
ORR001	25	26	1	121432	19.95	5700	0.43%	0.81%	1.845	662	290
ORR001	26	27	1	121434	17.6	3270	0.30%	1.07%	0.796	399	267
ORR001	27	28	1	121435	57.3	722	0.60%	1.37%	3.19	315	330
ORR001	28	29	1	121437	114	2410	1.56%	4.10%	13.1	531	358
ORR001	29	30	1	121438	187	2110	3.32%	4.89%	15.9	1365	430
ORR001	30	31	1	121439	498	>10000	8.96%	4.15%	18.75	2120	4200
ORR001	31	32	1	121440	175	>10000	2.47%	4.08%	14.75	961	10150
ORR001	32	33	1	121441	166	>10000	3.22%	3.45%	14.65	560	11600
ORR001	33	34	1	121442	59.3	3530	0.82%	0.70%	2.58	238	3400
ORR001	34	35	1	121443	23.5	245	0.49%	0.51%	0.696	129.5	184.5
ORR001	35	36	1	121444	92.5	378	1.89%	0.86%	2.5	178	375
ORR001	36	37	1	121445	27.7	211	0.59%	0.61%	1.305	71.7	240
ORR001	37	38	1	121446	49.4	31.4	0.46%	0.78%	3.32	156	2090
ORR001	38	39	1	121447	80.7	687	1.33%	1.13%	7.7	144.5	490
ORR001	39	40	1	121448	205	884	4.17%	0.74%	4.03	385	470
ORR001	40	41	1	121449	33.4	249	0.70%	0.99%	4.11	63.5	297
ORR001	41	42	1	121450	60.1	5460	1.19%	0.88%	5.23	216	425

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR001	42	43	1	121451	15.75	60.2	0.41%	0.44%	0.516	32.2	177
ORR001	43	44	1	121452	12.4	16.2	0.38%	0.49%	0.668	28.9	183
ORR001	44	45	1	121453	18.9	10.9	0.49%	0.58%	1.065	50.2	230
ORR001	45	46	1	121454	11.85	7.4	0.33%	0.37%	0.504	50.6	201
ORR001	46	47	1	121455	16.5	10.1	0.41%	0.47%	0.988	53.4	280
ORR001	47	48	1	121457	88.1	91.3	1.79%	7.44%	59.5	166.5	399
ORR001	48	49	1	121458	15.3	35.9	0.34%	0.44%	1.07	80.6	185.5
ORR001	49	50	1	121459	19.9	2180	0.40%	0.52%	1.275	220	277
ORR001	50	51	1	121460	22	191.5	0.46%	0.65%	2.17	90.2	302
ORR001	51	52	1	121461	33.7	2030	0.50%	0.74%	2.08	276	480
ORR001	52	53	1	121462	18.2	63.5	0.46%	0.61%	1.89	49.5	244
ORR001	53	54	1	121463	9.18	23.8	0.27%	0.31%	0.666	27.3	172
ORR001	54	55	1	121464	9.77	14	0.26%	0.25%	0.193	21.6	115
ORR001	55	56	1	121465	25.9	21.2	0.64%	0.72%	2.04	44.7	244
ORR001	56	57	1	121466	17.4	4.9	0.49%	0.56%	0.915	33.1	211
ORR001	57	58	1	121467	2.8	6.9	0.06%	0.06%	0.077	13.3	44.1
ORR001	58	59	1	121468	0.92	14.3	0.01%	0.02%	0.052	10.75	7
ORR001	59	60	1	121469	0.93	10.7	0.02%	0.02%	0.054	12.8	8.3
ORR001	60	61	1	121470	1.14	10.4	0.02%	0.04%	0.051	31	28.8
ORR001	61	62	1	121471	0.48	64	0.01%	0.01%	0.052	14.6	7.2
ORR001	62	63	1	121472	0.33	12.7	0.00%	0.01%	0.048	12.6	2.7
ORR001	63	64	1	121473	0.3	12.5	0.01%	0.01%	0.052	10.55	3.2
ORR001	64	65	1	121474	2.06	194.5	0.06%	0.08%	0.056	32.1	81.5
ORR001	65	66	1	121475	0.62	13.8	0.01%	0.01%	0.052	7.98	10.2
ORR001	66	67	1	121477	1.58	10.8	0.03%	0.03%	0.054	11.7	116
ORR001	67	68	1	121478	12.4	7.2	0.40%	0.38%	0.291	24.9	156
ORR001	68	69	1	121479	1.5	111	0.02%	0.02%	0.044	14.3	44.4
ORR001	69	70	1	121480	1.18	945	0.01%	0.01%	0.05	41	23.7
ORR001	70	71	1	121481	0.6	18	0.01%	0.01%	0.036	13.5	8.9
ORR001	71	72	1	121482	1.04	369	0.02%	0.01%	0.068	25.6	16.7
ORR001	72	73	1	121483	1.18	788	0.03%	0.03%	0.073	63.9	38.3
ORR001	73	74	1	121484	5.51	560	0.16%	0.17%	0.085	296	105
ORR001	74	75	1	121485	0.78	159.5	0.02%	0.02%	0.041	24.7	11.6
ORR001	75	76	1	121486	4.49	67.5	0.11%	0.14%	0.094	27.7	64.9
ORR001	76	77	1	121487	11.95	47.4	0.33%	0.42%	0.135	31.5	136.5
ORR001	77	78	1	121488	1.28	43.8	0.02%	0.03%	0.051	18.5	19.5
ORR001	78	79	1	121489	7.38	158.5	0.16%	0.24%	0.252	193	167.5
ORR001	79	80	1	121490	1.01	205	0.02%	0.02%	0.055	62.2	48
ORR001	80	81	1	121491	11.15	5390	0.23%	0.26%	0.335	607	185.5
ORR001	81	82	1	121492	19.6	3470	0.42%	0.47%	1.415	1255	244
ORR001	82	83	1	121493	19.85	8910	0.39%	0.38%	1.355	1465	314
ORR001	83	84	1	121494	30.5	>10000	0.65%	0.80%	4.04	2220	328
ORR001	84	85	1	121495	18.85	1430	0.42%	0.49%	1.675	451	234

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR001	85	86	1	121497	6.95	292	0.19%	0.22%	0.287	104	98.8
ORR001	86	87	1	121498	18.3	216	0.48%	0.60%	2.08	95.6	184.5
ORR001	87	88	1	121499	15.65	115	0.40%	0.50%	1.705	60.8	175.5
ORR001	88	89	1	121500	18.45	78.7	0.45%	0.81%	1.89	59.4	250
ORR001	89	90	1	121501	19.75	538	0.41%	0.45%	1.25	130	279
ORR001	90	91	1	121502	23.3	1780	0.60%	0.48%	1.585	325	214
ORR001	91	92	1	121503	12.45	232	0.28%	0.24%	0.744	70.4	139.5
ORR001	92	93	1	121504	12.65	60	0.32%	0.39%	1.36	38.2	182.5
ORR001	93	94	1	121505	17.4	60.2	0.52%	0.48%	1.505	39	213
ORR001	94	95	1	121506	8.29	91.9	0.20%	0.42%	2.05	33.8	125
ORR001	95	96	1	121507	22.2	91.2	0.62%	0.66%	3.14	42.1	219
ORR001	96	97	1	121508	7.99	78.8	0.23%	0.26%	0.428	22.7	139.5
ORR001	97	98	1	121509	10.3	38.5	0.28%	0.34%	0.559	21.5	152
ORR001	98	99	1	121510	36	173.5	0.93%	0.98%	8.37	52.4	201
ORR001	99	100	1	121511	118	3260	2.81%	2.87%	32.5	217	390
ORR001	100	101	1	121512	18.05	372	0.49%	0.51%	1.97	40.8	283
ORR001	101	102	1	121513	17.1	34.3	0.45%	0.46%	1.025	32.8	226
ORR001	102	103	1	121514	22.2	1350	0.53%	1.00%	3.47	59	317
ORR001	103	104	1	121515	22.4	378	0.60%	1.82%	3.53	37.5	252
ORR001	104	105	1	121517	14.95	37.7	0.41%	0.53%	1.52	24.2	174.5
ORR001	105	106	1	121518	15.4	20.6	0.45%	0.50%	0.736	22.1	154.5
ORR001	106	107	1	121519	30.6	91	0.82%	0.84%	1.095	42	230
ORR001	107	108	1	121520	48.9	200	1.30%	2.33%	2.49	63.4	236
ORR001	108	109	1	121521	8.77	37.4	0.24%	0.26%	0.233	16.3	126.5
ORR001	109	110	1	121522	18.2	115	0.62%	0.59%	0.81	47.7	227
ORR001	110	111	1	121523	38.3	343	0.99%	1.44%	1.525	57.7	333
ORR001	111	112	1	121524	32.8	272	0.80%	0.82%	1.955	52.1	272
ORR001	112	113	1	121525	13.2	21.7	0.40%	0.44%	0.432	22.3	212
ORR001	113	114	1	121526	31.1	467	0.79%	0.91%	2.81	55	284
ORR001	114	115	1	121527	29.8	233	0.80%	0.86%	2.1	44.1	248
ORR001	115	116	1	121528	17.5	83	0.50%	0.57%	1.235	32.2	199.5
ORR001	116	117	1	121529	13.45	68	0.38%	0.49%	0.468	23	108.5
ORR001	117	118	1	121530	9.21	18.5	0.30%	0.35%	0.174	17.1	131
ORR001	118	119	1	121531	20.7	21.3	0.61%	0.71%	0.462	27.9	279
ORR001	119	120	1	121532	13.65	21.6	0.40%	0.51%	0.18	24.2	223
ORR001	120	121	1	121533	3.06	54.2	0.06%	0.10%	0.277	9.72	20.9
ORR001	121	122	1	121534	1.25	16.8	0.02%	0.04%	0.108	9.16	33.1
ORR001	122	123	1	121535	1.31	13	0.02%	0.03%	0.079	7.37	36.9
ORR001	123	124	1	121537	1.61	9.5	0.03%	0.04%	0.073	6.76	69.8
ORR001	124	125	1	121538	3.44	11.5	0.10%	0.12%	0.094	16.45	148
ORR001	125	126	1	121539	0.68	7.6	0.01%	0.02%	0.077	7.78	23.4
ORR001	126	127	1	121540	1.22	20.2	0.02%	0.04%	0.164	5.81	12
ORR001	127	128	1	121541	0.47	11.2	0.01%	0.02%	0.093	4.61	5.4

