

ASX: MEM 9 May 2024

INVESTOR PRESENTATION

Australian-based reproductive biotechnology company, Memphasys Limited (ASX: MEM), is pleased to provide the Company's latest investor presentation.

The investor presentation provides an in-depth overview of its diverse and innovative project pipeline and project timelines and will be used for presentations with investors and brokers in Australia and Southeast Asia over the coming weeks.

This announcement has been approved for release by the board of Memphasys Limited.

ENDS

For further information, please contact:

Dr David Ali

Acting Managing Director / Chief Executive Officer

Memphasys Limited
Tel: +61 2 8415 7300

David Tasker

Managing Director

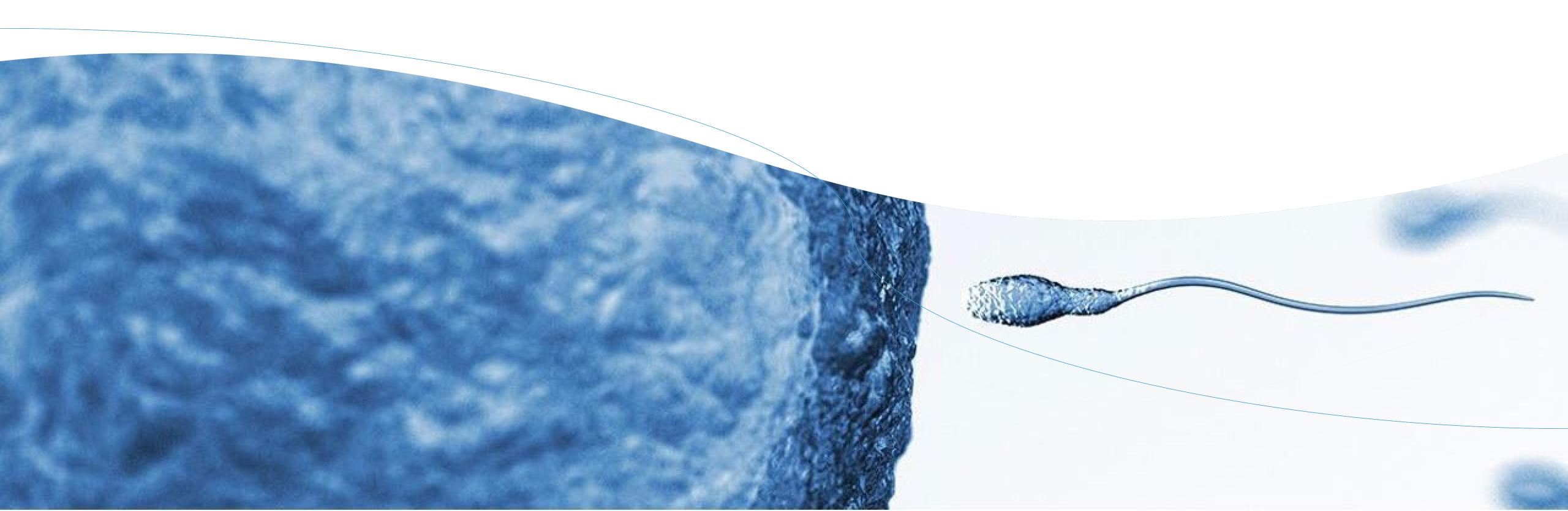
Chapter One Advisors

Tel: +61 433 112 936

E: <u>david.ali@memphasys.com</u> E: <u>dtasker@chapteroneadvisors.com.au</u>

About Memphasys

Memphasys Limited (ASX: MEM) specialises in reproductive biotechnology for high value commercial applications. Reproductive biotechnology products in development include medical devices, in vitro diagnostics, and new proprietary media. The Company's patented bio-separation technology, utilised by the Company's most advanced product, the Felix™ System device, combines electrophoresis with proprietary size exclusion membranes to separate the most viable sperm cells for human artificial reproduction.


Website: www.memphasys.com

The Felix™ System is a registered trademark of Memphasys Limited. All rights reserved.

INVESTOR PRESENTATION

MAY 2024

DISCLAIMER

This presentation is not and does not form part of any offer, invitation or recommendation in respect of securities. Any decision to buy or sell Memphasys securities or other products should be made only after seeking appropriate financial advice. Reliance should not be placed on information or opinions contained in this presentation and subject only to any legal obligation to do so, the Company does not accept any obligation to correct or update them.

This presentation does not take into consideration the investment objectives, financial situation or particular needs of any particular investor.

To the fullest extent permitted by law, Memphasys and its affiliates and their respective officers, directors, employees and agents, accept no responsibility for any information provided in this presentation, including any forward-looking information, and disclaim and liability whatsoever (including for negligence) for any loss howsoever arising from any use of this presentation or reliance on anything contained in or omitted from it or otherwise arising in connection with this presentation.

This presentation provides indicative timelines for various product development and commercialisation activities. These timelines are based on best current estimates, which are subject to change.

CONTENTS

1.	Who is Memphasys	04
2.	Felix™ System	10
3.	RoXsta	22
4.	Animal AI: Reducing Methane (CH4) Emissions from ruminants through cost effective elite DNA multiplication	31
5.	Financial Snapshot	36
6.	Appendix	40

1.
WHO IS MEMPHASYS

ALREADY COMMERCIALISED

A reproductive biotechnology company <u>already</u> selling its first commercial product

Diverse and innovative pipeline focusing on technology and market product gaps

Established distribution partners with globally recognised IVF leaders

UNDERPINNED BY STRONG FUNDAMENTALS

Highly credentialled innovation team and an experienced board, executing commercialisation strategy

Exceptionally innovative and disruptive technology with clear pathways to commercialisation

Strategy is to work with key opinion leaders in early access, high sales potential markets to build sales, brand, user acceptance and networks

Developing a pipeline of high value premium reproductive products to deliver long-term shareholder value

OUR LEADERS

Distinguished Emeritus Professor John Aitken

- Memphasys Scientific Director
- Global leader in reproductive biology, heading up world-class research team at University of Newcastle.
- Leads development of MEM's pipeline products through R&D, proof-of-concept to commercial strategy stage.
- *Ranked #1 in the world in the cell biology of spermatozoa and germ cells, having published over 650 research articles and work cited ~55,000 times**.
- Exceptionally well connected at a GLOBAL level to researchers, laboratories and clinics operating throughout the international reproductive industry.

Experienced at bringing products to market

Robert Cook
Chairman

Dr. David Ali *Acting CEO*

Paul Wright *NE Director*

Michael Atkins
NE Director

Assoc. Prof
Hassan Bakos
Director Operations

- 40 years' experience in healthcare management
- 7 years as MD & CEO of Healthscope, a leading private hospital, medical centre, and pathology company which was taken over by PE consortium for \$4.4B
- Completed numerous other healthcare M&A transactions
- 35 years' experience in Animal and Human health across research, discovery, clinical trials, medical affairs, medico-commercial strategy.
- PhD in Pharmacokinetics
- Managed BD activities and business units for global companies.
- Experienced the business end of pharmaceutical product prelaunch and launch strategy and product life cycle management.

- More than 25 years' experience in development and sales of innovative medical devices and diagnostic tools.
- Specialised in commercialising early research products
- Served as CEO for three leading companies developing, manufacturing and marketing medical devices and diagnostic instruments
- 8 years in Business Strategy Consulting with Bain & Co.

