EXCEPTIONAL CLAY HOSTED RARE EARTH GRADES INTERSECTED AT POÇOS

Enova Mining Limited ("Enova") is pleased to announce high grade REE assay results from sampling at Poços ${ }^{1}$

KEY HIGHLIGHTS

- Enova confirms significant assay results for a non-invasive shallow subsurface auger sampling programme at Poços; highlights of these are results greater than 2,000 ppm TREO ${ }^{2}$ are as follows:

A1-TR001-001 including 3m @2,744
A1-TR003-001 including 3m @3,030
A1-TR006-001 including 3m @3,508
A1-TR008-001 including 2m @2,113
A1-TR009-001 including 3m @3,964
A1-TR010-001 including 3m @2,524
A2-TR001-001 including 1m @2,786
A2-TR002-001 including 2m @2,043
A2-TR006-001 including 2m @2,099
A3-TR002-001 including 3m @2,306
A3-TR005-001 including 2m @2,145
A4-TR001-001 including 2m @2,488
A4-TR001-001 including 3m @4,950

- Peak rare earth element (REE) assays were 5,158 ppm TREO or $\mathbf{0 . 5 2 \%}$ TREO, 5,042 ppm TREO or $\mathbf{0 . 5 0 \%}$ TREO, $\mathbf{4 , 6 5 0} \mathrm{ppm}$ TREO or $\mathbf{0 . 4 7 \%}$ TREO, providing guidance for a high-grade exploration target at Poços,
- REE enriched tenements at Poços confirm the areas' potential for a prospect scale high grade REE deposit,
- Shallow surface and subsurface sampling confirmed surface saprolite clay systems across all Poços tenements, with potential deeper mineralisation upside.
- The project is located nearby to townships, well-developed highways, infrastructure, water access, hydroelectric power and well connected to a commercial port.

[^0]
ANNOUNCEMENT

Enova Mining Ltd (ASX: ENV) ("Enova" or the "Company") is pleased to announce assay results from non-invasive shallow surface and subsurface auger sampling at Poços tenements 832.174/2023, 832.175/2023, 832.177/2023, 832.179/2023 and 830.652/2020. The locations of the auger sampling and significant assay intercepts are provided in Figure 2. In accordance with ASX reporting of mineral results, details of the sampling, assay results and other technical details are contained in JORC Table 1 and Significant Results and Auger Sampling Data for Poços Project in Table 2 in Appendix A.

The Poços alkaline complex massif region (Poços) hosts world-class rare earth element (REE) mineral discoveries. Enova aims to replicate the success of peers in the region. Refer to Figure 1 (below) for a location plan of Enova's tenements and surrounding tenements of IAC REE significance.

Figure 1: Regional location of Poços tenements

Enova is assessing results from the current exploration program and the potential for future air-core drilling program. Regarding tenements overlain by the Pedra Branca APA area and buffer zone, identified during Due Diligence, further clarification is being sought regarding requirements for more impactful exploration in the future, such as air-core/reverse circulation drilling and future development.

Mr. Eric Vesel Managing Director of Enova, commented:

"The assay results from the Poços sampling programme confirm the prospectivity of the tenements, which is not surprising for tenements within the alkaline complex. The largest tenement, located near the southern rim of the complex, was encouraging but with mixed results (Above and below 1000ppm TREO). Overall, the Poços results have returned exceptional nearsurface grades which has significant unexplored deeper saprolite strata worthy of follow up exploration. This Phase 1 exploration work was part of our initial reconnaissance to investigate our portfolio of prospective REE tenements.
Our team is currently focused on the CODA maiden drill programme; we recognise the importance of assessing all our other projects. We have arranged a consulting exploration team to explore our Juquiá tenements, a potential carbonatite prospect. There is also REE potential within our Santo Antonio (do Jacinto) tenements based on a strong thorium anomaly ${ }^{3}$, as shared by SI6's Pimenta Project.
Enova is now in the envious position of holding two major potential IAC REE project areas: POÇOS and CODA with further areas currently under investigation. It's remarkable that in such a short period of time, Enova has acquired and brought from concept to exploration stage, two major projects with significant upside and worthy of development."

GEOLOGICAL SETTING

The late Cretaceous isolated circular structure referred as the Poços de Caldas Alkaline complex massif represents the second largest known alkaline igneous occurrences worldwide, extending over an area of more than 800 sq.km in southeastern Brazil. At Poços de Caldas, lateritic and allitic weathering of phonolites and nepheline syenites with magmatic hydrothermal REE enrichments further elevated metal concentrations. In most cases, weathering breaks down REE minerals, which may then be dispersed into the sub-surface strata, adsorbed in their ionic form onto mineral surfaces, especially clays. The latter process can generate Ionic Adsorption Clay (IAC) deposits from which the REEs are relatively easily recovered ${ }^{4}$.

AUGER PROGRAMME

The exploration program sampling grids ranged from $100 \times 100 \mathrm{~m}$ to $500 \times 500 \mathrm{~m}$ spacings based on the dimensional extent of tenements. Hand-held auger equipment was used to

[^1]recover samples ${ }^{5}$, with no environmental impact. Sampling locations were adjusted to coincide with existing disturbed area, such as cleared roadside areas, tracks and historic cuttings, which allowed Enova's exploration team to complete the program with no intervention to the environment. All holes were vertical to a maximum achievable depth of 6 metres.

Samples taken, from surface to 6 meters in depth, support near-surface occurrences of supergene enriched IAC REE mineralisation in the saprolitic clay system, recognising that significant unexplored saprolite zone remains below and likely to continue at depth. This offers significant upside to the extent of mineralisation within the tenements.

NEXT PHASE

Enova will decide on the next phases of exploration and development based on the evaluation of the current auger sampling results, environmental factors and assessment of operational constraints.

DEVELOPMENT CONSIDERATIONS

Enova recognises two environmentally sensitive areas within the municipality of Caldas which overlay several of Enova's tenements, namely:

- Environmental Protection Area ("APA") Serra da Pedra Branca Ecological Sanctuary (vide Municipal Law of Caldas/MG n ${ }^{\circ} 1.973 / 2006^{6}$) and
- 3 km strip surrounding the APA ("Buffer Zone").

The future decisions to undertake work, would depend on the evaluation of potential of mineralisation within the tenements and assessment of operational constraints for further work and development restrictions.

ATTRACTIVE BUSINESS ENVIRONMENT

Brazil has a developed and sophisticated mining industry, and is amongst the leading exporters of iron ore, tin, bauxite, manganese, copper, gold, rare earths and lithium. The country investment risk is low. Enova is amongst many established ASX and TSX explorers operating in Brazil and the State of Minas Gerais for good reason:

- Mining is recognised as a key economic industry,
- Progressive mining policies, seeking investment, encouraging explorers and new developments,
- Mining investment free of government mandated ownership,
- Low sovereign risk and government interference,
- Attractive cost base and sophisticated support network for the mining industry,
- High level of exploration/mining technical skills and expertise in country

[^2]
BOARD COMMITMENT

The Enova Board recognise the demands on company resources (personnel and finances) with many activities in progress in Brazil. Given the magnitude of the CODA drilling programme, further concurrent exploration drilling in Brazil will be on-hold until results are received in part or full. In the meantime, our team will review the Poços sampling results, assess development requirements and provide recommendations.

Enova also remains committed to the development of the Charley Creek rare earth project with ongoing activities proceeding without disruption. The Company will also continue to review projects and business opportunities are they arise.

The market will be kept appraised of developments, as required under ASX Listing Rules and in accord with continuous disclosure requirements.

Approved for release by the Board of Enova Mining Limited

Eric Vesel,

Enova Mining Limited

CEO/ Executive Director
Contact: eric@enovamining.com

Competent Person Statement

The information related to Exploration Targets and Exploration Results is based on data compiled by Subhajit Deb Roy, a Competent Person and Chartered Member of The Australasian Institute of Mining and Metallurgy. Mr Deb Roy is currently working as Exploration Manager with Enova Mining. Subhajit has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Subhajit consents to the inclusion in presenting the matters based on his information in the form.

Figure 2: Auger sampling locations for the Poços Project, showing $>2,000$ ppm TREO significant intercepts

Forward-looking statements

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Disclaimer

This ASX announcement (Announcement) has been prepared by Enova Mining Limited ("Enova" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Enova, its subsidiaries, and their activities, which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Enova.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Enova's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are many risks, both specific to Enova and of a general nature which may affect the future operating and financial performance of Enova and the value of an investment in Enova including but not limited to economic conditions, stock market fluctuations, commodity price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Enova and its projects, are forward-looking statements that: may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions; are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Enova, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and, involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Enova disclaims any intent or obligation to update publicly any forward-looking statements, whether because of new information, future events, or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements. All forward-looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantee of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein. No verification: although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified

APPENDIX A

JORC TABLE 1

Section 1 - Sampling Techniques and Data

Criteria	Explanation
Sampling techniques	Samples collected from cuttings recovered by powered handheld auger drilling performed by RTB Geologia e Mineração Ltda. Samples were collected in intervals averaging 1 metre based on variation of lithology, mineralisation and followed by coning and quartering of the cuttings to prepare homogeneous and representative sample for assaying. Sampling intervals were carefully selected based on the target mineralization, so as to better characterise mineralogy and lithology visually distinguished. Each auger location was carefully positioned to avoid clearing with minimal surface disturbance but also free of vegetation contaminants. Samples generated from the auger were collected on small tarps placed on either side of the hole and samples of soil and saprolite where collected every 1 m of run. These samples were logged, photographed with subsequent packing of the sample in plastic bags.
Drilling techniques	All holes were vertical. The maximum depth attained was 6 metres, provided the hole did not encounter obstruction by fragments of rocks/boulders within the weathered profile and/or excessive water. The end of hole depth was measured according to the length of rods used in the hole.
Drill sample recovery	The sample recovered per 1 metre interval drilled based on visual assessment. Recoveries were generally in a range over 70\%. If the recovery dropped below 70\% recovery in a 1 m interval, the field crew redrilled the hole.
Logging	Preliminary field lithological logging was performed by professional geologists. Simple lithology is described in a log sheet for every 1 m . and photographed.
Sub-sampling techniques and sample preparation	Samples are weighed. Wet samples are dried, remotely at our sample warehouse, for several days on rubber mats. Dried samples are screened (5 mm). Samples were prepared by coning and quartering and homogeneously reduced. Finally, 2 kg sample was sent to the lab, SGS Geosol laboratory in Minas Gerais. At the lab, SGS-Geosol commercial laboratory, in Belo Horizonte, the samples were crushed to a nominal 2 mm using a jaw crusher before being split using a rotary splitter (or riffle splitter when rotary splitter is not available) into 200g samples for pulverising. Samples were pulverised to a nominal $>90 \%$ passing 75 micron for which a 100 g sample was then selected for analysis. A spatula was used to sample from the pulverised sample for digestion.
Quality of assay data and laboratory tests	Industry standard protocols were used by SGS-Geosol to prepare the samples for analysis. Samples were dried, and a sub sample of 200 g was pulverised. For rare earth element analysis, samples were prepared with lithium/Metaborate fusion and analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).

	used to check on sample submission and as a check for receipt of assays. Samples were bundled, wrapped and dispatched by secure freighter to the laboratory.
Audits or reviews	QA/QC samples are included amongst the submitted samples. Both standard (Certified Reference Material Oears 460) samples, field duplicates and blank QA/QC samples were included in the sample submission.