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR001	128	129	1	121542	0.42	6.8	0.01%	0.01%	0.065	4.72	4
ORR001	129	130	1	121543	0.52	7	0.01%	0.01%	0.088	5.48	4.4
ORR001	130	131	1	121544	0.7	5	0.02%	0.02%	0.055	12.05	27.5
ORR001	131	132	1	121545	2.21	7.6	0.04%	0.05%	0.055	20.8	44.1
ORR001	132	133	1	121546	1.07	1460	0.02%	0.03%	0.109	112.5	49.4
ORR001	133	134	1	121547	8.29	15.6	0.16%	0.20%	0.123	79.7	279
ORR001	134	135	1	121548	1.26	446	0.03%	0.04%	0.119	113.5	84.9
ORR001	135	136	1	121549	6.9	1025	0.17%	0.19%	0.123	172.5	150.5
ORR001	136	137	1	121550	1.92	1165	0.02%	0.03%	0.063	49.6	62
ORR001	137	138	1	121551	9.79	2330	0.22%	0.23%	0.2	73.1	191
ORR001	138	139	1	121552	14.7	1135	0.40%	0.47%	0.297	157.5	248
ORR001	139	140	1	121553	20.7	941	0.45%	0.54%	0.031	83.2	238
ORR001	140	141	1	121554	16.75	1530	0.30%	0.39%	0.185	286	297
ORR001	141	142	1	121555	4.41	72.1	0.09%	0.10%	0.057	182	76.6
ORR001	142	143	1	121557	0.89	35.7	0.01%	0.02%	0.047	21.5	22.1
ORR001	143	144	1	121558	0.7	29.6	0.01%	0.01%	0.054	13.05	15.2
ORR001	144	145	1	121559	0.45	23.2	0.01%	0.01%	0.055	8.54	9.5
ORR001	145	146	1	121560	0.38	13.2	0.01%	0.01%	0.038	5.63	5.7
ORR001	146	147	1	121561	2.64	11.5	0.07%	0.09%	0.073	8.14	67.2
ORR001	147	148	1	121562	0.46	13.6	0.01%	0.01%	0.04	4.8	5.6
ORR001	148	149	1	121563	0.47	13.7	0.01%	0.01%	0.041	5.72	6.1
ORR001	149	150	1	121564	0.56	13.4	0.01%	0.01%	0.044	6.67	5.3

Table 5 Orient Stage 1 RC Drill Assay Data (ORR003)

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR003	2	3	1	121079	3.03	48.8	0.11%	0.02%	0.599	29.3	37.1
ORR003	3	4	1	121080	5.1	70	0.10%	0.01%	0.679	32.1	108.5
ORR003	4	5	1	121081	4.64	127.5	0.12%	0.01%	1.34	42.4	27.9
ORR003	5	6	1	121082	6.35	82.7	0.16%	0.01%	2.1	50.9	161
ORR003	6	7	1	121083	36.2	40.1	0.68%	0.01%	1.98	51.1	179.5
ORR003	7	8	1	121084	19.8	160	0.30%	0.01%	4.74	163	331
ORR003	8	9	1	121085	15.05	97.1	0.11%	0.01%	3.46	156.5	361
ORR003	9	10	1	121086	11.8	21.3	0.10%	0.00%	1.345	32.6	107.5
ORR003	10	11	1	121088	13.85	453	0.31%	0.02%	13.25	115.5	305
ORR003	11	12	1	121089	9.79	51.5	0.16%	0.02%	2.11	37.3	109.5
ORR003	12	13	1	121090	6.3	48.9	0.09%	0.05%	0.642	21.7	14.9
ORR003	13	14	1	121091	5.21	272	0.20%	0.06%	1.17	156	50.8
ORR003	14	15	1	121092	7.05	73.4	0.19%	0.04%	1.17	54.9	96.6
ORR003	15	16	1	121093	11.65	95.2	0.45%	0.06%	2	67.7	137.5
ORR003	16	17	1	121094	12.5	19	0.50%	0.33%	1.045	31.7	180
ORR003	17	18	1	121095	11.25	13.7	0.40%	0.40%	0.638	29.5	97.4
ORR003	18	19	1	121096	14.5	8.2	0.48%	0.66%	0.696	28.9	144.5
ORR003	19	20	1	121097	1.6	12.7	0.06%	0.52%	0.094	42.5	26.9
ORR003	20	21	1	121098	0.42	34.7	0.01%	0.64%	0.057	135.5	6.1
ORR003	21	22	1	121099	0.23	14.4	0.01%	0.32%	0.042	46.5	4.5
ORR003	22	23	1	121100	0.19	12.5	0.01%	0.44%	0.042	34.5	3
ORR003	23	24	1	121101	0.28	7	0.01%	0.05%	0.045	12.5	2.8
ORR003	24	25	1	121102	1.56	3890	0.02%	0.31%	0.039	120.5	28.9
ORR003	25	26	1	121103	3.14	3340	0.03%	0.27%	0.07	122.5	35.2
ORR003	26	27	1	121104	1.15	272	0.01%	0.12%	0.04	35.4	14.7
ORR003	27	28	1	121105	0.43	83.1	0.00%	0.03%	0.031	23.9	9.9
ORR003	28	29	1	121106	0.51	39.4	0.00%	0.02%	0.036	23.2	8.9
ORR003	29	30	1	121108	0.4	77.3	0.00%	0.04%	0.033	23.1	4.5
ORR003	30	31	1	121109	0.35	9.4	0.01%	0.01%	0.028	11.35	2.8
ORR003	31	32	1	121110	0.21	5.8	0.00%	0.01%	0.04	10.75	2.5
ORR003	32	33	1	121111	0.29	7.3	0.00%	0.01%	0.024	9.5	2.4
ORR003	33	34	1	121112	0.22	4.7	0.00%	0.01%	0.036	8.31	2.4
ORR003	34	35	1	121113	0.27	4.8	0.00%	0.01%	0.025	8.78	2.4
ORR003	35	36	1	121114	0.25	7.8	0.01%	0.01%	0.028	7.44	2.5
ORR003	36	37	1	121115	0.88	2.8	0.03%	0.03%	0.03	8.96	18.3
ORR003	37	38	1	121116	6.05	2.9	0.19%	0.23%	0.177	22.2	75.7
ORR003	38	39	1	121117	5.79	2	0.18%	0.20%	0.182	14.7	75.9
ORR003	39	40	1	121118	39	8.2	1.06%	1.35%	3.87	72.2	116.5
ORR003	40	41	1	121119	9.79	25	0.36%	0.39%	0.699	45.1	151
ORR003	41	42	1	121120	10.75	57.9	0.37%	0.44%	0.671	47.1	148
ORR003	42	43	1	121121	11.7	23.8	0.38%	0.49%	0.933	45.5	186
ORR003	43	44	1	121122	12.6	10.9	0.40%	0.47%	0.844	32.9	188.5