- Involved with formation of, and capital raising for, and management of, many listed companies on the ASX, both as a Chairman/Director and as a corporate advisor.
- Most recently was a Senior Advisor to international stockbroker Canaccord Genuity in Australia.
- Prior to that spent + 16 years in senior corporate advisory roles with several Australian stockbrokers,, including 10 years as Director – Corporate Finance at Paterson Securities.
- Currently Chair of Castle Minerals Limited and NED of SRG Global Limited, both ASX listed.

- 17 years' experience delivering research in the assisted reproductive technology (ART) industry
- 8 years as Scientific Director for Monash IVF (ASX: MVF)
- 3 years working with Prof John Aitken at the University of Newcastle

	Sperm s	Device eparation for IVF		RoXsta* Rapid in vitro antioxidant assessment		Rapid in vitro antioxidant		Al Port Ambient temp. semen transport for animal Artificial Insemination	Media Development Sperm extension, transport and cryopreservation
Market	Early Access	Highly Regulated		Early Access	Highly Regulated	Early Access	Early Access for animal, highly regulated for human		
Proof of concept									
Prototype development				≪	≪				
KOL Testing									
Clinical/field trials									
Sales									

⁸

FELIX SYSTEM

- Electrophoretic system selects sperm with both low DNA damage & oxidative stress
- Device consists of a console which supplies electricity to a disposable cartridge
- Cartridge contains the novel electrophoretic technology
- Cartridges are single-use with a new one required for each semen sample
- Ongoing, repeat revenue from single-use cartridge

FELIXTM

Better technology for IVF sperm preparation

ROXSTA

A rapid in vitro antioxidant assessment

RoXsta

- Point of care diagnostic device
- Six-minute process
- Sensitive & accurate
- Wide sample fluid choice:
- Semen, blood, urine, saliva, follicular fluid and spent embryo culture medium
- More accurate disease profiling
- Timely clinical intervention

AI PORT

- Initial target: beef cattle growing need to improve genetics in high end cattle breeds e.g. wagyu, Black Angus
- Later applications: high end dairy, horse (non-thoroughbred), sheep and pigs
- Capacity to collect and transport at ambient temperature (once tested) should produce a better pregnancy / genetic outcome

AI PORT

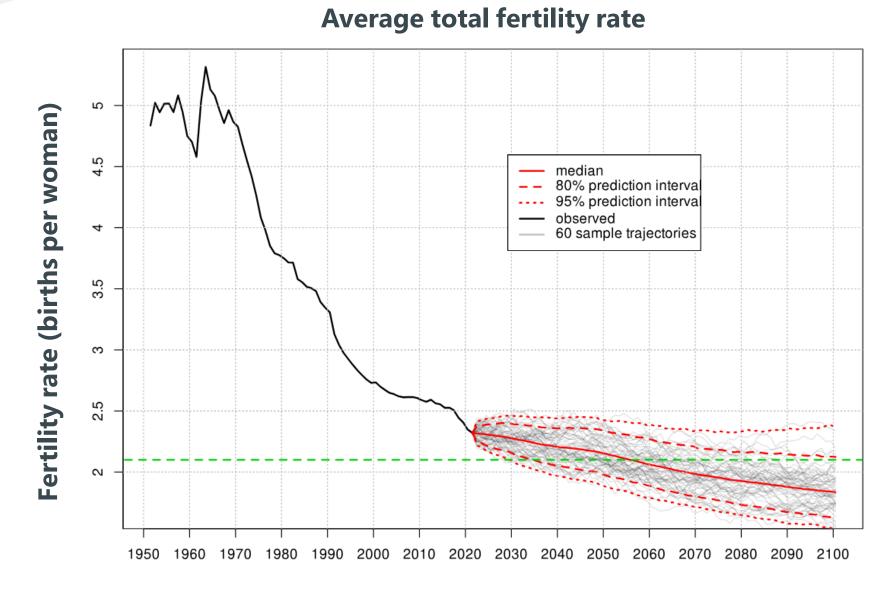
Increasing animal pregnancy rates, improve DNA, reduce emissions, with ambient temperature Al

Cross-over in applications across all 3 products.

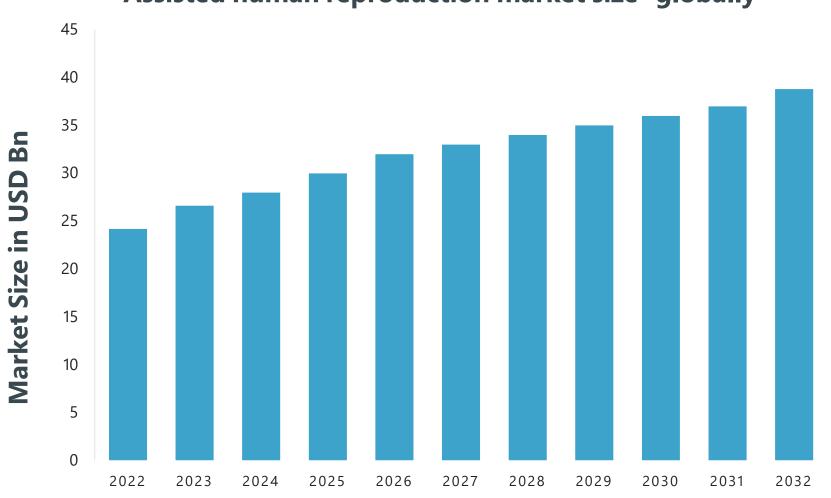
Development of one product adds value to the other products. In some instances, a suite of products could be offered to industry

2.

FELIX™ SYSTEM:
BETTER TECHNOLOGY
FOR IVF SPERM
PREPARATION



THE ISSUE



Global fertility decreasing – males account for ~50%

- 1 in 6 couples experience fertility issues
- Sperm dysfunction is the single most common cause of infertility
 - Little progress in sperm processing for ART in over 40 years
 - Sperm counts decreasing
 - Sperm <u>DNA Damage</u> and <u>Oxidative Stress</u> are major contributors
 - Solutions to identify or reduce the effect of oxidative stress and
 DNA damage are desperately needed

