

ASX/JSE RELEASE: 9 July 2024

Okiep Copper Project Continues to Deliver: 20.5m at 4.99% Cu within 43m at 3.41% Cu at Flat Mine South

Results confirm high-grade potential with mineralisation remaining open

• Outstanding assay results received for the first diamond drill holes completed at Flat Mine South:

- Drill hole OFMSD077 intersected 20.50m at 4.99% Cu within 43.00m at 3.41% Cu.
- Mineralisation open for 200m down-dip.
- Flat Mine South, which is a virgin discovery that is blind to surface, will form a key part of Orion's early production plan for the Okiep Copper Project.
- The intersections achieved to date support geological and grade distribution interpretations that were incorporated in Mineral Resource modelling and estimation for the Okiep Copper Project.
- Drilling is continuing to test the down-dip extension of high-grade mineralisation in a previously untested area encompassing 300m of strike and 200m down-dip extent.
- Confirmatory drilling has also commenced at Flat Mine (Nababeep), where an Inferred Mineral Resource of 1Mt at 1.4% Cu was reported in March 2021.

Orion's Managing Director and CEO, Errol Smart, commented:

"Following our success in confirming the potential for high-grade copper mineralisation at Flat Mine East over the past month, the first assay results from Flat Mine South, located about 3km to the south-west of Flat Mine East have delivered further outstanding copper intercepts. These results show that the Flat Mines complex contains very high-grade copper sulphide mineralisation contained within wider zones of moderate grade intrusive.

"We are encouraged by the potential to rapidly add high-grade tonnes from near-surface bodies such as at Flat Mine Nababeep, and also down-dip and along trend of the blocks being included in the current mine plan.

"Our initial BFS that is nearing completion has only focused on immediately available JORC compliant Mineral Resources from FMN, FME and FMS. However, the potential to expand scale and extend the mine life lies at the core of why Orion invested in the Okiep district. Our aspirational target is to restore our Okiep properties to their historic production levels of 20,000 - 50,000 tonnes of copper production per annum, which previous owners maintained for over five decades. Our ongoing drilling results underscore this potential."

Orion Minerals Limited (**ASX/JSE: ORN**) (**Orion** or **Company**) is pleased to report further outstanding assay results from the confirmation diamond drilling program in the Flat Mines area at its Okiep Copper Project (**OCP**) in the Northern Cape, South Africa.

The latest results add further momentum to Orion's development strategy for the OCP, building on the initial results reported on 22 April 2024 and 24 June 2024 including an intersection of 49.35m @ 5.05% Cu (refer ASX/JSE release 24 June 2024) at Flat Mine East (**FME**) among several other high-grade intersections confirming the geology and endowment of the Flat Mines Area.

www.orionminerals.com.au

ASX Code: ORN JSE Code: ORN ISIN: AU000000ORN1 The OCP ground holdings of 641km² cover most of the area where a total of 105Mt is reported to have been mined in the district over the past 100 years (refer ASX/JSE release 21 May 2021). The Flat Mines area and the current drilling program fall entirely within an executed Mining Right.

Results received and reported in this announcement include the first two of the four planned holes at Flat Mine South (**FMS**). The assay results have confirmed historical information from drilling by Newmont and Goldfields of South Africa (**Goldfields**) in the 1980's and 1990's, used in the Mineral Resource update, where 9.4Mt at 1.3% Cu was reported for the Flat Mines including 3.4Mt at 1.4% Cu at FMS (refer ASX/JSE release 28 August 2023).

Flat Mines Confirmatory Drilling Program

A diamond drilling program commenced in the Flat Mines area of the OCP in February 2024. A total of 11 diamond core drill holes were planned at FME, FMS and Flat Mine North (FMN) comprising a total of approximately 5,800m. This total includes a non-directional deflection for each hole.

The program was designed to confirm historical drilling information and resultant interpretations, provide geotechnical information and deliver additional material for confirmatory metallurgical test work for the FMN, FME and FMS blocks included in the initial BFS mine schedule.

The planned program (Figure 2, Table 1) is specifically designed to optimally cover the areas that contribute most significantly to the overall estimated Indicated Mineral Resource. All holes include a deflection (or wedge) through the mineralisation to provide the additional material for confirmatory metallurgical test work.

Prospect	Hole ID	Drilling Status	Assay Status
Flat Mine East	OFMED151	Complete	Received
Flat Mine East	OFMED152	Complete	Received
Flat Mine East	OFMED153	Complete	Received
Flat Mine East	OFMED154	Complete	Received
Flat Mine East	OFMED155	Complete	Received
Flat Mine South	OFMSD076	Complete	Received
Flat Mine South	OFMSD077	Complete	Received
Flat Mine South	OFMSD078	Complete	Pending
Flat Mine South	OFMSD079	Current	Pending
Flat Mine North	OFMND242	Complete	Pending
Flat Mine North	OFMND243	Complete	Pending

Table 1: Summary table of current drilling and assay status.

Assay results from the first two holes completed at FMS have been received and are summarised in Table 2 with results from the complete intersection included in Appendix 1.

Drill hole OFMSD076 returned 6.00m at 0.90% Cu from 454.00m (Table 2). This is all within a broad zone of elevated copper of 32.32m at 0.63% Cu from 427.68m. Historical hole FMS012, located approximately 20m away from OFMSD076, intersected 34.80m at 0.74% from 447.90m. Historical hole FMS046, located approximately 20m away from OFMSD076, intersected 31.82m at 1.14% from 377.18m.

Drill hole OFMSD077 returned an outstanding intercept of **20.50m at 4.99% Cu from 549.50m** within **43.00m at 3.41% Cu from 527.00m** (Table 2). This is all within a broad zone of elevated copper, but inclusive of wider zones of internal waste and lower grade, of **62.00m at 2.51% Cu from 508.00m**. Historical hole FMS053D1, located approximately 10m away from ODFMSD077, intersected 38.98m at 2.16% Cu from 574.45m.

