

6 August 2024

Iltani expands Deadman Creek sampling after encouraging silver-indium results

Critical minerals and base metals explorer **Iltani Resources Limited** (ASX: ILT, "Iltani" or "the Company") is pleased to announce assay results from recently completed reconnaissance sampling at its Deadman Creek Stockwork target, part of the larger Orient Silver-Indium Project in Queensland.

HIGHLIGHTS:

- Assay results received from initial reconnaissance outcrop sampling program in the Northern Deadman Creek area.
- 26 rock chip samples from a 400m by 500m area return results up to 8.6 g/t Ag, 33.1 g/t In, 0.61% Pb and 0.22% Zn.
- Sampling targeted previously mapped area of extensive stockwork mineralisation and brecciation hosted in altered rhyolitic ignimbrites.
- No evidence of historic workings in the Deadman Creek area all sampling from outcrops.
- Next phase of sampling will target the Southern Deadman Creek area, extending towards Orient East, expected to commence in August, prior to RC drilling at Orient West and East.

Figure 1 DCRK026 – 1.23 g/t Ag, 5.62 g/t In, 0.61% Pb & 0.15% Zn

Deadman Creek Rock Chip (DCRK) 0026: Fractured rhyolite with pervasive haematite-limonite alteration plus 2mm wide goethitic veinlets

Iltani Managing Director Donald Garner commented: *"Assay results from the reconnaissance sampling in the northern Deadman Creek area confirm the presence of stockwork silver-lead-zinc-indium mineralisation over an area of at least 400 by 500m based on results to date.*

To deliver peak assay results of **8.6** g/t Ag, 33.1 g/t In, 0.61% Pb and 0.22% Zn from outcrop sampling is a great result and these are a good indicator of the potential of the Deadman Creek System. It should be noted that these samples were taken from in-situ material from alteration zones within the ignimbritic rhyolite host rocks, containing a variable density of oxidised sulphide veinlets.

There were no significant outcrops of gossanous alteration or mine waste dumps that would significantly enhance the metal results; to the contrary, silver and indium values are most likely diminished due to the effects of weathering.

The team will extend the sampling to cover the southern area of Deadman Creek, and then we will plan drilling to test the Deadman Creek stockwork zone."

Figure 2 DCRK021 - 8.16 g/t Ag & 33.10 g/t In

Deadman Creek Rock Chip (DCRK) 0021: Fractured and moderately propylitically altered rhyolite with 2mm wide goethitic veinlets

Figure 3 DCRK004 – 8.63 g/t Ag, 3.5 g/t In & 0.41% Pb

Deadman Creek Rock Chip (DCRK) 0004: Propylitically altered rhyolite with silica altered groundmass plus quartz eyes. Iron rich (oxidised sulphide) veinlet stockwork

1. Deadman Creek Reconnaissance Sampling

Iltani is pleased to announce assay results from recent reconnaissance sampling undertaken in the northern part of the Deadman Creek Stockwork Target. Iltani collected 26 rock chip samples from outcrop of altered and mineralised ignimbritic rhyolite rocks over an area of 400 by 500m.

The sampling returned **peak assay grades of 8.63 g/t Ag, 33.1 g/t In, 0.61% Pb and 0.22% Zn** (refer to Table 1). Across the 26 samples, the average assay grade was 2.60 g/t Ag, 4.02 g/t In, 0.11% Pb and 0.06% Zn. For the assay results for all 26 samples please refer to Table 2 in the Appendices.

Sample ID	Easting	Northing	Ag ppm	In ppm	Sn ppm	Pb ppm	Pb %	Zn ppm	Zn %
DCRK0004	308253	8082815	8.63	3.51	393	4140	0.41%	59	0.01%
DCRK0008	308363	8082715	4.48	6.23	265	816	0.08%	2170	0.22%
DCRK0021	308250	8082560	8.16	33.10	>500	747	0.07%	120	0.01%
DCRK0026	308434	8082625	1.23	5.62	388	6100	0.61%	1545	0.15%

Table 1 Deadman Creek Rock Chip Sample Assay Data

All samples were taken in situ from outcropping rocks within the target area and confirm the presence of a large zone of silver-lead-zinc-indium stockwork mineralisation in the northern Deadman Creek area.

Iltani intends to carry out a similar sampling exercise targeting the stockwork mineralisation in the southern Deadman Creek area. Once complete, Iltani will proceed with drill design work, targeting the areas which return the highest grade assays and/or the most intense stockwork mineralisation.