Section 2 - Reporting of Exploration Results

Criteria	Explanation
Mineral tenement and land tenure status	The tenements (Figure1) are held by RTB Geologia e Mineração Ltda, who filled transfer documents in favour of Rafael Mottin, at the ANM, Brazil's National mining authority. The tenements are in the process of transfer to Enova Mining Limited ("100\%"). Enova is aware of two environmental areas (Pedra Branca APA and Buffer Zone) within the municipality of Caldas that overlay several of Enova's tenements. Enova is assessing results from the exploration program and the scope of potential for air- core drilling in the future. Further clarification is being sought regarding requirements for more impactful exploration in the region, such as air-core/reverse circulation drilling and future development.
Exploration done by other parties	These tenements have not been previously explored. The Phase 1 exploration campaign fieldwork was undertaken by RTB Geologia e Mineração Ltda on contract.
Geology	The project areas are in and near the Poços De Caldas Alkaline complex, and mineralisation occurs largely within the Phonolite and Nepheline Syenite lithologies. At Poços de Caldas, lateritic and allitic weathering of phonolites and nepheline syenites with magmatic hydrothermal REE enrichments further elevated metal concentrations. In most cases, weathering breaks down REE minerals, which may then be dispersed into the sub-surface strata adsorbed in ionic form onto mineral surfaces, especially clays. The latter process can generate lonic Adsorption Clay (IAC) deposits from which the REEs are relatively easily recovered7
A summary of all information material to the understanding of the exploration results	
including a tabulation of the following information for all drill holes presented in the	
tables below:	
Table 1 JORC	
Information	
Table 2 Significant Results and Auger Sampling Data for Poços Project	

[^3]| HOLEID | X EAST (UTM OR LL) | Y NORTH (UTM OR LL) | ELEV (Z) | COORDINATESET | DEPT H (m) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1- TR001-001 | 352298 | 7573521 | 1116.00 | UTM WGS84 | 3 |
| A1- TR002-001 | 352301 | 7573391 | 1088.00 | UTM WGS84 | 3 |
| A1- TR003-001 | 352245 | 7572799 | 1114.00 | UTM WGS84 | 3 |
| A1- TR004001 | 352248 | 7572812 | 1143.00 | UTM WGS84 | 3 |
| A1- TR005-001 | 352098 | 7572840 | 1108.00 | UTM WGS84 | 3 |
| A1- TR006-001 | 351997 | 7573027 | 1096.00 | UTM WGS84 | 3 |
| A1- TR007-001 | 352123 | 7572818 | 1097.00 | UTM WGS84 | 3 |
| A1- TR008-001 | 352059 | 7572784 | 1095.00 | UTM WGS84 | 2 |
| A1- TR009-001 | 352278 | 7572978 | 1109.00 | UTM WGS84 | 3 |
| A1- TR010-001 | 352438 | 7573460 | 1102.00 | UTM WGS84 | 3 |
| A2- TR001-001 | 353431 | 7572759 | 1088.00 | UTM WGS84 | 1 |
| A2- TR002-001 | 353838 | 7572748 | 1111.00 | UTM WGS84 | 2 |
| A2- TR003-001 | 353832 | 7572704 | 1143.00 | UTM WGS84 | 3 |
| A2- TR004001 | 353389 | 7572488 | 1082.00 | UTM WGS84 | 3 |
| A2-TR005-001 | 353404 | 7572305 | 1085.00 | UTM WGS84 | 3 |
| A2- TR006-001 | 353847 | 7572341 | 1089.00 | UTM WGS84 | 1 |
| A2- TR007-001 | 353685 | 7572558 | 1100.00 | UTM WGS84 | 3 |
| A2- TR008-001 | 353819 | 7572314 | 1101.00 | UTM WGS84 | 2 |
| A2- TR009-001 | 353807 | 7572512 | 1098.00 | UTM WGS84 | 2 |
| A2- TR010-001 | 353834 | 7572464 | 1075.00 | UTM WGS84 | 3 |
| A3- TR001-001 | 354358 | 7560998 | 1203.00 | UTM WGS84 | 5 |
| A3- TR002-001 | 354383 | 7587200 | 1195.00 | UTM WGS84 | 5 |
| A3- TR003-001 | 354885 | 7587220 | 1191.00 | UTM WGS84 | 5 |
| A3- TR004001 | 355172 | 7587502 | 1175.00 | UTM WGS84 | 5 |
| A3- TR005-001 | 354173 | 7568504 | 1173.00 | UTM WGS84 | 5 |
| A4 TR001-001 | 341779 | 7568130 | 1305.00 | UTM WGS84 | 5 |
| A4 TR002-001 | 341780 | 7567957 | 1305.00 | UTM WGS84 | 5 |
| A4 TR003-001 | 342172 | 7567964 | 1292.00 | UTM WGS84 | 5 |
| A4 TR004001 | 342028 | 7567951 | 1294.00 | UTM WGS84 | 5 |
| A4 TR005-001 | 342310 | 7567934 | 1294.00 | UTM WGS84 | 5 |
| A5- TR001-001 | 351178 | 7562697 | 1274.00 | UTM WGS84 | 3 |
| A5- TR002-001 | 350898 | 7582711 | 1225.00 | UTM WGS84 | 3 |
| A5- TR003-001 | 351157 | 7563100 | 1252.00 | UTM WGS84 | 2 |
| A5- TR004001 | 350879 | 7582215 | 1272.00 | UTM WGS84 | 4 |
| A5- TR005-001 | 350177 | 7582202 | 1235.00 | UTM WGS84 | 3 |
| A5- TR006-001 | 350177 | 7582898 | 1283.00 | UTM WGS84 | 3 |
| A5- TR007-001 | 349691 | 7562894 | 1287.00 | UTM WGS84 | 3 |
| A5- TR008-001 | 349883 | 7582208 | 1157.00 | UTM WGS84 | 3 |
| A5- TR009-001 | 349678 | 7581707 | 1150.00 | UTM WGS84 | 3 |
| A5- TR010-001 | 349183 | 7581708 | 1087.00 | UTM WGS84 | 3 |
| A5- TR011-001 | 349189 | 7561197 | 1084.00 | UTM WGS84 | 3 |
| A5- TR012-001 | 349873 | 7560718 | 995.00 | UTM WGS84 | 3 |
| A5- TR013-001 | 351187 | 7582204 | 1310.00 | UTM WGS84 | 3 |
| A5- TR014001 | 351180 | 7561700 | 1255.00 | UTM WGS84 | 3 |
| A5- TR015-001 | 350884 | 7581708 | 1241.00 | UTM WGS84 | 3 |
| A5- TR016-001 | 350879 | 7581213 | 1163.00 | UTM WGS84 | 3 |
| A5- TR017-001 | 351178 | 7561204 | 1102.00 | UTM WGS84 | 3 |
| A5- TR018-001 | 351681 | 7581711 | 1084.00 | UTM WGS84 | 3 |
| A5- TR019-001 | 351680 | 7581209 | 1009.00 | UTM WGS84 | 3 |
| A5- TR020-001 | 351682 | 7560712 | 937.00 | UTM WGS84 | 3 |
| A5- TR021-001 | 347880 | 7581710 | 1141.00 | UTM WGS84 | 3 |
| A5- TR022-001 | 347808 | 7581207 | 1081.00 | UTM WGS84 | 3 |
| A5- TR023-001 | 348181 | 7581710 | 1049.00 | UTM WGS84 | 3 |
| A5- TR024001 | 348873 | 7581704 | 1082.00 | UTM WGS84 | 3 |
| A5- TR025-001 | 348878 | 7581222 | 974.00 | UTM WGS84 | 3 |
| A5- TR026-001 | 349182 | 7560704 | 1005.00 | UTM WGS84 | 3 |
| A5- TR027-001 | 348182 | 7560707 | 931.00 | UTM WGS84 | 2 |
| A5- TR028-001 | 348700 | 7560730 | 933.00 | UTM WGS84 | 3 |
| A5- TR029-001 | 348189 | 7560208 | 933.00 | UTM WGS84 | 3 |
| A5- TR030-001 | 348092 | 7560214 | 921.00 | UTM WGS84 | 3 |
| A5- TR031-001 | 349189 | 7582203 | 1180.00 | UTM WGS84 | 3 |
| A5- TR032-001 | 349185 | 7582871 | 1182.00 | UTM WGS84 | 3 |
| A5- TR033-001 | 350187 | 7581701 | 1077.00 | UTM WGS84 | 3 |
| A5- TR034001 | 351183 | 7560708 | 1042.00 | UTM WGS84 | 2 |
| A5- TR035-001 | 351690 | 7582219 | 1311.00 | UTM WGS84 | 4 |
| A5- TR036-001 | 349880 | 7581196 | 927.00 | UTM WGS84 | 3 |
| A5- TR037-001 | 349872 | 7559705 | 933.00 | UTM WGS84 | 3 |
| A5-TR038-001 | 350183 | 7581208 | 994.00 | UTM WGS84 | 2 |
| A5- TR039-001 | 349888 | 7560201 | 955.00 | UTM WGS84 | 4 |
| A5- TR040-001 | 350181 | 7560201 | 900.00 | UTM WGS84 | 3 |
| A5- TR041-001 | 350184 | 7559714 | 911.00 | UTM WGS84 | 5 |
| A5- TR042-001 | 350883 | 7560702 | 1009.00 | UTM WGS84 | 3 |
| A5- TR043-001 | 350190 | 7560898 | 1017.00 | UTM WGS84 | 4 |
| A5- TR044001 | 350805 | 7560199 | 943.00 | UTM WGS84 | 5 |
| A5- TR045-001 | 350878 | 7559704 | 909.00 | UTM WGS84 | 6 |
| A5- TR046-001 | 349180 | 7560211 | 94200 | UTM WGS84 | 4 |
| A5- TR047-001 | 347883 | 7580215 | 907.00 | UTM WGS84 | 6 |

The coordinates of holes are determined using hand-held GPS, with the stated datum given above.

Data aggregation methods	The reporting of significant results is based on length weighted averaging. The average compositing calculation is based on the aggregation of intervals with no more than 3 consecutive assays below the cut-off of $1,000 \mathrm{ppm}$ TREO and the overall aggregated grade being greater than $1,000 \mathrm{ppm}$ TREO. All assays are below the high-grade top cut point of $5,158.2 \mathrm{ppm}$ and no maximum top-cut was applied. Al sample results are presented in Table 2. The conversion of elemental assay results to expected common rare earth oxide products, uses conversion factors applied relating to the atomic composition of common rare earth oxide sale products. The following calculation for TREO provides REE to RE oxide conversion factors and lists the REE included: $\begin{aligned} \text { TREO }= & \left(\mathrm{Ce}^{*} 1.23\right)+\left(\mathrm{Dy}^{*} 1.15\right)+\left(\mathrm{Er}^{\star} 1.14\right)+\left(\mathrm{Gd}^{\star} 1.15\right)+\left(\mathrm{Ho} \mathrm{H}^{*} 1.15\right)+(\mathrm{la} * 1.17)+\left(\mathrm{Lu}^{*} 1.14\right)+ \\ & \left(\mathrm{Nd}^{*} 1.17\right)+\left(\mathrm{Pr}^{*} 1.21\right)+\left(\mathrm{Sm}^{*} 1.16\right)+\left(\mathrm{Tb}^{*} 1.18\right)+\left(\mathrm{Tm}^{*} 1.14\right)+\left(\mathrm{Y}^{*} 1.27\right)+\left(\mathrm{Yb}^{*} 1.14\right) \end{aligned}$
Relationship between mineralisation widths and intercept lengths	Auger sampling drillholes are vertical, which is closely perpendicular to mineralized horizons. Intervals reflect the true width and no correction needed to be applied.
Diagrams	Auger drillholes collar location plan provided in Figure 2. Table of all down hole auger results presented in Table 2 (Appendix).
Balanced reporting	All assay data has been reported, without modification. Individual rare earth element grades are not presented, as the auger drilling is to provide an indication of the prospectivity at this stage. The presentation of the drilling data is not for extrapolation to be indictive of any resource estimate. The results provide encouragement that further deep drilling is required and intercepts with grades exceeding $1,000 \mathrm{ppm}$ TREO are possible.
Other substantive exploration data	Information about historical data is not available as the area was not formally explored. However, the data of previous research in the same region are used after proper verification of reliability and with the mention of reference to the source of data.
Environment	No disturbance nor environmental intervention was carried nor needed to complete the auger sampling program. The auger sampling program coincides with existing cleared roadside areas, tracks and historic cuttings.
Further work	Auger holes by Enova were extending down to a depth of 6 m in the Poços tenements. Step-out, infill and deep drill holes are required and where possible close spaced drilling on a regularly spaced grid (where topography permits) would be undertaken in the next phase subject to government permits.