Significant widths of waste granitic material are included within the reported intersection widths, providing opportunities for upgrading of material through modern XRF ore sorting techniques to reject internal waste before milling. This provides the potential for optimised metal extraction with larger stopes operated at lower mining cost, while limiting concentrator capital and operating costs.

On completion of the drilling program, the geological and mineralisation envelope interpretations will be reviewed and adjusted where necessary, followed by an update of the Mineral Resource Estimate including the new information. New geotechnical information will be used for input to mine design.

Planned confirmatory metallurgical test work includes XRF sorting, comminution, flotation optimisation and tailings characterisation. Detailed geotechnical assessment is also undertaken on all intersections.

Figure 1: Drilling at FMS.

Figure 2: Plan showing historical and Orion drill holes, interpreted mineralisation envelopes and extent of the Mining Right.

Assay Results

Results received for FMS are summarised in Table 2 below. Further results from drilling at FMS and FMN are pending.

Table 2: Summary table of drill results to date for FMS prospect (a minimum cut-off of 0.7% Cu with maximum 3m internal waste allowed). Intersections and inclusions with grades mostly above 1% Cu are tabulated. The data was not capped. Note: widths are drill widths.

	Mineralisation						
Hole ID	Notes	From (m)	To (m)	Interval (m)	% Сu		
		430.00	439.00	9.00	0.70		
OFMSD076		446.00	448.00	2.00	1.19		
		454.00	460.00	6.00	0.90		
054400077		527.00	570.00	43.00	3.41		
OFMSD077	including	549.50	570.00	20.50	4.99		

Table 3: Comparison of % Cu grades and widths for OFMSD076, OFMSD077 and nearest neighbour historical Newmont and Goldfields drilled holes FMS012, FMS046 and FMS053D1.

	0	rion Hole			Historical Hole				Intersection	
Hole ID	From (m)	To (m)	Intersection Width (m)	% Сu	Hole ID	From (m)	To (m)	Intersection Width (m)	% Cυ	Separation Distance (m)
	407.49	4/0.00	22.22	0.72	FMS012	447.90	482.70	34.80	0.74	20
OFM3D076	427.68	460.00	32.32	0.63	FMS046	377.18	409.00	31.82	1.14	20
OFMSD077	527.00	570.00	43.00	3.41	FMS053D1	574.45	613.43	38.98	2.16	10

Flat Mines Exploration and Resource Upgrade Drilling Program

Three of the five drilling rigs have been retained on site to test for an increase in classification of JORC Resource blocks that are not yet included in the mine plan and to test for extensions of high-grade mineralisation beyond the margins of the current JORC Resource blocks.

At FMS, historical Goldfields holes and Orion hole OFMSD077 indicate that high-grade mineralisation remains open down-dip for up to 200m within an untested area encompassing a strike length of 300m (Figure 3).

Historical intersections indicating mineralisation with true widths (**TW**) remaining open down-dip (Figure 3) include the following:

- 38.98m (25m TW) at 2.16% Cu including 24.45m (16m TW) at 3.06% Cu in FMS053D1;
- 18.74m (10m TW) at 4.29% Cu including 15.74m (8m TW) at 4.86% Cu in FMS048; and
- 70.96m (34m TW) at 1.21% Cu including 10.24m (5m TW) at 2.81% Cu in FMS047.

Hole OFMSD080 is currently in progress targeting this area, with further holes planned pending interpretation and assay results.

Figure 3: Long Section of FMS downdip drilling target.

Confirmatory drilling is also underway at Flat Mine Nababeep (**FMNb**), where an Inferred Mineral Resource of 1Mt at 1.4% Cu was previously reported (refer ASX/JSE release 29 March 2021). Original drilling over the main zone of mineralisation was carried out by the Cape Copper Company in the 1940's with 141Kt at 2.72% Cu reported as being subsequently mined in the 1950's.

Six holes totalling approximately 480m are initially planned to test and confirm the near-surface mineralisation at FMNb (Figure 4).

Highly mineralised intrusive, similar to that intersected and reporting high grades at FME and FMS, has already been intersected from 6m to 52m in the first drill hole completed at FMNb (Figure 5). Outcropping exposure and drill intersections indicate that FMNb is likely to have a high internal waste content. This style of mineralisation is most suitable for bulk extraction with the application of ore sorting to remove the granitic waste, before milling the higher grade mafic intrusive rock fraction.

Figure 4: 3D view of FMNb mineralisation envelopes, historical mine workings, historical drilling and planned and current drilling.

Figure 5: Drill core photographs showing bornite and chalcopyrite mineralisation in FMS hole OFMSD177 at 569m depth (top) and FMNb hole OFMD163 at 43m depth (bottom).

For and on behalf of the Board.

EMART

Errol Smart Managing Director and CEO

ENQUIRIES

Investors Errol Smart – Managing Director & CEO Denis Waddell – Chairman T: +61 (0) 3 8080 7170 E: info@orionminerals.com.au Media

Nicholas Read Read Corporate, Australia T: +61 (0) 419 929 046 E: <u>nicholas@readcorporate.com.au</u>

JSE Sponsor

Monique Martinez Merchantec Capital T: +27 (0) 11 325 6363 E: <u>monique.martinez@merchantec.com</u>

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Paul Matthews (Pr.Sci.Nat.), a Competent Person who is a member of the South African Council for Natural Scientific Professionals, a Recognised Professional Organisation (**RPO**). Mr Matthews is a full-time employee of Orion. Mr Matthews has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Matthews consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Reference to Previous Report

Exploration results from drilling at Flat Mines Area were reported in ASX/JSE release of 22 April 2024: "Spectacular High-Grade Copper Intercept at Okiep Project" and in ASX/JSE release of 24 June 2024: "More Outstanding Hits at Okiep Copper Project", available to the public on http://www.orionminerals.com.au/investors/asx-jse-announcements/. Orion confirms that it is not aware of any new information or data that materially affects the form or context in which the exploration results and supporting information were presented in the original ASX/JSE release.