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR003	44	45	1	121123	11.9	2.4	0.34%	0.43%	1.375	23.9	195.5
ORR003	45	46	1	121124	34.8	5	0.89%	1.25%	6.99	50.1	263
ORR003	46	47	1	121125	21.8	46.1	0.61%	0.83%	1.315	44.4	201
ORR003	47	48	1	121126	10.35	47.9	0.37%	0.40%	0.928	32.7	188.5
ORR003	48	49	1	121128	21.8	7.6	0.59%	0.56%	1.68	57.7	235
ORR003	49	50	1	121129	17.45	275	0.36%	0.31%	1.59	229	151.5
ORR003	50	51	1	121130	97	246	2.07%	1.02%	5.22	416	1340
ORR003	51	52	1	121131	93	685	1.70%	2.16%	17.25	1270	370
ORR003	52	53	1	121132	26.4	270	0.53%	0.60%	2.23	541	329
ORR003	53	54	1	121133	19.55	3920	0.29%	0.35%	1.05	242	402
ORR003	54	55	1	121134	18.05	46.4	0.55%	0.62%	0.471	73.6	171.5
ORR003	55	56	1	121135	8.35	21.2	0.24%	0.29%	0.025	39.6	130.5
ORR003	56	57	1	121136	14.85	14.5	0.43%	0.54%	1.18	37.7	291
ORR003	57	58	1	121137	13.75	7	0.38%	0.52%	0.931	37.6	260
ORR003	58	59	1	121138	15.1	4.2	0.42%	0.50%	1.25	41.7	320
ORR003	59	60	1	121139	75.3	45.8	1.89%	1.14%	5.07	199.5	2070
ORR003	60	61	1	121140	37.8	41.3	0.67%	1.03%	6.94	225	470
ORR003	61	62	1	121141	94.4	418	1.09%	0.87%	5.61	622	1640
ORR003	62	63	1	121142	266	1390	6.76%	6.14%	77.9	1970	1850
ORR003	63	64	1	121143	134	1470	1.82%	3.25%	37.5	637	480
ORR003	64	65	1	121144	23.5	320	0.34%	0.41%	3.12	123.5	418
ORR003	65	66	1	121145	76.3	95.3	1.09%	1.13%	5.53	435	2310
ORR003	66	67	1	121146	22.4	43.3	0.48%	0.56%	1.715	382	288
ORR003	67	68	1	121148	27.5	869	0.41%	0.47%	1.035	340	248
ORR003	68	69	1	121149	19.35	167.5	0.46%	0.52%	0.734	109	317
ORR003	69	70	1	121150	10.6	44.4	0.24%	0.24%	0.399	54.4	242
ORR003	70	71	1	121151	5.37	57.5	0.13%	0.16%	0.162	38.3	88
ORR003	71	72	1	121152	14.5	41.9	0.38%	0.47%	0.46	54.2	254
ORR003	72	73	1	121153	27.9	1525	0.63%	0.70%	2.42	454	417
ORR003	73	74	1	121154	25.8	2040	0.52%	0.55%	1.91	594	323
ORR003	74	75	1	121155	7.35	1175	0.21%	0.29%	0.43	564	105
ORR003	75	76	1	121156	8.39	31.8	0.26%	0.31%	0.321	30.4	129.5
ORR003	76	77	1	121157	15.55	87.8	0.47%	0.50%	1.56	57.5	195.5
ORR003	77	78	1	121158	17.5	79.6	0.57%	0.66%	1.66	48.3	186.5
ORR003	78	79	1	121159	24.6	282	0.55%	0.66%	1.825	161.5	329
ORR003	79	80	1	121160	13.8	86.9	0.51%	0.56%	1.12	58.4	206
ORR003	80	81	1	121161	2.46	33.7	0.06%	0.07%	0.226	23.4	25.6
ORR003	81	82	1	121162	1.46	20.5	0.03%	0.03%	0.107	16.9	22.1
ORR003	82	83	1	121163	1.56	58.2	0.03%	0.04%	0.108	21.1	18.9
ORR003	83	84	1	121164	1.4	24	0.02%	0.03%	0.389	15.25	19.7
ORR003	84	85	1	121165	1.04	148.5	0.01%	0.01%	0.112	24.4	14.4
ORR003	85	86	1	121166	0.57	87	0.01%	0.01%	0.085	14.45	14.6
ORR003	86	87	1	121168	0.36	40.9	0.01%	0.02%	0.089	8.4	10.6

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR003	87	88	1	121169	0.27	18	0.01%	0.01%	0.074	6.18	9.1
ORR003	88	89	1	121170	0.34	11.7	0.01%	0.01%	0.059	5.97	5.7
ORR003	89	90	1	121171	0.45	6.9	0.01%	0.02%	0.066	5.88	5.7
ORR003	90	91	1	121172	0.75	10.1	0.02%	0.03%	0.098	8.55	19.9
ORR003	91	92	1	121173	6.58	861	0.18%	0.23%	0.175	44.2	79.3
ORR003	92	93	1	121174	16.1	180.5	0.46%	0.48%	0.32	45	227
ORR003	93	94	1	121175	21	43.2	0.55%	0.58%	0.652	54.3	277
ORR003	94	95	1	121176	4.19	511	0.11%	0.11%	0.14	41.2	61
ORR003	95	96	1	121177	1.02	87.8	0.02%	0.03%	0.05	21.1	25.3
ORR003	96	97	1	121178	0.7	22.9	0.01%	0.01%	0.037	15.05	10.6
ORR003	97	98	1	121179	0.72	153	0.01%	0.01%	0.046	23.8	10.9
ORR003	98	99	1	121180	0.47	38.1	0.00%	0.01%	0.029	21.3	4.4
ORR003	99	100	1	121181	0.43	87	0.00%	0.01%	0.027	15.7	7.3
ORR003	100	101	1	121182	0.77	554	0.01%	0.01%	0.043	26.6	19
ORR003	101	102	1	121183	0.33	23.2	0.00%	0.01%	0.035	7.13	4
ORR003	102	103	1	121184	0.18	8.6	0.00%	0.01%	0.032	3.73	3.4
ORR003	103	104	1	121185	0.17	5.8	0.00%	0.01%	0.031	3.88	2.7
ORR003	104	105	1	121186	0.18	2.8	0.00%	0.01%	0.032	4.25	5.9
ORR003	105	106	1	121188	8.47	59	0.23%	0.30%	0.111	279	158.5
ORR003	106	107	1	121189	1.9	3.9	0.06%	0.07%	0.052	19.55	53.7
ORR003	107	108	1	121190	1.57	2.6	0.05%	0.06%	0.06	11.2	36.6
ORR003	108	109	1	121191	9.64	5.1	0.30%	0.35%	0.152	19.4	175.5
ORR003	109	110	1	121192	9.6	2.5	0.30%	0.35%	0.253	16.2	147.5
ORR003	110	111	1	121193	45.6	434	1.11%	1.56%	16.7	68.3	252
ORR003	111	112	1	121194	16.15	893	0.44%	0.57%	3.18	323	188
ORR003	112	113	1	121195	3.44	94	0.10%	0.11%	0.518	184.5	72.9
ORR003	113	114	1	121196	17.45	16.6	0.42%	0.52%	1.785	128.5	241
ORR003	114	115	1	121197	17.85	164.5	0.48%	0.63%	2.09	45.4	249
ORR003	115	116	1	121198	50	450	1.01%	1.25%	8.41	639	446
ORR003	116	117	1	121199	14.1	62.6	0.32%	0.39%	1.385	114	215
ORR003	117	118	1	121200	20.7	85.5	0.59%	0.67%	1.555	44.7	267
ORR003	118	119	1	121201	17.85	5	0.51%	0.62%	1.61	47.7	242
ORR003	119	120	1	121202	16.4	28.9	0.39%	0.47%	0.816	89.7	292
ORR003	120	121	1	121203	15.65	5.9	0.36%	0.41%	0.91	118	260
ORR003	121	122	1	121204	11.9	5.4	0.32%	0.36%	0.818	63.2	189.5
ORR003	122	123	1	121205	31.2	301	0.79%	0.55%	3.96	105.5	321
ORR003	123	124	1	121206	11.35	8.6	0.32%	0.36%	0.752	25.2	179.5
ORR003	124	125	1	121208	11.9	3.6	0.34%	0.40%	0.505	22.1	162.5
ORR003	125	126	1	121209	20.1	2.4	0.60%	0.85%	2.4	35	202
ORR003	126	127	1	121210	12.25	3.8	0.36%	0.47%	0.918	22.7	170.5
ORR003	127	128	1	121211	31.4	98.6	0.93%	0.68%	2.44	48.7	261
ORR003	128	129	1	121212	20.7	6.1	0.55%	0.61%	2.15	31.6	305
ORR003	129	130	1	121213	15.65	4.1	0.45%	0.60%	2.29	28.3	194