Table 2 - Significant Results and Auger Sampling Data for Poços Project

Drillhole ID	FROM	то	SAMPLE ID	La203	CeO2	Pr6011	Nd2O3	Sm203	Eu203	Gd2O3	Tb407	Dy203	Ho2O3	Er2O3	Tm203	Yb203	Lu203	Y203	TREO(inc Y203)
				ppm															
A1-TR001-001	0.00	1.00	00001	984.7	786.5	167.3	517.4	66.3	19.7	56.4	7.4	38.8	6.4	16.4	1.9	10.6	1.3	230.4	2,911.3
A1-TR001-002	1.00	2.00	00002	905.4	764.7	155.9	477.9	61.3	16.6	47.1	6.0	32.0	5.5	13.9	1.7	9.8	1.3	181.6	2,680.6
A1-TR001-003	2.00	3.00	00003	908.3	683.8	153.4	471.3	63.2	17.7	52.6	6.8	36.5	6.0	14.8	1.8	9.7	1.2	213.3	2,640.7
A1-TR002-001	0.00	1.00	00004	476.3	677.6	86.1	270.1	35.1	9.7	27.2	3.6	20.1	3.2	8.7	1.0	6.0	0.8	108.8	1,734.4
A1-TR002-002	1.00	2.00	00005	395.9	625.1	76.7	243.5	32.0	9.0	24.7	3.1	17.4	3.0	7.2	0.9	5.2	0.6	92.2	1,536.8
A1-TR002-003	2.00	3.00	00006	459.7	598.1	87.4	278.3	37.5	10.5	27.9	3.6	19.3	3.2	7.7	0.9	5.7	0.7	98.6	1,639.3
A1-TR003-001	0.00	1.00	00007	1,229.8	751.5	171.9	490.2	57.3	15.1	46.2	6.0	32.4	5.9	15.3	2.0	11.8	1.6	203.7	3,040.7
A1-TR003-002	1.00	2.00	00008	1,194.5	754.8	163.8	463.6	55.2	15.2	49.1	6.1	34.0	6.0	15.7	1.8	11.0	1.4	223.8	2,996.1
A1-TR003-003	2.00	3.00	00009	1,307.2	648.7	171.4	485.8	57.7	16.8	53.3	6.7	35.3	6.2	16.0	1.8	10.2	1.4	235.6	3,054.1
A1-TR004-001	0.00	1.00	00010	696.4	650.7	130.1	413.8	55.9	15.5	43.8	5.7	29.9	4.9	12.1	1.4	8.2	1.0	154.2	2,223.4
A1-TR004-002	1.00	2.00	00011	543.1	626.3	106.0	341.6	47.0	13.6	37.1	4.8	26.0	4.1	10.6	1.2	7.1	0.9	135.8	1,905.2
A1-TR004-003	2.00	3.00	00012	348.8	560.1	71.8	235.4	33.2	9.5	25.4	3.5	19.3	3.3	8.7	1.0	6.3	0.8	101.7	1,428.7
A1-TR005-001	0.00	1.00	00013	823.6	500.9	124.6	362.3	43.8	11.7	33.4	4.2	21.5	3.6	9.2	1.2	6.8	0.9	121.1	2,068.8
A1-TR005-002	1.00	2.00	00014	427.6	663.4	72.6	207.8	24.9	7.0	18.5	2.5	13.3	2.4	6.7	0.8	5.4	0.7	77.2	1,530.9
A1-TR005-003	2.00	3.00	00015	346.2	649.4	60.0	176.6	21.1	5.9	15.5	2.1	11.5	2.0	5.7	0.8	4.9	0.6	68.4	1,370.7
A1-TR006-001	0.00	1.00	00016	928.2	873.6	172.1	540.0	68.9	18.2	49.0	5.9	32.1	5.4	14.1	1.8	10.7	1.4	173.8	2,895.3
A1-TR006-002	1.00	2.00	00017	1,310.2	725.7	248.2	792.8	106.2	29.6	81.1	10.2	51.8	8.6	22.3	2.6	14.8	1.9	286.3	3,692.3
A1-TR006-003	2.00	3.00	00018	1,381.6	734.9	259.5	827.2	114.3	33.2	96.4	12.0	63.3	10.5	26.6	3.0	17.5	2.0	354.9	3,937.1
A1-TR007-001	0.00	1.00	00019	334.4	966.9	57.2	168.9	21.3	5.8	15.6	2.3	14.0	2.7	8.4	1.2	8.2	1.0	87.8	1,695.7
A1-TR007-002	1.00	2.00	00020	359.5	848.3	58.8	175.0	20.4	5.8	15.7	2.2	13.5	2.5	7.8	1.1	7.3	0.9	83.6	1,602.2
A1-TR007-004	2.00	3.00	00022	517.4	464.4	75.9	221.4	25.2	6.7	17.6	2.4	14.2	2.5	7.8	1.0	6.4	0.8	82.8	1,446.6
A1-TR008-001	0.00	1.00	00024	689.2	720.1	119.9	370.3	48.1	13.5	37.5	4.6	24.3	4.3	10.8	1.3	7.6	1.0	135.4	2,188.0
A1-TR008-002	1.00	2.00	00025	566.4	810.0	100.4	312.0	40.1	11.1	30.6	3.8	21.0	3.7	10.0	1.2	7.3	0.9	119.4	2,037.9
A1-TR009-001	0.00	1.00	00026	1,205.6	847.7	200.7	597.7	72.0	18.5	49.8	6.1	32.3	5.3	14.2	1.8	10.9	1.4	168.7	3,232.6
A1-TR009-002	1.00	2.00	00027	1,795.7	663.0	284.8	848.7	99.5	26.0	74.9	9.3	49.3	8.4	22.0	2.7	16.1	1.9	277.8	4,180.1
A1-TR009-003	2.00	3.00	00028	1,820.5	850.9	289.8	864.4	105.8	28.6	83.6	10.5	55.1	9.3	25.0	2.9	17.4	2.1	313.6	4,479.5
A1-TR010-001	0.00	1.00	00029	769.0	762.9	138.2	443.1	61.2	18.2	54.4	7.1	37.4	6.5	16.4	1.9	10.8	1.3	229.0	2,557.5
A1-TR010-002	1.00	2.00	00030	856.1	754.7	150.3	480.2	65.6	20.2	61.8	8.1	44.3	7.5	18.4	2.1	11.7	1.3	270.3	2,752.8
A1-TR010-003	2.00	3.00	00031	649.2	739.5	118.2	378.6	52.4	15.3	45.7	6.0	32.4	5.5	14.0	1.6	9.6	1.2	193.8	2,263.1

Drillhole ID	FROM	то	SAMPLE ID	La2O3	CeO 2	Pr6011	Nd2O3	Sm203	Eu203	Gd203	Tb407	Dy203	Ho2O3	Er203	Tm203	Yb203	Lu203	Y203	TREO(inc Y2O3)
				ppm															
A2-TR001-001	0.00	1.00	00033	794.9	1,177.9	106.9	348.7	51.5	13.4	36.8	4.4	25.2	5.0	16.4	2.5	17.2	2.3	182.5	2,785.7
A2-TR002-001	0.00	1.00	00034	303.7	656.0	78.5	318.0	54.3	14.2	37.4	3.8	18.3	2.8	6.9	0.8	4.9	0.6	84.3	1,584.5
A2-TR002-002	1.00	2.00	00035	659.0	1,094.0	92.9	307.7	47.9	12.6	34.2	4.2	24.3	4.7	16.0	2.5	16.9	2.2	182.2	2,501.1
A2-TR003-001	0.00	1.00	00036	256.4	578.4	65.6	256.8	42.7	10.4	26.7	2.8	12.9	2.0	5.1	0.6	3.9	0.5	64.1	1,328.8
A2-TR003-002	1.00	2.00	00037	348.3	734.8	88.3	350.3	58.8	16.1	40.1	4.2	18.7	2.9	7.0	0.9	4.9	0.6	86.1	1,761.9
A2-TR003-003	2.00	3.00	00038	291.0	653.0	73.9	283.3	46.0	11.4	29.8	3.1	13.9	2.0	5.1	0.6	3.9	0.5	64.6	1,482.2
A2-TR004-001	0.00	1.00	00039	285.3	680.9	64.8	232.2	37.3	9.5	23.2	2.6	13.0	2.0	5.9	0.7	4.9	0.6	60.5	1,423.6
A2-TR004-002	1.00	2.00	00040	272.0	662.5	63.4	227.0	38.5	9.5	23.7	2.6	12.7	2.0	5.4	0.7	4.4	0.6	59.0	1,383.9
A2-TR004-003	2.00	3.00	00041	345.1	674.1	72.1	251.7	39.8	9.5	23.3	2.6	12.5	2.0	5.3	0.7	4.3	0.5	56.1	1,499.6
A2-TR005-001	0.00	1.00	00042	340.5	730.6	58.9	201.0	32.5	8.1	21.5	2.5	14.4	2.5	7.8	1.1	7.7	0.9	88.2	1,518.2
A2-TR005-002	1.00	2.00	00043	327.3	753.6	50.9	161.5	23.3	6.6	17.4	2.2	12.9	2.5	8.0	1.2	8.5	1.1	93.7	1,470.9
A2-TR005-004	3.00	4.00	00045	347.3	732.8	58.0	193.3	29.2	7.8	20.8	2.5	13.4	2.6	7.7	1.1	7.1	1.0	88.5	1,513.0
A2-TR006-001	0.00	1.00	00047	393.7	814.3	80.6	294.9	51.8	14.4	39.1	5.1	28.1	4.8	13.2	1.6	9.2	1.1	154.0	1,905.9
A2-TR006-002	1.00	2.00	00048	407.4	864.9	101.6	399.0	76.0	21.4	60.4	7.9	43.3	7.6	20.6	2.4	14.2	1.7	263.0	2,291.5
A2-TR007-001	0.00	1.00	00049	269.7	609.9	61.9	231.3	39.1	9.7	24.3	2.5	11.9	1.8	5.3	0.7	4.1	0.5	57.7	1,330.5
A2-TR007-002	1.00	2.00	00050	277.5	617.3	64.2	240.4	38.4	9.8	24.7	2.6	12.4	1.9	5.2	0.7	4.1	0.6	58.3	1,358.0
A2-TR007-003	2.00	3.00	00051	256.3	591.8	61.4	234.2	38.6	9.9	24.3	2.6	12.0	1.9	5.3	0.7	4.2	0.5	62.9	1,306.6
A2-TR008-001	0.00	1.00	00052	277.0	637.6	74.7	299.2	48.2	12.2	33.3	3.6	16.3	2.8	7.1	0.9	5.5	0.7	93.5	1,512.6
A2-TR008-002	1.00	2.00	00053	286.9	659.6	78.4	316.6	52.3	13.8	37.0	3.8	18.4	3.0	7.8	1.0	6.1	0.8	93.4	1,578.9
A2-TR009-001	0.00	1.00	00054	342.1	778.7	96.2	399.5	67.8	17.6	45.0	4.6	21.6	3.5	8.8	1.1	6.8	0.9	118.1	1,912.2
A2-TR009-002	1.00	2.00	00055	286.9	650.5	81.3	343.6	56.6	15.1	39.2	4.2	18.5	3.1	7.9	1.0	6.0	0.8	104.7	1,619.5
A2-TR010-001	0.00	1.00	00056	293.4	658.9	80.2	323.4	51.8	12.3	33.4	3.5	16.4	2.4	6.4	0.7	4.4	0.6	78.8	1,566.8
A2-TR010-002	1.00	2.00	00057	260.0	602.3	72.3	298.7	49.2	11.7	31.8	3.4	15.4	2.4	6.3	0.7	4.3	0.6	79.8	1,439.0
A2-TR010-003	2.00	3.00	00058	250.4	571.8	67.6	275.3	43.6	10.8	28.1	2.8	12.3	1.8	4.6	0.5	3.3	0.4	60.7	1,334.1

