

ASX/JSE RELEASE: 3 September 2024

Okiep Confirmation Drilling Successfully Completed

Results confirm high quality of large historical drilling database inherited from Newmont and Goldfields

- Assay results received for confirmation diamond drill holes completed at Flat Mine North and the last two confirmation diamond drillholes completed at Flat Mine South, with highlights including:
 - Drill hole OFMSD079 intersected 14.80m at 2.58% Cu within 25.00m at 1.92% Cu.
 - o Drill hole OFMND243 intersected <u>36.30m at 1.11% Cu</u>.
- Both Flat Mine North and Flat Mine South will form a key part of Orion's early production plan for the Okiep Copper Project.
- The intersections achieved to date support geological and grade distribution interpretations that were incorporated in the Mineral Resource estimation for the Okiep Copper Project.
- Drilling is continuing at Flat Mine South to test the down-dip extension of high-grade mineralisation in a previously untested area.
- Confirmatory drilling has been completed at Flat Mine (Nababeep), where an Inferred Mineral Resource of 1Mt at 1.4% Cu was reported in March 2021. Latest assays include:
 - o Drill hole OFMD164 intersected 20.69m at 1.82% Cu within 45.69m at 1.26% Cu.
 - Drill hole OFMD167 intersected 7.80m at 5.08% Cu.
 - Drill hole OFMD169 intersected 21.00 at 1.83% Cu
- The completion of the confirmation drilling program within the Flat Mines Area represents an important final input for the completion of the Bankable Feasibility Study (BFS) for the Okiep early production plan, with this study on-track for delivery in the coming weeks.

Orion's Managing Director and CEO, Errol Smart, commented:

"The drilling program that we have now completed confirms our best expectations regarding the quality and reliability of the historical drilling data from the Okiep Copper Project (OCP). Previous owners Newmont and Goldfields – who milled more than 77 million tonnes of high-quality sulphide copper ore from our current prospecting and mining rights – were reliant on the high-quality work undertaken by their highly acclaimed geology department and laboratories. In its time, the Okiep laboratory was the go-to laboratory for assay checking and quality control for the entire Southern African region. The geology department included several well respected and highly rated geoscientists who were leaders in their field of expertise at that time.

"While this specific drill program was performed to provide absolute assurance to our external technical experts, we were always certain of the quality of the data that we purchased in 2021. We have already digitised 625,000m of downhole data from 5,026 drill holes that intersected dozens of mineralised bodies within the Mining and Prospecting Right areas we have secured.

"Importantly, now that the Flat Mines Project is fully permitted for mining and that we have secured all the surrounding prospecting rights, this high-quality drilling data is expected to provide a pathway for Orion to fast

ISIN: AU000000ORN1

track the expansion of the initial production profile and mine life outlined in our initial BFS, which is now just weeks away from completion.

"We are tremendously excited about the future of the OCP, which is proving itself to be a world-class, build-ready copper mine."

Orion Minerals Limited (ASX/JSE: ORN) (Orion or Company) is pleased to report final assay results from the confirmation diamond drilling program in the Flat Mines Area at its Okiep Copper Project (OCP) in the Northern Cape, South Africa.

The latest results add further momentum to Orion's development strategy for the OCP, building on the initial results reported on 22 April 2024, 24 June 2024 and 9 July 2024 including intersections of 49.35m @ 5.05% Cu (refer ASX/JSE release 24 June 2024) at Flat Mine East (**FME**) and 20.50m at 4.99% Cu (refer ASX/JSE release 9 July 2024) at Flat Mine South (**FMS**) among several other high-grade intersections confirming the geology and endowment of the Flat Mines Area.

The OCP ground holdings of 703km² cover most of the copper mining district where a total of 105Mt is reported to have been mined over the past 100 years (refer ASX/JSE release 21 May 2021). Of the 105Mt mined, some 77Mt was mined on OCP prospecting and mining rights. The Flat Mines Area and the current drilling program fall entirely within executed Mining Right NC10150MR. The Mining Right is surrounded by the newly granted prospecting rights, NC12755PR and NC12848PR (refer ASX/JSE release 13 August 2024), which host several exciting historically drilled prospects and historical mines that offer the potential for additional Mineral Resources through future drilling.

Results received and reported in this announcement include the last of the 11 confirmation holes at Flat Mine North (**FMN**), FME and FMS. The assay results have confirmed historical information from drilling by Newmont and Goldfields of South Africa (**GFSA**) in the 1980's and 1990's, which underpinned Orion's updated Mineral Resource for the Flat Mines deposits (announced on 28 August 2023) of 9.3Mt at 1.3% Cu (Table 1)¹.

Table 1: Mineral Resource Statement for the Flat Mine North, Flat Mine East and Flat Mine South.

Mine / Prospect	Measured			Indicated			Inferred		
Mille / Hospeci	Tonnes	% Cu	t Cu	Tonnes	% Cu	t Cu	Tonnes	% Cu	t Cu
Flat Mine North	440,000	1.13	5,000	940,000	1.42	13,000	200,000	1.5	4,000
Flat Mine East	-	-	-	3,400,000	1.37	47,000	1,000,000	1.0	9,000
Flat Mine South	-	-	-	2,600,000	1.35	35,000	800,000	1.6	13,000
Total*	440,000	1.13	5,000	6,900,000	1.37	95,000	2,000,000	1.3	26,000

^{*}Numbers may not add up due to rounding in accordance with the JORC Code guidance. Resources are reported at a 0.7% Cu cut-off grade.

Flat Mines Confirmatory Drilling Program

A diamond drilling program commenced in the Flat Mines Area of the OCP in February 2024. A total of 11 diamond core drill holes were drilled at FME, FMS and FMN comprising a total of approximately 5,800m. This total includes a non-directional deflection for each hole drilled to obtain samples for metallurgical test work.

The program was designed to confirm historical drilling information and resultant interpretations, provide geotechnical information and deliver additional material for confirmatory metallurgical test work for the FMN,

¹ Mineral Resource reported in accordance with the JORC Code (2012) in ASX release of 28 August 2023: "Orion upgrades Mineral Resources at Okiep Copper Project" available to the public on http://www.orionminerals.com.au/investors/asx-jseannouncements/. Competent Person Mineral Resource: Mr Sean Duggan. Orion confirms it is not aware of any new information or data that materially affects the information included above. The Company confirms that all material assumptions and technical parameters underpinning the estimates in the original release continue to apply and have not materially changed. Orion confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

FME and FMS blocks included in the initial BFS mine schedule. The program (Figure 1) was specifically designed to optimally cover the areas that contribute most significantly to the overall estimated Indicated Mineral Resource.

Assay results from OFMND242 and OFMND243 completed at FMN and OFMSD078 and OFMSD079 at FMS are summarised in Table 2, with complete results from the intersections included in Appendix 1.

Drill hole OFMND242 intersected 14.00m at 2.70% Cu from 213.00m (Table 2). Historical hole FMN215 intersected 10.20m at 2.31% Cu from 226.60m and 11.70m at 1.89% Cu from 241.80m, approximately 11m away from the OFMND242 intersection. Historical hole FMN217 intersected 22.10m at 1.91% Cu from 234.40m, approximately 14m away from the OFMND242 intersection.

Drill hole OFMND243 intersected 36.30m at 1.11% Cu from 234.00m (Table 2). Historical hole FMN207 intersected 24.40m at 1.45% Cu from 255.30m, approximately 25m away from the OFMND243 intersection.

Drill hole OFMSD079 intersected 7.00m at 2.32% Cu from 501.00m and 14.80m at 2.58% Cu from 571.00m (Table 2). Historical hole FMS047 intersected 17.00m at 1.60% Cu from 514.20m and 16.39m at 2.19% Cu from 568.77m, approximately 16m away from the OFMSD079 intersection.

Internal waste rock widths up to 3m are included within the reported intersection widths, providing opportunities for upgrading of material through modern XRF ore sorting techniques to reject internal waste before milling. This provides the potential for optimised metal extraction with larger stopes operated at lower mining cost, while limiting concentrator capital and operating costs.

With the confirmation drilling program now complete, geological and mineralisation envelope interpretations will be reviewed and adjusted where necessary, followed by an update of the Mineral Resource estimate including the new information. New geotechnical information will be used for input to mine design.

Assay results for the 11 Orion confirmation drill holes have been independently reviewed by Z Star Mineral Resource Consultants (Z*) and, on analysis, Z* concluded that the addition of the Orion confirmation drill holes at FME, FMN and FMS would not result in a material change to the Mineral Resource estimate. Z* also concluded that the Orion drill holes further support the inclusion of the historical Newmont and GFSA drill hole data in the Mineral Resource estimates for FME, FMN and FMS (refer ASX/JSE release 28 August 2023). Almost all other drilling at the various prospects within Orion's OCP Project was carried out by Newmont and GFSA in a similar time period to the drilling at FME, FMN and FMS.

Planned metallurgical test work includes XRF sorting, comminution, flotation optimisation and tailings characterisation. Detailed geotechnical assessment is also undertaken on all intersections.

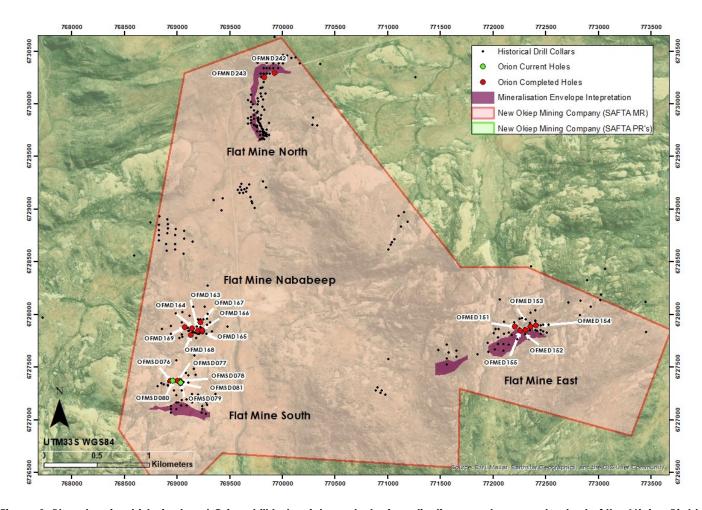


Figure 1: Plan showing historical and Orion drill holes, interpreted mineralisation envelopes and extent of the Mining Right.

Assay Results – FMN and FMS confirmation drilling

Results received for FMN and FMS are summarised in Table 2 below.