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR003	130	131	1	121214	2.27	6.8	0.06%	0.07%	0.165	13.4	37.7
ORR003	131	132	1	121215	1.26	2	0.04%	0.05%	0.125	6.64	21.3
ORR003	132	133	1	121216	0.52	4.5	0.01%	0.02%	0.099	4.75	9.4
ORR003	133	134	1	121217	0.31	4.4	0.01%	0.01%	0.044	4.58	5.8
ORR003	134	135	1	121218	0.84	80.5	0.01%	0.01%	0.054	9.13	17.9
ORR003	135	136	1	121219	0.22	4.8	0.00%	0.01%	0.036	3.27	4.7
ORR003	136	137	1	121220	0.79	2.7	0.03%	0.04%	0.043	4.58	15.3
ORR003	137	138	1	121221	0.41	4.3	0.01%	0.01%	0.055	4.74	32.5
ORR003	138	139	1	121222	4.6	17.4	0.14%	0.17%	0.115	20.2	79.1
ORR003	139	140	1	121223	0.85	158	0.01%	0.02%	0.037	9.47	13.6
ORR003	140	141	1	121224	2.7	372	0.04%	0.04%	0.045	27.1	67.9
ORR003	141	142	1	121225	1.22	947	0.02%	0.02%	0.037	21.9	38.5
ORR003	142	143	1	121226	0.77	1135	0.01%	0.01%	0.035	18.7	18.8
ORR003	143	144	1	121228	0.53	93.5	0.01%	0.01%	0.032	5.13	12.1
ORR003	144	145	1	121229	0.15	12.8	0.00%	0.01%	0.032	3.15	2.6
ORR003	145	146	1	121230	0.4	6.7	0.00%	0.01%	0.037	4.15	10.4
ORR003	146	147	1	121231	4.22	228	0.06%	0.09%	0.01	22.8	97.7
ORR003	147	148	1	121232	1.75	40.6	0.04%	0.04%	0.045	10.1	71.4
ORR003	148	149	1	121233	0.25	6	0.01%	0.01%	0.024	4.21	11.2
ORR003	149	150	1	121234	0.2	7.1	0.00%	0.01%	0.031	3	4.5

Table 6 Orient Stage 1 RC Drill Assay Data (ORR004)

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR004	1	2	1	121566	11.4	35.1	0.34%	0.41%	0.132	12.45	54
ORR004	2	3	1	121567	8.61	7.5	0.18%	0.40%	0.074	7.96	10.2
ORR004	3	4	1	121568	9.43	6.9	0.13%	0.43%	0.061	9.14	4.6
ORR004	4	5	1	121569	12.3	10.7	0.18%	0.42%	0.073	10.1	22.8
ORR004	5	6	1	121570	15.4	13.4	0.47%	0.42%	2.74	31.4	181
ORR004	6	7	1	121571	24.5	15.2	0.57%	0.36%	2.5	47.6	166.5
ORR004	7	8	1	121572	18.65	18.3	0.57%	0.26%	0.868	49.8	108
ORR004	8	9	1	121573	18.95	8.6	0.41%	0.56%	0.079	14.2	24
ORR004	9	10	1	121574	33.1	7.2	0.43%	0.48%	0.19	16.75	73.9
ORR004	10	11	1	121575	21.2	14.2	0.58%	0.44%	1.025	24.8	120
ORR004	11	12	1	121577	10.6	5.7	0.25%	0.78%	0.049	11.1	3.6
ORR004	12	13	1	121578	3.28	9.5	0.02%	0.82%	0.072	10.4	3.8
ORR004	13	14	1	121579	1.65	3.8	0.01%	0.85%	0.067	9.83	2.4
ORR004	14	15	1	121580	1.53	2.2	0.00%	1.33%	0.059	6.66	3
ORR004	15	16	1	121581	7.22	10.5	0.01%	0.90%	0.056	10.7	13.2
ORR004	16	17	1	121582	0.71	53.5	0.00%	0.48%	0.048	54.9	2
ORR004	17	18	1	121583	10.45	132	0.20%	0.32%	0.294	40	61.7
ORR004	18	19	1	121584	8	36	0.22%	0.37%	0.149	21.5	54

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR004	19	20	1	121585	3.14	45.1	0.16%	0.47%	0.106	39.4	18.8
ORR004	20	21	1	121586	0.46	64.8	0.01%	0.45%	0.064	38.1	3.3
ORR004	21	22	1	121587	40.4	29.6	0.90%	0.89%	1.575	49.9	106.5
ORR004	22	23	1	121588	74.4	33.7	1.60%	4.36%	11.4	85.8	167.5
ORR004	23	24	1	121589	1.87	13.4	0.06%	0.60%	0.1	19.4	17.6
ORR004	24	25	1	121590	22.3	23.6	0.60%	1.64%	2.45	39.5	90.3
ORR004	25	26	1	121591	25.8	28.2	0.63%	2.29%	6.23	32.8	165.5
ORR004	26	27	1	121592	2.94	19.4	0.09%	0.47%	1.005	13.95	95.6
ORR004	27	28	1	121593	2.07	36.7	0.08%	0.08%	0.119	11	52.4
ORR004	28	29	1	121594	9.46	32.8	0.32%	0.40%	0.949	18.15	61.1
ORR004	29	30	1	121595	5.33	36.5	0.21%	0.31%	0.738	16.7	60.9
ORR004	30	31	1	121597	1.7	25.3	0.05%	0.06%	0.121	13.55	57.3
ORR004	31	32	1	121598	0.76	23.6	0.01%	0.02%	0.066	9.74	49.1
ORR004	32	33	1	121599	13.4	19.8	0.38%	0.11%	0.401	23.7	85.7
ORR004	33	34	1	121600	1.05	13.4	0.04%	0.04%	0.079	12.1	47.3
ORR004	34	35	1	121601	0.55	9.6	0.02%	0.03%	0.08	9.76	35.7
ORR004	35	36	1	121602	1.52	10.6	0.06%	0.04%	0.091	10.45	30.4
ORR004	36	37	1	121603	0.3	7.2	0.00%	0.01%	0.075	6.95	19
ORR004	37	38	1	121604	4.66	7.6	0.13%	0.18%	0.078	6.54	47
ORR004	38	39	1	121605	7.14	13.4	0.19%	0.24%	0.132	8.06	57.5
ORR004	39	40	1	121606	2.6	7.7	0.07%	0.07%	0.17	5.76	34.8

Table 7 Orient Stage 1 RC Drill Assay Data (ORR013)

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR013	0	1	1	120001	4.89	118.5	0.16%	0.04%	0.337	9.96	21.6
ORR013	1	2	1	120003	4.38	142	0.20%	0.04%	0.713	10.75	80.1
ORR013	2	3	1	120004	4.09	42	0.10%	0.04%	0.158	8.78	6.7
ORR013	3	4	1	120005	3.62	108.5	0.16%	0.06%	0.292	59.2	13.4
ORR013	4	5	1	120006	3.29	37.1	0.12%	0.02%	0.424	37.5	147.5
ORR013	5	6	1	120007	3.2	30.2	0.11%	0.02%	0.469	19.05	130
ORR013	6	7	1	120008	5.43	432	0.30%	0.02%	2.41	52.9	162.5
ORR013	7	8	1	120009	6.63	111.5	0.24%	0.01%	1.94	43.1	199
ORR013	8	9	1	120010	11.8	50.5	0.17%	0.01%	1.58	31.3	188
ORR013	9	10	1	120011	22	17.8	0.17%	0.01%	1.445	22	223
ORR013	10	11	1	120012	5.36	25.2	0.19%	0.01%	1.185	22.5	150
ORR013	11	12	1	120013	2.33	9.3	0.14%	0.01%	0.619	8.06	50.6
ORR013	12	13	1	120014	4.09	9.8	0.15%	0.01%	0.581	8.58	33.4
ORR013	13	14	1	120015	3.72	11.2	0.18%	0.01%	0.938	18.45	169
ORR013	14	15	1	120016	13.2	81.6	0.53%	0.01%	2.07	32	161.5
ORR013	15	16	1	120017	255	>10000	5.52%	0.04%	24.8	219	470
ORR013	16	17	1	120018	91.9	5170	2.00%	0.02%	9.32	87.4	258