Disclaimer

This release may include forward-looking statements. Such forward-looking statements may include, among other things, statements regarding targets, estimates and assumptions in respect of metal production and prices, operating costs and results, capital expenditures, mineral reserves and mineral resources and anticipated grades and recovery rates, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. These forward-looking statements are based on management's expectations and beliefs concerning future events. Forward-looking statements inherently involve subjective judgement and analysis and are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Orion. Actual results and developments may vary materially from those expressed in this release. Given these uncertainties, readers are cautioned not to place undue reliance on such forward-looking statements. Orion makes no undertaking to subsequently update or revise the forward-looking statements made in this release to reflect events or circumstances after the date of this release. All information in respect of Exploration Results and other technical information should be read in conjunction with Competent Person Statements in this release (where applicable). To the maximum extent permitted by law, Orion and any of its related bodies corporate and affiliates and their officers, employees, agents, associates and advisers:

- disclaim any obligations or undertaking to release any updates or revisions to the information to reflect any change in expectations or assumptions;
- do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this release, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and
- disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

Appendix 1: Drill hole collar information and assay results from drill program at Flat Mine East and Flat Mine South

Table 4: Drill hole collar information for FME and FMS prospects. Coordinates in WGS84 Hartebeesthoek 94 LO17.Note: FME coordinates updated following survey by a qualified surveyor.

Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth (m)
OFMED151	78,421.82	-3,270,410.07	973.99	180	-73	346.99
OFMED152	78,523.85	-3,270,430.97	965.79	180	-78	295.97
OFMED153	78,570.60	-3,270,401.00	965.89	180	-75	301.03
OFMED154	78,620.20	-3,270,382.32	968.57	184	-70	275.90
OFMED155	78,466.10	-3,270,441.84	973.19	184	-78	316.67
OFMSD076	75,167.25	-3,270,966.56	761.28	167	-58	505.25
OFMSD077	75,187.01	-3,270,970.42	762.13	184	-65	600.00

Table 5: OFMSD076 drill assay results.

Hole ID	From (m)	To (m)	% Cυ
OFMSD076	56.00	57.00	0.0005
OFMSD076	57.00	58.00	0.0003
OFMSD076	58.00	59.00	0.0003
OFMSD076	421.00	422.00	0.0005
OFMSD076	422.00	423.00	0.0036
OFMSD076	423.00	424.00	0.0530
OFMSD076	424.00	425.00	0.0009
OFMSD076	425.00	426.00	0.0011
OFMSD076	426.00	426.93	0.0126
OFMSD076	426.93	427.68	0.0078
OFMSD076	427.68	429.00	0.7240
OFMSD076	429.00	430.00	0.4770
OFMSD076	430.00	431.00	0.7660
OFMSD076	431.00	432.00	0.8810
OFMSD076	432.00	433.00	0.6640
OFMSD076	433.00	434.00	0.2450
OFMSD076	434.00	435.00	0.4680
OFMSD076	435.00	436.00	0.5110
OFMSD076	436.00	437.00	1.1600
OFMSD076	437.00	438.00	0.7380
OFMSD076	438.00	439.00	0.8300
OFMSD076	439.00	440.00	0.6110
OFMSD076	440.00	441.00	0.4010
OFMSD076	441.00	442.00	0.4100
OFMSD076	442.00	443.00	0.3960
OFMSD076	443.00	444.00	0.6390

Hole ID	From (m)	To (m)	% Cu
OFMSD076	444.00	445.00	0.4660
OFMSD076	445.00	446.00	0.4150
OFMSD076	446.00	447.00	1.1950
OFMSD076	447.00	448.00	1.1750
OFMSD076	448.00	449.00	0.2560
OFMSD076	449.00	450.00	0.2890
OFMSD076	450.00	451.00	0.0394
OFMSD076	451.00	452.00	0.0022
OFMSD076	452.00	453.00	0.4370
OFMSD076	453.00	454.00	0.5890
OFMSD076	454.00	455.00	1.1250
OFMSD076	455.00	455.82	0.5820
OFMSD076	455.82	457.00	0.0487
OFMSD076	457.00	458.00	1.3200
OFMSD076	458.00	459.00	1.3500
OFMSD076	459.00	460.00	1.0950
OFMSD076	460.00	461.00	0.2150
OFMSD076	461.00	462.00	0.5670
OFMSD076	462.00	463.00	0.0031
OFMSD076	463.00	464.00	0.0015
OFMSD076	464.00	465.00	0.0018
OFMSD076	465.00	466.00	0.0015
OFMSD076	466.00	467.00	0.0013
OFMSD076	467.00	468.00	0.0005
OFMSD076	468.00	469.00	0.0003

Table 6: OFMSD077 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMSD077	496.00	497.00	0.1065
OFMSD077	497.00	498.00	0.0140
OFMSD077	498.00	499.00	0.6780
OFMSD077	499.00	500.00	0.6670
OFMSD077	500.00	501.00	0.8570
OFMSD077	501.00	501.40	0.1935
OFMSD077	501.40	502.00	1.2300
OFMSD077	502.00	503.00	0.0668
OFMSD077	503.00	504.00	0.0411
OFMSD077	504.00	504.93	0.0435
OFMSD077	504.93	506.00	0.0098
OFMSD077	506.00	507.00	0.0103
OFMSD077	507.00	508.00	0.0010
OFMSD077	508.00	509.00	0.7830
OFMSD077	509.00	509.60	0.8310
OFMSD077	509.60	510.27	0.6500
OFMSD077	510.27	511.27	0.0519
OFMSD077	511.27	512.38	0.1050
OFMSD077	512.38	513.00	0.4540
OFMSD077	513.00	513.77	0.2210
OFMSD077	513.77	515.00	0.2220
OFMSD077	515.00	516.13	0.8130
OFMSD077	516.13	516.79	0.0860
OFMSD077	516.79	517.30	0.2260
OFMSD077	517.30	518.00	0.7560
OFMSD077	518.00	518.62	1.1300
OFMSD077	518.62	519.62	0.2170
OFMSD077	519.62	520.46	0.5170
OFMSD077	520.46	521.46	1.0350
OFMSD077	521.46	522.50	0.6060
OFMSD077	522.50	523.00	0.4680
OFMSD077	523.00	523.85	0.5590
OFMSD077	523.85	524.83	0.2050
OFMSD077	524.83	526.00	0.3180
OFMSD077	526.00	527.00	0.4520
OFMSD077	527.00	528.00	0.8710
OFMSD077	528.00	529.00	1.2900
OFMSD077	529.00	530.00	1.5750
OFMSD077	530.00	530.76	0.5480
OFMSD077	530.76	531.90	0.8050
OFMSD077	531.90	532.85	0.1685
OFMSD077	532.85	534.00	1.7450