Table 2: Summary table of drill results to date for FMN and FMS prospect (minimum cut-off of 0.7% Cu with maximum 3m consecutive internal waste allowed). Intersections and inclusions with grades mostly above 1% Cu are tabulated. The data was not capped. Note: widths are downhole drill widths.

Hala IB	Mineralisation							
Hole ID	Notes	From (m)	To (m)	Interval (m)	% Cu			
OFMND242		213.00	227.00	14.00	2.70			
OFMND243		234.00	270.30	36.30	1.11			
OFMIND243	including	234.60	257.66	23.06	1.23			
		330.00	336.00	6.00	0.93			
OFMSD078		388.00	391.00	3.00	0.82			
OLWI2D016		425.00	428.00	3.00	1.06			
		432.00	435.00	3.00	0.84			
•		501.00	508.00	7.00	2.32			
OFMSD079		515.00	520.00	5.00	1.00			
		571.00	585.80	14.80	2.58			
		592.00	596.00	4.00	2.45			

Table 3: Comparison of % Cu grades and downhole widths for OFMND242, OFMND243, OFMSD078, OFMSD079 and nearest neighbour historical Newmont and Goldfields drilled holes FMN215, FMN217, FMN207, and FMS047 (minimum cut-off of 0.7% Cu with maximum 3m consecutive internal waste allowed). Intersections and inclusions with grades mostly above 1% Cu are tabulated. The data was not capped. Note: widths are downhole drill widths.

	0	rion Hole			Historical Hole					Intersection
Hole ID	From (m)	To (m)	Intersection Width (m)	% Си	Hole ID	From (m)	To (m)	Intersection Width (m)	% Си	Separation Distance (m)
					ENANIO1 E	226.60	236.80	10.20	2.31	11
OFMND242	213.00	227.00	14.00	2.70	FMN215	241.80	253.50	11.70	1.89	1.1
					FMN217	234.40	256.50	22.10	1.91	14
OFMND243	234.00	270.30	36.30	1.11	FMN207	255.30	279.70	24.40	1.45	25
	501.00	508.00	7.00	2.32						
OFMSD079	515.00	520.00	5.00	1.00	FMS047	514.20	531.20	17.00	1.60	1./
OFM3D079	571.00	585.80	14.80	2.58	F/VI3U4/	553.80	558.80	5.00	1.80	16
	592.00	596.00	4.00	2.45		568.77	585.16	16.39	2.19	

Flat Mines Exploration and Resource Upgrade Drilling Program

Three of the five drilling rigs have been retained on site for a program aimed at upgrading the classification of Mineral Resource blocks that are not yet included in the mine plan and to test for extensions of high-grade mineralisation beyond the margins of the current Mineral Resource.

At FMS, historical GFSA holes and Orion holes OFMSD077 (refer ASX/JSE release 9 July 2024) and OFMSD079 indicate that high-grade mineralisation remains open down-dip for up to 200m within an untested area encompassing a strike length of 300m (Figures 2 and 3). Historical intersections indicating a thick mineralised zone that remains untested down-dip (Figures 2 and 3) include the following:

- 24.45m (16m TW) from 588.98m at 3.06% Cu within a broader zone of 38.98m (25m TW) at 2.16% Cu from 574.45m in FMS053D1;
- 15.74m (8m TW) from 580.62m at 4.86% Cu within a broader zone of 18.74m (10m TW) at 4.29% Cu from 578.55m in FMS048; and
- 10.24m (5m TW) from 568.77m at 2.81% Cu within a broader zone of 70.96m (34m TW) at 1.21% Cu from 514.20m in FMS047.

Holes OFMSD080 and OFMSD081 are currently in progress targeting this area, with further holes planned pending interpretation of assay results. Hole OFMSD080 has already intersected broad zones of well mineralised intrusive at the anticipated depth of 532m to 592m, confirming down-dip extension of a wide, well mineralised mafic body. Assay results for this intersection are awaited.

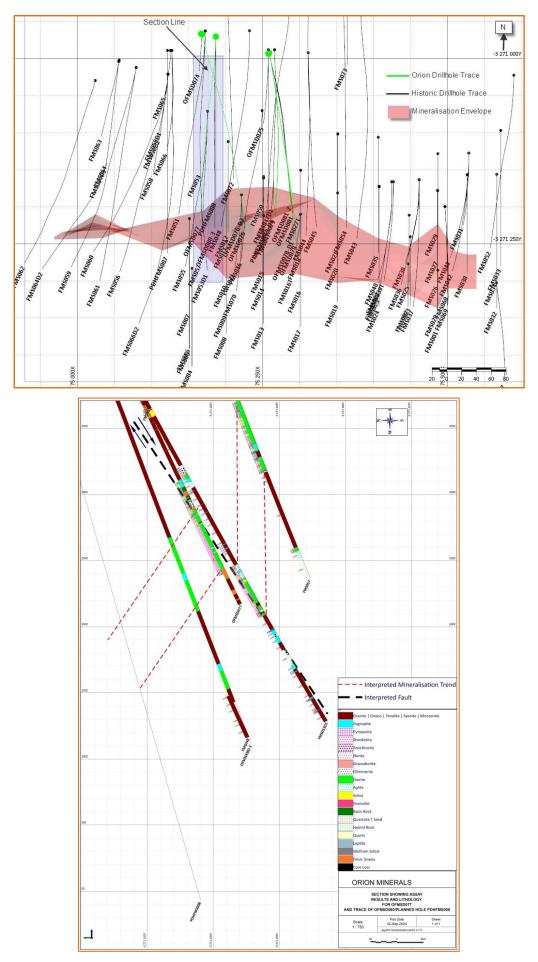


Figure 2: Plan and Cross section of FMS down-dip drilling target.

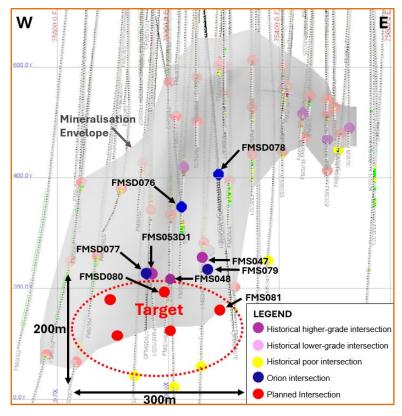


Figure 3: Long section of FMS down-dip drilling target.

Drilling of seven confirmatory holes has been completed at Flat Mine Nababeep (**FMNb**), where an Inferred Mineral Resource of 1Mt at 1.4% Cu was previously reported (refer ASX/JSE release 29 March 2021). Original drilling over the main zone of mineralisation was carried out by the Cape Copper Company in the 1940's with 141Kt reported as being subsequently mined in the 1950's (refer ASX/JSE release 29 March 2021).

Orion drilling results (Table 4) at FMNb confirm shallow mineralisation over significant widths and include the following:

- Drill hole OFMD164 intersected 20.69m at 1.82% Cu from 8.31m within a broader zone of elevated copper mineralisation of 45.69m at 1.26% Cu.
- Drill hole OFMD165 intersected 22.91m at 0.91% Cu from 3.09m.
- Drill hole OFMD167 intersected 7.80m at 5.08% Cu from 121.20m.
- Drill hole OFMD169 intersected 21.00m at 1.83% Cu from 16.00m.

Table 4: Summary table of drill results to date for FMNb prospect (minimum cut-off of 0.7% Cu with maximum 3m internal waste allowed). Intersections and inclusions with grades mostly above 1% Cu are tabulated. The data was not capped.

Note: widths are drill widths.

Hele ID		Mineralisation				
Hole ID	Notes	From (m)	To (m)	Interval (m)	% Cu	
OFMD163		34.00	38.00	4.00	1.40	
OFMD163		42.00	44.00	2.00	1.54	
		8.31	29.00	20.69	1.82	
OFMD164		33.00	38.00	5.00	1.37	
		46.00	54.00	8.00	1.42	
		3.09	26.00	22.91	0.91	
OFMD165	including	3.09	15.00	11.91	1.12	
	including	18.00	26.00	8.00	0.88	
OFMD166	-	12.70	18.70	6.00	1.22	
OFMD167		121.20	129.00	7.80	5.08	
OFMD168		45.93	54.45	8.52	1.06	
OFMD169		16.00	37.00	21.00	1.83	
OFMU169	including	17.00	30.00	13.00	2.33	

Outcropping exposure and drill intersections indicate that FMNb is likely to have a high internal waste content. This style of mineralisation is most suitable for bulk extraction with the application of ore sorting to remove the granitic waste before milling the higher-grade mafic intrusive rock fraction.

Geophysical orientation surveys, including magnetics, gravity and electrical methods, are currently being conducted over the deposits in the Flat Mines Area along with ground geophysical surveys to confirm drill targets. Areas to be covered include historical ground geophysical anomalies and anomalies generated from the 2021 SkyTEMTM survey that have been prioritised on current geological understanding (refer ASX/JSE release 1 September 2021).

For and on behalf of the Board.

FEMARI

Errol Smart

Managing Director and CEO

ENQUIRIES

Investors

Errol Smart – Managing Director & CEO Denis Waddell – Chairman

T: +61 (0) 3 8080 7170

E: info@orionminerals.com.au

Media

Nicholas Read Read Corporate, Australia

T: +61 (0) 419 929 046

JSE Sponsor

Monique Martinez Merchantec Capital T: +27 (0) 11 325 6363

E: monique.martinez@merchantec.com

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Paul Matthews (Pr.Sci.Nat.), a Competent Person who is a member of the South African Council for Natural Scientific Professionals, a Recognised Professional Organisation (**RPO**). Mr Matthews is a full-time employee of Orion. Mr Matthews has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Matthews consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

E: <u>nicholas@readcorporate.com.au</u>

Reference to Previous Report

Exploration results from drilling at Flat Mines Area were reported in ASX/JSE releases of 22 April 2024: "Spectacular High-Grade Copper Intercept at Okiep Project" 24 June 2024: "More Outstanding Hits at Okiep Copper Project" and 9 July 2024: "Okiep Copper Project Continues to Deliver", available to the public on http://www.orionminerals.com.au/investors/asx-jse-announcements/. Competent Person: Mr Paul Matthews. Orion confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. Orion confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FMN, FME and FMS Mineral Resources were reported in ASX/JSE release dated 28 August 2023: "Orion upgrades Mineral Resources at Okiep Copper Project" available to the public on http://www.orionminerals.com.au/investors/asx-jseannouncements/. Competent Person Mineral Resource: Mr Sean Duggan. Orion confirms it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that all material assumptions and technical parameters underpinning the estimates in the original market announcement continue to apply and have not materially changed. Orion confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