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR013	17	18	1	120019	12.55	350	0.70%	0.02%	4.41	39.8	233
ORR013	18	19	1	120020	5.04	106.5	0.30%	0.02%	1.485	22.8	153.5
ORR013	19	20	1	120021	3.54	52.2	0.27%	0.03%	0.687	12.2	60.5
ORR013	20	21	1	120022	1.76	21.3	0.17%	0.04%	0.189	6.4	16.9
ORR013	21	22	1	120024	2.52	7.4	0.12%	0.07%	0.055	5.4	6.5
ORR013	22	23	1	120025	0.68	6.8	0.12%	0.16%	0.043	4.08	3.5
ORR013	23	24	1	na							0
ORR013	24	25	1	120027	2.35	9.7	0.06%	0.19%	0.143	6.22	85
ORR013	25	26	1	120028	0.22	4.7	0.01%	0.48%	0.044	2.82	10
ORR013	26	27	1	120029	0.29	7.3	0.01%	0.25%	0.037	5.84	3.2
ORR013	27	28	1	120030	0.17	4.6	0.00%	0.35%	0.035	4.38	2.6
ORR013	28	29	1	120031	0.35	6.8	0.01%	0.47%	0.033	6.05	6.3
ORR013	29	30	1	120032	0.28	5.9	0.01%	0.62%	0.045	6.37	3.3
ORR013	30	31	1	120033	0.14	7.7	0.00%	0.44%	0.043	6.21	2.4
ORR013	31	32	1	120034	0.18	3.8	0.00%	0.42%	0.038	7.7	3.2
ORR013	32	33	1	120035	0.17	4.4	0.00%	0.68%	0.036	6.34	5.8
ORR013	33	34	1	120036	1.56	4.4	0.05%	0.27%	0.14	7.45	40.4
ORR013	34	35	1	120037	0.62	6.9	0.02%	0.06%	0.066	6.75	26.6
ORR013	35	36	1	120038	10.45	10.2	0.25%	0.39%	1.985	22.7	204
ORR013	36	37	1	120039	10	1.8	0.22%	0.29%	0.823	21.8	146
ORR013	37	38	1	120040	7.68	5.2	0.18%	0.22%	1.03	19.95	137
ORR013	38	39	1	120041	0.76	7.7	0.02%	0.03%	0.082	6.97	14.2
ORR013	39	40	1	120043	3.12	7.3	0.10%	0.10%	0.293	9.29	83.7
ORR013	40	41	1	120044	10.45	16.8	0.32%	0.34%	1.595	22.9	210
ORR013	41	42	1	120045	10.7	3.2	0.36%	0.43%	1.125	19.35	259
ORR013	42	43	1	120046	2.16	3.7	0.07%	0.07%	0.18	7.66	77.5
ORR013	43	44	1	120047	3.02	4.7	0.09%	0.10%	0.153	10.05	74.6
ORR013	44	45	1	120048	7.56	5.6	0.20%	0.21%	0.275	17.35	124.5
ORR013	45	46	1	120049	15.25	7.2	0.40%	0.36%	0.68	31.4	220
ORR013	46	47	1	120050	11.05	1.9	0.25%	0.27%	0.539	18.1	154
ORR013	47	48	1	120051	12.1	0.7	0.27%	0.31%	0.873	19.6	168
ORR013	48	49	1	120052	13.4	0.8	0.22%	0.31%	0.904	25.2	167.5
ORR013	49	50	1	120053	8.98	8.2	0.21%	0.42%	1.395	17.3	128
ORR013	50	51	1	120054	5.2	3.8	0.13%	0.16%	0.2	11.9	139
ORR013	51	52	1	120055	1.3	9.8	0.03%	0.02%	0.041	5.93	46.2
ORR013	52	53	1	120056	0.24	4.6	0.01%	0.01%	0.042	4.37	8.1
ORR013	53	54	1	120057	2.29	7.1	0.05%	0.07%	0.179	6.97	26.8
ORR013	54	55	1	120058	2.29	4.1	0.06%	0.06%	0.165	7.22	68.2
ORR013	55	56	1	120059	67.4	33.1	1.85%	1.62%	10.9	162	298
ORR013	56	57	1	120060	20.1	0.6	0.58%	0.56%	2.46	40.2	234
ORR013	57	58	1	120061	10.9	0.6	0.30%	0.31%	0.855	28.9	176.5
ORR013	58	59	1	120063	17.15	0.7	0.48%	0.56%	3.66	46.4	236
ORR013	59	60	1	120064	30.2	14.2	0.70%	0.62%	5.6	120	332

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR013	60	61	1	120065	9.44	1.2	0.25%	0.31%	2.09	26.4	232
ORR013	61	62	1	120066	41.6	633	0.90%	1.84%	31.9	67.5	460
ORR013	62	63	1	120067	17.2	50.1	0.39%	0.48%	5.63	32.7	199.5
ORR013	63	64	1	120068	18	3.5	0.44%	0.52%	5.57	31.5	185.5
ORR013	64	65	1	120069	1.66	4.8	0.03%	0.04%	0.456	7.39	76.3
ORR013	65	66	1	120070	6.8	1.5	0.17%	0.24%	0.615	12.6	139.5
ORR013	66	67	1	120071	10.4	0.6	0.28%	0.31%	0.397	17.95	145
ORR013	67	68	1	120072	2.44	2.5	0.07%	0.08%	0.153	7.89	87.9
ORR013	68	69	1	120073	2.28	1.5	0.07%	0.07%	0.133	11.8	94.8
ORR013	69	70	1	120074	9.85	1	0.32%	0.39%	0.704	19.1	196
ORR013	70	71	1	120075	9.53	0.8	0.31%	0.35%	0.72	16.75	162
ORR013	71	72	1	120076	12.85	1.7	0.38%	0.45%	1.13	21.7	201
ORR013	72	73	1	120077	11.2	0.9	0.33%	0.39%	0.964	18.55	173
ORR013	73	74	1	120078	18.65	1.3	0.57%	0.60%	3.71	27.4	187
ORR013	74	75	1	120079	15	1.4	0.44%	0.46%	1.65	22	221
ORR013	75	76	1	120080	21.3	2.1	0.66%	0.73%	3.57	34.2	326
ORR013	76	77	1	120081	5.24	3.5	0.16%	0.15%	0.611	10.95	97.2
ORR013	77	78	1	120082	8.96	2.2	0.28%	0.27%	1.355	16.3	136.5
ORR013	78	79	1	120084	11.65	6.2	0.32%	0.38%	2.07	17.75	209
ORR013	79	80	1	120085	15.9	4.6	0.45%	0.53%	2.68	22.6	228
ORR013	80	81	1	120086	62.5	279	1.63%	1.03%	15.4	86.7	424
ORR013	81	82	1	120087	24.1	20.6	0.66%	0.66%	7.37	31.9	323
ORR013	82	83	1	120088	24.3	50.9	0.63%	0.68%	9.34	32.6	314
ORR013	83	84	1	120089	102	4020	1.82%	2.05%	58.9	135.5	223
ORR013	84	85	1	120090	51.7	55.4	1.15%	0.85%	13.5	59.2	470
ORR013	85	86	1	120091	30.2	36.1	0.67%	0.64%	8.29	39.5	470
ORR013	86	87	1	120092	18.35	11.5	0.41%	0.37%	3.3	26.5	170.5
ORR013	87	88	1	120093	12.9	14.6	0.29%	0.28%	2.52	23.6	221
ORR013	88	89	1	120094	12.4	10.7	0.30%	0.39%	3.84	19.25	253
ORR013	89	90	1	120095	28	2.8	0.60%	0.62%	6.33	34.1	344
ORR013	90	91	1	120096	12.1	2.1	0.24%	0.33%	2.56	19.2	215
ORR013	91	92	1	120097	2.74	5.9	0.07%	0.06%	0.532	7.2	37
ORR013	92	93	1	120098	0.93	7.5	0.02%	0.03%	0.224	4.23	16.9
ORR013	93	94	1	120099	2.49	7.5	0.07%	0.07%	0.676	8.34	55.1
ORR013	94	95	1	120100	60.9	1110	1.48%	1.49%	28	83.6	208
ORR013	95	96	1	120101	29.5	6.4	0.85%	1.53%	11.75	41.4	1740
ORR013	96	97	1	120103	1.86	5.9	0.06%	0.06%	0.34	6.86	47.9
ORR013	97	98	1	120104	9.73	1.9	0.31%	0.33%	4.35	16	182
ORR013	98	99	1	120105	8.51	1.1	0.25%	0.28%	2.29	14.7	202
ORR013	99	100	1	120106	11.05	1.8	0.24%	0.25%	2.98	17.35	150.5
ORR013	100	101	1	120107	21.6	2.7	0.52%	0.58%	8.87	28.7	297
ORR013	101	102	1	120108	8.84	9.3	0.19%	0.21%	0.959	17.35	3190
ORR013	102	103	1	120109	6.66	1.3	0.18%	0.16%	2.26	14.3	175