1. UN Population Division – World Population Prospects 2022

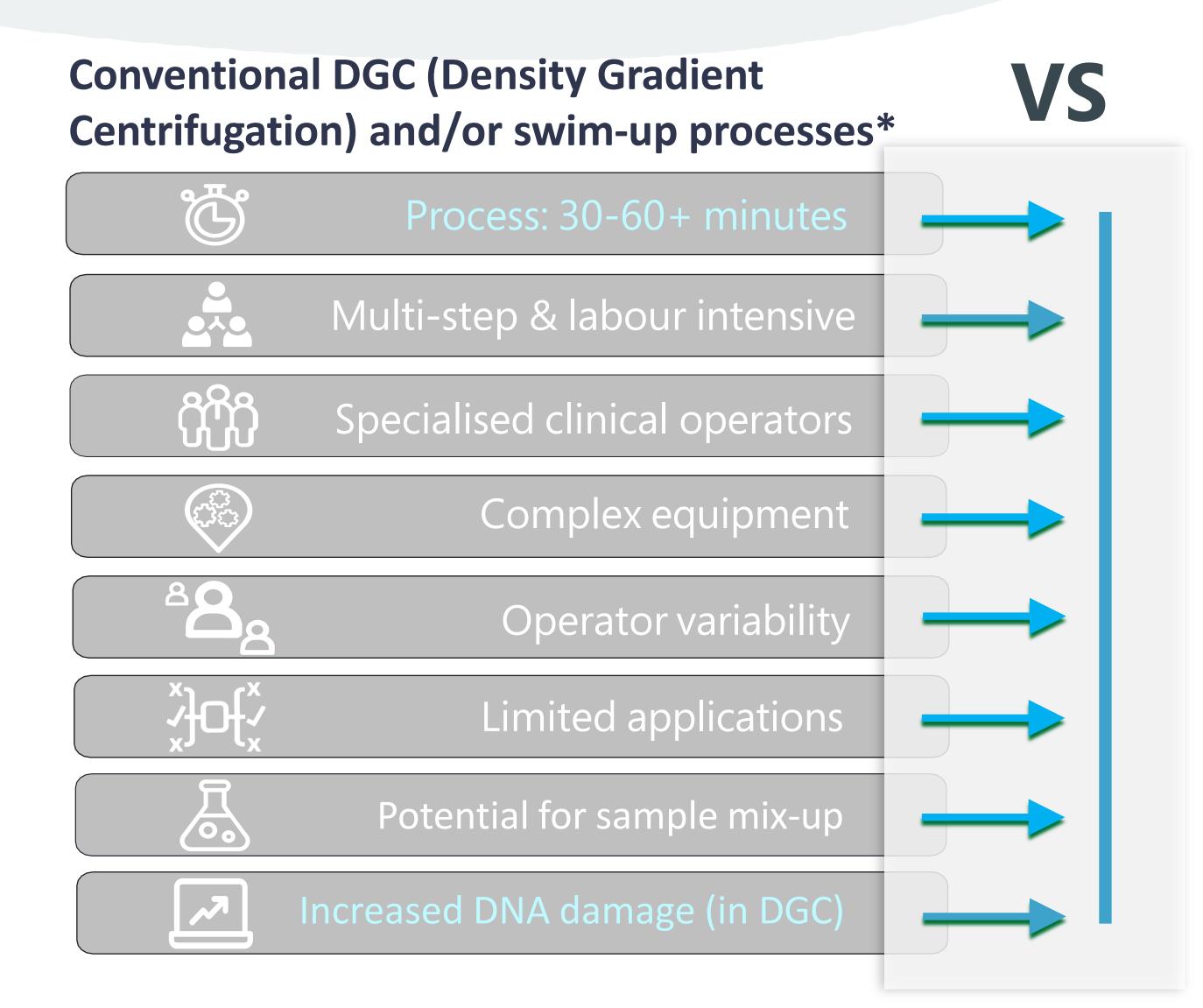
11

FELIX™ SYSTEM:

Better technology for IVF sperm preparation

Electrophoretic system selects sperm with both low DNA damage & oxidative stress

Device consists of a console which applies a controlled charge to a disposable cartridge


Cartridge contains the novel electrophoretic technology

Cartridges are single-use with a new one required for each semen sample

Ongoing, repeat revenue from single-use cartridge

Advantages over traditional methods

Felix™ System

Rapid - six minutes
Single vessel & automated
Easy to train and operate
Console & cartridge
Consistent & operator independent
Wider applications
Minimised risk
Reduced DNA damage

Commercialisation Strategy

Global Opportunity - starts with early access markets

- Initial focus rollout of commercial sales in early access markets
- Key achievements in early access markets will provide:
 - Clinical Data
 - Legitimise Application
 - Build Brand Profile
 - Build End User Certitude
 - Build a Trusted KOL Network
 - Tested and Proven Pathway
 - All the above will help to establishing sales in advanced markets - Australia, USA, Europe and China
- MEM working with large, trusted partners:
 - Vitrolife in Japan, Canada and New Zealand
 - Monash IVF in Australia

Initial focus is to build sales in four early access markets:

Country	Fresh IVF Cycles in 2018	Expected fresh IVF cycles by 2026	% growth rate	KOL engaged in market	% of global market
Japan	269,110	699,110	+160%	~	14.5%
India	169,800	489,840	+188%		9.2%
Canada	6,360	21,140	+232%	✓	0.3%
New Zealand	5,300	11,190	+111%		0.3%

Source: Global IVF services Market 2019 - 2026 by Allied Market Research, 2018

Commercialisation Model – Japan with strategic partner Vitrolife

Phase 1	Phase 2	Phase 3
Identify immediate unregulated markets	Achieve on-boarding into distributor's sales/distribution channels	Build BRAND reputation
Identify and work with Key opinion Leader/s	Build specific sales collateral for that market	Establish standing order with distributor
Identify and execute agreement with respected in-country distributor	Achieve first sales under agreement	Exponentially increase sales into non-reimbursed market (approx. ~ 20% of addressable market)
Partner with other influential stakeholder groups	Seek to expand sales into market	Apply for reimbursed market with Vitrolife support and access remainder of addressable market

Japan Early Access Market – expanding into Canada & New Zealand

Memphasys Director of Operations Professor Hassan Bakos with representatives from Vitrolife Japan KK

Choosing the right partner – Vitrolife Japan KK (subsidiary of the Vitrolife Group)

- Exclusive distribution agreement signed for a 5-year term
- Vitrolife Group is a world-leading global provider of medical devices, consumables and genetic testing services dedicated to the human IVF and reproductive health market
- Group employs 1,100 people across 33 countries and its products and services are available in more than 125 countries
- Has direct commercial engagement with ~90% of all IVF clinics in Japan
- Perfect synergistic partner for Memphasys and FelixTM
- Working closely with Memphasys to expand sales in Japan expanding into Canada and New Zealand
- Sales have commenced and are expanding

Japan Early Access Market

Next Steps – Japan

- Japan's national insurance system currently covers IVF, but not the Felix System, which limits sales to approximately 20% of the market.
- Memphasys building clinical data sets and working with distributor to position Felix[™] for full insurance coverage in future.
- Ensure support from collaborating partner.
- Vitrolife advancing discussions with additional clinics.

FELIX™ SYSTEM:

Other Early Access Markets

Next Steps – Other Markets

- Eligible for sale in both Canada and New Zealand
- Distribution agreement in place with Vitrolife
- Vitrolife able to deploy <u>same model as in Japan</u>
- KOLs in both nations familiar with the Felix System
- Vitrolife advancing preliminary sales discussions with KOLS
- First sales in other markets anticipated in Q3 FY 2024
- Further eligible markets are under evaluation

Vitrolife - Trusted partner currently replicating Japanese model in Canada & New Zealand

Major Regulated Markets 2024-2025*

	Regulator	Pre-submission	Clinical Trials	Comments	Recently published data on IVF cycle numbers
Australia	TGA	✓		Anticipated completion of trial 4Q FY24	102,157 (2021) ¹
India	CDSCO		n/a Australian Clinical trial anticipated to be sufficient	In-country (TGA) approval is standard pathway Investigating earlier access options	337,000 (2021) ²
EU	MDR		n/a Australian Clinical trial anticipated to be sufficient	Application pending post Australian trial completion	588,762 (2019) ³
China	NMPA V TBD		TBD	Responding to NMPA's technical & clinical Queries. Seeking entry via Hong Kong	1,305,967 (2022)4
USA	FDA	✓	In-Country clinical trial required	Will be a de novo FDA classification	413,776 (2021) ⁵