Mineralisation at Deadman Creek appears similar to that at Orient East, comprising a stockwork sulphide veinlets of variably density within defined zones. The stockwork style silver-lead-zinc-indium mineralisation would not have been attractive to historical miners, however, presents a potential bulk mining opportunity for Iltani.

Figure 4 Deadman Creek Sample Locations

Figure 5 DCRK008 – 4.48 g/t Ag, 6.23 g/t In, 0.08% Pb & 0.22% Zn

Deadman Creek Rock Chip (DCRK) 0008: Strongly hematite altered, brecciated and propylitically altered rhyolite, with iron rich (oxidised sulphide) veinlet stockwork.

Figure 6 Deadman Creek Sampling Location

2. Historical Exploration Activity

Getty Oil Development Company (Getty) completed exploration activities at Deadman Creek, consisting of soil and rock geochemistry, geological mapping and drilled eight percussion holes (for a total of 680m drilled) during October to December 1982.

Getty had noted the similarity between the Deadman Creek geology and mineralisation and the Bolivian style tin porphyry systems and consequently their exploration was targeting tin mineralisation.

Within drillholes, up to 8% pyrite was observed wherever the highest tin assays were obtained. Minor sphalerite and galena commonly occurred in drill cuttings corresponding with highly anomalous tin values marginal to intervals assaying 500ppm tin (refer to Table 4 for Getty assay details and Table 5 for Getty drill hole logs in the Appendices).

Getty assayed all samples from the drilling (on a 2m sample basis) for tin and only the first 34m (0-34m) of PDH02 was assayed for silver. No lead-zinc-indium analysis was undertaken.

Iltani views the logged presence of sulphide mineralisation (pyrite + sphalerite + galena) in the drill hole cuttings as very positive, particularly the association with tin mineralisation and likely indicative of stockwork style mineralisation.

As part of the reconnaissance sampling, Iltani staff confirmed the location of the drill hole collars, but unfortunately due to the age of the drilling (42 years ago) there was no historical drill sample left at the collar locations to enable Iltani to re-assay.

3. Next Steps

Activities planned at Iltani's Orient silver-indium project during August include the following:

- Drill program design work at Orient West (infill drilling to deliver a Mineral Resource Estimate) and Orient East (drilling to deliver an Exploration Target) has been completed and Iltani will commence marking out drill pads in anticipation of site clearance activities.
- Wulguru Technical Services Pty Ltd. (Wulguru) to commence preliminary flora and fauna studies at Orient. This work will enable Iltani to better understand the baseline study requirements required for a mining lease application.
- Wulguru will also undertake a drone lidar survey to provide an accurate digital terrain model (DTM) required for future Mineral Resource Assessment work.
- Iltani exploration team will complete the Deadman Creek sampling exercise, targeting the southern stockwork area in Deadman Creek.

Authorisation

This announcement has been approved for issue by Donald Garner, Iltani Resources Managing Director.

Contact Details

For further information, please contact:

Donald Garner Managing Director Iltani Resources Limited +61 438 338 496 dgarner@iltaniresources.com.au Nathan Ryan Investor Relations NWR Communications +61 420 582 887 nathan.ryan@nwrcommunications.com.au

Competent Persons Statement

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Erik Norum who is a member of The Australasian Institute of Geologists (AIG), and is an employee of Iltani Resources Limited., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Norum consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

About Iltani Resources

Iltani Resources (ASX: ILT) is an ASX listed company focused exploring for the base metals and critical minerals required to create a low emission future. It has built a portfolio of advanced exploration projects in Queensland and Tasmania with multiple high quality, drill-ready targets. Iltani has completed drilling at the Orient Silver-Indium Project, part of its Herberton Project, in Northern Queensland. The drilling has returned outstanding intercepts of silver-lead-zinc-indium mineralisation, positioning Orient as Australia's most exciting silver-indium discovery.

Other projects include the Northern Base Metal, Southern Gold and Rookwood Projects in Queensland plus the Mt Read Project, a highly strategic 99km² licence in Tasmania's Mt Read Volcanics (MRV) Belt, located between the world-class Rosebery and Hellyer-Que River polymetallic (CuPbZn) precious metal rich volcanic hosted massive sulphide deposits.