Flat Mine Nababeep Inferred Mineral Resource was reported in ASX/JSE release dated 29 March 2021: "Orion further expands Mineral Resources at the Okiep Copper Project, Flat Mines Area" available to the public on http://www.orionminerals.com.au/investors/asx-jseannouncements/. Competent Person Mineral Resource: Dr Deon Vermaakt. Orion confirms it is not aware of any new information or data that materially affects the Nababeep Inferred Mineral Resource included in the original market announcement. The Company confirms that all material assumptions and technical parameters underpinning the Nababeep Inferred Mineral Resource estimate in the original market announcement continue to apply and have not materially changed. Orion confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

Disclaimer

This release may include forward-looking statements. Such forward-looking statements may include, among other things, statements regarding targets, estimates and assumptions in respect of metal production and prices, operating costs and results, capital expenditures, mineral reserves and mineral resources and anticipated grades and recovery rates, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. These forward-looking statements are based on management's expectations and beliefs concerning future events. Forward-looking statements inherently involve subjective judgement and analysis and are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Orion. Actual results and developments may vary materially from those expressed in this release. Given these uncertainties, readers are cautioned not to place undue reliance on such forward-looking statements. Orion makes no undertaking to subsequently update or revise the forward-looking statements made in this release to reflect events or circumstances after the date of this release. All information in respect of Exploration Results and other technical information should be read in conjunction with Competent Person Statements in this release (where applicable). To the maximum extent permitted by law, Orion and any of its related bodies corporate and affiliates and their officers, employees, agents, associates and advisers:

- disclaim any obligations or undertaking to release any updates or revisions to the information to reflect any change in expectations or assumptions;
- do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this release, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and
- disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

Appendix 1: Drill hole collar information and assay results from drill program at Flat Mine North and Flat Mine South

Table 5: Drill hole collar information for FMN and FMS prospects. Coordinates in WGS84 Hartebeesthoek 94 LO17.

Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth (m)
OFMND242	76100.80	-3268028.80	840.61	0	-82	259.95
OFMND243	76006.02	-3268080.78	833.84	350	-74	301.48
OFMSD078	75259.05	-3270992.51	767.60	167	-59	505.36
OFMSD079	75259.05	-3270992.51	767.60	167	-68	619.24
OFMD163	75416.10	-3270491.14	751.87	183	-59	65.00
OFMD164	75357.85	-3270472.77	754.42	179	-60	76.27
OFMD165	75454.42	-3270496.83	750.46	179	-59	70.44
OFMD166	75455.12	-3270485.53	751.65	182	-59	37.15
OFMD167	75435.25	-3270415.66	755.13	182	-59	133.18
OFMD168	75350.53	-3270534.95	750.61	7	-59	105.06
OFMD169	75289.90	-3270462.67	751.08	185	-60	85.44

Table 6: OFMND242 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMND242	202.00	203.00	0.0374
OFMND242	203.00	203.80	0.0378
OFMND242	203.80	204.03	2.6200
OFMND242	204.03	205.00	0.0384
OFMND242	205.00	206.00	0.0777
OFMND242	206.00	207.00	0.0641
OFMND242	207.00	208.00	0.0612
OFMND242	208.00	209.19	0.0731
OFMND242	209.19	210.36	0.0926
OFMND242	210.36	210.58	8.4700
OFMND242	210.58	211.25	0.5100
OFMND242	211.25	212.00	0.1010
OFMND242	212.00	213.00	0.2330
OFMND242	213.00	214.00	1.3000
OFMND242	214.00	215.00	0.8520
OFMND242	215.00	216.00	0.3900

Hole ID	From (m)	To (m)	% Cu
OFMND242	216.00	216.54	1.0350
OFMND242	216.54	217.12	4.9500
OFMND242	217.12	218.00	5.0700
OFMND242	218.00	219.00	4.0700
OFMND242	219.00	220.00	3.5400
OFMND242	220.00	221.00	3.1800
OFMND242	221.00	222.00	3.6600
OFMND242	222.00	223.00	3.4900
OFMND242	223.00	224.00	4.2100
OFMND242	224.00	225.17	2.3500
OFMND242	225.17	226.00	1.2650
OFMND242	226.00	227.00	1.4800
OFMND242	227.00	228.00	0.0856
OFMND242	228.00	229.00	0.0096
OFMND242	246.40	247.40	0.0053

Table 7: OFMND243 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMND243	225.60	226.60	0.0158
OFMND243	226.60	227.60	0.1405
OFMND243	227.60	228.60	0.2120
OFMND243	228.60	229.60	0.2230
OFMND243	229.60	230.60	0.3040
OFMND243	230.60	231.15	1.6500
OFMND243	231.15	232.00	0.3470
OFMND243	232.00	233.00	0.3930
OFMND243	233.00	234.00	0.1100
OFMND243	234.00	234.60	0.7930
OFMND243	234.60	235.60	1.3800
OFMND243	235.60	236.60	1.5600
OFMND243	236.60	237.60	1.5050
OFMND243	237.60	238.60	1.4950
OFMND243	238.60	239.60	1.5400
OFMND243	239.60	240.60	1.6700
OFMND243	240.60	241.60	1.8300
OFMND243	241.60	242.60	0.7480
OFMND243	242.60	243.60	0.7530
OFMND243	243.60	244.60	0.7840
OFMND243	244.60	245.60	0.7680
OFMND243	245.60	246.60	0.9230
OFMND243	246.60	247.60	1.1000

Hole ID	From (m)	To (m)	% Cu
OFMND243	247.60	248.60	1.0700
OFMND243	248.60	249.60	1.2100
OFMND243	249.60	250.60	1.1450
OFMND243	250.60	251.60	1.2900
OFMND243	251.60	252.60	1.1150
OFMND243	252.60	253.60	1.4000
OFMND243	253.60	254.60	1.3900
OFMND243	254.60	255.60	1.1800
OFMND243	255.60	256.60	1.3450
OFMND243	256.60	257.66	1.0550
OFMND243	257.66	258.60	0.2610
OFMND243	258.60	259.60	0.6840
OFMND243	259.60	260.60	0.6080
OFMND243	260.60	261.60	0.8020
OFMND243	261.60	262.60	0.8970
OFMND243	262.60	263.30	3.3800
OFMND243	263.30	264.30	0.5650
OFMND243	264.30	265.30	0.5190
OFMND243	265.30	266.30	0.4710
OFMND243	266.30	267.30	0.8070
OFMND243	267.30	268.30	1.4500
OFMND243	268.30	269.30	1.0600
OFMND243	269.30	270.30	0.8460

Hole ID	From (m)	To (m)	% Cu
OFMND243	270.30	271.30	0.6420
OFMND243	271.30	272.30	0.3710

Hole ID	From (m)	To (m)	% Cu
OFMND243	272.30	273.30	0.1830
OFMND243	273.30	274.15	0.0030

Table 8: OFMSD078 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMSD078	316.00	318.00	0.0022
OFMSD078	318.00	320.00	0.0029
OFMSD078	320.00	322.00	0.0043
OFMSD078	322.00	324.00	0.4320
OFMSD078	324.00	325.00	0.8710
OFMSD078	325.00	326.00	0.8270
OFMSD078	326.00	328.00	0.6690
OFMSD078	328.00	329.00	0.5610
OFMSD078	329.00	330.00	0.6890
OFMSD078	330.00	331.00	0.9940
OFMSD078	331.00	332.00	0.8980
OFMSD078	332.00	333.00	0.8070
OFMSD078	333.00	334.00	0.9870
OFMSD078	334.00	335.00	1.1350
OFMSD078	335.00	336.00	0.7370
OFMSD078	336.00	337.00	0.4670
OFMSD078	337.00	338.00	0.3860
OFMSD078	338.00	340.00	0.3730
OFMSD078	340.00	342.00	0.6140
OFMSD078	342.00	344.00	0.3970
OFMSD078	344.00	345.00	0.5730
OFMSD078	345.00	347.00	0.5120
OFMSD078	347.00	349.00	0.4060
OFMSD078	349.00	351.00	0.3650
OFMSD078	351.00	353.00	0.4080
OFMSD078	353.00	355.00	0.3470
OFMSD078	355.00	357.00	0.3450
OFMSD078	357.00	359.00	0.2000
OFMSD078	359.00	361.00	0.3660
OFMSD078	361.00	362.00	0.3460
OFMSD078	362.00	364.00	0.1800
OFMSD078	364.00	366.00	0.3870
OFMSD078	366.00	368.00	0.1955
OFMSD078	368.00	369.00	0.4940
OFMSD078	369.00	370.00	0.7630
OFMSD078	370.00	372.00	0.3990
OFMSD078	372.00	374.00	0.4040
OFMSD078	374.00	376.00	0.5020
OFMSD078	376.00	378.00	0.3130
OFMSD078	378.00	380.00	0.3130
OFMSD078	380.00	382.00	0.1440
OFMSD078	382.00	384.00	0.1095
OFMSD078	384.00	386.00	0.1420
OFMSD078	386.00	388.00	0.1160
OFMSD078	388.00	389.00	0.9110
OFMSD078	389.00	390.00	0.7390
OFMSD078	390.00	391.00	0.8190
OFMSD078	391.00	392.00	0.3060
OFMSD078	392.00	394.00	0.2370
OFMSD078	394.00	395.00	0.6440
OFMSD078	395.00	397.00	0.1735
OFMSD078	397.00	399.00	0.1300
OFMSD078	399.00	401.00	0.1290