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR013	103	104	1	120110	11.8	2.8	0.36%	0.39%	3.36	20.7	320
ORR013	104	105	1	120111	1.65	2.7	0.05%	0.05%	0.522	5.78	42
ORR013	105	106	1	120112	6.28	6.2	0.16%	0.18%	1.665	11.65	79.7
ORR013	106	107	1	120113	3.07	5.4	0.07%	0.08%	0.676	7.42	55.3
ORR013	107	108	1	120114	0.82	7.6	0.02%	0.03%	0.242	4.85	17.2
ORR013	108	109	1	120115	0.63	8	0.02%	0.03%	0.131	4.85	10.3
ORR013	109	110	1	120116	0.43	6.8	0.01%	0.02%	0.133	3.77	19.4
ORR013	110	111	1	120117	0.52	5.9	0.02%	0.02%	0.101	3.34	6.8
ORR013	111	112	1	120118	0.59	6	0.02%	0.02%	0.115	3.69	4.6
ORR013	112	113	1	na							
ORR013	113	114	1	na							
ORR013	114	115	1	120121	0.24	5	0.01%	0.07%	0.079	3.44	15.6
ORR013	115	116	1	120123	0.15	3.4	0.00%	0.03%	0.046	3.34	7.1
ORR013	116	117	1	120124	0.17	4.1	0.00%	0.01%	0.041	3.4	4.6
ORR013	117	118	1	120125	0.15	5.8	0.00%	0.01%	0.041	3.25	6.2
ORR013	118	119	1	120126	0.21	9.3	0.00%	0.01%	0.073	2.61	13.8
ORR013	119	120	1	120127	0.18	8.1	0.00%	0.01%	0.033	2.42	8.2
ORR013	120	121	1	120128	0.84	7.9	0.03%	0.04%	0.182	3.96	35
ORR013	121	122	1	120129	1.22	5.2	0.04%	0.05%	0.341	5.24	26.6
ORR013	122	123	1	120130	2.75	9.6	0.08%	0.08%	0.705	7.39	51.3
ORR013	123	124	1	120131	21.9	17.2	0.69%	0.65%	14.1	30.8	229
ORR013	124	125	1	120132	2.98	1.6	0.08%	0.08%	0.761	7.14	70.3
ORR013	125	126	1	120133	4.22	1.8	0.11%	0.14%	0.55	11.9	144
ORR013	126	127	1	120134	4.47	3.8	0.13%	0.16%	0.872	10.9	187.5
ORR013	127	128	1	120135	15.7	1.2	0.46%	0.45%	3.55	23.8	290
ORR013	128	129	1	120136	10.2	1.1	0.27%	0.27%	2.01	16	186
ORR013	129	130	1	120137	4.74	1.4	0.13%	0.12%	0.835	9.91	92.5
ORR013	130	131	1	120138	11.3	0.7	0.28%	0.29%	2.91	17.35	198
ORR013	131	132	1	120139	31.7	2.6	0.86%	1.16%	22.4	38.6	359
ORR013	132	133	1	120140	6.49	5.6	0.21%	0.20%	1.68	11.95	127.5
ORR013	133	134	1	120141	13.05	11	0.52%	0.56%	5.42	20.1	274
ORR013	134	135	1	120142	5.45	20.3	0.19%	0.17%	1.39	10.8	105
ORR013	135	136	1	120144	2.25	3.3	0.06%	0.05%	0.343	6.4	44.3
ORR013	136	137	1	120145	10.45	22.7	0.39%	0.48%	6.85	18.5	273
ORR013	137	138	1	120146	11.75	235	0.44%	0.48%	8.8	16.95	333
ORR013	138	139	1	120147	11.2	643	0.27%	0.56%	14.5	25.1	1590
ORR013	139	140	1	120148	7.84	58	0.22%	0.17%	3.06	12.25	103.5
ORR013	140	141	1	120149	3.96	27.8	0.11%	0.08%	1.155	7.78	62.3
ORR013	141	142	1	120150	5.11	12.4	0.15%	0.14%	0.916	9.69	72.8
ORR013	142	143	1	120151	2.78	11.2	0.10%	0.09%	0.526	7.03	83.8
ORR013	143	144	1	120152	0.9	4.6	0.03%	0.03%	0.216	3.74	30.3
ORR013	144	145	1	120153	0.83	3	0.03%	0.03%	0.151	5.33	35.2
ORR013	145	146	1	120154	1.26	2.5	0.05%	0.05%	0.251	5.1	58.2

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR013	146	147	1	120155	1.24	2.7	0.05%	0.04%	0.207	5.39	41.5
ORR013	147	148	1	120156	14.2	43.8	0.42%	0.37%	6.42	16.75	214
ORR013	148	149	1	120157	21.7	164.5	0.55%	0.89%	20.4	31.6	279
ORR013	149	150	1	120158	3.98	15	0.11%	0.12%	1.915	8.54	53.2
ORR013	150	151	1	120159	1.06	3.2	0.03%	0.03%	0.088	3.7	20.1
ORR013	151	152	1	120160	1.74	3.5	0.03%	0.03%	0.087	4.14	21.1
ORR013	152	153	1	120161	1.22	2.9	0.03%	0.04%	0.076	4.23	19.8
ORR013	153	154	1	120163	1.08	3	0.02%	0.02%	0.055	3.9	22.7
ORR013	154	155	1	120164	1.34	3.7	0.04%	0.03%	0.098	4.29	27.5
ORR013	155	156	1	120165	1.44	3.5	0.04%	0.04%	0.193	4.41	34.8
RC hamm	er failur	e: 23-2	4m, 112 to	114m (no san	nple take	n)					

Table 8 Orient Stage 1 RC Drill Assay Data (ORR014)

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR014	2	3	1	120166	18.1	1115	0.56%	0.03%	10.9	261	404
ORR014	3	4	1	120168	13.35	386	0.25%	0.04%	3.79	101	154.5
ORR014	4	5	1	120169	9.42	190.5	0.25%	0.07%	1.7	38.1	56.5
ORR014	5	6	1	120170	7.58	202	0.31%	0.10%	1.05	33.2	32.3
ORR014	6	7	1	120171	10.7	33	0.22%	0.13%	0.31	11.7	13.3
ORR014	7	8	1	120172	14.35	23.6	0.34%	0.18%	0.217	11.75	4.7
ORR014	8	9	1	120173	18.2	46.3	0.33%	0.17%	0.15	9.39	3.7
ORR014	9	10	1	120174	17.3	38.1	0.37%	0.17%	0.143	7.15	3.5
ORR014	10	11	1	120175	16.45	54.8	0.40%	0.17%	0.416	22.1	9.5
ORR014	11	12	1	120176	7.95	31.4	0.20%	0.12%	0.113	10.2	11.5
ORR014	12	13	1	120177	10.65	96.4	0.47%	0.14%	1.95	34	51.7
ORR014	13	14	1	120178	11.65	59.8	0.37%	0.11%	0.936	22.3	17.9
ORR014	14	15	1	120179	8.09	22.2	0.30%	0.08%	0.239	12.4	15.4
ORR014	15	16	1	120180	5.97	35.4	0.22%	0.06%	0.919	35.2	130
ORR014	16	17	1	120181	8.48	24.4	0.31%	0.03%	1.385	35.9	470
ORR014	17	18	1	120182	9.79	43.4	0.44%	0.07%	0.82	34.8	129
ORR014	18	19	1	120183	8.97	35	0.31%	0.09%	0.46	42.1	3.3
ORR014	19	20	1	120184	6.46	17	0.21%	0.10%	0.418	19.65	2
ORR014	20	21	1	120185	8.52	22.5	0.25%	0.12%	0.208	26.9	1.8
ORR014	21	22	1	120186	6.45	8.5	0.16%	0.09%	0.118	9.89	3.1
ORR014	22	23	1	120188	5.97	13.4	0.21%	0.09%	0.1	9.03	7.5
ORR014	23	24	1	120189	4.55	15.7	0.15%	0.07%	0.212	16.4	10
ORR014	24	25	1	120190	22.7	203	0.40%	0.54%	5.23	54.9	172
ORR014	25	26	1	120191	21	106.5	0.53%	0.76%	5.91	41.1	315
ORR014	26	27	1	120192	37	10.6	0.97%	1.29%	18.5	53.3	420
ORR014	27	28	1	120193	10.1	9.4	0.30%	0.41%	2.17	22	143.5
ORR014	28	29	1	120194	11.9	19.1	0.37%	0.52%	1.295	22.6	175.5