Figure 7 Location of Iltani Resources' projects in Queensland and Tasmania

Table 2 Deadman Creek Rock Chip Sample Assay Data

Sample ID	Easting	Northing	Ag ppm	In ppm	Sn ppm	Pb ppm	Pb %	Zn ppm	Zn %
DCRK0002	308239	8082825	0.47	1.45	372	211	0.02%	434	0.04%
DCRK0003	308249	8082819	0.31	1.41	292	130	0.01%	699	0.07%
DCRK0004	308253	8082815	8.63	3.51	393	4140	0.41%	59	0.01%
DCRK0007	308351	8082738	5.92	3.24	490	1765	0.18%	1175	0.12%
DCRK0008	308363	8082715	4.48	6.23	265	816	0.08%	2170	0.22%
DCRK0009	308350	8082699	5.15	11.05	339	3230	0.32%	434	0.04%
DCRK0010	308383	8082671	2.32	1.68	184.5	265	0.03%	503	0.05%
DCRK0011	308370	8082659	1.47	9.96	371	2180	0.22%	887	0.09%
DCRK0012	308201	8082693	3.71	4.30	443	2240	0.22%	235	0.02%
DCRK0013	308116	8082747	0.16	0.48	223	42.8	0.00%	34	0.00%
DCRK0014	307976	8082724	4.71	0.47	182	254	0.03%	56	0.01%
DCRK0015	308028	8082715	0.45	0.33	145.5	64.2	0.01%	178	0.02%
DCRK0016	308063	8082690	0.41	0.33	166	96.7	0.01%	160	0.02%
DCRK0017	308123	8082679	1.06	1.11	281	421	0.04%	127	0.01%
DCRK0018	308178	8082692	2.42	0.66	262	142	0.01%	66	0.01%
DCRK0019	308258	8082666	0.02	0.16	20.6	18	0.00%	206	0.02%
DCRK0020	308192	8082599	0.91	0.32	18.6	63.8	0.01%	851	0.09%
DCRK0021	308250	8082560	8.16	33.10	>500	747	0.07%	120	0.01%
DCRK0022	308229	8082592	0.67	0.70	480	347	0.03%	58	0.01%
DCRK0023	308389	8082561	1.56	2.50	211	699	0.07%	1415	0.14%
DCRK0024	308411	8082557	4.94	1.21	138	151	0.02%	303	0.03%
DCRK0025	308469	8082626	0.56	5.22	340	1040	0.10%	700	0.07%
DCRK0026	308434	8082625	1.23	5.62	388	6100	0.61%	1545	0.15%
DCRK0027	308265	8082473	2.92	4.31	315	674	0.07%	325	0.03%
DCRK0028	308273	8082469	3.40	2.46	433	830	0.08%	310	0.03%
DCRK0029	308245	8082465	1.52	2.63	460	803	0.08%	1540	0.15%

Table 3 Deadman Creek Getty Oil Drill Hole Collar Details

Hole ID	East	North	Depth	Dip	Azimuth
PDH1	308387	8082664	96	-60	32
PDH2	308279	8082696	70	-60	32
PDH3	308361	8082739	100	-90	0
PDH5	308231	8082452	70	-60	32
PDH6	308212	8082458	48	-58	350
PDH7	308220	8082554	100	-60	32
PDH10	308460	8082605	100	-70	32
PDH13	308220	8082545	96	-60	122

All coordinates MGA94 Zone 55, azimuth is geographic.

Table 4 Deadman Creek Getty Oil Drilling Historical Assays

Hole ID	From (m)	To (m)	Intersect (m)*	Sn (ppm)	
PDH01	0	2	2	755	
PDH01	10	26	16	380	
PDH01	64	80	16	190	
PDH02	0	32	32	420	
PDH02	32	70	38	310	
PDH03	0	24	24	760	
PDH03	24	38	14	370	
PDH03	90	100	10	170	
PDH05	24	28	4	455	
PDH05	56	66	10	770	
PDH06	6	22	16	870	
PDH06	22	32	10	330	
PDH06	32	36	4	1,210	
PDH06	36	48	12	479	
PDH07	30	60	30	350	
PDH07	92	96	4	375	
PDH10	0	12	12	368	
PDH10	12	22	10	1,354	
PDH10	22	28	6	613	
PDH10	28	36	8	842	
PDH10	36	46	10	367	
PDH10	46	56	10	937	
PDH10	56	62	6	278	
*Downhole width not true width					

Silver was assayed from 0 to 34m in PDH02 only, all but three samples were below detection limit and values of 2-6 ppm Ag were obtained in 3 samples.