Drillhole ID	FROM	то	SAMPLE ID	La2O3	$\mathrm{CeO2}$	Pr6011	Nd2O3	Sm203	Eu203	Gd2O3	Tb407	Dy203	Ho2O3	Er203	Tm203	Yb203	Lu203	Y203	TREO(inc Y203)
				ppm															
A3-TR001-001	0.00	1.00	00059	320.3	699.9	76.5	295.7	47.1	11.8	30.8	3.2	15.1	2.3	6.0	0.7	4.7	0.6	69.2	1,583.9
A3-TR001-002	1.00	2.00	00060	312.0	703.2	76.6	289.8	46.4	11.3	30.2	3.3	14.1	2.3	5.7	0.7	4.4	0.6	67.9	1,568.5
A3-TR001-003	2.00	3.00	00061	327.4	725.1	95.5	403.6	68.5	17.2	43.3	4.5	19.4	2.9	7.0	1.0	5.2	0.7	79.4	1,800.9
A3-TR001-004	3.00	4.00	00062	326.4	717.4	89.6	372.0	61.2	14.7	37.6	4.0	18.0	2.8	6.4	0.8	5.4	0.7	77.3	1,734.1
A3-TR001-005	4.00	5.00	00063	330.3	769.7	91.4	392.3	64.4	15.7	46.0	5.1	24.0	4.1	11.3	1.4	7.5	0.9	134.9	1,898.9
A3-TR002-001	0.00	1.00	00065	287.8	643.4	75.7	310.6	51.3	13.6	35.1	3.6	15.9	2.3	5.8	0.7	4.2	0.5	60.1	1,510.6
A3-TR002-002	1.00	2.00	00066	393.3	923.9	115.4	483.9	81.9	20.9	52.7	5.1	21.8	3.2	7.7	0.9	5.6	0.7	84.5	2,201.4
A3-TR002-003	2.00	3.00	00067	481.3	1,028.8	131.9	534.3	84.9	19.9	55.2	5.5	24.8	3.7	9.3	1.1	7.4	1.1	103.9	2,493.2
A3-TR002-005	3.00	4.00	00069	391.5	909.0	111.0	467.1	79.1	19.4	57.4	6.1	29.1	4.7	10.6	1.3	7.1	0.9	128.0	2,222.2
A3-TR002-006	4.00	5.00	00071	312.5	736.4	89.1	375.2	61.6	15.2	44.0	4.8	23.5	3.9	10.5	1.2	6.7	0.8	147.9	1,833.4
A3-TR003-001	0.00	1.00	00072	316.8	734.4	84.1	328.7	54.0	13.2	35.0	3.6	14.7	2.2	4.8	0.6	2.8	0.4	58.3	1,653.6
A3-TR003-002	1.00	2.00	00073	308.3	684.7	88.2	359.2	58.2	14.2	37.6	3.7	16.3	2.3	5.3	0.6	3.6	0.4	64.9	1,647.5
A3-TR003-003	2.00	3.00	00074	293.2	643.7	87.2	363.4	59.5	14.8	38.1	3.8	15.8	2.2	5.1	0.5	3.2	0.4	59.9	1,590.8
A3-TR003-004	3.00	4.00	00075	298.9	668.6	89.0	379.3	64.1	15.1	40.5	3.9	16.6	2.3	5.0	0.6	3.1	0.4	60.6	1,648.0
A3-TR003-005	4.00	5.00	00076	315.2	698.7	97.4	426.0	73.5	16.9	43.6	4.4	18.2	2.6	5.7	0.6	3.9	0.5	68.7	1,775.9
A3-TR004-001	0.00	1.00	00077	239.0	586.5	66.7	275.4	46.5	12.9	31.1	3.3	14.7	2.6	8.2	1.1	7.1	1.1	125.7	1,421.8
A3-TR004-002	1.00	2.00	00078	234.9	560.4	66.1	278.4	46.4	12.5	31.4	3.2	14.2	2.3	6.1	0.8	5.8	0.9	96.7	1,360.1
A3-TR004-003	2.00	3.00	00079	219.9	537.0	62.1	260.6	45.0	11.9	29.7	3.0	14.1	2.0	5.2	0.7	4.8	0.7	77.4	1,274.2
A3-TR004-004	3.00	4.00	00080	204.2	491.8	57.2	233.3	38.5	10.1	24.1	2.5	10.5	1.6	3.9	0.4	2.8	0.4	49.2	1,130.7
A3-TR004-005	4.00	5.00	00081	219.9	497.1	63.7	245.8	43.0	11.0	26.8	2.7	11.6	1.7	4.2	0.5	2.8	0.5	53.7	1,185.1
A3-TR005-001	0.00	1.00	00082	345.9	769.8	95.2	358.8	58.4	14.4	34.9	3.4	15.7	2.2	5.3	0.6	3.3	0.4	65.3	1,773.7
A3-TR005-002	1.00	2.00	00083	423.4	986.6	113.5	457.5	72.8	17.8	45.7	4.5	19.2	2.8	6.3	0.8	4.1	0.5	82.0	2,237.5
A3-TR005-003	2.00	3.00	00084	386.4	913.9	104.1	417.7	66.3	15.8	42.4	4.1	16.9	2.5	6.0	0.7	4.2	0.5	71.8	2,053.5
A3-TR005-004	3.00	4.00	00085	347.6	819.0	93.7	371.6	60.2	14.8	38.2	3.7	16.2	2.4	5.7	0.6	4.0	0.4	66.0	1,843.9
A3-TR005-005	4.00	5.00	00086	254.3	589.4	67.4	272.0	42.2	10.6	28.4	2.8	11.6	1.7	4.2	0.5	2.8	0.3	47.1	1,335.3

Drillhole ID	FROM	то	SAMPLE ID	La203	CeO2	Pr6011	Nd2O3	Sm203	Eu203	Gd2O3	Tb407	Dy203	Ho2O3	Er203	Tm203	Yb203	Lu2O3	Y203	TREO(inc Y2O3)
				ppm															
A4-TR001-001	0.00	1.00	00087	499.8	990.2	91.6	262.8	29.3	7.7	18.8	2.7	15.1	2.9	8.3	1.2	7.7	0.9	76.9	2,015.9
A4-TR001-002	1.00	2.00	00088	1,124.0	761.6	206.6	605.5	62.3	14.5	34.1	4.2	20.8	3.8	9.9	1.4	8.8	1.1	102.4	2,961.0
A4-TR001-003	2.00	3.00	00089	2,204.7	984.8	391.1	1,117.6	111.0	26.1	63.4	7.4	34.9	6.1	16.2	2.0	12.4	1.5	178.9	5,158.2
A4-TR001-004	3.00	4.00	00090	2,086.8	673.0	376.1	1,039.6	111.1	26.0	62.2	7.5	36.4	6.2	16.6	2.1	12.3	1.7	192.5	4,650.0
A4-TR001-006	5.00	6.00	00092	2,192.7	900.0	379.4	1,109.1	112.6	26.0	65.4	7.2	34.8	6.2	15.8	2.0	11.8	1.5	178.1	5,042.6
A4-TR002-001	0.00	1.00	00094	120.6	1,114.3	21.1	64.0	9.9	2.9	7.9	1.5	9.6	1.9	5.9	0.9	5.8	0.8	52.2	1,419.2
A4-TR002-002	1.00	2.00	00095	100.4	1,263.5	17.0	52.7	9.0	2.5	7.7	1.3	9.2	1.8	5.6	0.8	5.7	0.7	50.4	1,528.4
A4-TR002-003	2.00	3.00	00096	93.9	1,040.4	16.4	44.7	8.5	2.6	6.9	1.3	9.0	1.7	5.5	0.8	5.0	0.8	50.3	1,287.7
A4-TR002-004	3.00	4.00	00097	84.0	610.3	11.6	35.1	6.8	2.4	7.2	1.3	9.6	2.1	7.1	1.1	7.7	0.9	62.5	849.6
A4-TR002-005	4.00	5.00	00098	84.3	1,372.8	15.2	43.3	8.3	2.5	6.4	1.3	9.0	1.7	5.6	0.8	5.4	0.7	49.1	1,606.6
A4-TR003-001	0.00	1.00	00100	48.0	1,265.8	6.2	20.5	4.8	1.6	5.6	1.1	7.7	1.6	5.4	0.9	6.7	0.9	48.1	1,425.0
A4-TR003-002	1.00	2.00	00101	52.8	649.7	6.0	19.6	4.5	1.6	5.2	1.0	7.2	1.4	4.8	0.7	6.1	0.9	50.3	812.0
A4-TR003-003	2.00	3.00	00102	82.8	925.6	8.7	25.2	5.3	1.6	5.1	1.0	7.1	1.6	5.3	0.9	6.4	0.9	49.3	1,126.6
A4-TR003-004	3.00	4.00	00103	85.3	1,083.8	14.5	43.6	7.7	2.3	7.1	1.3	8.3	1.7	5.2	0.8	5.1	0.7	47.9	1,315.3
A4-TR003-005	4.00	5.00	00104	77.8	563.5	11.0	32.1	6.1	2.1	6.6	1.3	9.1	2.0	7.1	1.1	7.2	1.1	64.3	792.3
A4-TR004-001	0.00	1.00	00105	52.4	926.4	6.5	20.8	4.3	1.6	4.7	1.0	7.1	1.6	4.9	0.8	5.9	0.9	46.4	1,085.3
A4-TR004-002	1.00	2.00	00106	51.8	807.8	6.5	19.9	4.3	1.5	4.3	0.9	6.7	1.5	4.9	0.8	5.9	1.0	48.9	966.8
A4-TR004-003	2.00	3.00	00107	27.4	809.3	4.1	16.8	4.1	1.5	4.3	1.0	6.7	1.4	4.6	0.8	6.1	0.9	47.5	936.5
A4-TR004-004	3.00	4.00	00108	57.8	876.6	6.8	20.1	4.6	1.6	4.8	1.0	6.8	1.3	4.4	0.8	5.9	0.9	45.2	1,038.6
A4-TR004-005	4.00	5.00	00109	100.6	957.1	11.2	31.1	5.9	1.9	5.7	1.1	7.8	1.7	5.1	1.0	6.4	0.9	54.2	1,191.8
A4-TR005-001	0.00	1.00	00110	51.4	869.1	6.1	20.3	5.1	1.6	5.3	1.1	7.3	1.7	5.4	0.9	6.6	0.9	50.9	1,033.8
A4-TR005-002	1.00	2.00	00111	38.9	732.2	4.9	17.3	4.8	1.5	4.9	1.0	7.1	1.5	5.2	0.8	6.5	0.9	49.2	876.7
A4-TR005-004	3.00	4.00	00113	132.5	1,285.9	14.9	37.8	6.5	2.2	6.9	1.4	8.9	2.0	6.5	1.0	7.9	1.1	61.5	1,577.0
A4-TR005-006	4.00	5.00	00115	148.0	1,391.6	16.3	41.3	7.2	2.4	6.5	1.4	10.1	2.2	6.9	1.1	8.4	1.2	67.7	1,712.4