Hole ID	From (m)	To (m)	% Cu
OFMSD077	534.00	535.00	0.8900
OFMSD077	535.00	536.00	2.2400
OFMSD077	536.00	537.00	2.0700
OFMSD077	537.00	538.00	3.1700
OFMSD077	538.00	539.00	3.2300
OFMSD077	539.00	540.00	3.3200
OFMSD077	540.00	541.00	2.1800
OFMSD077	541.00	542.00	1.2200
OFMSD077	542.00	543.00	0.6800
OFMSD077	543.00	544.00	2.2700
OFMSD077	544.00	544.60	3.0900
OFMSD077	544.60	545.60	2.2600
OFMSD077	545.60	546.60	3.5600
OFMSD077	546.60	547.60	2.5400
OFMSD077	547.60	548.60	3.1700
OFMSD077	548.60	549.50	2.4800
OFMSD077	549.50	550.60	5.7600
OFMSD077	550.60	551.60	6.0600
OFMSD077	551.60	552.04	7.2100
OFMSD077	552.04	553.00	4.7800
OFMSD077	553.00	554.00	6.3200
OFMSD077	554.00	555.00	3.4600
OFMSD077	555.00	556.00	5.2200
OFMSD077	556.00	556.64	5.7500
OFMSD077	556.64	557.10	5.7200
OFMSD077	557.10	558.00	6.1600
OFMSD077	558.00	559.00	3.2700
OFMSD077	559.00	560.00	1.6500
OFMSD077	560.00	561.00	1.9600
OFMSD077	561.00	562.00	2.4400
OFMSD077	562.00	563.00	3.4900
OFMSD077	563.00	564.00	2.5900
OFMSD077	564.00	565.00	1.2150
OFMSD077	565.00	566.00	4.3800
OFMSD077	566.00	567.00	6.4600
OFMSD077	567.00	568.00	11.3000
OFMSD077	568.00	569.00	8.1700
OFMSD077	569.00	570.00	8.4000
OFMSD077	570.00	571.00	0.2980
OFMSD077	571.00	572.00	0.0235
OFMSD077	572.00	573.00	0.0110
OFMSD077	573.00	574.00	0.0053

Table 7: Historical drilling by Newmont and Goldfields of South Africa, FMS drill assay results.

Hole ID	From (m)	To (m)	% Cu
EMS012	22,50	24.50	0.12
EMS012	24.50	25.30	0.05
FMS012	25.30	27.30	0.07
FMS012	27.30	29.30	0.06
FMS012	29.30	31.30	0.05
FMS012	31.30	33.00	0.03
EMS012	33.00	35.00	0.06
	35.00	35.40	0.00
	201.00	205.00	0.03
	374.∠7 205.00	20/ 27	0.00
FMS012	375.27	376.27	0.00
FMSU12	376.27	397.27	0.98
FMSU12	397.27	398.27	0.10
FMS012	398.27	399.27	0.49
FMS012	399.27	400.27	0.20
FMS012	400.27	401.27	0.34
FMS012	401.27	402.27	0.24
FMS012	402.27	403.27	0.19
FMS012	403.27	404.27	0.24
FMS012	404.27	405.27	0.40
FMS012	405.27	406.27	0.26
FMS012	406.27	407.27	0.14
FMS012	407.27	408.27	0.30
FMS012	408.27	409.27	0.49
FMS012	409.27	410.27	0.41
FMS012	410.27	411.27	0.31
FMS012	411.27	412.27	0.32
FMS012	412.27	413.27	0.20
FMS012	413.27	414.45	0.12
FMS012	415.45	416.45	0.29
FMS012	416.45	417.45	0.47
FMS012	417.45	418.45	0.18
FMS012	418.45	419.45	0.24
FMS012	419.45	420.45	0.10
FMS012	420.45	421.92	0.24
FMS012	421.92	422.38	0.02
FMS012	422.38	423.38	0.42
FMS012	423.38	424.38	0.47
FMS012	424.38	425.38	0.69
FMS012	425.38	426.38	0.54
FMS012	426.38	427.38	0.94
FMS012	427.38	428.38	0.35
FMS012	428.38	429.38	0.15
FMS012	429.38	430.38	0.10
FMS012	430.38	431.00	0.11
FMS012	433.00	434.00	0.06

Hole ID	From (m)	To (m)	% Cu
EMS012	434.00	435.00	0.27
EMS012	435.00	436.00	0.12
EMS012	436.00	437.00	0.12
EMS012	437.00	437.00	0.18
FMS012	437.70	138.90	0.16
EMS012	437.70	430.70	0.10
EMS012	430.70	437.70	0.74
	437.70	440.70	0.40
EMS012	440.70	441.70	0.24
	441.70	442.70	0.24
FM3012	442.70	443.70	0.14
FM3012	443.70	444.70	0.13
	444.90	445.90	0.29
FM3012	445.90	446.90	0.24
FMSU12	446.90	447.90	0.56
FMSU12	447.90	448.90	0.74
FMS012	448.90	449.90	1.43
FMS012	449.90	450.90	0.70
FMS012	450.90	451.90	0.3/
FMS012	451.90	452.90	1.71
FMS012	452.90	453.90	0.64
FMS012	453.90	454.90	0.10
FMS012	455.90	456.90	0.54
FMS012	456.90	457.90	1.01
FMS012	457.90	458.90	0.19
FMS012	458.90	459.52	0.29
FMS012	459.52	460.50	2.49
FMS012	460.50	461.50	0.57
FMS012	462.50	463.51	0.15
FMS012	463.51	464.51	0.15
FMS012	464.51	465.51	0.47
FMS012	465.51	466.51	0.62
FMS012	466.51	467.51	1.13
FMS012	467.51	468.90	1.02
FMS012	468.90	469.90	0.37
FMS012	469.90	470.86	0.49
FMS012	470.86	471.41	0.97
FMS012	471.41	472.42	0.45
FMS012	472.42	473.12	0.14
FMS012	473.12	474.12	0.70
FMS012	474.12	475.12	0.16
FMS012	476.12	477.12	0.74
FMS012	477.12	478.45	0.56
FMS012	478.45	479.45	2.40
FMS012	479.45	480.45	0.92
FMS012	480.45	481.45	1.84