Table 5 Deadman Creek Getty Oil Drilling Drill Hole Logs

Hole ID	From	То	Intersect	Geology	Alteration	Mineralisation
PDH01	0	51	51	Tuff	Wk. to mod clay &	Minor limonite/pyrite
					silicification	
PDH01	51	67	16	Tuff or porphyritic	Mod clay &	Minor limonite/pyrite
				microgranite	silicification	
PDH01	67	73	6	Tuff	Mod clay &	Minor limonite/pyrite
					silicification	
PDH01	73	77	4	Tuff	Mod clay &	
					silicification	
PDH01	77	96	19	Tuff	Wk. chloritic &	
					silicification	
PDH02	0	32	32	Tuff	Wk. to mod clay,	1-8% pyrite, minor
					Silicification &	sphalerite and galena
001102	22	70	20	T.,	Sericitic	to 10/ months and a
PDH02	32	70	38	TUTT	WK. to mod	tr-1% pyrite, rare
					chiorite,	sphalente
	0	8	8	Ct/P breccia	Mod clay sericite &	1-2% limonite
1 01105	0	0	0		silicification	
	8	12	4	Gritty clay	Sincification	1-2% limonite
	12	15	т Э	Ct/D brossia	Madialay	1 2% limenite
PDH03	12	15	3	Ct/P breccia	WOO Clay,	1-2% imonite
					silicification & weak	
	15	20	5	Tuff	Wk clay	1-2% limonite
PDII05	13	20	5	Tun	silicification & weak	1-2% infonte
					sericite	
PDH03	20	24	4	Tuff	Wk clay	3-5% pyrite
1 Brids	20	27	-	1 dil	silicification & weak	5 5% pyrice
					sericite	
PDH03	24	38	14	Tuff	Wk. clay,	Minor pyrite, trace
					silicification & weak	sphalerite, galena
					sericite	
PDH03	38	100	62	Tuff	Mod clay,	Trace pyrite, trace
					silicification & weak	sphalerite, galena
					sericite	
PDH05	0	17	17	Tuff	Wk. to mod clay &	2-10% limonite
					silicification	
PDH05	17	25	8	Tuff	Wk. clay,	tr-1% limonite & pyrite
					silicification &	
					chlorite	
PDH05	25	32	7	Tuff	Wk. to mod chlorite	2-3% pyrite
					& mod silicification	
PDH05	32	60	28	Tuff	Wk. to mod	tr-1% pyrite
					chlorite, clay &	
	66		6		mod silicification	4 50/ 1/
PDH05	60	66	6	Tuff	WK. chlorite, clay &	1-5% pyrite
DDUG5	66	70	4	T	mod silicification	4
PDH05	66	/0	4	IUTT	WK. Chlorite, clay &	tr pyrite
	0	6	6	Tuff		
PDHUb	U	D	0		VVK. SILICITICATION	
PDH06	6	29	23	Rhyolite	Strong silicification	1-5% limonite
PDH06	29	48	19	Tuff	Mod silicification	tr pyrite, sphalerite

PDH07	0	8	8	Tuff	Mod to strong silicification	1-2% limonite
PDH07	8	79	71	Tuff	Wk. clay, chlorite, mod silicification	tr pyrite, sphalerite
PDH07	79	85	6	Tuff	Wk. clay, chlorite, strong silicification	tr pyrite
PDH07	85	100	15	Tuff	Wk. clay, chlorite, mod silicification	tr-1% pyrite
PDH10	0	43	43	Tuff	Wk. clay, mod silicification	1-5% pyrite or limonite
PDH10	43	47	4	Tuff	Mod clay, mod silicification	tr pyrite
PDH10	47	62	15	Tuff	Wk. clay, sericite & mod silicification	1-5% pyrite
PDH10	62	100	38	Tuff	Mod to str clay, silicification & wk. chlorite, sericite	tr-2% pyrite

JORC Code, 2012 Edition – Table 1 (Iltani Rock Chip Sampling)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Sampling reported is rock chip sampling Iltani Resources took 26 rock chip samples from insitu material from the Northern Deadman Creek Stockwork zone on EPM 27223. Samples were bagged and sent to Australian Laboratory Services Pty Ltd (ALS) in Townsville for preparation and analysis. Preparation consisted of drying of the sample and the entire sample being crushed to 70% passing 6mm and pulverised to 85% passing 75 microns in a ring and puck pulveriser. Analysis consisted of four acid digest with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (ME-MS61) analysis for the following elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y Zn, Zr.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling was carried out
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	 No drilling was carried out.