Hole ID	From (m)	To (m)	% Cu
OFMSD078	401.00	403.00	0.2640
OFMSD078	403.00	405.00	0.1455
OFMSD078	405.00	407.00	0.3500
OFMSD078	407.00	409.00	0.1045
OFMSD078	409.00	411.00	0.2660
OFMSD078	411.00	413.00	0.2380
OFMSD078	413.00	415.00	0.2600
OFMSD078	415.00	417.00	0.2010
OFMSD078	417.00	419.00	0.1575
OFMSD078	419.00	421.00	0.2450
OFMSD078	421.00	423.00	0.2320
OFMSD078	423.00	425.00	0.3660
OFMSD078	425.00	426.00	1.1300
OFMSD078	426.00	427.00	1.2100
OFMSD078	427.00	428.00	0.8370
OFMSD078	428.00	430.00	0.4040
OFMSD078	430.00	432.00	0.2960
OFMSD078	432.00	433.00	0.7860
OFMSD078	433.00	435.00	0.8650
OFMSD078	435.00	437.00	0.1045
OFMSD078	437.00	439.00	0.1935
OFMSD078	439.00	441.00	0.4910
OFMSD078	441.00	443.00	0.2480
OFMSD078	443.00	445.00	0.1710
OFMSD078	445.00	447.00	0.2090
OFMSD078	447.00	449.00	0.0230
OFMSD078	449.00	451.00	0.0246
OFMSD078	451.00	453.00	0.0839
OFMSD078	453.00	455.00	0.3870
OFMSD078	455.00	457.00	0.2700
OFMSD078	457.00	459.00	0.1720
OFMSD078	459.00	461.00	0.2050
OFMSD078	461.00	463.00	0.1675
OFMSD078	463.00	465.00	0.3070
OFMSD078	465.00	467.00	0.3980
OFMSD078	467.00	469.00	0.2010
OFMSD078	469.00	471.00	0.4550
OFMSD078	471.00	472.00	0.6620
OFMSD078	472.00	473.00	0.3090
OFMSD078	473.00	475.00	0.1760
OFMSD078	475.00	477.00	0.2580
OFMSD078	477.00	479.00	0.1940
OFMSD078	479.00	481.00	0.2480
OFMSD078	481.00	482.00	0.1235
OFMSD078	482.00	483.00	0.6230
OFMSD078	483.00	484.00	1.0250
OFMSD078	484.00	486.00	0.0639
OFMSD078	486.00	488.00	0.2680
OFMSD078	488.00	490.00	0.6190
OFMSD078	490.00	492.00	0.7990
OFMSD078	492.00	494.00	0.3460
OFMSD078	494.00	496.00	0.0088
OFMSD078	496.00	496.96	0.0081
0500,0	3.00	., 3., 0	0.0001

Table 9: OFMSD079 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMSD079	472.00	474.00	0.0015
OFMSD079	474.00	474.55	0.0068
OFMSD079	474.55	475.00	0.0131
OFMSD079	475.00	477.00	0.2510
OFMSD079	477.00	479.00	0.2170
OFMSD079	477.00	481.00	0.3360
OFMSD079	481.00 483.00	483.00	0.2490
OFMSD079	485.00	485.00 487.00	0.4830 0.2890
OFMSD079	487.00	489.00	
OFMSD079			0.3870
OFMSD079	489.00	491.00	0.3490
OFMSD079	491.00	493.00	0.1810
OFMSD079	493.00	495.00	0.2400
OFMSD079	495.00	497.00	0.2990
OFMSD079	497.00	498.00	0.1535
OFMSD079	498.00	499.00	0.4990
OFMSD079	499.00	500.00	0.2320
OFMSD079	500.00	501.00	0.3070
OFMSD079	501.00	501.94	0.7750
OFMSD079	501.94	503.00	3.0700
OFMSD079	503.00	504.00	2.3700
OFMSD079	504.00	505.00	2.5700
OFMSD079	505.00	506.00	2.6400
OFMSD079	506.00	507.00	2.3900
OFMSD079	507.00	508.00	2.2700
OFMSD079	508.00	509.00	0.2320
OFMSD079	509.00	510.00	0.4200
OFMSD079	510.00	512.00	0.3580
OFMSD079	512.00	514.00	0.3520
OFMSD079	514.00	515.00	0.2730
OFMSD079	515.00	516.00	1.0750
OFMSD079	516.00	517.00	1.7350
OFMSD079	517.00	518.00	0.9590
OFMSD079	518.00	519.00	0.4610
OFMSD079	519.00	520.00	0.7740
OFMSD079	520.00	521.00	0.4710
OFMSD079	521.00	522.00	0.2630
OFMSD079	522.00	523.00	0.6340
OFMSD079	523.00	524.00	0.4280
OFMSD079	524.00	526.00	0.1455
OFMSD079	526.00	528.00	0.0109
OFMSD079	528.00	530.00	0.0012
OFMSD079	530.00	532.00	0.0009
OFMSD079	561.00	562.00	0.1305
OFMSD079	562.00	563.00	0.2980
OFMSD079	563.00	564.00	0.0125
050077		00 1.00	0.0120

Hole ID	From (m)	To (m)	% Cu
OFMSD079	564.00	565.00	0.8340
OFMSD079	565.00	566.00	0.6510
OFMSD079	566.00	567.00	0.2580
OFMSD079	567.00	568.50	0.0071
OFMSD079	568.50	570.00	0.0117
OFMSD079	570.00	571.00	0.4990
OFMSD079	571.00	572.00	4.0300
OFMSD079	572.00	573.00	3.7800
OFMSD079	573.00	574.00	2.5400
OFMSD079	574.00	575.00	1.8650
OFMSD079	575.00	576.00	3.7700
OFMSD079	576.00	577.00	2.9800
OFMSD079	577.00	578.00	5.0700
OFMSD079	578.00	579.33	0.2390
OFMSD079	579.33	580.00	1.5300
OFMSD079	580.00	581.00	2.1200
OFMSD079	581.00	582.00	0.7350
OFMSD079	582.00	583.00	1.4500
OFMSD079	583.00	584.00	2.4200
OFMSD079	584.00	585.00	3.2000
OFMSD079	585.00	585.80	3.5700
OFMSD079	585.80	587.90	0.0188
OFMSD079	587.90	590.00	0.0174
OFMSD079	590.00	592.00	0.0162
OFMSD079	592.00	593.00	1.5500
OFMSD079	593.00	594.00	3.7800
OFMSD079	594.00	595.00	2.3900
OFMSD079	595.00	596.00	2.0900
OFMSD079	596.00	598.00	0.0100
OFMSD079	598.00	600.00	0.0045
OFMSD079	600.00	602.00	0.0031
OFMSD079	602.00	604.00	0.0274
OFMSD079	604.00	606.00	0.0393
OFMSD079	606.00	608.00	0.3850
OFMSD079	608.00	609.00	1.0950
OFMSD079	609.00	610.00	0.1560
OFMSD079	610.00	611.00	0.1730
OFMSD079	611.00	612.00	0.8590
OFMSD079	612.00	613.00	0.4660
OFMSD079	613.00	615.00	0.0318
OFMSD079	615.00	617.00	0.0158
OFMSD079	617.00	619.00	0.1975

Table 10: OFMD163 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMD163	2.90	3.60	0.2190
OFMD163	3.60	4.40	0.9880
OFMD163	4.40	5.27	0.5070
OFMD163	6.17	7.00	0.0042
OFMD163	7.00	8.00	0.0055
OFMD163	8.00	9.00	0.3520
OFMD163	9.00	10.00	0.1080
OFMD163	10.00	11.00	0.0056
OFMD163	11.00	12.00	0.5670
OFMD163	12.00	13.00	1.8550
OFMD163	13.00	14.00	0.0713

Hole ID	From (m)	To (m)	% Cu
OFMD163	14.00	16.00	0.3300
OFMD163	16.00	18.00	0.2010
OFMD163	18.00	20.00	0.3540
OFMD163	20.00	22.00	0.4910
OFMD163	22.00	24.00	0.1085
OFMD163	24.00	26.00	0.0775
OFMD163	26.00	28.00	0.0722
OFMD163	28.00	30.00	0.2830
OFMD163	30.00	32.00	0.3010
OFMD163	32.00	33.00	0.0035
OFMD163	33.00	34.00	0.0031

Hole ID	From (m)	To (m)	% Cu
OFMD163	34.00	35.00	0.8510
OFMD163	35.00	36.00	0.5920
OFMD163	36.00	37.00	3.4300
OFMD163	37.00	38.00	0.7410
OFMD163	38.00	39.00	0.0386
OFMD163	39.00	40.00	0.6400
OFMD163	40.00	41.00	0.3910
OFMD163	41.00	42.00	0.0196
OFMD163	42.00	43.00	2.3200
OFMD163	43.00	44.00	0.7680
OFMD163	44.00	45.00	0.0428

Hole ID	From (m)	To (m)	% Cu
OFMD163	45.00	46.00	0.4370
OFMD163	46.00	47.00	0.4500
OFMD163	47.00	49.00	0.2120
OFMD163	49.00	51.00	0.0052
OFMD163	51.00	52.00	0.1005
OFMD163	52.00	53.00	0.0015
OFMD163	53.00	54.00	0.0020
OFMD163	54.00	55.00	0.0128
OFMD163	55.00	56.00	0.0035
OFMD163	56.00	57.00	0.0103

Table 11: OFMD164 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMD164	4.58	5.56	0.0076
OFMD164	5.56	6.21	0.0287
OFMD164	6.68	7.45	0.0404
OFMD164	7.45	8.31	0.0394
OFMD164	8.31	9.00	2.1200
OFMD164	9.00	10.00	7.1700
OFMD164	10.00	11.00	2.3300
OFMD164	11.00	12.00	2.4300
OFMD164	12.00	13.00	0.8260
OFMD164	13.00	14.00	0.4520
OFMD164	14.00	15.00	0.0256
OFMD164	15.00	16.00	2.0200
OFMD164	16.00	17.00	3.7800
OFMD164	17.00	18.00	2.1500
OFMD164	18.00	19.00	0.8390
OFMD164	19.00	20.00	1.4350
OFMD164	20.00	21.00	3.3800
OFMD164	21.00	22.00	1.4400
OFMD164	22.00	23.00	0.2070
OFMD164	23.00	24.00	0.7980
OFMD164	24.00	25.00	1.1100
OFMD164	25.00	26.00	1.6900
OFMD164	26.00	27.00	2.4900
OFMD164	27.00	28.00	0.5940
OFMD164	28.00	29.00	1.0350
OFMD164	29.00	30.00	0.4580
OFMD164	30.00	31.00	0.1905
OFMD164	31.00	32.00	0.1145
OFMD164	32.00	33.00	0.0049
OFMD164	33.00	34.00	1.3750
OFMD164	34.00	35.00	0.2590
OFMD164	35.00	36.00	0.8540
OFMD164	36.00	37.00	3.2400
OFMD164	37.00	38.00	1.1050
OFMD164	38.00	39.00	0.0089