Swim up: trials completed; DGC: trials 40% completed

^{*}Timetable is constantly being reviewed to expedite timeframe

^{1.} Assisted reproductive technology in Australia and New Zealand 2021 – University of NSW

^{2. &}lt;a href="https://health.economictimes.indiatimes.com/news/industry/indian-fertility-industry-to-witness-huge-growth-in-coming-years/91487508">https://health.economictimes.indiatimes.com/news/industry/indian-fertility-industry-to-witness-huge-growth-in-coming-years/91487508

^{3. &}lt;a href="https://academic.oup.com/humrep/article/38/12/2321/7320081">https://academic.oup.com/humrep/article/38/12/2321/7320081

^{. &}lt;a href="https://www.globaldata.com/store/report/china-assisted-reproductive-technology-procedures-market-analysis/">https://www.globaldata.com/store/report/china-assisted-reproductive-technology-procedures-market-analysis/

^{5. &}lt;a href="https://www.cdc.gov/art/artdata/index.html">https://www.cdc.gov/art/artdata/index.html

FELIXTM PUBLICATIONS

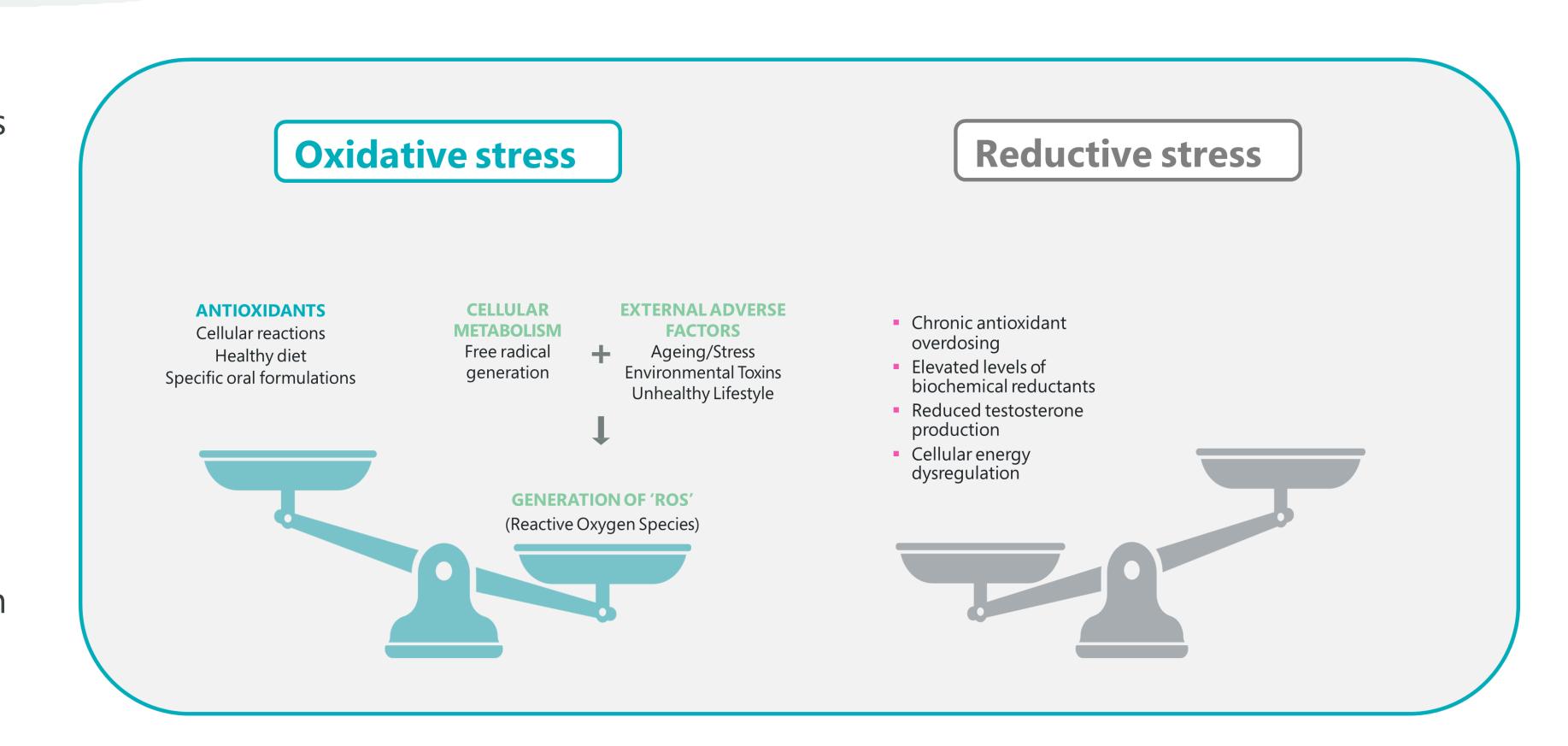
Earlier prototype: CS-10	
C. Ainsworth, B. Nixon & R.J. Aitken Development of a novel electrophoretic system for the isolation of human spermatozoa, <i>Human Reproduction</i> , 2005	https://pubmed.ncbi.nlm.nih.gov/15831507/
C. Ainsworth, et al., First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa, Human Reproduction, 2007	https://pubmed.ncbi.nlm.nih.gov/16971383/
S.D. Fleming et al., Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation, Human Reproduction, 2008	https://pubmed.ncbi.nlm.nih.gov/18765400/
C.J. Ainsworth, B. Nixon & R.J. Aitken The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation, <i>International Journal of Andrology</i> , 2011	https://pubmed.ncbi.nlm.nih.gov/21564134/
Current Prototype: Felix TM	
E. Shapouri et al., A comparison between the Felix™ electrophoretic system of sperm isolation and conventional density Stradient centrifugation: a multicentre analysis Journal of Assisted Reproduction & Genetics, 2023	https://pubmed.ncbi.nlm.nih.gov/36515800/
P. Villeneuve et al., Spermatozoa isolation with Felix™outperforms conventional density gradient centrifugation preparation in selecting cells with low DNA damage, <i>Andrology</i> , 2023	https://pubmed.ncbi.nlm.nih.gov/36629014/
A.J. Hungerford, H.W. Bakos & R.J. Aitken Analysis of sperm separation protocols for isolating cryopreserved human spermatozoa, <i>Reproduction & Fertility,</i> 2023	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160538/

FELIXTM PROJECT TIMELINES

	2024				20	25	2026				
	Q2 Apr	Q3 Jul	Q4 Oct	Q1 Jan	Q2 Apr	Q3 Jul	Q4 Oct	Q1 Jan	Q2 Apr	Q3 Jul	Q4 Oct
Pre-TGA											
Monash Trial											
Japan Felix Trial											
Results Published											
TGA Approval											
TGA Submission											
TGA Review											
TGA Approval											
India Expansion											
MD-16 requirements (non-manufacturing)											
Explore manufacturing options		-									
Setting up India manufacturing											
India manufacturing established CP											
World-wide expansion											
Begin FDA trial and registration											
Begin EU trial and/or registration											
Expand into Moderate TGA acceptance markets											

3.