mining limited

Prillhole ID	from		SAMPLE ID	La203	CeO2	Pr6011	$\mathrm{Na2O} 3$	Sm203	Eu203	Gd203	Tb407	Dy203	H0203	Er203	Tm203	Yb203	Lu203	r203	O(inc Y 203
E-TR001-001				${ }^{\text {ppm }}$	ppm	ppm	ppm	ppm	ppm	${ }^{\text {ppm }}$	ppm								
AS-TROOL-001	1.00	2.00	00118	${ }_{150.3}$	${ }^{331.0}$	30.9 33.6	110.1 116.2	18.0 175	3.6 3.5	11.8 120	1.3	6.2 6.6	${ }_{1}^{1.1}$	2.9	0.4	2.0	${ }^{0.3}$	20.5	.
A5-TR001-003	2.00	3.00	00119	127.0	289.3	27.8	94.7	14.4	2.8	9.6	1.2	5.5	1.0	2.4	0.3	1.9	0.2	24.1	602.3
A5-TR002-001	0.00	1.00	00120	126.2	307.2	26.8	92.7	14.3	2.9	9.5	1.0	5.0	0.8	2.3	0.3	1.7	0.2	20.4	611.3
A5-trooz-002	1.00	2.00	00121	140.5	249.7	29.4	98.6	14.5	2.6	9.0	1.0	5.1	0.9	2.2	0.3	1.7	0.2	18.8	574.4
A5-TROO2-003	2.00	3.00	00122	128.8	204.4	26.4	85.0	11.7	2.4	8.1	0.9	4.5	0.7	1.8	0.3	1.3	0.1	16.5	492.8
A5-troou-001	0.00	1.00	00123	165.0	366.8	40.3	149.2	24.0	${ }_{5}^{5.2}$	14.7	1.6	7.1	1.2	3.0	0.5	2.3	0.3	32.2 3.5	813.4
A5-TROOO-002	1.00	2.00	00124	187.4	400.4	45.0	116.6	26.2	5.8	16.9	1.8	8.1	1.3	3.3	0.4	2.4	0.3	35.5	901.4
A5-troou-001	0.00	1.00	00125	227.8	166.4	47.8	1617	21.6	3.5	12.9	1.5	7.7	1.4	3.7	0.6	3.6	0.5	40.6	701.2
A5-TR004-002	1.00	2.00	00126	279.6	203.7	57.7	193.0	27.6	4.7	17.8	2.2	10.8	2.0	5.7	0.8	4.8	0.6	$\begin{array}{r}62.6 \\ \hline 18.6\end{array}$	873.5
A5-TR004-003	2.00	3.00	00127	419.9	223.6	83.5	280.0	42.3	8.1	31.7	4.1	$\begin{array}{r}21.9 \\ \hline 6\end{array}$	4.1	11.7	1.6	9.8	$\begin{array}{r}1.4 \\ \hline 1.5 \\ \hline\end{array}$	$\begin{array}{r}137.1 \\ \hline 372\end{array}$	+1,280.7
AS-TROO4-004	3.00 0.000 0.0	${ }^{4.00}$	00128 00130 0	170.5 10.3	231.4 1897	35.3 45.9	120.3 160.4	16.1 198	2.6 3.4 1	10.2	1.2	6.5 5.5	1.2 0.9	3.7 28	0.6 0.6 0.4	$\begin{array}{r}3.4 \\ 2.6 \\ \hline\end{array}$	0.5 0.3		640.8 665.3
A5-TR005-002	1.00	2.00	00131	242.5	184.4	58.6	215.7	28.2	4.9	13.9	1.4	5.8	1.3	3.4 3.4	0.5	3.5	0.5	27.5	803.2
A5-TR005-003	2.00	3.00	00132	204.9	168.5	50.0	178.3	21.3	3.8	11.8	1.1	5.8	1.1	2.8	0.4	3.0	0.4	30.2	683.5
A5-TR006-001	0.00	1.00	00133	318.6	162.1	64.7	208.3	29.7	5.6	20.6	2.6	14.2	2.5	7.1	0.9	5.9	0.9	88.5	932.2
A5-TR006-002	1.00	2.00	00134	208.4	178.4	50.2	183.7	22.7	3.9	12.0	1.3	5.8	1.1	2.9	0.5	2.8	0.4	31.4	705.4
A5-TR006-004	3.00	4.00	00136	228.0	174.1	55.3	202.3	25.2	4.6	13.3	1.4	7.1	1.2	3.5	0.5	3.1	0.5	37.4	757.4
AS-TROOOT-001	0.00	1.00	00138	110.2	202.6	23.0	82.8	10.4	2.0	6.1	0.8	3.6	0.7	1.8	0.3	1.7	0.3	17.8	464.0
A5-TR007-002	1.00	2.00	00139	110.2	211.9	23.2	80.8	10.3	1.9	6.4	0.8	3.8	0.6	2.0	0.3	1.8	0.2	18.3	472.6
A5-Tr007-003	2.00	3.00	00140	108.1	219.3	22.9	82.9	10.0	2.0	6.3	0.7	4.0	0.6	1.8	0.3	1.9	0.2	19.2	480.4
A5-Troos-001	0.00	1.00	00141	292.7	509.8	65.2	231.5	34.2	7.1	24.8	3.0	15.1	2.9	7.9	1.1	6.5	0.9	89.1	1,291.8
A5-TR008-002	1.00		00142	330.8	646.6	74.4	246.5	34.7	6.8	24.5	2.8	14.4	2.5	6.9	0.9	5.	0.7	85.3	1,483.6
AS-TROO8-003	2.00	3.00	${ }^{00143}$	${ }^{362.9}$	${ }^{731.6}$	78.8	278.5	40.1	7.5	27.3	3.2	16.0	2.8	7.7	1.1	5.8	0.8	88.4	1,652.5
AS-TROOO-OO1	0.00 1.00	2.00	000144 00145	203.5 303.4	227.4 356.0	53.8 78.9	201.3 302.3	$\begin{array}{r}32.4 \\ 50.2 \\ \hline\end{array}$	5.9 10.1	23.7 42.4	2.8 5.3	$\begin{array}{r}14.8 \\ \hline 28.5 \\ \hline\end{array}$	2.7 5.5	7.2 14.9	$\begin{array}{r}1.1 \\ { }_{2}^{1.1} \\ \hline\end{array}$	6.9 12.9	0.9 1.7	85.6 181.6	870.1 $1,395.7$
A5-TR009-003	2.00		00146	196.4	215.9	50.8	182.0	32.1	6.5	27.0	3.6	20.3	3.6	10.6	1.4	8.5			
AS-TRO10-001	0.00	1.00	00147	275.8	305.4	82.2	${ }^{313.5}$	51.1	8.0	39.1	4.9	25.5	4.8	12.8	1.8	10.6		143.6	1,280.3
A5-TR010-002	1.00	2.00	${ }^{000148}$	255.3 305.6	276.0 302.2	78.8 92.4	278.5 350.7	49.7 60.6	7.2 9.6	$\begin{array}{r}37.1 \\ 50.6 \\ \hline\end{array}$	4.9 6.8	26.9 36.7	4.8 6.8	13.8 19.4	1.8 2.6	10.6 14.8	1.3 1.8	166.9 214.4	$\frac{1,213.7}{1,475.2}$
A5-TR011-001	0.00	1.00	00150	213.2	252.7	66.6	253.1	44.3	7.6	34.0	4.6	24.7	4.6	12.4	1.8	10.9	1.2	136.9	1,068.7
AS-TRO12-001	0.00			124.5	248.0	31.6	116.9	19.9	4.0	14.5	1.8	9.7	1.7	4.9	0.7	4.3	${ }^{0.6}$	54.9	
AS-TR012-002	1.00 2.00 200	${ }^{2.00}$	${ }^{00154}$	136.7 144.3	285.4 297.6	35.1 38.8	130.5 145.1	22.5 24	4.8 5.4	15.7 17.2	1.8 2.1	10.3 11.2	1.8 1.9	5.1 5.5	0.7 0.7	4.3 4.4	0.6 0.6	$\begin{array}{r}57.1 \\ 59.0 \\ \hline\end{array}$	712.3 757.9
A5-TR013-001	${ }^{1} 0.00$	1.00	00157	210.9	221.1	48.3	166.4	23.8	5.1	15.5	1.7			4.1	0.6	3.4	0.4	51.2	
A5-TRO13-002	1.00	2.00	00158	342.4	358.4	75.4	264.1	38.3	8.1	24.8	2.7	14.7	2.5	7.2	0.9	5.7	0.8	89.5	1,235.5
A5-TRO13-004	3.00	4.00	00160	339.2	350.8	75.2	262.4	37.0	8.0	25.3	2.8	13.8	2.4	6.9	0.9	5.6	0.8	85.8	1,216.8
ASTR014-001	0.00	1.00	${ }^{00162}$	${ }^{160.0}$	${ }^{266.1}$	39.2 78	140.7 27	${ }^{22.0}$	4.3	$\begin{array}{r}16.3 \\ \hline 2.5 \\ \hline\end{array}$	2.0 3.5	10.8 18 18	1.9	5.6	0.7	4.4 4.	$\begin{array}{r}0.5 \\ \hline\end{array}$	$\begin{array}{r}58.7 \\ \hline 9.7\end{array}$	733.1
A5-TRO14-002	1.00	2.00	${ }^{000163}$	${ }^{311.0}$	430.3 36.	77.8	279.7	43.1	8.3	$\begin{array}{r}28.5 \\ \hline 2.7\end{array}$	3.5	18.7	3.3	9.5	1.2	8.2	${ }_{1.1}^{1.2}$	95.7	$1,320.0$ 1,3651
A5-TRO14-003	2.00 0.00 0		${ }^{00164}$	321.0 1784 18.	436.9 2512	79.5 48.4	290.3 1150 150	$\begin{array}{r}42.4 \\ \hline 29 \\ \hline\end{array}$	¢9.3	$\begin{array}{r}29.7 \\ 226 \\ \hline 1\end{array}$	3.4 2.9 2.0	18.6 15 15	3.3 26	10.0 74 7	1.3 0.9	9.2 5.8 8	1.2 08 0	$\begin{array}{r}108.7 \\ \hline 897 \\ \hline 8.7\end{array}$	
AS-TRO15-001	0.00 1.00 1	${ }^{1.00}$	00165 00166	$\frac{178.4}{106.0}$	251.2 281.8	48.4 30.5	175.0 116.1	29.7 20.4	5.9 4.3	22.6 16.4	2.9 2.1	15.5 12.0	2.6 2.1 1	7.4 6.0	0.9 0.8	$\begin{array}{r}5.8 \\ 5.4 \\ \hline\end{array}$	0.8 0.7	89.7 68.9	
A5-TRO15-003	2.00	3.00	00167	93.0 10.0	225.4	28.0	105.7	18.6	4.0	14.9	1.8	10.5	1.9	5.6	0.7	5.1	0.6	62.7	578.7
A5-TR016-001	0.00	1.00	00168	283.0	216.9	58.7	193.2	26.0	4.0	19.8	2.4	14.5	2.6	7.6	1.0	5.7	0.7	98.3	
A5-TR016-002	1.00	2.00	00169	276.7	274.9	61.7	211.2	35.0	5.7	26.4	3.4	19.2	3.6	10.5	1.4	9.1	1.1	130.7	1,070.7
A5-TRO16-003	2.00	3.00	${ }^{00170}$	$\begin{array}{r}245.6 \\ \hline 9.1\end{array}$	196.7	54.4	188.7	33.6	5.3	27.5	3.7	22.5	4.2	12.8		10.7	1.3	152.7	961.4
A5-TR017-001	0.00	1.00	00171	93.1	202.2	24.0	88.4	16.0	3.1	12.6	1.7	9.6	1.7	4.7	0.6 0.6	3.9 38	0.5	$\frac{51.9}{4.3}$	514.1
A5-TR017-002	1.00 2.00	${ }^{2.00}$	00172 00173	115.3 134.6	339.3 325.3	27.7 33.0	95.2 113.7	16.2 19.2 19	$\begin{array}{r}3.3 \\ 3.3 \\ \hline\end{array}$	11.8 13.7	1.5 1.8 1.5	$\begin{array}{r}8.6 \\ 9.8 \\ \hline\end{array}$	1.5 1.7	4.2 4.9	0.6 0.6	$\begin{array}{r}3.8 \\ 4.2 \\ \hline 1\end{array}$	0.5 0.5 0.5	46.3 52.1	675.8 718.5
A5-TR018-001	0.00	1.00	00174	101.2	177.7	20.1	66.8	10.8	2.1		0.9	5.5	1.0	2.9	0.4	2.6	0.3	31.8	432.0
A5-TR018-002	1.00	2.00	00175	162.2	230.4	33.0	110.0	17.3	3.2	12.0	1.5	8.1	1.5	4.5	0.6	4.0	0.5	48.9	637.9
AS-TRO118-003	2.00	3.00	${ }^{00176}$	144.4	${ }^{185.1}$	31.1	113.8	17.2	3.2	12.0	1.6	8.5	1.6	4.4	0.7	3.6	${ }^{0.6}$	46.0	${ }_{566.7}^{656.7}$
AS-TR019-001	0.00	1.00	00177	127.6	2527.8	32.2	116.3	19.6	3.9	14.9	1.9	11.1	1.5	5.6	0.8	4.9	0.7	62.3	${ }^{655.4}$
A5-TRO19-002	1.00	2.00	00178	102.5	437.3	23.1	81.9	14.0	2.9	10.5	1.4	7.7	1.5	4.2	0.6 0.5	4.1	0.5	44.6	736.9
AS-TRO19-003	2.00 0.00		00179 00180	100.7 312.1	270.6 6058	22.9 76.9	$\begin{array}{r}81.1 \\ \hline 288.4\end{array}$	$\begin{array}{r}13.8 \\ \hline 40.0\end{array}$		$\begin{array}{r}10.7 \\ \hline 22.6\end{array}$	1.4 2.6	$\begin{array}{r}8.1 \\ 13.3 \\ \hline 12\end{array}$	1.4 2.2	4.5 6.3	0.5 0.8 0				
A5-TRO20-002	1.00	2.00	00181	324.7	545.4	74.7	253.3	35.5	5.3	21.1	2.4	12.2	2.1	6.0	0.8	4.8	0.6	63.9	1,352.8
$\frac{\text { AS-TRO20-004 }}{\text { AS-TRO21-001 }}$	3.00	4.00	00183	275.5	468.7	68.0	237.5	34.0	5.6	20.3	2.4	12.6	2.1	6.0	0.8	4.7	0.6	62.6	,201.3
AS-TRO21-001	0.00 1.00		${ }^{00185}$	$\begin{array}{r}130.8 \\ \hline 135.1 \\ \hline\end{array}$	246.0 217.8	30.8 26.3	$\begin{array}{r}109.1 \\ \hline 87.8\end{array}$	17.7 11.5		$\begin{array}{r}12.8 \\ 8.8 \\ \hline\end{array}$	1.6 1.1			$\begin{array}{r}4.4 \\ 3.5 \\ \hline\end{array}$				$\begin{array}{r}50.0 \\ \hline 3.6\end{array}$	
A5-TR021-003	2.00	3.00	00187	116.8	189.7	22.4	74.4	10.4	3.1	7.7	0.9	5.4	1.0	3.1	0.4	2.8	0.4	39.8	3.5
AS-TRO22-001	0.00	1.00	00188	${ }^{1417.8}$	280.2 80	35.6	131.9 1071	${ }^{21.6}$	4.9	16.5 11.5	2.0	10.7	1.9	5.5	0.7	4.9		57.4	
A5-TRO22-002	1.00		00189	137.6	${ }^{280.1}$	31.2	107.1	16.6	3.4	11.4	1.4		1.3	3.5		3.2		35.9	
AS-TRO22-003	2.00 0.000 0.00	3.00	00190 00192	121.7 115.6 1	251.7 2070 2070	28.1 25.7	96.6 87.6	15.4 14.4 1.4	3.3 3.2	$\begin{array}{r}10.5 \\ 9.6 \\ \hline 1.8\end{array}$	1.3 1.2	6.8 6.3		$\begin{array}{r}3.3 \\ 2.9 \\ \hline 2.9\end{array}$	0.5 0.4	$\begin{array}{r}3.0 \\ 2.7 \\ 2 . \\ \hline\end{array}$	0.4 0.3 0.3	$\begin{array}{r}34.5 \\ \text { 29.9 } \\ \hline 29\end{array}$	
A5-TR023-002	1.00				237.2	19.6	65.6	11.0	2.5	7.0	0.9	4.7	0.8	2.4	0.4	2.2	0.3	3.2	
A5-TRO23-003	2.00	3.00	00194	103.1	227.2	21.7	74.4	11.7	2.5	7.8	1.0	5.6	0.9	2.6	0.4	2.5	0.3	26.4	488.1