Hole ID	From (m)	To (m)	% Cu
FMS012	481.45	482.70	1.44
FMS012	536.30	537.65	0.04
FMS012	537.65	538.50	0.05
FMS046	368.70	369.73	0.15
FMS046	370.98	371.16	0.07
FMS046	375.81	377.18	0.29
FMS046	377.18	377.44	4.24
FMS046	377.44	378.40	0.34
FMS046	378.40	379.31	0.44
FMS046	379.39	380.37	0.70
FMS046	380.37	381.47	0.63
FMS046	381.47	382.56	1.01
FMS046	382.56	383.64	0.61
FMS046	383.64	384.68	0.76
FMS046	384.68	385.68	0.69
FMS046	385.68	386.70	0.75
FMS046	386.70	389.20	1.16
FMS046	389.20	390.23	0.59
FMS046	390.23	391.89	0.60
FMS046	391.89	392.96	0.57
FMS046	392.96	393.94	1.03
FMS046	393.94	395.07	1.01
FMS046	395.07	395.82	1.14
FMS046	396.00	397.90	1.37
FMS046	397.90	398.96	0.82
FMS046	398.96	399.96	0.99
FMS046	399.96	400.78	1.67
FMS046	400.78	401.76	1.77
FMS046	401.76	402.74	1.96
FMS046	402.74	404.20	1.79
FMS046	404.20	405.10	1.71
FMS046	405.10	406.00	2.82
FMS046	406.00	406.62	0.11
FMS046	406.62	409.00	2.04
FMS046	409.00	410.00	0.10
FMS046	410.00	411.04	0.06
FMS046	411.04	412.50	0.02
FMS046	412.50	413.60	0.62
FMS046	492.67	493.67	0.20
FMS046	493.67	494.67	0.56
FMS046	494.67	495.67	0.81
FMS046	495.67	496.67	0.42
FMS046	496.67	497.67	0.60
FMS046	497.67	498.67	1.30
FMS046	498.67	499.67	0.73
FMS046	499.67	500.67	0.35
EMS046	500.67	501.67	0.47

Hole ID	From (m)	To (m)	% Cu
FMS046	501.67	502.67	0.27
FMS046	502.67	503.37	0.33
FMS046	504.58	505.48	0.23
FMS046	505.48	506.38	0.15
FMS046	506.38	507.28	0.11
FMS046	507.28	508.18	0.45
FMS046	508.18	509.98	0.23
FMS046	509.98	510.88	0.17
FMS046	510.88	511.78	0.12
FMS046	511.78	512.68	0.40
FMS046	512.68	513.58	0.29
FMS046	513.58	514.48	0.17
FMS046	514.48	515.38	0.20
FMS046	515.38	516.28	0.13
FMS046	516.28	518.00	0.21
FMS047	464.21	465.21	0.03
FMS047	466.21	467.21	0.28
FMS047	467.21	468.21	0.08
FMS047	468.21	470.20	0.06
FMS047	470.90	471.90	0.09
FMS047	471.90	472.90	0.26
FMS047	472.90	473.90	0.32
FMS047	473.90	474.90	0.16
FMS047	474.90	475.90	1.01
FMS047	475.90	476.90	0.63
FMS047	476.90	477.90	0.13
FMS047	477.90	478.90	0.24
FMS047	478.90	479.90	0.55
FMS047	479.90	480.90	0.33
FMS047	480.90	481.47	0.32
FMS047	484.80	485.80	1.18
FMS047	485.80	486.80	0.34
FMS047	486.80	487.80	0.48
FMS047	487.80	488.80	0.25
FMS047	488.80	489.80	0.15
FMS047	489.80	490.80	0.12
FMS047	490.80	491.80	0.24
FMS047	491.80	492.80	0.33
FMS047	492.80	493.97	0.30
FMS047	493.97	494.41	0.04
FMS047	494.41	495.41	0.34
FMS047	495.41	496.41	0.12
FMS047	496.41	497.41	0.44
FMS047	497.41	498.41	0.20
FMS047	498.41	499.41	0.54
FMS047	499.41	500.41	0.52
FMS047	500.41	501.41	0.42

Hole ID	From (m)	To (m)	% Cu
FMS047	501.41	502.41	0.74
FMS047	502.41	503.41	0.37
FMS047	503.41	504.41	0.43
FMS047	504.41	505.41	0.64
FMS047	505.41	506.41	0.32
FMS047	506.41	507.41	0.28
FMS047	507.41	508.41	0.36
FMS047	508.41	509.41	0.36
FMS047	509.41	510.41	2.79
FMS047	510.41	511.50	0.27
FMS047	511.50	512.50	0.09
FMS047	512.50	513.50	0.02
FMS047	513.50	514.20	0.12
FMS047	514.20	515.20	3.94
FMS047	515.20	516.20	3.34
FMS047	516.20	517.20	1.82
FMS047	517.20	518.20	1.88
FMS047	518.20	519.20	1.75
FMS047	519.20	520.20	2.17
FMS047	520.20	521.20	1.78
FMS047	521.20	522.20	1.64
FMS047	522.20	523.20	0.24
FMS047	523.20	524.20	1.66
FMS047	524.20	525.20	0.89
FMS047	525.20	526.20	1.44
FMS047	526.20	527.20	0.77
FMS047	527.20	528.20	1.56
FMS047	528.20	529.20	0.84
FMS047	529.20	530.20	0.78
FMS047	530.20	531.20	0.72
FMS047	531.20	532.20	0.37
FMS047	532.20	533.20	0.31
FMS047	533.20	534.20	0.45
FMS047	534.20	535.20	0.46
FMS047	535.20	536.20	1.97
FMS047	536.20	537.20	0.64
FMS047	537.20	538.20	0.40
FMS047	538.20	539.20	0.62
FMS047	539.20	540.20	0.52
FMS047	540.20	541.20	0.16
FMS047	541.20	542.80	0.81
FMS047	542.80	543.80	0.09
FMS047	543.80	544.80	0.12
FMS047	544.80	545.80	0.18
FMS047	545.80	546.80	0.24
FMS047	546.80	547.80	0.23
EMS047	547 80	548.80	0.59