Criteria	JORC Code explanation	Commentary
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No drilling was carried out Rock chip samples were geologically logged prior to dispatch for assay.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Industry standard sample preparation is conducted under controlled conditions within the laboratory and is considered appropriate for the sample types. Sample sizes and preparation techniques are considered appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards blanks duplicates 	 Industry standard assay techniques were used to assay for silver and base metal mineralisation (ICP for multi-elements with a four-acid digest) No geophysical tools, spectrometers or handheld XRF instruments have been used to determine assay results for any elements. Monitoring of results of blanks, duplicates and standards (inserted at a minimum rate of 1:20) is conducted regularly. QAQC data is reviewed for bias prior to uploading results in the database.

Criteria	JORC Code explanation	Commentary
	external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	
Verification of	• The verification of significant	 No drilling was carried out.
sampling and assaying	 intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data is collected in the field via laptops in a self-validating data entry form; data verification and storage are accomplished by Iltani contractor and staff personnel. All sample data was compiled in Excel worksheets
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Rock chip sample locations were located using a hand held GPS. All exploration works are conducted in the GDA94 Zone 55 Grid. Topographic control is based on airborne geophysical survey and it is considered adequate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No drilling was carried out. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this 	 No drilling was carried out.

Criteria	JORC Code explanation	Commentary
	should be assessed and reported if material.	
Sample security	 The measures taken to ensure sample security. 	 Samples were stored in sealed polyweave bags then put on a pallet and transported to ALS Townsville by using a freight carrying company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been carried out at this point

JORC Code, 2012 Edition – Table 1 (Historical Getty Drilling) Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information 	 Getty Oil Development Company Limited (Getty) completed 8 percussion drill holes for 680m drilled in October to December 1982 in the Deadman Creek Stockwork Zone area. Samples were collected at 1 metre intervals in buckets after passing through a cyclone. Getty geologists noted that a significant percentage of the sample was lost as fines. Samples were split to 1kg then combined to provide a 2m sample for assay. All samples were assayed for Sn using X-ray Fluorescence (XRF) by Tetchem Laboratories and Ag was assayed by atomic absorption spectroscopy (AAS) by Tetchem Laboratories for 0-34m of drillhole PDH002 only.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• Drilling was carried out using a percussion drill rig
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	 Samples were collected at 1 metre intervals in buckets after passing through a cyclone. Getty geologists noted that a significant percentage of the sample was lost as fines. .

Criteria	JORC Code explanation	Commentary
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill samples were geologically logged prior to dispatch for assay.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled 	 Samples were collected at 1 metre intervals in buckets after passing through a cyclone. Getty geologists noted that a significant percentage of the sample was lost as fines. Samples were split to 1kg then combined to provide a 2m sample for assay.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks. duplicates. 	 Industry standard assay techniques were used to assay for tin and silver mineralisation Standards were inserted during the sampling and assay process

Criteria	JORC Code explanation	Commentary
	external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data 	 Iltani was unable to verify the sampling and assay data – it has been reported as part of Iltani's ongoing exploration activities
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations were confirmed by Iltani personnel and collar coordinates noted using a hand held GPS. Iltani used a GDA94 Zone 55 Grid.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is not sufficient to calculated a Mineral Resource Estimate. Samples were split to 1kg then combined to provide a 2m sample for assay.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this 	 The drilling appears to be appropriately orientated in relation to the known geological structures

Criteria	JORC Code explanation	Commentary
	should be assessed and reported if material.	
Sample security	 The measures taken to ensure sample security. 	 Iltani is not aware of the measures taken by Getty to ensure sample security.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been carried out at this point.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The rock chip sampling program was conducted on EPM27223. EPM27223 is wholly owned by Iltani Resources Limited All leases/tenements are in good standing
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration activities have been carried out (mapping, percussion drilling and surface geochemical surveys by Getty Oil Development Company Limited (Getty) over the Deadman Creek Stockwork Zone from October to December in 1982.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Mineralisation occurs in stockwork vein systems (controlled by fractures/shears) containing argentiferous galena, cerussite, anglesite, sphalerite, pyrite, marmatite, cassiterite (minor), and stannite (minor). The lead-zinc-silver-indium mineralisation at Deadman Creek is believed to part of the larger Orient mineralising system. The Orient vein and stockwork mineralisation are associated with a strongly faulted and deeply fractured zone near the margin of a major caldera subsidence structure
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is the case. 	• No drilling was undertaken by Iltani
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	 No data aggregation methods have been used and no metal equivalents are used.

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 No drilling was undertaken by Iltani
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections. 	Refer to plans and sections within report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The accompanying document is considered to represent a balanced report
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported. 	 All meaningful and material data is reported
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). 	 Exploration of the target area is ongoing. Iltani plans to follow up on the positive drilling results with further field work including mapping and rock chip/soil sampling and drilling is planned