Drilhole ID	FROM	то	SAMPLE ID	La203	CeO2	Pr6011	Nd203	Sm203	Eu203	Gd203	Tb407	Dy203	Ho203	Er2	m203	b203	Lu203	03	TREO(inc Y203)
				ppm															
A5-TR001-001	0.00	1.00	00117	140.9	296.3	30.9	110.1	18.0	3.6	11.8	1.3	6.2	1.1	2.9	0.4	2.0	0.3	28.5	654.1
A5-TR001-002	1.00	2.00	00118	150.3	331.0	33.6	116.2	17.5	3.5	12.0	1.4	6.6	1.1	3.0	0.3	2.3	0.3	30.2	709.4
A5-TR001-003	2.00	3.00	00119	127.0	289.3	27.8	94.7	14.4	2.8	9.6	1.2	5.5	1.0	2.4	0.3	1.9	0.2	24.1	602.3
A5-TR002-001	0.00	1.00	00120	126.2	307.2	26.8	92.7	14.3	2.9	9.5	1.0	5.0	0.8	2.3	0.3	1.7	0.2	20.4	611.3
A5-TR002-002	1.00	2.00	00121	140.5	249.7	29.4	98.6	14.5	2.6	9.0	1.0	5.1	0.9	2.2	0.3	1.7	0.2	18.8	574.4
A5-TR002-003	2.00	3.00	00122	128.8	204.4	26.4	85.0	11.7	2.4	8.1	0.9	4.5	0.7	1.8	0.3	1.3	0.1	16.5	492.8
A5-TR003-001	0.00	1.00	00123	165.0	366.8	40.3	149.2	24.0	5.2	14.7	1.6	7.1	1.2	3.0	0.5	2.3	0.3	32.2	813.4
A5-TR003-002	1.00	2.00	00124	187.4	400.4	45.0	166.6	26.2	5.8	16.9	1.8	8.1	1.3	3.3	0.4	2.4	0.3	35.5	901.4
A5-TR004-001	0.00	1.00	00125	227.8	166.4	47.8	161.7	21.6	3.5	12.9	1.5	7.7	1.4	3.7	0.6	3.6	0.5	40.6	701.2
A5-TR004-002	1.00	2.00	00126	279.6	203.7	57.7	193.0	27.6	4.7	17.8	2.2	10.8	2.0	5.7	0.8	4.8	0.6	62.6	873.5
A5-TR004-003	2.00	3.00	00127	419.9	223.6	83.5	280.0	42.3	8.1	31.7	4.1	21.9	4.1	11.7	1.6	9.8	1.4	137.1	1,280.7
A5-TR004-004	3.00	4.00	00128	170.5	231.4	35.3	120.3	16.1	2.6	10.2	1.2	6.5	1.2	3.7	0.6	3.4	0.5	37.2	640.8
A5-TR005-001	0.00	1.00	00130	196.3	189.7	45.9	160.4	19.8	3.4	10.1	1.1	5.5	0.9	2.8	0.4	2.6	0.3	26.1	665.3
A5-TR005-002	1.00	2.00	00131	242.5	184.4	58.6	215.7	28.2	4.9	13.9	1.4	6.8	1.3	3.4	0.5	3.5	0.5	37.5	803.2
A5-TR005-003	2.00	3.00	00132	204.9	168.5	50.0	178.3	21.3	3.8	11.8	1.1	5.8	1.1	2.8	0.4	3.0	0.4	30.2	683.5
A5-TR006-001	0.00	1.00	00133	318.6	162.1	64.7	208.3	29.7	5.6	20.6	2.6	14.2	2.5	7.1	0.9	5.9	0.9	88.5	932.2
A5-TR006-002	1.00	2.00	00134	208.4	178.4	50.2	183.7	22.7	3.9	12.0	1.3	5.8	1.1	2.9	0.5	2.8	0.4	31.4	705.4
A5-TR006-004	3.00	4.00	00136	228.0	174.1	55.3	202.3	25.2	4.6	13.3	1.4	7.1	1.2	3.5	0.5	3.1	0.5	37.4	757.4
A5-TR007-001	0.00	1.00	00138	110.2	202.6	23.0	82.8	10.4	2.0	6.1	0.8	3.6	0.7	1.8	0.3	1.7	0.3	17.8	464.0
A5-TR007-002	1.00	2.00	00139	110.2	211.9	23.2	80.8	10.3	1.9	6.4	0.8	3.8	0.6	2.0	0.3	1.8	0.2	18.3	472.6
A5-TR007-003	2.00	3.00	00140	108.1	219.3	22.9	82.9	10.0	2.0	6.3	0.7	4.0	0.6	1.8	0.3	1.9	0.2	19.2	480.4
A5-TR008-001	0.00	1.00	00141	292.7	509.8	65.2	231.5	34.2	7.1	24.8	3.0	15.1	2.9	7.9	1.1	6.5	0.9	89.1	1,291.8
A5-TR008-002	1.00	2.00	00142	330.8	646.6	74.4	246.5	34.7	6.8	24.5	2.8	14.4	2.5	6.9	0.9	5.9	0.7	85.3	1,483.6
A5-TR008-003	2.00	3.00	00143	362.9	731.6	78.8	278.5	40.1	7.5	27.3	3.2	16.0	2.8	7.7	1.1	5.8	0.8	88.4	1,652.5
A5-TR009-001	0.00	1.00	00144	203.5	227.4	53.8	201.3	32.4	5.9	23.7	2.8	14.8	2.7	7.2	1.1	6.9	0.9	85.6	870.1
A5-TR009-002	1.00	2.00	00145	303.4	356.0	78.9	302.3	50.2	10.1	42.4	5.3	28.5	5.5	14.9	2.1	12.9	1.7	181.6	1,395.7
A5-TR009-003	2.00	3.00	00146	196.4	215.9	50.8	182.0	32.1	6.5	27.0	3.6	20.3	3.6	10.6	1.4	8.5	1.2	137.4	897.3
A5-TR010-001	0.00	1.00	00147	275.8	305.4	82.2	313.5	51.1	8.0	39.1	4.9	25.5	4.8	12.8	1.8	10.6	1.2	143.6	1,280.3
A5-TR010-002	1.00	2.00	00148	255.3	276.0	78.8	278.5	49.7	7.2	37.1	4.9	26.9	4.8	13.8	1.8	10.6	1.3	166.9	1,213.7
A5-TR010-003	2.00	3.00	00149	305.6	302.2	92.4	350.7	60.6	9.6	50.6	6.8	36.7	6.8	19.4	2.6	14.8	1.8	214.4	1,475.2
A5-TR011-001	0.00	1.00	00150	213.2	252.7	66.6	253.1	44.3	7.6	34.0	4.6	24.7	4.6	12.4	1.8	10.9	1.2	136.9	1,068.7
A5-TR012-001	0.00	1.00	00153	124.5	248.0	31.6	116.9	19.9	4.0	14.5	1.8	9.7	1.7	4.9	0.7	4.3	0.6	54.9	638.2
A5-TR012-002	1.00	2.00	00154	136.7	285.4	35.1	130.5	22.5	4.8	15.7	1.8	10.3	1.8	5.1	0.7	4.3	0.6	57.1	712.3
A5-TR012-003	2.00	3.00	00155	144.3	297.6	38.8	145.1	24.2	5.4	17.2	2.1	11.2	1.9	5.5	0.7	4.4	0.6	59.0	757.9
A5-TR013-001	0.00	1.00	-00157	210.9	221.1	48.3	166.4	23.8	5.1	15.5	1.7	8.6	1.5	4.1	0.6	3.4	0.4	51.2	762.5
A5-TR013-002	1.00	2.00	00158	342.4	358.4	75.4	264.1	38.3	8.1	24.8	2.7	14.7	2.5	7.2	0.9	5.7	0.8	89.5	1,235.5
A5-TR013-004	3.00	4.00	00160	339.2	350.8	75.2	262.4	37.0	8.0	25.3	2.8	13.8	2.4	6.9	0.9	5.6	0.8	85.8	1,216.8
A5-TR014-001	0.00	1.00	00162	160.0	266.1	39.2	140.7	22.0	4.3	16.3	2.0	10.8	1.9	5.6	0.7	4.4	0.5	58.7	733.1
A5-TR014-002	1.00	2.00	00163	311.0	430.3	77.8	279.7	43.1	8.3	28.5	3.5	18.7	3.3	9.5	1.2	8.2	1.1	95.7	1,320.0
A5-TR014-003	2.00	3.00	00164	321.0	436.9	79.5	290.3	42.4	9.3	29.7	3.4	18.6	3.3	10.0	1.3	9.2	1.2	108.7	1,365.1
A5-TR015-001	0.00	1.00	00165	178.4	251.2	48.4	175.0	29.7	5.9	22.6	2.9	15.5	2.6	7.4	0.9	5.8	0.8	89.7	836.8
A5-TR015-002	1.00	2.00	00166	106.0	281.8	30.5	116.1	20.4	4.3	16.4	2.1	12.0	2.1	6.0	0.8	5.4	0.7	68.9	673.4
A5-TR015-003	2.00	3.00	- 00167	93.0	225.4	28.0	105.7	18.6	4.0	14.9	1.8	10.5	1.9	5.6	0.7	5.1	0.6	62.7	578.7
A5-TR016-001	0.00	1.00	00168	283.0	216.9	58.7	193.2	26.0	4.0	19.8	2.4	14.5	2.6	7.6	1.0	5.7	0.7	98.3	934.3
A5-TR016-002	1.00	2.00	00169	276.7	274.9	61.7	211.2	35.0	5.7	26.4	3.4	19.2	3.6	10.5	1.4	9.1	1.1	130.7	1,070.7
A5-TR016-003	2.00	3.00	00170	245.6	196.7	54.4	188.7	33.6	5.3	27.5	3.7	22.5	4.2	12.8	1.7	10.7	1.3	152.7	961.4