Hole ID	From (m)	To (m)	% Cu
OFMD164	39.00	40.00	0.0072
OFMD164	40.00	41.00	0.0098
OFMD164	41.00	42.00	0.0033
OFMD164	42.00	43.00	0.1505
OFMD164	43.00	44.00	0.1490
OFMD164	44.00	45.00	0.6000
OFMD164	45.00	46.00	0.0022
OFMD164	46.00	47.00	1.5600
OFMD164	47.00	48.00	0.6980
OFMD164	48.00	49.00	0.9110
OFMD164	49.00	50.00	2.9500
OFMD164	50.00	51.00	2.3900
OFMD164	51.00	52.00	0.6520
OFMD164	52.00	53.00	1.3550
OFMD164	53.00	54.00	0.8300
OFMD164	54.00	55.00	0.3360
OFMD164	55.00	56.00	0.0682
OFMD164	56.00	57.00	0.2930
OFMD164	57.00	58.00	0.1965
OFMD164	58.00	59.00	0.0352
OFMD164	59.00	60.00	0.4000
OFMD164	60.00	61.00	0.0103
OFMD164	61.00	62.00	0.0175
OFMD164	62.00	63.00	0.0175
OFMD164	63.00	64.00	0.0561
OFMD164	64.00	65.00	0.0046
OFMD164	65.00	66.00	0.1345
OFMD164	66.00	67.00	0.3650
OFMD164	67.00	68.00	0.0450
OFMD164	68.00	69.00	0.0003
OFMD164	69.00	70.00	0.6580
OFMD164	70.00	71.00	0.0049
OFMD164	71.00	72.00	0.0003
OFMD164	72.00	73.00	0.0003

Table 12: OFMD165 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMD165	3.09	4.00	2.0100
OFMD165	4.00	5.00	2.3400
OFMD165	5.00	6.12	1.6200
OFMD165	6.12	7.05	0.0072
OFMD165	7.05	8.00	0.0020
OFMD165	8.00	9.00	2.4700
OFMD165	9.00	10.00	0.0613
OFMD165	10.00	11.00	0.7140
OFMD165	11.00	12.00	1.1700

Hole ID	From (m)	To (m)	% Cu
OFMD165	12.00	13.00	1.0750
OFMD165	13.00	14.00	0.7010
OFMD165	14.00	15.00	1.1300
OFMD165	15.00	16.00	0.0058
OFMD165	16.00	17.00	0.2310
OFMD165	17.00	18.00	0.1975
OFMD165	18.00	19.00	1.7000
OFMD165	19.00	20.00	1.0350
OFMD165	20.00	21.00	0.6260

Hole ID	From (m)	To (m)	% Cu
OFMD165	21.00	22.00	0.8180
OFMD165	22.00	23.00	0.8130
OFMD165	23.00	24.00	0.1605
OFMD165	24.00	25.00	0.9420
OFMD165	25.00	26.00	0.9440
OFMD165	26.00	27.00	0.6270
OFMD165	27.00	29.00	0.1990
OFMD165	29.00	31.00	0.0094
OFMD165	31.00	33.00	0.0112
OFMD165	33.00	35.00	0.0113
OFMD165	35.00	37.00	0.0145
OFMD165	37.00	38.00	0.0420
OFMD165	38.00	39.00	0.3190
OFMD165	39.00	40.00	0.5560
OFMD165	40.00	41.00	0.0950
OFMD165	41.00	42.00	0.5240

Hole ID	From (m)	From (m) To (m)	
OFMD165	42.00	42.00 43.00	
OFMD165	43.00	43.75	0.3840
OFMD165	43.75	45.00	0.1060
OFMD165	45.00	47.00	0.0066
OFMD165	47.00	49.00	0.0345
OFMD165	49.00	51.00	0.0018
OFMD165	51.00	53.00	0.0003
OFMD165	53.00	55.00	0.0003
OFMD165	55.00	57.00	0.0008
OFMD165	57.00	59.00	0.0044
OFMD165	59.00	61.00	0.0109
OFMD165	61.00 63.00		0.0089
OFMD165	63.00	65.00	0.0069
OFMD165	65.00	67.00	0.0108
OFMD165	67.00 69.00 C		0.0003
OFMD165	69.00	70.44	0.0003

Table 13: OFMD166 drill assay results.

			~ ~	
Hole ID	From (m)	To (m)	% Cυ	
OFMD166	6.45 7.45		0.0039	
OFMD166	7.45	8.45	0.0075	
OFMD166	8.45	9.45	0.0087	
OFMD166	9.45	10.15	0.0938	
OFMD166	11.00	11.70	0.2080	
OFMD166	11.70	12.70	0.3760	
OFMD166	12.70	13.70	2.1200	
OFMD166	13.70	14.70	1.4900	
OFMD166	14.70 15.70		1.1750	
OFMD166	15.70	16.70	0.4700	
OFMD166	16.70	17.70	0.6250	
OFMD166	17.70	18.70	1.4250	
OFMD166	18.70	19.50	0.0052	
OFMD166	19.50	20.00	0.0018	
OFMD166	20.00	21.00	0.0051	
OFMD166	21.00	22.00	0.1625	

Hole ID	From (m)	From (m) To (m)	
OFMD166	22.00	22.00 23.00 1.	
OFMD166	23.00	24.00	0.6260
OFMD166	24.00	25.00	0.5550
OFMD166	25.00	26.00	0.4440
OFMD166	26.00	27.00	0.0085
OFMD166	27.00	28.00	0.0114
OFMD166	28.00	28.00 29.00	
OFMD166	29.00	30.00	0.1160
OFMD166	30.00 31.00		0.1690
OFMD166	31.00	32.00	0.7900
OFMD166	32.00	33.00	0.0535
OFMD166	33.00	33.00 34.00	
OFMD166	34.00 35.00		0.0027
OFMD166	35.00	36.00	0.1005
OFMD166	36.00 36.85 0.9		0.9540
OFMD166	36.85		

Table 14: OFMD167 drill assay results.

Hole ID	From (m) To (m)		% Cu
OFMD167	117.00 119.10		0.0023
OFMD167	119.10	121.20	0.0228
OFMD167	121.20	122.00	2.7000
OFMD167	122.00	123.00	4.6400
OFMD167	123.00	124.00	5.9600
OFMD167	124.00	125.00	5.4500
OFMD167	125.00	126.00	4.1600
OFMD167	126.00	127.00	5.7300
OFMD167	127.00	128.00	6.1600
OFMD167	128.00	129.00	5.3500
OFMD167	129.00	131.00	0.0244
OFMD167	131.00	133.00	0.0026

Hole ID	From (m)	From (m) To (m)	
OFMD167	117.00	117.00 119.10 (
OFMD167	119.10	121.20	0.0228
OFMD167	121.20	122.00	2.7000
OFMD167	122.00	123.00	4.6400
OFMD167	123.00	124.00	5.9600
OFMD167	124.00	125.00	5.4500
OFMD167	125.00	126.00	4.1600
OFMD167	126.00	127.00	5.7300
OFMD167	127.00	128.00	6.1600
OFMD167	128.00	129.00	5.3500
OFMD167	129.00	131.00	0.0244
OFMD167	131.00	133.00	0.0026

Table 15: OFMD168 drill assay results.

Hole ID	From (m)	To (m)	% Cu
OFMD168	40.00	42.00	0.0009
OFMD168	42.00	44.00	0.0008
OFMD168	44.00	45.93	0.0632
OFMD168	45.93	47.00	1.3000

Hole ID	From (m) To (m)		% Cu
OFMD168	47.00	48.00	0.7660
OFMD168	48.00	49.00	0.5230
OFMD168	49.00	50.00	1.1100
OFMD168	50.00	51.00	0.7840

Hole ID	From (m) To (m)		% Cu	
OFMD168	51.00	52.00	1.1700	
OFMD168	52.00	53.00	1.6900	
OFMD168	53.00	53.78	0.3580	
OFMD168	53.78	54.45	1.9800	
OFMD168	54.45	55.24	0.1475	
OFMD168	55.24	56.00	0.5980	
OFMD168	56.00	58.00	0.0101	
OFMD168	58.00	60.00	0.0175	
OFMD168	60.00	0 62.00 0		
OFMD168	62.00	63.40	0.0164	
OFMD168	63.40	64.60	0.2800	
OFMD168	64.60	65.53	0.0282	
OFMD168	65.53	66.09	0.3370	
OFMD168	66.09	67.00	0.3750	
OFMD168	67.00	68.00	0.3000	
OFMD168	68.00	69.00	0.1070	
OFMD168	69.00	70.00	0.1280	

Hole ID	From (m)	To (m)	% Cu	
OFMD168	70.00 71.00		0.0669	
OFMD168	71.00	72.00	0.1325	
OFMD168	72.00	73.00	0.2110	
OFMD168	73.00	75.00	0.0053	
OFMD168	75.00	77.00	0.0060	
OFMD168	77.00	78.00	0.0022	
OFMD168	78.00	79.00	0.8290	
OFMD168	79.00	80.00	0.7140	
OFMD168	80.00	81.00	0.1495	
OFMD168	81.00	83.00	0.0067	
OFMD168	83.00	85.00	0.0043	
OFMD168	85.00	86.00	1.6250	
OFMD168	86.00	87.00	0.2460	
OFMD168	87.00	88.00	0.0254	
OFMD168	88.00	90.00	0.0158	
OFMD168	90.00	92.00	0.0190	
OFMD168	92.00	94.00	0.0371	

Table 16: OFMD169 drill assay results.