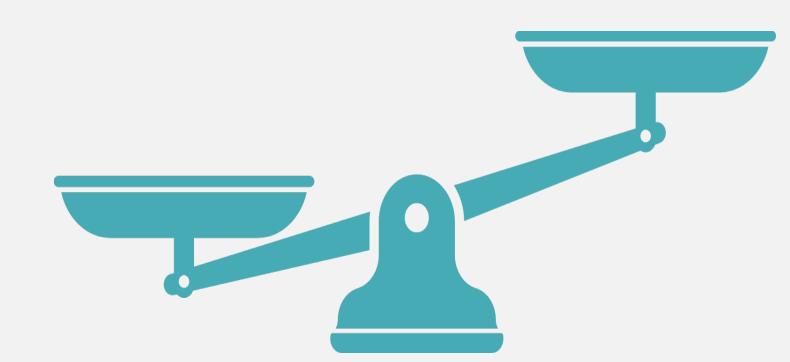
RoXsta*
ARAPID IN VITRO
ANTIOXIDANT
ASSESSMENT



* Formerly titled 'ROSA'

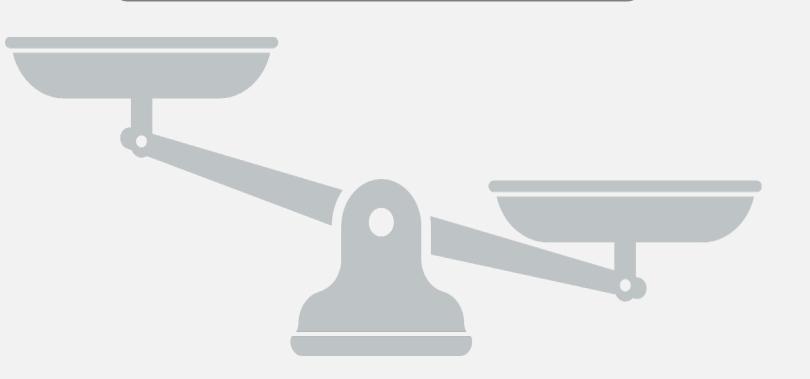
THE ISSUE:

Oxidative & Reductive Stress – Serious chemical imbalances


- Oxidative stress an imbalance between reactive oxygen species and antioxidant protection within the body and can also severely affect fertility in both humans and animals.
- Reductive stress an abnormal accumulation of reducing equivalents despite being in the presence of intact oxidation and reduction systems
- Imbalance tends to increase with age and can contribute to serious diseases.

THE ISSUE:

The adverse effect of oxidative / reductive stress imbalance


Oxidative stress

- Aging
- Impaired sperm production and maturation
- Increased sperm DNA damage
- Potential transgenerational effect
- Mutation in offspring
- Miscarriage
- Pre-eclampsia

- Chronic inflammatory disease
- Cancer
- Neurodegenerative disease
- Neuropsychiatric disorder
- Diabetes
- Cardiovascular disorders
- Chronic fatigue
- Asthma
- Erectile dysfunction

Reductive stress

- Heart failure
- Neurogenesis inhibition
- Decreased cellular metabolism
- Muscular dystrophy
- Pulmonary hypertension
- Rheumatoid arthritis
- Alzheimer's disease
- Diminished life expectancy

THE SOLUTION - RoXsta:

A unique product offering

- Development of 4 separate point-ofcare assays, each only taking 5 mins, all using the same fundamental device structure to measure different aspects of antioxidant activity
- Provides a complete picture of the ability of a given system/fluid to defend itself against oxidative attack
- Measuring all 4 aspects of oxidative stress in semen provides correlation with sperm motility, vitality and DNA damage

■ The different stages of the oxidative process, in order, are :

the ability of a given system to prevent the generation of free radicals

the ability of a given system to remove (scavenge) free radicals once formed

the ability of a given system to remove (scavenger) hydrogen peroxide

the ability of a given system to remove any lipid peroxides created by the oxidative stress

UNMET DIAGNOSTIC NEED:

RoXsta technology can address multiple needs and very large global market

Testing for oxidative stress is rare:

- Complex equipment
- Time-consuming in lab
- Oxidative stress often undiagnosed
- Late or no clinical intervention

RoXsta

Testing with Memphasys:

- Point of care diagnostic device
- Six-minute process
- Sensitive & accurate
- Wide sample fluid choice: Semen, blood, urine, saliva, follicular fluid and spent embryo culture medium
- More accurate disease profiling
- Timely clinical intervention

TARGET MARKET AND OPPORTUNITY

User group	Application	Estimated Market Size
Fertility researchers*	 Researching underlying etiology of infertility & gestational issues 	\$3b
IVF clinics	 Screening for infertility issues in male and female patients 	\$3b
Obstetricians	 Diagnosing and monitoring the progress of pregnancy; detecting foetal distress 	\$4b
Food technology industry*	 Screening for food antioxidant activity, e.g. to use in product marketing Addition of new, healthy antioxidants to extend food shelf life/improve health benefits 	\$3b
MEM internal use	 Screening for most powerful antioxidants to develop improved media for human & animal reproduction 	
Other clinician groups	 Diagnosing and monitoring various health conditions beyond fertility issues e.g. cardiovascular, neurological, endocrine etc. 	TBD
Point of care consumer test	 Assessing antioxidant status at home 	
Personalised medicine	 Ability to titrate individualised levels of antioxidants and other drugs to administer 	
Animal Health Industry*	 Meat quality, IA and domestic pet markets 	TBD
Cosmetic Industry	 Application of antioxidants for skin and ageing 	TBD

Conservative market size assumptions, based on industry interview estimates

UPDATE ON DEVELOPMENT

- Proof of concept established by Prof. John Aitken's research team at University of Newcastle
- Currently lodging IP, granted in 6-9 months
- Proof of concept publications
- External design house currently developing prototype and manufacturing pilot batch initially for research use.
- KOL engagement and publications to legitimise application.
- Advisory boards with aforementioned business sectors to explore potential landscape and application utility.
- Select high value industries and applications then customise the system to suit

RoXsta:

Pathway to market

			Requirements prior	r to selling	
	Application	Industry KOL testing	Verification & validation studies	Small clinical trial	Regulatory approval
Early sales potential	Fertility research market	✓			
	Food industry monitoring	✓			
	Diagnostic fertility market (male & female)	✓		✓	✓
Higher regulatory requirements	Pregnancy clinical monitoring	✓	✓	✓	✓
	Monitoring for other health conditions e.g., diabetes	✓	✓	✓	✓
	At home monitoring		✓	✓	

ROXSTATM DEVELOPMENT TIMELINE

		2024				20	25		2026				2027			
		Q2 Apr	Q3 Jul	Q4 Oct	Q1 Jan	Q2 Apr	Q3 Jul	Q4 Oct	Q1 Jan	Q2 Apr	Q3 Jul	Q4 Oct	Q1 Jan	Q2 Apr	Q3 Jul	Q4 Oct
	Prototype testing to select best candidate cartridge															
Phase 1:	Production of 1000 cartridges and test jigs for testing															
Test jig & disposable cartridge development	Cartridge development completed. Potential sales for research, livestock & food tech applications (low reg. markets)															
Phase 2: Full device	De-risking optical test jig & prelim performance testing by John Aitken & KOLs															
development including mini spectro-photometer	Development completed (pre-regulatory)															
spectro-photometer	Potential sales for research, livestock & food tech applications (low reg)															
	Device ready for V&V testing															
Phase 3: V&V + pilot + full	Prelim optics testing by John Aitken															
release of device	Manufacturing															
	Reg approval obtained. Release to market for clinical sales															