Drillhole ID	FROM	то	SAMPLE ID	La2O3	CeO 2	Pr6011	Nd2O3	Sm2O3	Eu2O3	Gd2O3	Tb407	Dy2O3	Ho2O3	Er2O3	Tm203	Yb2O3	Lu2O3	Y203	TREO(inc Y203)
				ppm															
A5-TR017-001	0.00	1.00	00171	93.1	202.2	24.0	88.4	16.0	3.1	12.6	1.7	9.6	1.7	4.7	0.6	3.9	0.5	51.9	514.1
A5-TR017-002	1.00	2.00	00172	115.3	339.3	27.7	95.2	16.2	3.3	11.8	1.5	8.6	1.5	4.2	0.6	3.8	0.5	46.3	675.8
A5-TR017-003	2.00	3.00	00173	134.6	325.3	33.0	113.7	19.2	3.3	13.7	1.8	9.8	1.7	4.9	0.6	4.2	0.5	52.1	718.5
A5-TR018-001	0.00	1.00	00174	101.2	177.7	20.1	66.8	10.8	2.1	7.7	0.9	5.5	1.0	2.9	0.4	2.6	0.3	31.8	432.0
A5-TR018-002	1.00	2.00	00175	162.2	230.4	33.0	110.0	17.3	3.2	12.0	1.5	8.1	1.5	4.5	0.6	4.0	0.5	48.9	637.9
A5-TR018-003	2.00	3.00	00176	144.4	188.1	31.1	103.8	17.2	3.2	12.0	1.6	8.5	1.6	4.4	0.7	3.6	0.6	46.0	566.7
A5-TR019-001	0.00	1.00	00177	127.6	252.8	32.2	116.3	19.6	3.9	14.9	1.9	11.1	1.9	5.6	0.8	4.9	0.7	62.3	656.4
A5-TR019-002	1.00	2.00	00178	102.5	437.3	23.1	81.9	14.0	2.9	10.5	1.4	7.7	1.5	4.2	0.6	4.1	0.5	44.6	736.9
A5-TR019-003	2.00	3.00	00179	100.7	270.6	22.9	81.1	13.8	2.7	10.7	1.4	8.1	1.4	4.5	0.5	3.6	0.5	43.3	565.9
A5-TR020-001	0.00	1.00	00180	312.1	605.8	76.9	268.4	40.0	6.2	22.6	2.6	13.3	2.2	6.3	0.8	5.1	0.6	68.5	1,431.5
A5-TRO20-002	1.00	2.00	00181	324.7	545.4	74.7	253.3	35.5	5.3	21.1	2.4	12.2	2.1	6.0	0.8	4.8	0.6	63.9	1,352.8
A5-TR020-004	3.00	4.00	00183	275.5	468.7	68.0	237.5	34.0	5.6	20.3	2.4	12.6	2.1	6.0	0.8	4.7	0.6	62.6	1,201.3
A5-TR021-001	0.00	1.00	00185	130.8	246.0	30.8	109.1	17.7	3.9	12.8	1.6	8.7	1.6	4.4	0.6	3.5	0.5	50.0	622.1
A5-TR021-002	1.00	2.00	00186	135.1	217.8	26.3	87.8	11.5	3.2	8.8	1.1	5.9	1.1	3.5	0.5	3.0	0.4	43.6	549.7
A5-TR021-003	2.00	3.00	00187	116.8	189.7	22.4	74.4	10.4	3.1	7.7	0.9	5.4	1.0	3.1	0.4	2.8	0.4	39.8	478.5
A5-TR022-001	0.00	1.00	00188	141.8	280.2	35.6	131.9	21.6	4.9	16.5	2.0	10.7	1.9	5.5	0.7	4.9	0.6	57.4	716.3
A5-TR022-002	1.00	2.00	00189	137.6	280.1	31.2	107.1	16.6	3.4	11.4	1.4	7.2	1.3	3.5	0.5	3.2	0.4	35.9	640.7
A5-TR022-003	2.00	3.00	00190	121.7	251.7	28.1	96.6	15.4	3.3	10.5	1.3	6.8	1.2	3.3	0.5	3.0	0.4	34.5	578.2
A5-TR023-001	0.00	1.00	00192	115.6	207.0	25.7	87.6	14.4	3.2	9.6	1.2	6.3	1.1	2.9	0.4	2.7	0.3	29.9	507.7
A5-TR023-002	1.00	2.00	00193	90.7	237.2	19.6	65.6	11.0	2.5	7.0	0.9	4.7	0.8	2.4	0.4	2.2	0.3	23.2	468.4
A5-TR023-003	2.00	3.00	00194	103.1	227.2	21.7	74.4	11.7	2.5	7.8	1.0	5.6	0.9	2.6	0.4	2.5	0.3	26.4	488.1
A5-TR024-001	0.00	1.00	00195	51.5	95.4	12.0	41.5	6.3	1.6	4.5	0.5	2.9	0.5	1.6	0.2	1.5	0.2	17.6	237.8
A5-TR024-002	1.00	2.00	00196	108.5	215.6	28.2	101.5	15.3	3.5	11.1	1.3	6.8	1.2	3.2	0.4	3.0	0.4	37.1	537.0
A5-TR024-003	2.00	3.00	00197	146.7	273.8	31.8	104.5	15.0	3.0	9.5	1.1	5.7	0.9	2.5	0.3	2.0	0.3	27.1	624.3
A5-TR025-001	0.00	1.00	00198	58.5	157.4	15.8	60.1	10.3	2.3	7.6	1.0	5.5	1.0	2.9	0.4	2.8	0.4	31.2	357.0
A5-TR025-002	1.00	2.00	00199	91.7	205.8	23.7	91.2	16.0	3.7	12.1	1.5	8.1	1.4	3.8	0.5	3.3	0.4	40.9	504.2
A5-TR025-003	2.00	3.00	00200	93.4	201.9	24.6	91.7	15.7	3.8	12.4	1.5	8.4	1.5	4.1	0.5	3.3	0.4	44.7	507.9
A5-TR026-001	0.00	1.00	00201	112.1	181.2	34.5	134.6	25.5	5.6	21.0	2.7	15.4	2.9	8.1	1.0	6.5	0.9	98.4	650.4
A5-TR026-002	1.00	2.00	00202	101.3	193.1	29.5	111.2	20.3	4.6	16.0	2.1	12.0	2.1	6.0	0.8	4.9	0.7	69.9	574.4
A5-TR026-004	3.00	4.00	00204	100.7	211.2	31.1	118.3	23.5	4.9	17.6	2.3	12.9	2.2	5.9	0.8	4.7	0.6	65.3	601.9
A5-TR027-001	0.00	1.00	00206	89.8	182.5	20.1	66.0	11.6	2.0	8.9	1.2	6.8	1.2	3.2	0.4	2.7	0.4	34.9	431.9
A5-TR027-002	1.00	2.00	00207	144.6	207.2	35.0	119.8	20.9	4.2	16.1	2.1	11.5	2.0	5.4	0.7	4.0	0.5	64.4	638.4
A5-TR028-001	0.00	1.00	00208	175.0	253.9	40.6	133.0	23.0	4.5	16.6	2.2	11.0	2.0	5.4	0.7	4.4	0.6	63.2	736.1
A5-TR028-002	1.00	2.00	00209	125.8	135.1	28.2	91.4	14.7	4.0	11.6	1.5	8.0	1.5	4.5	0.5	3.6	0.5	53.8	485.0
A5-TR028-003	2.00	3.00	00210	116.6	123.8	26.3	88.2	14.6	4.2	12.1	1.5	8.7	1.5	4.4	0.6	3.6	0.6	57.4	464.1
A5-TR029-001	0.00	1.00	00211	92.2	249.1	20.8	69.4	12.3	2.0	8.8	1.1	6.0	1.0	2.5	0.3	2.3	0.3	23.1	491.2
A5-TR029-002	1.00	2.00	00212	80.1	281.8	17.8	58.2	10.6	1.8	7.2	1.0	5.0	0.9	2.3	0.3	2.0	0.3	21.1	490.5
A5-TR029-003	2.00	3.00	00213	95.2	459.5	20.9	67.9	11.9	2.0	8.8	1.2	6.3	1.0	2.7	0.3	2.3	0.3	24.4	704.9
A5-TR030-001	0.00	1.00	00214	109.1	306.5	25.2	83.3	15.0	1.9	9.9	1.2	6.7	1.1	2.7	0.3	1.8	0.3	26.9	591.9
A5-TR030-002	1.00	2.00	00215	111.6	381.2	26.7	88.1	15.2	2.5	10.4	1.4	7.1	1.2	3.0	0.3	2.2	0.3	30.4	681.5
A5-TR030-003	2.00	3.00	00216	93.8	342.1	21.8	72.3	12.6	2.2	9.2	1.2	6.9	1.1	2.8	0.3	1.9	0.3	28.4	596.9
A5-TR031-001	0.00	1.00	00217	331.8	183.4	81.5	276.8	45.8	9.3	35.8	4.5	25.8	4.8	13.8	1.9	11.8	1.7	181.5	1,210.3
A5-TR031-002	1.00	2.00	00218	169.3	143.7	39.9	134.3	22.0	4.7	17.6	2.4	13.6	2.6	7.8	1.0	6.5	0.9	97.2	663.6
A5-TR031-003	2.00	3.00	00219	145.1	159.0	34.5	114.9	18.7	3.9	14.8	2.0	11.2	2.2	6.0	0.8	5.1	0.7	82.6	601.4
A5-TR032-001	0.00	1.00	00220	273.3	293.6	61.7	199.9	32.4	6.5	24.6	3.2	17.1	3.1	9.0	1.1	7.1	1.0	115.7	1,049.2
A5-TR032-002	1.00	2.00	00221	195.7	208.8	42.0	137.4	23.0	4.7	18.7	2.6	14.5	2.7	7.9	1.0	6.4	0.9	105.8	772.1
A5-TR032-003	2.00	3.00	00222	207.6	238.4	47.1	159.8	26.4	5.4	22.4	2.9	16.6	3.2	9.2	1.2	7.3	1.0	122.7	871.3
A5-TR033-001	0.00	1.00	00224	297.5	172.2	72.8	241.0	42.7	7.0	33.0	4.6	25.8	4.6	13.3	1.8	11.0	1.4	160.1	1,088.8
A5-TR033-002	1.00	2.00	00225	178.1	157.0	40.6	130.1	23.5	3.9	17.7	2.4	13.3	2.3	6.5	0.9	5.6	0.7	75.2	657.8
A5-TR033-004	2.00	3.00	00227	167.0	173.4	37.0	118.9	20.5	3.5	16.0	2.2	12.2	2.1	5.9	0.8	5.0	0.6	66.7	631.9