Hole ID	From (m) To (m)		% Cu	
OFMD169	6.44	7.44 0.0		
OFMD169	7.44	8.44	0.0043	
OFMD169	8.44	9.34	0.0031	
OFMD169	9.34	10.00	1.0600	
OFMD169	10.00	11.00	1.1700	
OFMD169	11.00	12.00	0.2920	
OFMD169	12.00	13.00	0.5230	
OFMD169	13.00	14.00	0.1870	
OFMD169	14.00	15.00	0.0225	
OFMD169	15.00	16.00	0.2110	
OFMD169	16.00	17.00	1.0600	
OFMD169	17.00	18.00	2.2100	
OFMD169	18.00	19.00	1.4600	
OFMD169	19.00	20.00	1.9850	
OFMD169	20.00	21.00	2.7600	
OFMD169	21.00	22.00	1.5050	
OFMD169	22.00	23.00	0.1060	
OFMD169	23.00	24.00	0.1100	
OFMD169	24.00	25.00	2.4300	
OFMD169	25.00	26.00	3.7700	
OFMD169	26.00	27.00	2.9700	
OFMD169	27.00	28.00	3.8300	
OFMD169	28.00	29.00	3.2900	
OFMD169	29.00	30.00	3.8600	
OFMD169	30.00	31.00	1.1450	
OFMD169	31.00 32.00		0.4270	
OFMD169	32.00	33.00	0.4180	
OFMD169	33.00	34.00	1.6800	
OFMD169	34.00	35.00	1.3550	
OFMD169	35.00	36.00	0.7180	
OFMD169	36.00	37.00	1.2750	

Hole ID	From (m) To (m)		% Cυ
OFMD169	37.00	38.00	0.0070
OFMD169	38.00	38.00 39.00	
OFMD169	39.00	40.00	0.0016
OFMD169	40.00	41.00	0.0023
OFMD169	41.00	42.00	0.0206
OFMD169	42.00	43.00	1.0950
OFMD169	43.00	44.00	0.4460
OFMD169	44.00	45.00	0.5840
OFMD169	45.00	46.00	0.1280
OFMD169	46.00	47.00	0.8260
OFMD169	47.00	48.00	0.4020
OFMD169	48.00	49.00	0.5180
OFMD169	49.00	50.00	0.4320
OFMD169	50.00	51.00	0.6720
OFMD169	51.00	52.00	0.3860
OFMD169	52.00	53.00	0.0014
OFMD169	53.00	54.00	0.0271
OFMD169	54.00 55.00		0.0385
OFMD169	55.00	56.00	0.0383
OFMD169	56.00	57.00	0.1620
OFMD169	57.00	58.00	0.0023
OFMD169	58.00	59.00	0.0252
OFMD169	59.00	60.00	0.1750
OFMD169	60.00	61.00	0.0310
OFMD169	61.00 62.00		0.0173
OFMD169	62.00 63.00		0.0200
OFMD169	63.00	64.00	0.0826
OFMD169	64.00	65.00	0.0145
OFMD169	65.00	66.00	0.0078
OFMD169	66.00	67.00	0.0042
OFMD169	67.00	68.00	0.0133

Table 17: Historical drilling by Newmont and GFSA. Drill hole collar information for FMN and FMS prospects. Coordinates in WGS84 Hartebeesthoek 94 LO17.

Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth
FMS044	75311.71	-3270992.10	774.47	180	-65	524.50
FMS047	75266.30	-3270988.14	767.27	180	-70	616.20
FMN207	75996.75	-3267901.61	841.04	180	-71	314.00
FMN215	76116.66	-3267903.77	847.31	180	-65.5	293.70
FMN217	76116.76	-3267903.70	847.22	180	-69	289.30
FMS048	75232.50	-3270962.44	761.05	180	-70	698.50
FMS053D1	75172.71	-3270962.68	760.98	180	-67	710.70

Table 18: Historical drilling by Newmont and GFSA, FMS and FMN drill assay results.

Hole ID	From (m)	To (m)	% Cu
FMS044	363.20	364.20	0.2500
FMS044	364.20	365.20	0.4700
FMS044	365.20	366.20	0.3000
FMS044	366.20	367.35	0.2700
FMS044	367.87	368.65	0.5400
FMS044	370.45	371.45	0.7200
FMS044	371.45	372.45	0.4200
FMS044	372.45	373.54	0.6900
FMS044	385.95	386.95	0.0400
FMS044	386.95	387.95	0.3000
FMS044	387.95	388.95	0.4300
FMS044	388.95	390.00	0.6200
FMS044	390.00	391.12	0.7400
FMS044	406.95	407.44	0.1900
FMS044	407.85	411.58	0.4100
FMS044	411.58	411.82	3.2400
FMS044	411.82	412.82	0.1500
FMS044	412.82	413.82	0.0200
FMS044	414.70	415.70	0.4900
FMS044	415.70	417.07	0.4800
FMS044	417.07	418.34	0.0700
FMS044	418.34	419.27	0.2300
FMS044	419.27	420.12	0.3900
FMS044	420.12	421.00	0.0500
FMS044	421.00	421.96	0.1500
FMS044	421.96	422.96	0.4100
FMS044	422.96	423.96	0.2200
FMS044	423.96	424.62	0.3400
FMS044	424.62	424.80	5.6200
FMS044	424.80	425.80	0.1500
FMS044	425.80	426.80	0.3900
FMS044	426.80	427.80	0.4000
FMS044	427.80	428.80	0.7100
FMS044	428.80	430.24	0.1300
FMS044	430.24	431.04	0.2100
FMS044	431.04	431.45	2.4400
FMS044	431.45	432.45	0.3300
FMS044	432.45	433.00	0.0900
FMS044	433.00	433.92	0.0500
FMS044	433.92	434.85	0.0100
FMS044	434.85	435.85	0.4600
FMS044	435.85	436.85	0.1600
FMS044	436.85	437.85	0.0800
FMS044	437.85	439.88	0.0100
FMS044	442.05	444.70	0.1000
FMS044	444.70	446.11	0.4400
FMS044	446.11	447.11	0.1200

Hole ID	From (m)	To (m)	% Cu
FMS044	447.11	448.11	0.2200
FMS044	448.11	449.11	0.3100
FMS044	449.11	450.11	0.6100
FMS044	450.11	451.21	0.2500
FMS044	451.79	452.68	0.3200
FMS044	453.68	454.74	0.1400
FMS044	454.74	455.74	0.2400
FMS044	455.74	456.74	0.1000
FMS044	456.74	458.10	0.2300
FMS044	458.10	459.00	0.1800
FMS044	459.00	459.92	0.4500
FMS044	459.92	460.82	0.0700
FMS044	460.82	463.00	0.2700
FMS044	463.00	464.00	0.4100
FMS044	464.00	464.90	0.1600
FMS044	464.90	465.90	0.2200
FMS044	465.90	467.10	0.2800
FMS044	467.10	468.10	0.3600
FMS044	468.10	469.20	0.4300
FMS044	469.20	470.20	0.1400
FMS044	470.20	471.19	0.1600
FMS044	471.19	472.22	0.1800
FMS044	472.22	474.68	0.2100
FMS044	476.60	476.90	0.0800
FMS044	477.40	478.38	0.2000
FMS044	478.38	479.10	0.0800
FMS044	479.10	480.16	0.2300
FMS044	480.16	481.00	0.0900
FMS044	481.00	482.00	0.1900
FMS044	482.00	482.90	0.2200
FMS044	509.35	510.35	0.1800
FMS044	510.35	511.59	0.3700
FMS044	363.20	364.20	0.2500
FMS044	364.20	365.20	0.4700
FMS044	365.20	366.20	0.3000
FMS044	366.20	367.35	0.2700
FMS044	367.87	368.65	0.5400
FMS044	370.45	371.45	0.7200
FMS044	371.45	372.45	0.4200
FMS044	372.45	373.54	0.6900
FMS044	385.95	386.95	0.0400
FMS044	386.95	387.95	0.3000
FMS044	387.95	388.95	0.4300
FMS044	388.95	390.00	0.6200
FMS044	390.00	391.12	0.7400
FMS044	406.95	407.44	0.1900
FMS044	407.85	411.58	0.4100

Hole ID	From (m)	To (m)	% Cu
FMS044	411.58	411.82	3.2400
FMS044	411.82	412.82	0.1500
FMS044	412.82	413.82	0.0200
FMS044	414.70	415.70	0.4900
FMS044	415.70	417.07	0.4800
FMS044	417.07	418.34	0.0700
FMS044	418.34	419.27	0.2300
FMS044	419.27	420.12	0.3900
FMS044	420.12	421.00	0.0500
FMS044	421.00	421.96	0.1500
FMS044	421.96	422.96	0.4100
FMS044	422.96	423.96	0.2200
FMS044	423.96	424.62	0.3400
FMS044	424.62	424.80	5.6200
FMS044	424.80	425.80	0.1500
FMS044	425.80	426.80	0.3900
FMS044	426.80	427.80	0.4000
FMS044	427.80	428.80	0.7100
FMS044	428.80	430.24	0.1300
FMS044	430.24	430.24	0.1300
FMS044	430.24	431.45	2.4400
FMS044	431.45	432.45	0.3300
FMS044	432.45	433.00	0.0900
FMS044	433.00	433.92	0.0500
FMS044	433.92	434.85	0.0100
FMS044	434.85	435.85	0.4600
FMS044	435.85	436.85	0.1600
FMS044	436.85	437.85	0.0800
FMS044	437.85	437.88	0.0100
FMS044	442.05	444.70	0.1000
FMS044	444.70	446.11	0.4400
FMS044	446.11	447.11	0.1200
FMS044	447.11	448.11	0.1200
FMS044	448.11	449.11	0.2200
FMS044	449.11	450.11	0.6100
FMS044	450.11	451.21	0.2500
FMS044	451.79	452.68	0.3200
FMS044	453.68	454.74	0.1400
FMS044	454.74	455.74	0.1400
FMS044	455.74	456.74	0.1000
		458.10	
FMS044 FMS044	456.74 458.10	450.10	0.2300 0.1800
FMS044			0.1600
FMS044 FMS044	459.00 459.92	459.92	0.4500
FMS044	459.92	460.82 463.00	0.0700
FMS044	463.00	464.00	0.2700
FMS044	464.00	464.90	0.4100
FMS044	464.90	465.90	0.1800
FMS044	465.90	465.90	0.2200
FMS044	467.10	468.10	0.2600
FMS044	468.10	469.20	0.3800
FMS044	469.20	470.20	0.4300
FMS044	470.20	470.20	0.1400
FMS044	470.20	471.17	0.1800
FMS044	471.17	472.22	0.1800
FMS044	472.22	474.66	0.2100
FMS044	476.60	478.38	0.2000
FMS044	477.40	470.30	
FMS044 FMS044	478.38	480.16	0.0800
FMS044			
	480.16	481.00	0.0900
FMS044	481.00	482.00	0.1900 0.2200
FMS044 FMS044	482.00 509.35	482.90 510.35	0.2200
F/VI3U44	JU7.33	510.33	0.1000