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)	-	ppm	ppm	%	%	ppm	ppm	ppm
ORR014	29	30	1	120195	17.65	6.5	0.49%	0.57%	2.89	31.5	221
ORR014	30	31	1	120196	17.45	24.2	0.48%	0.54%	4.08	44.7	212
ORR014	31	32	1	120197	40.6	499	0.93%	0.88%	12.65	295	322
ORR014	32	33	1	120198	62.4	4590	1.41%	2.06%	41.8	239	281
ORR014	33	34	1	120199	18.3	166	0.51%	0.58%	4.88	53	270
ORR014	34	35	1	120200	12.3	48.6	0.40%	0.46%	2.73	34.4	204
ORR014	35	36	1	120201	1	33.8	0.03%	0.22%	0.152	15.25	38
ORR014	36	37	1	120202	0.45	10.4	0.01%	0.21%	0.102	8.56	22.7
ORR014	37	38	1	120203	0.27	15.4	0.01%	0.31%	0.095	6.54	17.2
ORR014	38	39	1	120204	0.3	4.7	0.02%	0.41%	0.053	4.76	11
ORR014											
ORR014	46	47	1	120205	1.83	8.3	0.06%	0.06%	0.23	8.77	46.5
ORR014	47	48	1	120206	28.9	115.5	0.71%	0.75%	9.68	41.7	281
ORR014	48	49	1	120208	23.1	139	0.59%	0.73%	10.8	33	403
ORR014	49	50	1	120209	66	>10000	1.21%	1.10%	25.4	250	356
ORR014	50	51	1	120210	29.3	944	0.72%	0.74%	12.2	38.9	370
ORR014	51	52	1	120211	24.9	7490	0.55%	0.63%	5.34	64.9	346
ORR014	52	53	1	120212	22.9	669	0.74%	0.56%	4.26	27.7	144.5
ORR014	53	54	1	120213	26.1	452	0.73%	0.69%	8.28	27.3	168.5
ORR014											
ORR014	61	62	1	120214	0.76	208	0.02%	0.03%	0.215	5.46	9.2
ORR014	62	63	1	120215	0.85	84.8	0.03%	0.02%	0.214	5.46	16.2
ORR014	63	64	1	120216	12.5	85.3	0.38%	0.38%	2.32	17.45	172.5
ORR014	64	65	1	120217	16.4	618	0.47%	0.54%	7.98	25.7	334
ORR014	65	66	1	120218	28.7	5820	0.66%	0.99%	25.8	77	343
ORR014	66	67	1	120219	12.8	254	0.41%	0.29%	3.11	18.85	97.3
ORR014	67	68	1	120220	6.6	88.5	0.22%	0.15%	1.315	11.8	40.3
ORR014											
ORR014	71	72	1	120221	11	78.9	0.29%	0.31%	0.633	17.6	138
ORR014	72	73	1	120222	15.1	272	0.47%	0.45%	0.984	25.1	258
ORR014	73	74	1	120223	4.58	316	0.12%	0.12%	0.683	12.55	47.8
ORR014	74	75	1	120224	1.22	83	0.04%	0.04%	0.284	5.17	14.8
ORR014	75	76	1	120225	0.99	39.8	0.03%	0.03%	0.138	4.04	11.8
ORR014											
ORR014	93	94	1	120226	8.09	169	0.25%	0.30%	2.62	18.45	123.5
ORR014	94	95	1	120228	11.35	26.6	0.36%	0.33%	2.55	16.7	170.5
ORR014	95	96	1	120229	45.9	44.3	1.22%	1.35%	19.15	66.9	180.5
ORR014	96	97	1	120230	3.83	721	0.10%	0.10%	1.275	14.15	45.5
ORR014	97	98	1	120231	0.55	29.9	0.02%	0.02%	0.123	3.95	9.1
ORR014											
ORR014	120	121	1	120232	0.5	6.1	0.01%	0.02%	0.2	4.64	27.7
ORR014	121	122	1	120233	0.28	33.5	0.01%	0.01%	0.073	4.51	18.4
ORR014	122	123	1	120234	7.73	3.1	0.23%	0.22%	1.89	11.9	110

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR014	123	124	1	120235	17	1.8	0.50%	0.55%	7.72	21.9	250
ORR014	124	125	1	120236	37.1	658	0.98%	1.29%	30.1	49.5	404
ORR014	125	126	1	120237	39.1	1970	1.02%	1.14%	30	60.2	262
ORR014	126	127	1	120238	2.16	85.4	0.06%	0.11%	2.32	6.25	25.4
ORR014	127	128	1	120239	0.78	5.9	0.03%	0.04%	0.357	3.76	40.7
ORR014	128	129	1	120240	0.69	8.3	0.02%	0.03%	0.273	3.54	40.2
ORR014	129	130	1	120241	1.34	8.6	0.04%	0.05%	0.435	4.8	47.6
ORR014	130	131	1	120242	5.27	6.2	0.15%	0.16%	1.62	13.35	133.5
ORR014	131	132	1	120243	1.52	12.2	0.05%	0.05%	0.405	6.18	43.1
ORR014	132	133	1	120244	1.02	9.9	0.04%	0.04%	0.335	4.65	39.3
ORR014	133	134	1	120245	2.31	4.4	0.08%	0.09%	0.831	7.32	103
ORR014	134	135	1	120246	3.73	6.8	0.12%	0.13%	1.215	9.21	125
ORR014	135	136	1	120249	0.68	4.2	0.03%	0.03%	0.251	5.42	36.6
ORR014	136	137	1	120248	1.61	4.3	0.05%	0.06%	0.412	7.58	67.6
ORR014	137	138	1	120250	15.2	13.8	0.53%	0.54%	9.38	25.2	330
ORR014	138	139	1	120251	1.26	57.4	0.04%	0.04%	0.669	5.01	38.5
ORR014	139	140	1	120252	1.1	9.8	0.03%	0.03%	0.59	4.15	56.2
ORR014	140	141	1	120253	0.81	6.6	0.03%	0.03%	0.496	3.64	45.7
ORR014	141	142	1	120254	0.38	5.5	0.02%	0.02%	0.334	3.34	52.8
ORR014	142	143	1	120255	1.11	5.6	0.04%	0.04%	0.469	6.37	74.8
ORR014	143	144	1	120256	2.12	4.3	0.07%	0.06%	0.619	9.09	76.7
ORR014	144	145	1	120257	14.55	13.2	0.49%	0.43%	2.36	34.4	215
ORR014	145	146	1	120258	24.3	2.3	0.73%	0.59%	5.8	33.7	363
ORR014	146	147	1	120259	23.1	2.3	0.65%	0.54%	5.82	31.5	323
ORR014	147	148	1	120260	29.7	5.6	0.73%	0.57%	11.6	38.5	326
ORR014	148	149	1	120261	100	>10000	1.01%	6.25%	342	160	303
ORR014	149	150	1	120262	63.8	5000	0.73%	3.10%	157	88.6	393
ORR014	150	151	1	120263	22.1	111.5	0.53%	0.49%	8.1	26.7	265
ORR014	151	152	1	120264	14	30.8	0.38%	0.38%	5.71	17.65	237
ORR014	152	153	1	120265	29.8	20.7	0.67%	0.68%	12.6	32.7	377
ORR014	153	154	1	120266	31.8	785	0.62%	0.85%	20.6	38	427
ORR014	154	155	1	120268	19.05	226	0.41%	0.68%	19.95	21.6	315
ORR014	155	156	1	120269	3.48	21.4	0.10%	0.09%	1.485	5.78	45
ORR014	156	157	1	120270	1.53	25.7	0.04%	0.05%	0.77	3.65	22.4
ORR014	157	158	1	120271	8.8	23.3	0.23%	0.32%	7.63	12	176.5
ORR014	158	159	1	120272	6.6	9.2	0.19%	0.25%	5.28	9.8	177.5
ORR014	159	160	1	120273	4.92	5.2	0.16%	0.16%	2.95	7.77	140
ORR014	160	161	1	120274	13.5	113	0.27%	0.60%	19.3	15.65	232
ORR014	161	162	1	120275	6.59	27.8	0.16%	0.23%	5.87	9.1	137
ORR014	162	163	1	120276	2.58	8.3	0.08%	0.07%	0.973	5.72	58.5
ORR014	163	164	1	120277	0.98	24.9	0.03%	0.03%	0.338	5.56	28.7
ORR014	164	165	1	120278	0.7	4.7	0.02%	0.02%	0.197	3.69	26.8
ORR014	165	166	1	120279	0.77	8.1	0.03%	0.03%	0.207	3.49	31