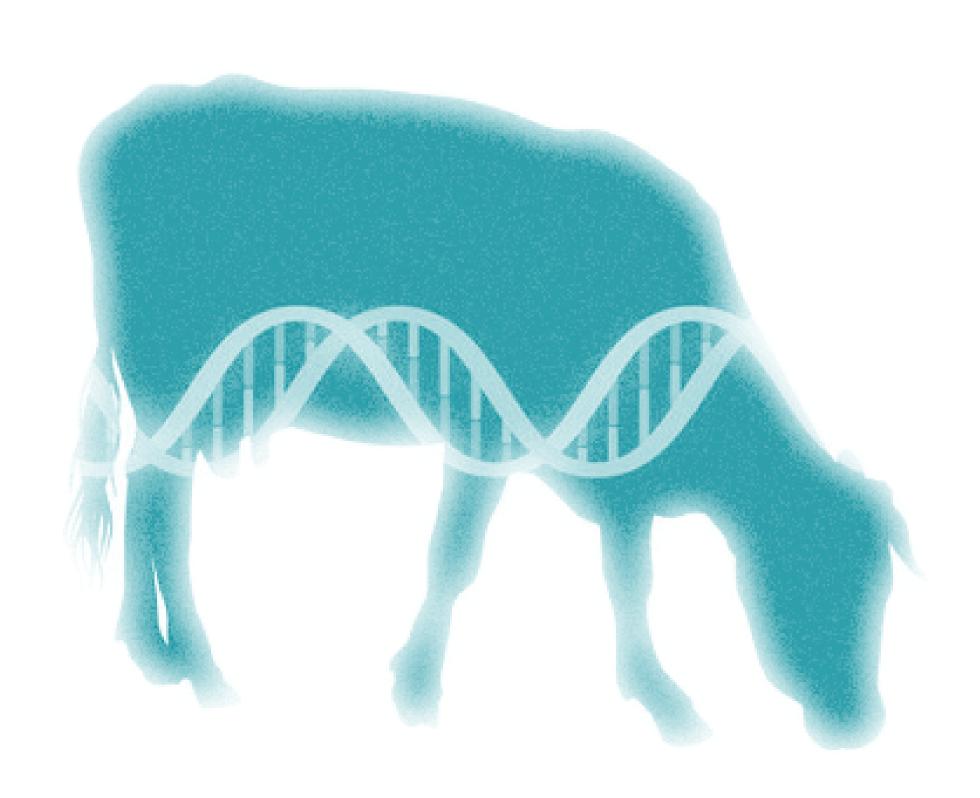
4

ANIMAL AI: REDUCING METHANE (CH4)
EMISSIONS FROM
RUMINANTS THROUGH
COST EFFECTIVE ELITE
DNA MULTIPLICATION

THE ISSUE:

Methane emissions in livestock

- Agriculture is projected to be the third largest source of emissions globally by 2030
- Methane emissions from livestock are the largest source of greenhouse gas in the agriculture sector¹
- The Australian red meat & livestock industry has set a target to be carbon neutral by 2030 (CN30).
- •This means that by 2030, Australian beef, lamb and goat production aim to make no net release of greenhouse gas (GHG) emissions into the atmosphere²
- Industry is proactively taking action with investment in R&D and particular focus on animal genetics



^{1.} Australian Government Department of Climate Change, Energy, the Environment & Water

^{2.} Meat & Livestock Australia (MLA)

WHY IS GENETICS SO IMPORTANT?

- Shaping emissions intensity in livestock systems will be heavily influenced by genetics as we move toward 2030.
- Increasing production per unit of emission is costly to identify and will be based on a small subset of elite animals.
- The small population of elite animals will need to be cost effectively multiplied while minimising DNA breakdown currently caused through conventional artificial breeding practices.
- Bovine artificial breeding is worth in excess of US\$2.9 billion globally¹.

^{1.} Bovine Artificial Insemination Market Size, Share & Trends Analysis Report By Solutions (Equipment & Consumables, Semen, Services), By Sector (Meat, Dairy), By Distribution Channel (Private, Public), By Region, And Segment Forecasts, 2023 - 2030

FELIX SYSTEM

- Electrophoretic system selects sperm with both low DNA damage & oxidative stress
- Device consists of a console which supplies electricity to a disposable cartridge
- Cartridge contains the novel electrophoretic technology
- Cartridges are single-use with a new one required for each semen sample
- Ongoing, repeat revenue from single-use cartridge