		- / >	~ .
Hole ID	From (m)	To (m)	% Cu
FMS044	510.35	511.59	0.3700
FMS047	464.21	465.21	0.0300
FMS047	466.21	467.21	0.2800
FMS047	467.21	468.21	0.0800
FMS047	468.21	470.20	0.0600
FMS047	470.90	471.90	0.0900
FMS047	471.90	472.90	0.2600
FMS047	472.90	473.90	0.3200
FMS047	473.90	474.90	0.1600
FMS047	474.90	475.90	1.0100
FMS047	475.90	476.90	0.6300
FMS047	476.90	477.90	0.1300
FMS047	477.90	478.90	0.2400
FMS047	478.90	479.90	0.5500
FMS047	479.90	480.90	0.3300
FMS047	480.90	481.47	0.3200
FMS047	484.80	485.80	1.1800
FMS047	485.80	486.80	0.3400
FMS047	486.80	487.80	0.4800
FMS047	487.80	488.80	0.2500
FMS047	488.80	489.80	0.1500
FMS047	489.80	490.80	0.1200
FMS047	490.80	491.80	0.2400
FMS047	491.80	492.80	0.3300
FMS047	492.80	493.97	0.3000
FMS047	493.97	494.41	0.0400
FMS047	494.41	495.41	0.3400
FMS047	495.41	496.41	0.1200
FMS047	496.41	497.41	0.4400
FMS047	497.41	498.41	0.2000
FMS047	498.41	499.41	0.5400
FMS047	499.41	500.41	0.5200
FMS047	500.41	501.41	0.4200
FMS047	501.41	502.41	0.7400
FMS047	502.41	503.41	0.3700
FMS047	503.41	504.41	0.4300
FMS047	504.41	505.41	0.6400
FMS047	505.41	506.41	0.3200
FMS047	506.41	507.41	0.2800
FMS047	507.41	508.41	0.3600
FMS047	508.41	509.41	0.3600
FMS047	509.41	510.41	2.7900
FMS047	510.41	511.50	0.2700
FMS047	511.50	512.50	0.0900
FMS047	512.50	513.50	0.0200
FMS047	513.50	514.20	0.1200
FMS047	514.20	515.20	3.9400
FMS047	515.20	516.20	3.3400
FMS047	516.20	517.20	1.8200
FMS047	517.20	518.20	1.8800
FMS047	518.20	519.20	1.7500
FMS047	519.20	520.20	2.1700
FMS047	520.20	521.20	1.7800
FMS047	521.20	522.20	1.6400
FMS047	522.20	523.20	0.2400
FMS047	523.20	524.20	1.6600
FMS047	524.20	525.20	0.8900
FMS047	525.20	526.20	1.4400
FMS047	526.20	527.20	0.7700
FMS047	527.20	528.20	1.5600
FMS047	528.20	529.20	0.8400
FMS047	529.20	530.20	0.7800
FMS047	530.20	531.20	0.7200
		-	

Hole ID	From (m)	To (m)	% Cu
FMS047	531.20	532.20	0.3700
FMS047	532.20	533.20	0.3100
FMS047	533.20	534.20	0.4500
FMS047	534.20	535.20	0.4600
FMS047	535.20	536.20	1.9700
		537.20	
FMS047	536.20		0.6400
FMS047	537.20	538.20	0.4000
FMS047 FMS047	538.20 539.20	539.20	0.6200
FMS047	540.20	540.20 541.20	0.5200
FMS047	541.20	542.80	0.1600 0.8100
FMS047	542.80	543.80	0.0900
FMS047	543.80	544.80	0.0700
FMS047	544.80	545.80	0.1200
FMS047	545.80	546.80	0.1000
FMS047	546.80	547.80	0.2300
FMS047	547.80	548.80	0.2300
FMS047	548.80	549.80	0.2600
FMS047	549.80	550.80	0.2600
FMS047	550.80	551.80	0.1600
FMS047	551.80	552.80	
FMS047	552.80	553.80	0.0800
FMS047	553.80	554.80	0.0800
	554.80	555.80	1.3800
FMS047 FMS047	555.80	556.80	3.4300
FMS047	556.80	557.80	1.3700
FMS047	557.80	558.80	2.0100
FMS047	558.80	559.80	0.2700
FMS047	559.80	560.80	0.3200
FMS047	560.80	561.80	0.3200
FMS047	561.80	562.80	0.1400
FMS047	562.80	563.80	0.7100
FMS047	563.80	564.42	0.2400
FMS047	564.42	565.97	1.1100
FMS047	565.97	566.97	0.2600
FMS047	566.97	567.94	0.2800
FMS047	568.77	569.86	2.9300
FMS047	569.86	570.24	0.1500
FMS047	570.24	571.24	6.5000
FMS047	571.24	572.24	5.0400
FMS047	572.24	572.88	4.0000
FMS047	572.88	573.43	0.8600
FMS047	573.43	574.43	0.7300
FMS047	574.43	575.43	2.1700
FMS047	575.43	576.00	5.3100
FMS047	576.00	577.01	0.3100
FMS047	577.01	578.01	2.3900
FMS047	578.01	579.01	2.3200
FMS047	579.01	580.01	1.4100
FMS047	580.01	581.01	1.5500
FMS047	581.01	582.01	1.1500
FMS047	582.01	583.01	1.5700
FMS047	583.01	584.01	0.1200
FMS047	584.01	585.16	1.1900
FMS048	563.16	563.34	0.2400
FMS048	578.55	579.55	1.2900
FMS048	579.55	580.62	0.6700
FMS048	580.62	582.17	4.2900
FMS048	582.17	583.14	3.9400
FMS048	583.14	583.49	8.8700
FMS048	583.49	584.39	4.4000
FMS048	584.39	585.30	3.4000
FMS048	585.30	586.25	5.6400
111.00 10			0.00

Hole ID	From (m)	To (m)	% Cu
	From (m)	To (m)	
FMS048 FMS048	586.25	587.15	4.3900 5.9100
FMS048	587.15	588.08	2.3200
FMS048	588.08 588.46	588.46 589.51	3.1000
FMS048	589.51	590.51	7.9900
FMS048	590.51	591.48	6.7200
		592.50	
FMS048	591.48 592.50		6.8200
FMS048	592.53	592.53 594.48	4.4700 4.9900
FMS048 FMS048	594.48	595.40	3.3800
FMS048	595.40	596.36	2.5600
FMS048	596.36	597.29	1.9900
FMS048	601.00	602.55	0.6400
FMS048	632.65	634.37	0.0100
FMS048	635.09	638.13	0.4600
FMS048	647.14	647.74	0.0100
FMS048	648.67	649.51	0.0100
FMS048	650.69	651.68	0.1600
FMS048	654.76	658.88	0.4200
FMS053D1	490.10	491.10	0.3000
FMS053D1	491.10	492.10	0.1100
FMS053D1	492.10	494.10	0.1400
FMS053D1	494.10	495.40	0.2500
FMS053D1	495.40	496.40	1.6500
FMS053D1	496.40	497.40	1.9100
FMS053D1	497.40	498.40	2.7500
FMS053D1	498.40	499.05	1.5800
FMS053D1	573.63	574.45	0.0600
FMS053D1	574.45	575.45	1.0500
FMS053D1	575.45	576.45	0.2900
FMS053D1	576.45	577.18	1.4500
FMS053D1	577.18	578.36	0.9200
FMS053D1	580.60	581.60	1.4000
FMS053D1	581.60	582.60	1.2400
FMS053D1	582.60	583.60	0.9900
FMS053D1	583.60	584.60	1.3000
FMS053D1	584.60	585.12	1.6600
FMS053D1	587.00	587.23	0.3500
FMS053D1	588.98	589.50	2.9700
FMS053D1	589.50	590.50	3.0600
FMS053D1	590.50	591.50	5.3600
FMS053D1	591.50	592.50	3.9100
FMS053D1	592.50	593.50	1.1700
FMS053D1	593.50	594.50	0.7500
FMS053D1	594.50	595.50	2.4500
FMS053D1	595.50	596.62	4.4700
FMS053D1	596.62	597.22	10.2300
FMS053D1	597.22	598.22	4.5200
FMS053D1	598.22	599.22	7.4400
FMS053D1	599.22	600.22	2.6200
FMS053D1	600.22	601.22	1.5900
FMS053D1	601.22	602.22	2.2500
FMS053D1	602.22	603.22	2.2400
FMS053D1	603.22	604.22	1.7900
FMS053D1	604.22	605.22	1.8800
FMS053D1	605.22	606.22	1.3200
FMS053D1 FMS053D1	606.22	606.86 610.51	1.1400 3.4400
FMS053D1	610.51	610.51	5.1500
FMS053D1	611.51	612.51	5.7000
FMS053D1	612.51	613.00	5.2900
FMS053D1	613.00	613.43	5.2300
FMS053D1	615.98	616.54	0.3600
TIVIOUOUDT	010.70	010.04	0.0000

Hole ID	From (m)	To (m)	% Cu
FMS053D1	616.54	617.10	0.3500
FMS053D1	617.10	617.80	1.4400
FMN207	107.00	107.60	0.1000
FMN207	108.60	111.50	0.0300
FMN207	111.50	113.90	0.0200
FMN207	113.90	114.40	0.0300
FMN207	118.70	120.70	0.0300
FMN207	120.70	121.90	0.0200
FMN207	121.90	124.90	0.0300
FMN207	124.90	127.00	0.0300
FMN207	127.70	128.50	0.0500
FMN207	128.50	129.00	0.0500
FMN207	129.00	131.00	0.0500
FMN207	131.00	133.00	0.0200
FMN207	133.00	133.40	0.0400
FMN207	133.40	135.10	0.0100
FMN207	135.10	137.10	0.0300
FMN207	137.10	139.10	0.0200
FMN207	139.10	141.10	0.0200
FMN207	141.10	143.10	0.0200
FMN207	143.10	145.10	0.0300
FMN207	145.10	147.10	0.0600
FMN207	147.10	149.10	0.0200
FMN207	149.10	151.10	0.0300
FMN207	151.10	152.10	0.0200
FMN207	152.10	153.10	0.0200
FMN207	153.10	155.10	0.0200
FMN207	155.10 157.10	157.10	0.0200
FMN207 FMN207	157.10	159.10 161.10	0.0200 0.0300
FMN207	161.10	163.10	0.0300
FMN207	163.10	165.10	0.0200
FMN207	165.10	166.60	0.0200
FMN207	166.60	167.30	0.0100
FMN207	167.30	167.40	0.0400
FMN207	167.40	168.00	0.0500
FMN207	168.00	170.00	0.0300
FMN207	170.00	172.00	0.0100
FMN207	172.00	173.20	0.0200
FMN207	181.80	182.00	0.0100
FMN207	182.00	182.20	0.0300
FMN207	217.00	220.10	0.0300
FMN207	220.10	222.00	0.0200
FMN207	222.00	224.00	0.0300
FMN207	224.00	226.00	0.0200
FMN207	226.00	227.60	0.0200
FMN207	227.60	229.60	0.0500
FMN207	229.60	231.60	0.0500
FMN207	231.60	233.60	0.0400
FMN207	233.60	235.20	0.0400
FMN207	235.20	237.20	0.0500
FMN207	237.20	239.20	0.0400
FMN207	239.20	241.00	0.0300
FMN207	241.00	242.70	0.0400
FMN207	242.70	244.70	0.0500
FMN207	244.70	246.70	0.0700
FMN207	246.70	248.70	0.1400
FMN207	248.70	250.10	0.0500
FMN207	250.10	252.50	0.0600
FMN207	252.50	255.30	0.2200
FMN207	255.30	255.40	0.7600
FMN207	255.40	255.80	0.1500
FMN207	255.80	256.20	1.1400