Hole ID	From	То	Intersect	Sample ID	Ag	As	Pb	Zn	In	Sb	Sn
	(m)	(m)	(m)		ppm	ppm	%	%	ppm	ppm	ppm
ORR014	166	167	1	120280	1.28	8.9	0.05%	0.04%	0.368	3.25	48.9
ORR014	167	168	1	120281	7.28	4.9	0.26%	0.25%	2.27	11.65	82.6
ORR014 r	ot samp	led: 39	9-45m, 55-6:	1m, 77-92m 8	k 99-120	m.					

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling reported is reverse circulation (RC) drilling. Iltani Resources completed 14 RC holes for 2,034m drilled. The drilling was completed by Dubbo, NSW based drilling contractors Durock Drilling Pty Ltd. RC drilling returned samples through a fully enclosed cyclone system, then via a remote controlled gate into a cone splitter. 1m RC samples were homogenised and collected by a static cone splitter to produce a representative 3-5kg sub sample. Select 1m increment RC sub-samples were bagged and sent to Australian Laboratory Services Pty Ltd (ALS) in Townsville for preparation and analysis. Preparation consisted of drying of the sample and the entire sample being crushed to 70% passing 6mm and pulverised to 85% passing 75 microns in a ring and puck pulveriser. Analysis consisted of four acid digest with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (ME-MS61) analysis for the following elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y Zn, Zr. Ore grade sample analysis consisted of four acid digest with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) finish. This was carried out for Sn, Pb, Zn & Ag. 30g Fire Assay with AAS finish for Au was carried out for samples >100 g/t Ag
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling was completed using a truck mounted RC rig utilising 6m rods with reverse circulation capability. Drilling diameter was 6.5 inch RC hammer using a face sampling bit. RC hole length ranged from 18m to 204m with average hole length of 145m. Downhole surveys were undertaken at nominal 30m intervals during drilling utilising a digitally controlled IMDEX Gyro instrument

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All samples were weighted and weights recorder in the logging sheet. Samples with no recovery or very low recoveries were recorded also in the logging sheet. A few samples were collected wet due to rig unable to keep the hole dry. Wet samples were noted in the logging sheet. Iltani personnel and Durock Drilling crew monitor sample recovery, size and moisture, making appropriate adjustments as required to maintain quality. A cone splitter is mounted beneath the cyclone to ensure representative samples are collected. The cyclone and cone splitter were cleaned with compressed air necessary to minimise contamination. No significant contamination or bias has been noted in the current drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was carried out on RC chips by suitably qualified geologists. Lithology, veining, alteration, mineralisation and weathering are recorded in the geology table of the drill hole database. Final and detailed geological logs were forwarded from the field following sampling. Geological logging of the RC samples is qualitative and descriptive in nature. Observations were recorded appropriate to the sample type based on visual field estimates of sulphide content and sulphide mineral species. During the logging process Iltani retained representative samples (stored in chip trays) for future reference. All RC chip trays are photographed and the images electronically stored. All drill holes are logged to the end of hole (EoH).
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material 	 1m increment samples were collected off the drill rig via cyclone - cone splitter into calico bags with a respective weight between 3-5kg. The onsite geologist selects the mineralised interval from logging of washed RC chips, based on identification of either rock alteration and/or visual sulphides. Industry standard sample preparation is conducted under controlled conditions within the laboratory and is considered appropriate for the sample types.

Criteria	JORC Code explanation	Commentary
	 collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 QAQC samples (standards, blanks and field duplicates) were submitted at a frequency of at least 1 in 20. Regular reviews of the sampling were carried out by Iltani Geologist to ensure all procedures and best industry practice were followed. Sample sizes and preparation techniques are considered appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Industry standard assay techniques were used to assay for silver and base metal mineralisation (ICP for multi-elements with a four-acid digest) and gold (fire assay) No geophysical tools, spectrometers or handheld XRF instruments have been used to determine assay results for any elements. Monitoring of results of blanks, duplicates and standards (inserted at a minimum rate of 1:20) is conducted regularly. QAQC data is reviewed for bias prior to uploading results in the database.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drill holes were twinned. Primary data is collected in the field via laptops in a self-validating data entry form; data verification and storage are accomplished by Iltani contractor and staff personnel. All drillhole data was compiled in Excel worksheets and imported into Micromine in order to query 3d data and generate drill plans and cross sections.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations are initially set out using a hand held GPS. Downhole surveys completed at nominal 30m intervals by driller using a digitally controlled IMDEX Gyro instrument. All exploration works are conducted in the GDA94 zone 55 grid. Topographic control is based on airborne geophysical survey and it is considered adequate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Drilling was targeted on selected veins and areas of potential stockwork mineralisation. Drill hole spacing is not adequate to report geological or grade continuity. No sample compositing has been applied.

Criteria	JORC Code explanation	Commentary
	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 The drill holes were orientated in order to intersect the interpreted mineralisation zones as perpendicular as possible based on information to date.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Due to locally varying intersection angles between drillholes and lithological units all results will be defined as downhole widths.
		 No drilling orientation and sampling bias has been recognised at this time and it is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	Samples were stored in sealed polyweave bags at the drill rig then put on a pallet and transport to ALS Townsville by using a freight carrying company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out at this point

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drill program was conducted on EPM27223. EPM27223 is wholly owned by Iltani Resources Limited All leases/tenements are in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration activities have been carried out (underground mapping, Diamond drilling, surface geochemical surveys and surface mapping, pre-feasibility study) by Great Northern Mining Corporation and Mareeba Mining and Exploration over the West and East Orient areas from 1978 to 1989. Exploration activities have been carried out (soils and rock chip sampling) around Orient West and East by Monto Minerals Limited from 2014 to 2017 Red River Resources carried out mapping, sampling and geophysical exploration (drone mag survey and IP survey) in 2020 and 2021.
Geology	Deposit type, geological setting and style of mineralisation.	 Mineralisation occurs in vein systems up to 2m wide (controlled by fractures/shears) containing argentiferous galena, cerussite, anglesite, sphalerite, pyrite, marmatite, cassiterite (minor), and stannite (minor). The lead-zinc-silver-indium mineralisation at Orient is believed to represent part of an epithermal precious metals system. The Orient vein and stockwork mineralisation are associated with a strongly faulted and deeply fractured zone near the margin of a major caldera subsidence structure
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length.	 Iltani Resources completed 14 RC (Reverse Circulation) drill holes for 2,034m drilled. Refer to Tables 1 & 2 (Material Drill Intercepts) and Table 3 (Orient Stage 1 RC Drill Program Drillhole Data) in attached ASX release which provide the required data.

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent 	 No data aggregation methods have been used. No metal equivalents are used or presented.
Relationship between mineralisation widths and intercept lengths	 values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drilling is generally perpendicular to the structure by angled RC at 50° to 65° into structures dipping between 30° and 60°.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections. 	Refer to plans and sections within report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported. 	All meaningful and material data is reported
Further work	The nature and scale of planned further work (e.g. tests for lateral	Exploration of the target area is ongoing. Iltani plans to follow up on the positive

Criteria	JORC Code explanation	Commentary
	extensions or depth extensions or large-scale step-out drilling).	drilling results with a Stage 2 drill program. Further field work including mapping and rock chip/soil sampling and drilling is planned