Drillhole ID	FROM	то	SAMPLE ID	La2O3	CeO2	Pr6011	Nd2O3	Sm203	Eu203	Gd2O3	Tb407	Dy203	H0203	Er2O3	Tm203	Yb2O3	Lu203	Y203	TREO(inc Y203)
				ppm															
A5-TR034-001	0.00	1.00	00229	76.5	239.4	16.3	50.0	8.6	1.4	6.2	0.8	4.5	0.8	2.1	0.3	1.9	0.3	20.6	429.7
A5-TR034-002	1.00	2.00	00230	83.6	236.5	17.7	57.2	9.7	1.6	6.8	0.9	4.9	0.8	2.3	0.3	2.0	0.3	22.7	447.3
A5-TR035-001	0.00	1.00	00231	195.6	285.5	45.2	150.1	24.8	4.1	16.9	2.0	10.4	1.9	5.6	0.8	5.0	0.7	77.7	826.3
A5-TR035-002	1.00	2.00	00232	186.5	280.7	42.2	140.3	22.0	3.8	14.8	1.7	9.0	1.6	4.7	0.6	3.9	0.6	59.1	771.3
A5-TR035-003	2.00	3.00	00233	300.5	272.7	67.3	227.8	35.4	7.4	25.1	2.9	15.4	2.9	8.3	1.2	7.1	1.1	113.8	1,088.9
A5-TR035-004	3.00	4.00	00234	351.4	341.1	76.8	252.2	41.3	8.9	31.7	3.9	20.6	4.0	11.9	1.6	9.7	1.4	161.9	1,318.2
A5-TR036-001	0.00	1.00	00235	109.8	232.0	29.3	102.1	17.9	4.0	12.8	1.7	9.5	1.6	4.7	0.6	3.8	0.5	52.3	582.4
A5-TR036-002	1.00	2.00	00236	124.8	264.8	31.7	110.3	18.8	3.9	12.6	1.6	8.8	1.5	4.3	0.5	3.4	0.5	46.2	634.0
A5-TR036-003	2.00	3.00	00237	98.7	216.9	27.1	96.3	17.0	3.9	13.6	1.7	9.4	1.7	4.5	0.6	3.8	0.5	52.2	548.1
A5-TR037-001	0.00	1.00	00238	70.4	247.3	15.6	48.2	8.7	1.2	5.9	0.9	4.5	0.9	2.4	0.4	2.5	0.4	23.2	432.4
A5-TR037-002	1.00	2.00	00239	85.0	274.4	18.6	58.4	9.7	1.2	7.0	0.9	5.1	0.8	2.3	0.3	2.5	0.4	25.8	492.7
A5-TR037-003	2.00	3.00	00240	80.0	250.0	17.0	54.7	8.9	1.1	6.8	0.9	5.1	0.9	2.7	0.4	2.6	0.4	27.9	459.4
A5-TR038-001	0.00	1.00	00241	133.6	282.8	41.9	155.2	27.7	4.8	21.2	2.9	15.6	2.7	7.1	0.9	5.8	0.7	84.2	787.2
A5-TR038-002	1.00	2.00	00242	118.3	256.1	36.3	134.5	24.5	4.3	17.6	2.4	12.5	2.2	5.8	0.8	4.6	0.6	66.3	686.5
A5-TR039-001	0.00	1.00	00243	112.6	268.0	29.4	102.4	18.7	3.8	14.9	2.0	11.8	2.1	6.1	0.8	5.2	0.8	62.3	641.0
A5-TR039-002	1.00	2.00	00244	149.5	314.5	38.8	138.2	24.8	5.3	19.3	2.7	14.5	2.5	7.1	0.9	5.9	0.9	75.2	800.2
A5-TR039-003	2.00	3.00	00245	201.2	430.5	52.7	187.3	33.5	6.4	25.6	3.4	17.8	3.0	8.2	1.1	6.8	0.9	82.9	1,061.6
A5-TR039-004	3.00	4.00	00246	168.3	339.2	44.6	163.2	31.2	6.3	25.0	3.4	19.1	3.5	10.3	1.4	9.1	1.2	106.9	932.6
A5-TR040-001	0.00	1.00	00247	80.3	160.2	17.6	55.3	8.5	1.2	5.8	0.7	4.0	0.6	1.8	0.2	1.7	0.2	18.6	356.6
A5-TR040-002	1.00	2.00	00248	97.1	186.8	24.9	87.5	16.0	3.2	13.0	1.8	9.9	1.7	4.9	0.7	4.0	0.6	50.3	502.4
A5-TR040-004	2.00	3.00	00250	109.4	208.2	27.5	93.2	17.0	3.1	12.8	1.8	9.6	1.7	4.9	0.6	4.1	0.5	50.0	544.5
A5-TR041-001	0.00	1.00	00252	88.1	174.4	18.5	56.8	9.6	0.9	6.8	0.8	4.3	0.7	1.8	0.2	1.1	0.2	19.0	383.2
A5-TR041-002	1.00	2.00	00253	88.8	190.2	19.6	65.1	10.2	0.8	7.6	1.1	5.5	1.0	2.8	0.4	2.3	0.4	29.8	425.3
A5-TR041-003	2.00	3.00	00254	87.4	191.3	18.8	59.8	9.5	0.9	6.8	0.9	4.3	0.8	1.7	0.2	1.4	0.1	19.6	403.4
A5-TR041-004	3.00	4.00	00255	86.0	185.6	17.8	57.7	8.9	0.9	6.3	0.8	3.8	0.6	1.6	0.2	1.1	0.2	17.3	388.9
A5-TR041-005	4.00	5.00	00256	89.2	252.1	19.6	63.9	9.4	0.9	7.1	0.9	4.9	0.8	2.3	0.3	1.7	0.3	23.3	476.7
A5-TR042-001	0.00	1.00	00258	103.2	173.0	27.9	102.1	18.4	3.3	15.2	1.9	11.5	2.3	7.4	1.0	6.4	0.9	74.6	548.9
A5-TR042-002	1.00	2.00	00259	49.3	85.1	10.7	35.0	6.5	1.6	5.1	0.7	3.6	0.7	2.0	0.3	2.2	0.2	22.3	225.4
A5-TR042-003	2.00	3.00	00260	43.2	82.7	9.6	32.2	5.2	1.2	4.3	0.5	2.8	0.6	1.9	0.2	1.5	0.2	17.0	203.1
A5-TR043-001	0.00	1.00	00261	129.9	193.7	32.0	112.8	18.3	3.5	12.5	1.5	8.4	1.5	4.0	0.6	3.8	0.5	44.8	567.8
A5-TR043-002	1.00	2.00	00262	175.8	381.3	42.9	142.2	22.0	3.9	14.4	1.8	9.1	1.6	5.0	0.6	4.2	0.6	52.3	857.7
A5-TR043-003	2.00	3.00	00263	179.4	392.6	43.5	144.3	23.1	3.8	14.7	1.9	9.6	1.8	4.8	0.7	4.2	0.6	54.8	879.8
A5-TR043-004	3.00	4.00	00264	181.3	430.5	44.0	142.4	20.3	3.5	13.3	1.6	8.1	1.5	4.1	0.6	3.8	0.5	45.1	900.4
A5-TR044-001	0.00	1.00	00265	146.5	238.4	31.5	103.2	16.5	2.7	10.6	1.2	6.2	1.0	2.9	0.4	2.3	0.4	30.2	593.9
A5-TR044-002	1.00	2.00	00266	155.5	201.1	33.8	113.3	18.3	5.5	14.6	1.8	9.1	1.9	4.9	0.6	4.1	0.6	58.4	623.5
A5-TR044-003	2.00	3.00	00267	140.4	195.8	29.6	97.6	15.2	5.5	12.6	1.8	9.7	1.8	5.0	0.7	4.2	0.6	62.3	582.9
A5-TR044-004	3.00	4.00	00268	157.3	249.2	33.2	110.5	17.4	4.8	13.8	1.6	9.3	1.7	4.6	0.6	3.6	0.6	57.7	665.9
A5-TR044-005	4.00	5.00	00269	139.8	234.4	29.3	94.5	15.3	4.0	11.9	1.4	7.5	1.5	3.9	0.6	3.0	0.5	50.0	597.5
A5-TR045-001	0.00	1.00	00270	109.3	331.8	21.9	66.3	10.2	1.6	5.9	0.7	3.5	0.5	1.4	0.2	1.0	0.1	13.0	567.2
A5-TR045-002	1.00	2.00	00271	172.4	328.0	37.8	125.2	18.3	3.2	11.7	1.3	7.0	1.2	3.2	0.4	2.6	0.3	34.6	747.2
A5-TR045-003	2.00	3.00	00272	174.0	335.7	37.8	123.3	17.2	3.1	11.5	1.4	6.7	1.2	3.1	0.4	2.5	0.3	34.2	752.5
A5-TR045-004	3.00	4.00	00273	192.9	373.7	40.2	127.1	17.4	3.2	11.7	1.4	6.7	1.1	3.0	0.4	2.6	0.3	33.7	815.5
A5-TR045-005	4.00	5.00	00274	204.5	362.2	41.7	130.9	17.5	3.4	11.9	1.4	6.9	1.2	3.2	0.4	2.6	0.4	34.6	822.9
A5-TR045-007	5.00	6.00	00276	162.7	300.5	35.5	115.1	16.8	3.0	11.1	1.4	6.2	1.2	3.0	0.4	2.6	0.3	35.0	694.7
A5-TR046-001	0.00	1.00	00278	93.9	181.3	22.3	75.9	13.2	2.2	10.2	1.2	6.7	1.2	3.4	0.4	2.5	0.3	35.7	450.7
A5-TR046-002	1.00	2.00	00279	83.7	162.0	19.8	66.6	11.7	2.2	8.2	1.0	5.6	0.9	2.5	0.4	2.2	0.3	29.2	396.4
A5-TR046-003	2.00	3.00	00280	59.0	119.3	13.7	47.9	8.5	1.9	6.1	0.8	4.4	0.8	2.0	0.3	1.8	0.3	21.8	288.6
A5-TR046-004	3.00	4.00	00281	130.1	196.5	32.1	112.4	18.9	4.2	14.5	1.8	9.3	1.7	4.4	0.6	3.2	0.5	55.4	585.5
A5-TR047-001	0.00	1.00	00283	102.7	246.8	24.3	84.4	14.6	1.9	9.7	1.2	6.0	0.9	2.6	0.3	2.2	0.4	24.2	522.1
A5-TR047-002	1.00	2.00	00284	97.9	244.1	22.4	75.2	12.8	1.8	8.5	1.2	6.0	1.1	3.4	0.4	2.7	0.4	27.4	505.2
A5-TR047-003	2.00	3.00	00285	90.4	229.2	21.2	69.7	11.7	1.7	8.0	1.0	5.0	0.9	2.3	0.3	2.0	0.3	20.6	464.5
A5-TR047-004	3.00	4.00	00286	128.9	283.3	30.4	103.5	16.4	2.4	11.4	1.4	7.2	1.2	2.9	0.4	2.6	0.4	27.9	620.1
A5-TR047-005	4.00	5.00	00287	133.5	276.4	30.9	105.4	18.8	2.9	12.9	1.7	8.3	1.5	3.6	0.5	3.2	0.4	35.7	635.6
A5-TR047-007	5.00	6.00	00289	123.0	258.6	28.2	94.0	16.0	2.6	11.1	1.5	7.2	1.2	3.1	0.4	2.8	0.4	29.8	580.1

Summary of all significant results based on 1,000 ppm TREO low cut-off and $2,000 \mathrm{ppm}$ and $3,000 \mathrm{ppm}$ TREO high grade cut-offs respectively.

> A1-TR001-001 including 3m @2,744
> A1-TR002-001 including 3m @1,637
> A1-TR003-001 including 3m @3,030
> A1-TR004-001 including 3m @1,852
> A1-TR005-001 including 3m @1,657
> A1-TR006-001 including 3m @3,508
> A1-TR007-001 including 3m @1,581
> A1-TR008-001 including 2 m @2,113
> A1-TR009-001 including 3m @3,964
> A1-TRO10-001 including 3m @2,524
> A2-TR001-001 including 1m @2,786
> A2-TR002-001 including 2 m @2,043
> A2-TR003-003 including 3m @1,524
> A2-TR004-001 including 3m @1,436
> A2-TR005-004 including 3m @1,501
> A2-TR006-001 including 2 m @2,099
> A2-TR007-001 including 3m @1,332
> A2-TR008-001 including 2 m @1,546
> A2-TR009-001 including 2 m @1,766
> A2-TR010-001 including 3m @1,447
> A3-TR001-001 including 5m @1,717
> A3-TR002-001 including 3m @2,306
> A3-TR003-001 including 5 m @1,663
> A3-TR004-001 including 5m @1,274
> A3-TR005-001 including 2 m @2,145
> A3-TR005-001 including $2 \mathrm{~m} @ 1,590$
> A4-TR001-001 including $2 m$ @2,488
> A4-TR001-001 including 3m @4,950
> A4-TR002-001 including 5m @1,338

A4-TR003-001 including 5m @1,094 A4-TR004-001 including 2 m @1,115 A4-TR005-001 including 4m @1,300 A5-TR008-001 including 3m @1,476 A5-TR009-001 including 1m @1,396 A5-TR010-001 including 3m @1,323 A5-TR011-001 including 1m @1,069 A5-TR013-001 including 3m @1,072 A5-TR014-001 including 3m @1,139 A5-TR020-001 including 3m @1,329

[^0]: ${ }^{1}$ ASX announcement, "Completion of phase 1 exploration \& drilling at Pocos", 3 Apr 2024
 ${ }^{2} \mathrm{TREO}=\mathrm{CeO}_{2}+\mathrm{Dy}_{2} \mathrm{O}_{3}+\mathrm{Er}_{2} \mathrm{O}_{3}+\mathrm{Eu}_{2} \mathrm{O}_{3}+\mathrm{Gd}_{2} \mathrm{O}_{3}+\mathrm{Ho}_{2} \mathrm{O}_{3}+\mathrm{La}_{2} \mathrm{O}_{3}+\mathrm{Lu}_{2} \mathrm{O}_{3}+\mathrm{Nd}_{2} \mathrm{O}_{3}+\mathrm{Pr}_{6} \mathrm{O}_{11}+\mathrm{Sm}_{2} \mathrm{O}_{3}+\mathrm{Tb}_{4} \mathrm{O}_{7}+\mathrm{Tm}_{2} \mathrm{O}_{3}+$ $\mathrm{Y}_{2} \mathrm{O}_{3}+\mathrm{Yb}_{2} \mathrm{O}_{3}$ based on greater than 2,000 ppm TREO cut-off.

[^1]: ${ }^{3}$ ASX announcement, "SI6 Secures 300km2 prospective rare earth project", 23 May 2024
 ${ }^{4}$ Alkaline-Silicate REE-HFSE Systems Charles D. Beard et al

[^2]: ${ }^{5}$ ASX announcement, "Completion of phase 1 exploration \& drilling at Poços", 3 Apr 2024
 ${ }^{6}$ https://amda.org.br/noticias/5848-caldas-mg-restringe-mineracao-na-serra-da-pedra-branca/

[^3]: ${ }^{7}$ Alkaline-Silicate REE-HFSE Systems Charles D. Beard et al