Hole ID	From (m)	To (m)	% Cu
FMS047	548.80	549.80	0.26
FMS047	549.80	550.80	0.16
FMS047	550.80	551.80	0.04
FMS047	551.80	552.80	0.08
FMS047	552.80	553.80	0.08
FMS047	553.80	554.80	0.79
FMS047	554.80	555.80	1.38
FMS047	555.80	556.80	3.43
FMS047	556.80	557.80	1.37
FMS047	557.80	558.80	2.01
FMS047	558.80	559.80	0.27
FMS047	559.80	560.80	0.32
FMS047	560.80	561.80	0.14
FMS047	561.80	562.80	0.46
FMS047	562.80	563.80	0.71
FMS047	563.80	564.42	0.24
FMS047	564.42	565.97	1.11
FMS047	565.97	566.97	0.26
FMS047	566.97	567.94	0.38
FMS047	568.77	569.86	2.93
FMS047	569.86	570.24	0.15
FMS047	570.24	571.24	6.50
FMS047	571.24	572.24	5.04
FMS047	572.24	572.88	4.00
FMS047	572.88	573.43	0.86
FMS047	573.43	574.43	0.73
FMS047	574.43	575.43	2.17
FMS047	575.43	576.00	5.31
FMS047	576.00	577.01	0.31
FMS047	577.01	578.01	2.39
FMS047	578.01	579.01	2.32
FMS047	579.01	580.01	1.41
FMS047	580.01	581.01	1.55
FMS047	581.01	582.01	1.15
FMS047	582.01	583.01	1.57
FMS047	583.01	584.01	0.12
FMS047	584.01	585.16	1.19
FMS048	563.16	563.34	0.24
FMS048	578.55	579.55	1.29
FMS048	579.55	580.62	0.67
FMS048	580.62	582.17	4.29
FMS048	582.17	583.14	3.94
FMS048	583.14	583.49	8.87
FMS048	583.49	584.39	4.40
FMS048	584.39	585.30	3.40
FMS048	585.30	586.25	5.64
FMS048	586.25	587.15	4.39

Hole ID	From (m)	To (m)	% Cu
FMS048	587.15	588.08	5.91
FMS048	588.08	588.46	2.32
FMS048	588.46	589.51	3.10
FMS048	589.51	590.51	7.99
FMS048	590.51	591.48	6.72
FMS048	591.48	592.50	6.82
FMS048	592.50	592.53	4.47
FMS048	592.53	594.48	4.99
FMS048	594.48	595.40	3.38
FMS048	595.40	596.36	2.56
FMS048	596.36	597.29	1.99
FMS048	601.00	602.55	0.64
FMS048	632.65	634.37	0.01
FMS048	635.09	638.13	0.46
FMS048	647.14	647.74	0.01
FMS048	648.67	649.51	0.01
FMS048	650.69	651.68	0.16
FMS048	654.76	658.88	0.42
FM\$053D1	490.10	491.10	0.30
FM\$053D1	491.10	492.10	0.11
FM\$053D1	492.10	494.10	0.14
FM\$053D1	494.10	495.40	0.25
FM\$053D1	495.40	496.40	1.65
FM\$053D1	496.40	497.40	1.91
FMS053D1	497.40	498.40	2.75
FM\$053D1	498.40	499.05	1.58
FMS053D1	573.63	574.45	0.06
FM\$053D1	574.45	575.45	1.05
FMS053D1	575.45	576.45	0.29
FMS053D1	576.45	577.18	1.45
FMS053D1	577.18	578.36	0.92
FMS053D1	580.60	581.60	1.40
FM\$053D1	581.60	582.60	1.24
FMS053D1	582.60	583.60	0.99
FMS053D1	583.60	584.60	1.30
FMS053D1	584.60	585.12	1.66
FMS053D1	587.00	587.23	0.35
FMS053D1	588.98	589.50	2.97
FM\$053D1	589.50	590.50	3.06
FMS053D1	590.50	591.50	5.36
FMS053D1	591.50	592.50	3.91
FMS053D1	592.50	593.50	1.17
FM\$053D1	593.50	594.50	0.75
FMS053D1	594.50	595.50	2.45
FMS053D1	595.50	596.62	4.47
FMS053D1	596.62	597.22	10.23
FMS053D1	597.22	598.22	4.52

Hole ID	From (m)	To (m)	% Cu
FMS053D1	598.22	599.22	7.44
FMS053D1	599.22	600.22	2.62
FMS053D1	600.22	601.22	1.59
FMS053D1	601.22	602.22	2.25
FMS053D1	602.22	603.22	2.24
FMS053D1	603.22	604.22	1.79
FMS053D1	604.22	605.22	1.88
FMS053D1	605.22	606.22	1.32
FMS053D1	606.22	606.86	1.14
FMS053D1	609.51	610.51	3.44
FMS053D1	610.51	611.51	5.15
FMS053D1	611.51	612.51	5.70
FMS053D1	612.51	613.00	5.29
FMS053D1	613.00	613.43	5.23
FMS053D1	615.98	616.54	0.36
FMS053D1	616.54	617.10	0.35
FMS053D1	617.10	617.80	1.44