FELIXTM

Better technology for IVF sperm preparation

ROXSTA

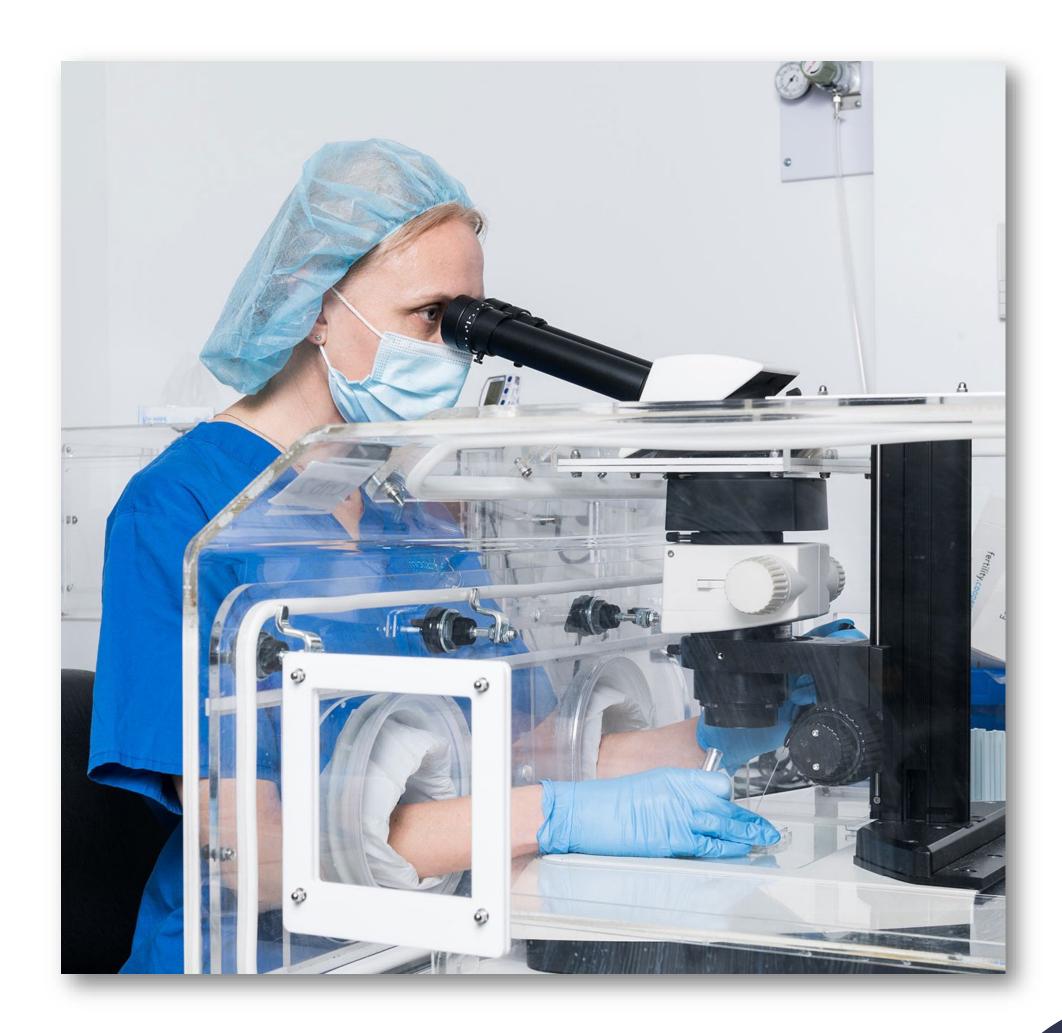
A rapid in vitro antioxidant assessment

RoXsta

- Point of care diagnostic device
- Six-minute process
- Sensitive & accurate
- Wide sample fluid choice:
- Semen, blood, urine, saliva, follicular fluid and spent embryo culture medium
- More accurate disease profiling
- Timely clinical intervention

AI PORT

- Initial target: beef cattle growing need to improve genetics in high end cattle breeds e.g. wagyu, Black Angus
- Later applications: high end dairy, horse (non-thoroughbred), sheep and pigs
- Capacity to collect and transport at ambient temperature (once tested) should produce a better pregnancy / genetic outcome


AI PORT

Increasing animal pregnancy rates, improve DNA, reduce emissions, with ambient temperature Al

Cross-over in applications across all 3 products.
Development of one product adds value to the other products. In some instances, a suite of products could be offered to industry

- MEM is developing a process of extending the viability of sperm cells in an ambient temperature receptacle.
- Fresh semen storage via MEM processes aims to reduce the fragmentation (breakdown) of DNA within a sample.
- The capacity to reduce DNA breakdown that occurs compared to conventional practices will extend the ability to multiply elite genetics.
- MEM aims to use RoXsta in conjunction with animal breeding to further enhance the ability to reduce DNA breakdown and improve elite genetic multiplication in a cost-effective manner

5.
FINANCIAL
SNAPSHOT

MEMPHASYS FINANCIAL SNAPSHOT:

As at 01/05/2024

KEY DATA ¹	A\$
Share price	\$0.008
Shares on issue	1,367.7M
Market capitalisation	\$11M
Cash (31 March 2024)	\$436K

OWNERSHIP STRUCTURE ¹	%
Peters Investments	19.5
A Goodall	12.7
A Coutts	7.0
Top 20	62.5

CONVERTIBLE NOTES	
Peters Investments	3M (at A\$3M face
	value & maturity as of
	31 Dec 2024)*

¹ Source: ASX website (as at 01/05/2024)

Set for growth

NEW TALENT

- Acting CEO
- Director BusinessDevelopment
- Appointments underpin critical commercialisation of product and markets

OPENING MARKETS

- Clear pathways to market for each product
- Commitment from Vitrolife
- Growing sales across multiple markets

UNMET NEED

Product R&D
 strategy
 exclusively
 addressing unmet
 need in global
 reproductive
 technology

PIPELINE BUILDING

Prof John Aitken
 (Scientific
 Director) &
 University of
 Newcastle team
 building a unique,
 high value
 product pipeline

Thank you

CONTACT INFORMATION:

Dr David Ali

Managing Director and CEO (Acting)