Appendix 2: The following tables are provided in accordance with the JORC Code (2012) requirements for the reporting of Exploration Results from the Okiep Copper Project.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling was carried out using industry standard procedures. NQ-size diamond drill cores were longitudinally split in half using a diamond core cutting machine. Half core was cut to quarter core where field duplicates were planned. HQ core size was only drilled in the upper weathered portion and no HQ core was sampled. One-metre sample length was taken in most cases. Sample lengths were varied to honour geological and mineralisation boundaries, with a maximum sample size of 1.32m and a minimum sample size of 40cm. Areas of sampling were selected based on visual observations and readings from a handheld Niton XL3t 500 XRF instrument (standard analytical range >25 elements from S to U with additional elements Mg, Al, Si and P via helium purge).
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond core drilling was undertaken. HQ and NQ size core was drilled using a standard tube. HQ core size was only drilled in the upper weathered portion of approximately 6m. No Cu mineralisation was visually identified in the HQ core and no HQ core was sampled. Core was oriented using a Reflex ACT IIITM.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core 'stick-ups' reflecting the depth of the drill hole are recorded at the rig at the end of each core run. A block with the depth of the hole written on it is placed in the core box at the end of each run. At the core yard, the length of core in the core box is measured for each run. The measured length of core is subtracted from the length of the run as recorded from the stick-up measured at the rig to determine the core loss. Core recovery was found to be very good (>98%) within the mineralised zone. Ground conditions below the weathered zone were very good. No obvious relationship exists between sample recovery and grade. No core/sample loss or gain which could result in sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core of the entire hole length was geologically logged by qualified geologists. The core was logged to a level of detail that is sufficient to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Geological logging was qualitative and was carried out using a standard sheet with a set of standard logging codes to describe lithology, structure and mineralisation. The logging sheet allows for freeform description to note any unusual features. Geological logs were captured electronically. All cores were photographed before sampling. Two diamond holes, totalling 1,106.78m core were logged. Of this, approximately 169m are ultramafic/mafic lithologies primarily hosting the Cu mineralisation. Geotechnical logging was completed on oriented core from deflections off the mother hole. The data collected per drill run consisted of core recovery, length of core greater than ten centimetres, longest piece, fracture count, alpha and beta angles for all joint types and lithological contacts, joint infill types and their strength as well as nature of joint surface. Geotechnical samples are being selected for submission to Rocklabs for test work including point load test, uniaxial compressive strength test (UCS), triaxial compression test (TCS), base friction angle test (BFA), uniaxial tensile strength (UTS), point load test (PLT), shear test on joints and density test.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. 	• NQ core was cut, and half core was taken as sample with quarter core for duplicates.
sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• HQ core size was only drilled in the upper weathered portion and no HQ core was sampled.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	• Sample preparation was undertaken at ALS Laboratory Johannesburg (ALS), an ISO accredited laboratory, and is considered appropriate. ALS
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	utilises industry best practice for sample preparation for analysis involving drying of samples, weighing samples, crushing to <2mm if
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field	+85% passing through 75 microns.
	 duplicate/second-half sampling. Whether sample sizes are appropriate to the argin size of the material 	Crushing and pulverising QC tests were applied by ALS and found acceptable.
	being sampled.	Quarter core field duplicates were taken for 5 samples.
		All sample sizes are deemed appropriate.
Quality of assay data	The nature, quality and appropriateness of the assaying and	Samples submitted to ALS were analysed for base metals and gold.
ana laboratory tests	laboratory procedures used and whether the technique is considered partial or total.	• All samples were analysed by an appropriate high-grade aqua regia ICP-AES method, ALS code ME-ICP41a.
 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (or a standards blanks) 	• Samples where assays returned >5% Cu were re-assayed by aqua regia digestion and ICP-AES method, ALS code MEOG-46.	
	derivation, etc	• Samples were assayed for gold by fire assay and AAS, ALS code AU- AA25 method.
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• Orion inserted CRMs every 10 th sample. A total of fourteen CRMs were inserted. CRMs were alternated throughout the sample stream and where possible matched to the sample material being analysed.
		 Three CRMs were used. AMIS0399 (1.014%Cu), AMIS0809 (2.97%Cu) and AMIS088 (0.3%Cu).
		• All fourteen CRMs returned acceptable results within two Standard Deviations of the CRM average.
		• Chip blanks are inserted at the beginning of each batch and after any sample that may be considered high grade. A total of nine blanks were used. Acceptable results were returned indicating no contamination.
		• The laboratory conducts their own checks which are also monitored. The accuracy and precision of the geochemical data reported on has deemed to be acceptable.
		No external laboratory checks have been carried out at this stage.

Criteria	JORC Code explanation	Commentary
Verification of Sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. 	• Orion's exploration geologist personally supervised the drilling and sampling along with a team of experienced geologists.
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Due to the high degrees of deviation in both dip and azimuth of the historical holes, twin holes were not planned. However, with the high density of historical drilling in some areas, some Orion drilled holes will intersect mineralisation in relative proximity to historical intersections. Considering the irregular nature of the intrusive related mineralisation, it can be noted that the intersections in the three Orion holes broadly
		 correlate with the historical drilling. The intersection in OFMSD076 is approximately 20m from an intersection in historical hole FMS012. The intersection in OFMSD077 is approximately 10m from an intersection in historical hole FMS053D1. Grades and widths in these intersections are comparable.
		• The CP has reviewed the raw laboratory data and confirmed the calculation of the significant intersections.
		 No adjustments have been made to the assay data.
		• Core from OFMSD076 and OFMSD077 was scanned by a RADOS™ XRF core scanning unit. Results from continuous scanning were reported at 1 cm intervals.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	• Collar positions of the Flat Mine South prospect holes were initially located using a hand-held Garmin GPS and have been subsequently surveyed by a qualified surveyor using a differential GPS.
	Specification of the grid system used.	On completion drill collars are capped and labelled.
	Quality and adequacy of topographic control.	• The local South African Lo17 WGS84 (Hartebeesthoek 94) grid system is used.
		• All the Flat Mine East holes were surveyed down-hole. A north seeking Reflex SPRINTIQ gyro tool was used for the down-hole surveys.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and 	 The two holes were drilled along the same section targeting updip and downdip mineralisation. Due to the irregular intrusive nature of the mineralisation, the historical drill spacing was kept relatively tight.
	 classifications applied. Whether sample compositing has been applied. 	• The spacing for Orion holes was designed to confirm historical information, provide geotechnical information, and provide additional samples for confirmatory metallurgical test work. The drill spacing is considered sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve

Criteria	JORC Code explanation	Commentary
		estimation and classifications.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 To achieve unbiased sampling, drilling is oriented as close as practically possible to perpendicular, or at a maximum achievable angle, to the attitude of the mineralisation. Drill holes were inclined between -58° to - 65° degrees. No sampling bias is anticipated as a result of drill hole orientations.
Sample security	The measures taken to ensure sample security.	• Chain of custody is managed by the Company. Samples were stored on site in a secure locked building and then freighted directly to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites,	• The mineral rights to the properties are vested in the State and the Minerals and Petroleum Development Act, 2002, (MPRDA) regulates the exploration and mining industry in South Africa.
 wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• A mining right, NC30/5/1/2/2/10150MR (Mining Right), in accordance with section 23 of the MPRDA; was granted to Southern African Tantalum Mining (Pty) Ltd (SAFTA) to mine for a period of fifteen years on 28 July 2022 and executed on 14 December 2022. On receipt of Permission to cede from the Minister, the Mining Right was ceded to an Orion subsidiary, New Okiep Mining Company (Pty) Ltd (NOMC) on 11 December 2023.	
		• The right is for copper and tungsten ore for a portion of portion 3, a portion of portion 13, a portion of portion 14 and a portion of portion 21 of the farm Nababeep No 134 situated within the administrative district of Namaqualand. The total area measures 1,214Ha in extent.
		• A prospecting right, NC30/5/1/1/2/12850PR (Prospecting Right), for the same area was granted to SAFTA on 27 June 2023 in accordance with section 17 of the MPRDA for 3 years for 26 additional minerals including gold and silver. An application for permission to cede to NOMC has been submitted to the authorities.

Criteria	JORC Code explanation	Commentary
		The area was mined historically for copper.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous explorers in the region includes Newmont, Gold Fields of SA and SAFTA. Exploration was focussed on Cu.
Geology	Deposit type, geological setting and style of mineralisation.	• The tenements are located over the Central and Western parts of the Okiep Copper District. The style of mineralisation is mafic hosted orogenic Cu-mineralisation.
		 Copper mineralisation is primarily associated with irregular, elongated and steeply dipping Koperberg Suite mafic intrusives.
		• The Koperberg Suite intrusives are mainly restricted to so-called "Steep Structures" of extensive strike lengths and steeply dipping to the north.
		 The Koperberg Suite consists of anorthosite, diorite and norite intermediate to mafic rock types.
		• Mineralisation usually occurs as blebs to disseminated Cu mineral assemblages bornite > chalcopyrite > chalcocite and less pyrite and pyrrhotite.
		• The more mafic and magnetite-rich lithologies generally host the bulk of and higher-grade mineralisation.
		• The OCD has a long exploration and mining history, and the geology is well known and understood.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	• Refer to Table 4 in Appendix 1 for collar details of drill holes reported.
	$\circ~$ easting and northing of the drill hole collar	
	\circ elevation or RL (Reduced Level – elevation above	
	sea level in metres) of the drill hole collar	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	\circ hole length.	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 A minimum 0.7% Cu cut-off was used to calculate intercepts. Allowance was made for 3m internal waste.

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 A cut-off of 1.0% Cu was used for the higher-grade inclusions. Weighted grades were calculated as follows: %Cu X sample length(m) The CP is of the opinion that the above aggregation methods are acceptable for this type of deposit.
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalents are reported.No capping of assay results was required.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	Drilling is generally oriented perpendicular, or at a maximum achievable angle to, the attitude of the mineralisation.
	 If the geometry of the mineralisation with respect to the arill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Generally, and hole inclinations ranged between -38° to -85° towards the south while the mineralisation is expected to dip close to 80° towards the north. Only down holes lengths are reported.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to body of the announcement for plans, plots and tables. Drilling data was incorporated and monitored in Micromine[™] software together with interpretation models based on the available historical drill data.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 In the Competent Person's opinion, the Exploration Results reported in this announcement have been reported in a balanced manner.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The Company's previous ASX releases have detailed exploration works. A high-resolution drone magnetic survey was carried-out and will assist in future planning of additional drill holes. Drone (DJI 600M Pro) magnetics were done at 30m AGL and 50m line spacing. Historical detailed surface mapping is interpreted and utilised during drill hole planning. Where possible, bulk density measurements were made over the full length of each individual sample of split core. Where not possible due to incompetent (crushed or broken) core, a minimum of 80% of the (half-core) sample was used. The bulk density is determined by measuring and subtracting the wet weight from the dry weight using an electronic scale. Care is taken to clean and zero the scale between each weighing. The intact sample portion is first weighed in air and the weight recorded.

Criteria	JORC Code explanation	Commentary
		water within a measuring container. The mass of container and water are deducted for net submerged weight and volume displacement read on measuring container. The sample is then removed and placed back into the core tray in the correct position and orientation. The procedure is repeated for each geological sample interval. The data were recorded in the bulk density Data Sheet. The bulk density is calculated for each sample using the formula: $BD = \underbrace{weight \ of \ sample}_{(weight \ of \ sample \ in \ air - weight \ of \ the \ sample \ in \ water)}$
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	 Historic resource confirmatory Drilling is continuing on Flat Mine South and Flat Mine Nababeep prospects.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further surface geophysical surveys may inter alia include ground, drone and/or airborne EM, gravity and radiometrics.