Memphasys Limited

30-32 Richmond Rd, Homebush NSW 2140 Australia

P +612 8415 7300

<u>david.ali@memphasys.com</u>

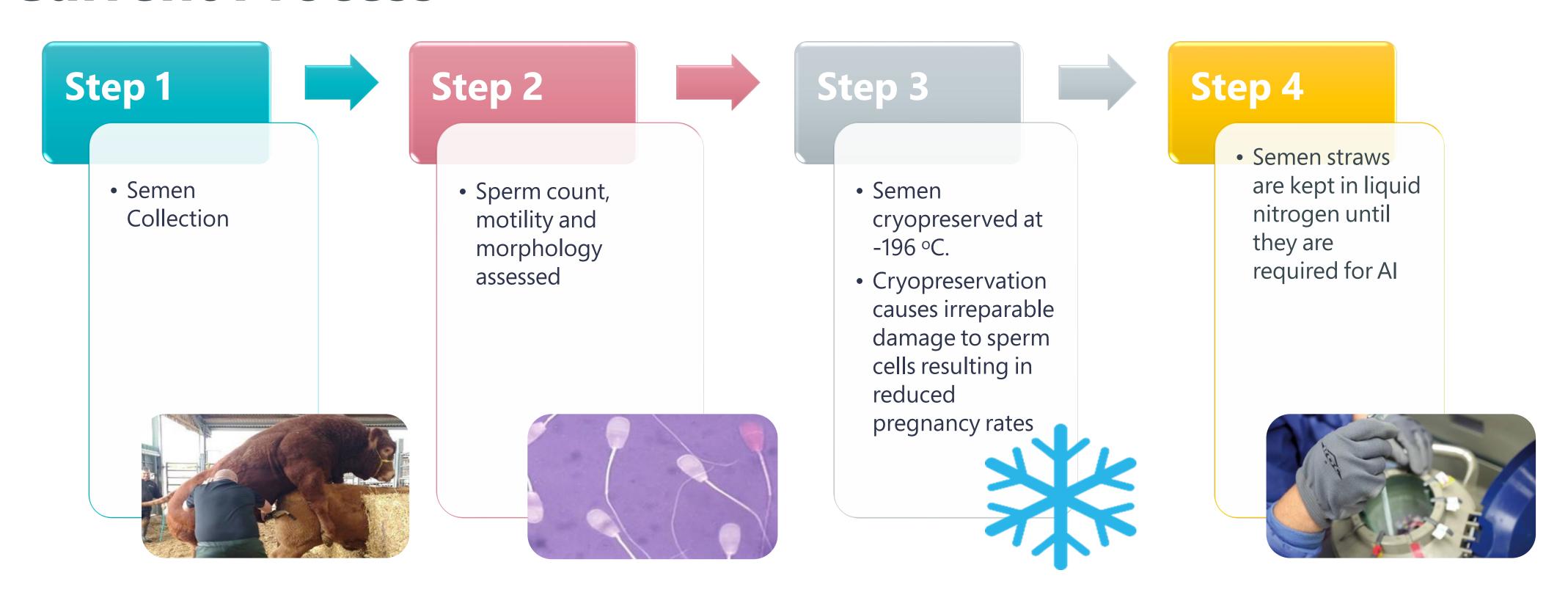
M + 61 428794909

W www.memphasys.com

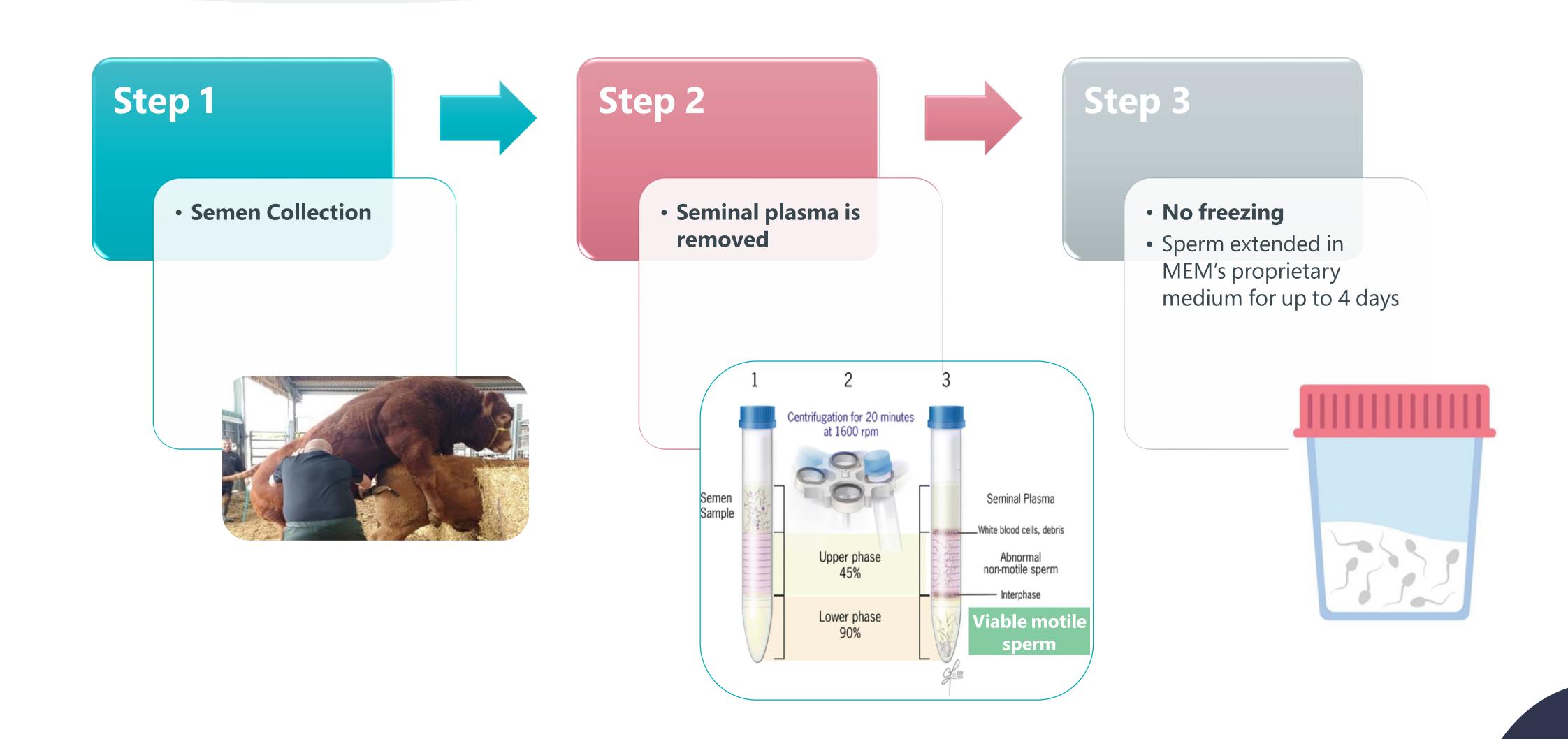
6.

APPENDIXANIMAL
APPLICATIONS

ARTIFICIAL INSEMINATION (AI)

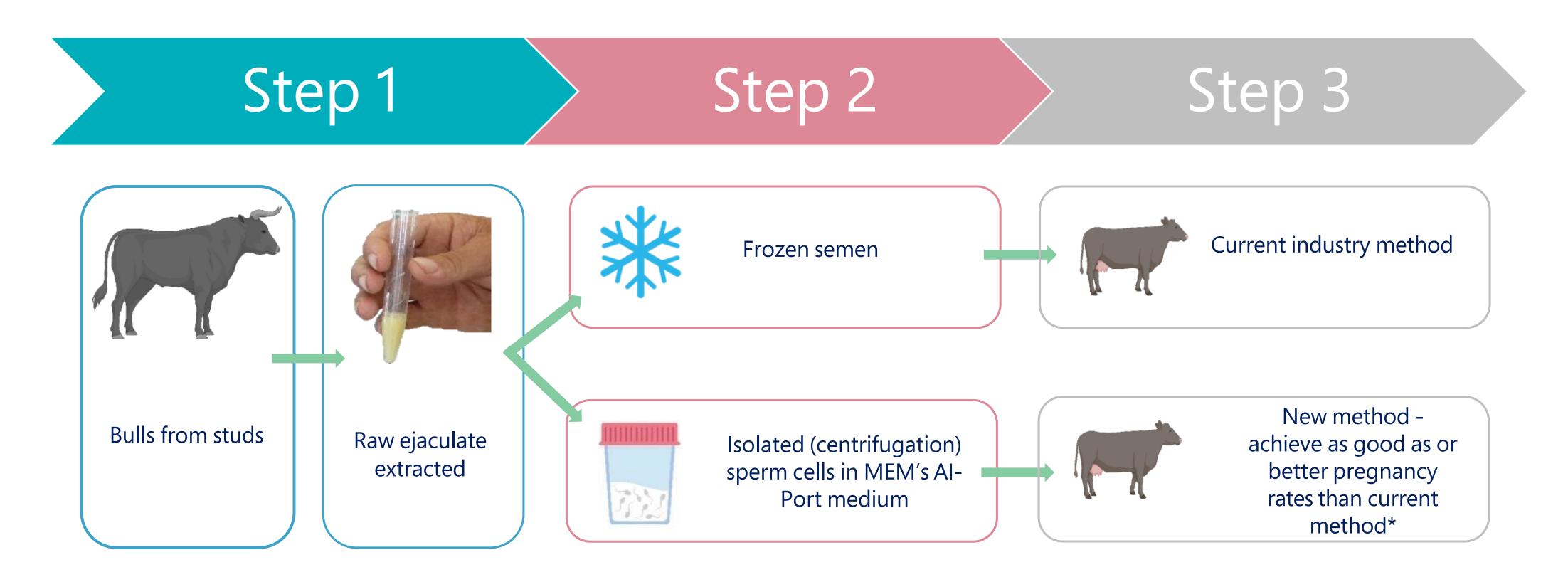

- Initial target: beef cattle growing need to improve genetics in high end cattle breeds e.g. wagyu, Black Angus
- Later applications: high end dairy, horse* (non-thoroughbred)
- Capacity to collect and transport at ambient temperature (once tested) should produce a better pregnancy / genetic outcome
- Being able to do this with reduce number of cells may lead to a great pregnancy yield.

Heritable production traits	Degree of heritability			
	Low	Medium	High	
"Mothering" ability				
Fertility				
Birth weight		√		
Milk production		√		
Growth rate		√		
Feed conversion ratio			√	
Marbling				
Mature weight			√	
Emissions improvements				


THE ISSUE: Al technology is antiquated and needs improvement

Current Process

AI PORT:


MEM's new protocol to prepare sperm for Al without freezing

SPRING '23 STUDY DESIGN

FIELD TRIAL AIM: Achieve pregnancies that are at least as good as those obtained with traditional sperm cryopreservation and AI*

^{*}Even a small improvement, on the industry average rate of 40% pregnancy rate, would provide a substantial economic benefit. Source: Industry interviews