Hole ID	From (m)	To (m)	% Cu
FMN207	256.20	256.40	0.2700
FMN207	256.40	256.70	2.7400
FMN207	256.70	257.00	0.3700
FMN207	257.00	257.50	2.2800
FMN207	257.50	258.60	0.7200
FMN207	258.60	259.60	3.4200
FMN207	259.60	261.00	1.5900
FMN207	261.00	262.50	1.5700
FMN207	262.50	263.80	1.6400
FMN207	263.80	264.80	1.5000
FMN207	264.80	266.00	1.4800
FMN207	266.00	267.50	1.4200
FMN207	267.50	269.00	1.3900
FMN207	269.00	271.00	1.0500
FMN207	271.00	272.40	1.2000
FMN207	272.40	274.00	1.0100
FMN207	274.00	275.50	1.0400
FMN207	275.50	277.20	1.0900
FMN207	277.20	278.50	1.4100
FMN207	278.50	279.70	3.1000
FMN207	279.70	282.00	0.2600
FMN207	282.00	284.00	0.4000
FMN207	284.00	284.80	3.6800
FMN207	284.80	286.00	1.4200
FMN207	286.00	289.60	0.5600
FMN207	289.60	292.00	0.5100
FMN207	292.00	294.40	0.4900
FMN207	294.40	296.40	0.1900
FMN207	296.40	298.80	0.1000
FMN207	298.80	300.60	0.2400
FMN215	120.60	121.60	0.0100
FMN215	122.00	123.20	0.0400
FMN215	125.30	127.00	0.1000
FMN215	137.10	140.00	0.0700
FMN215	140.00	143.00	0.0700
FMN215	143.00	146.00	0.0500
FMN215	146.00	149.00	0.0500
FMN215	149.00	152.00	0.0400
FMN215	152.00	155.40	0.0500
FMN215	155.40	158.40	0.0700
FMN215	158.40	161.40	0.0800
FMN215	161.40	164.40	0.0800
FMN215	164.40	167.90	0.0700
FMN215	170.90	174.00	0.0500
FMN215	174.00	177.00	0.0600
FMN215	177.00	178.40	0.0600
FMN215	181.00	184.50	0.0200
FMN215	188.90	190.50	0.0300
FMN215	190.50	191.90	0.0600
FMN215	192.20	193.20	0.0200
FMN215	197.00	197.60	0.0100
FMN215	201.10	204.50	0.0700
FMN215	208.50	209.00	0.0700
FMN215	211.80	214.10	0.0500
FMN215	215.00	218.00	0.0700
FMN215	218.00	221.00	0.0800
FMN215	221.00	223.50	0.0900
FMN215	223.50	226.60	0.1100
FMN215	226.60	227.30	2.3600
FMN215	227.30 228.80	228.80	0.2400 3.8500
FMN215 FMN215	230.30	230.30 231.40	2.7500
FMN215 FMN215	230.30	231.40	0.2400
CIZVIIVI	Z31.4U	Z31.7U	U.Z4UU

Hole ID	From (m)	To (m)	% Cu
FMN215	231.90	233.90	2.4300
FMN215	233.90	234.50	1.4600
FMN215	234.50	236.80	2.9800
FMN215	236.80	239.80	0.2000
FMN215	239.80	241.20	0.3700
FMN215	241.20	241.80	0.0900
FMN215	241.80	242.70	1.1300
FMN215	242.70	243.20	4.6000
FMN215	243.20	243.60	0.5000
FMN215	243.60	244.00	5.3800
FMN215	244.00	245.90	1.3900
FMN215	245.90	248.30	1.7300
FMN215	248.30	250.40	1.5600
FMN215	250.40	251.20	0.9000
FMN215	251.20	252.00	2.8400
FMN215	252.00	252.40	1.6900
FMN215	252.40	252.90	4.3300
FMN215	252.90	253.50	0.8500
FMN215	253.50	254.20	0.1200
FMN217	116.20	117.20	0.0300
FMN217	118.20	121.40	0.0900
FMN217	123.50	124.30	0.0600
FMN217	137.70	139.10	0.0300
FMN217	137.70	140.60	0.0300
	140.90	141.50	0.0500
FMN217			
FMN217	144.60	144.90	0.0200
FMN217	146.60	147.50	0.0400
FMN217	162.00	162.40	0.0700
FMN217	166.70	171.60	0.0700
FMN217	173.10	174.60	0.0800
FMN217	174.60	177.20	0.0600
FMN217	177.20	179.30	0.0400
FMN217	179.60	182.20	0.0200
FMN217	182.20	183.30	0.0100
FMN217	188.10	189.60	0.0100
FMN217	189.60	192.60	0.0100
FMN217	192.60	195.60	0.0100
FMN217	196.50	200.20	0.0300
FMN217	207.50	210.80	0.0400
FMN217	215.10	218.00	0.0800
FMN217	219.90	222.50	0.0300
FMN217	222.50	225.40	0.1500
FMN217	225.40	225.90	2.8000
FMN217	225.90	226.90	0.2500
FMN217	226.90	228.40	0.1400
FMN217	228.40	230.40	0.9100
FMN217	230.40	232.40	0.3300
FMN217	232.40	234.40	0.2300
FMN217	234.40	236.40	0.7900
FMN217	234.40	238.40	0.7400
FMN217	238.40	240.40	0.7400
FMN217	240.40	242.00	1.3600
FMN217	242.00	244.00	2.3200
FMN217	244.00	246.00	2.8700
FMN217	246.00	248.00	2.4500
FMN217	248.00	250.00	3.1100
FMN217	250.00	252.00	2.6700
FMN217	252.00	254.00	1.8900
FMN217	254.00	256.50	2.3200
FMN217	256.50	258.30	0.5700
FMN217	116.20	117.20	0.0300
FMN217	118.20	121.40	0.0900
FMN217	123.50	124.30	0.0600

Hole ID	From (m)	To (m)	% Cu
FMN217	137.70	139.10	0.0300
FMN217	139.90	140.60	0.0400
FMN217	140.90	141.50	0.0500
FMN217	144.60	144.90	0.0200
FMN217	146.60	147.50	0.0400
FMN217	162.00	162.40	0.0700
FMN217	166.70	171.60	0.0700
FMN217	173.10	174.60	0.0800
FMN217	174.60	177.20	0.0600
FMN217	177.20	179.30	0.0400
FMN217	179.60	182.20	0.0200
FMN217	182.20	183.30	0.0100
FMN217	188.10	189.60	0.0100
FMN217	189.60	192.60	0.0100
FMN217	192.60	195.60	0.0100
FMN217	196.50	200.20	0.0300
FMN217	207.50	210.80	0.0400
FMN217	215.10	218.00	0.0800
FMN217	219.90	222.50	0.0300
FMN217	222.50	225.40	0.1500
FMN217	225.40	225.90	2.8000
FMN217	225.90	226.90	0.2500
FMN217	226.90	228.40	0.1400
FMN217	228.40	230.40	0.9100
FMN217	230.40	232.40	0.3300
FMN217	232.40	234.40	0.2300
FMN217	234.40	236.40	0.7900
FMN217	236.40	238.40	0.7400
FMN217	238.40	240.40	0.3300
FMN217	240.40	242.00	1.3600
FMN217	242.00	244.00	2.3200
FMN217	244.00	246.00	2.8700
FMN217	246.00	248.00	2.4500
FMN217	248.00	250.00	3.1100
FMN217	250.00	252.00	2.6700
FMN217	252.00	254.00	1.8900
FMN217	254.00	256.50	2.3200
FMN217	256.50	258.30	0.5700
FMN217	244.00	246.00	2.8700
FMN217	246.00	248.00	2.4500
FMN217	248.00	250.00	3.1100
FMN217	250.00	252.00	2.6700
FMN217	252.00	254.00	1.8900
FMN217	254.00	256.50	2.3200
FMN217	256.50	258.30	0.5700

Appendix 2: The following tables are provided in accordance with the JORC Code (2012) requirements for the reporting of Exploration Results from the Okiep Copper Project.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling was carried out using industry standard diamond drilling procedures. NQ-size diamond drill cores were longitudinally split in half using a diamond core cutting machine. Half core was cut to quarter core where field duplicates were taken. HQ core size was only drilled in the upper weathered portion and no HQ core was sampled. One-metre sample length was taken in most cases, with two-metre sample length in poorly mineralised zones and internal waste. Sample lengths were varied to honour geological and mineralisation boundaries, with a maximum sample size of 2.10m and a minimum sample size of 22cm. Areas of sampling were selected based on visual observations and readings from a handheld Niton XL3t 500 XRF analyser (standard analytical range >25 elements from S to U with additional elements Mg, Al, Si and P via helium purge).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond core drilling was undertaken. HQ and NQ size core was drilled using a standard tube. HQ core size was only drilled in the upper weathered portion of approximately 6m. No Cu mineralisation was visually identified in the HQ core and no HQ core was sampled. Core was oriented using a Reflex ACT IIITM.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core 'stick-ups' reflecting the depth of the drill hole are recorded at the rig at the end of each core run. A block with the depth of the hole written on it is placed in the core box at the end of each run. At the core yard, the length of core in the core box is measured for each run. The measured length of core is subtracted from the length of the run as recorded from the stick-up measured at the rig to determine the core loss. Core recovery was found to be very good (>98%) within the mineralised zone. Ground conditions below the weathered zone were very good. No obvious relationship exists between sample recovery and grade. No core/sample loss or gain which could result in sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core of the entire hole length was geologically logged by qualified geologists. The core was logged to a level of detail that is sufficient to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Geological logging was qualitative and was carried out using a standard sheet with a set of standard logging codes to describe lithology, structure and mineralisation. The logging sheet allows for freeform description to note any unusual features. Geological logs were captured electronically. All cores were photographed before sampling. Eleven (11) diamond holes were logged, totalling 2,258.60m. Of this, approximately 795m are ultramafic/mafic lithologies primarily hosting the Cu mineralisation. Geotechnical logging was completed on oriented core from deflections off the mother hole. The data collected per drill run consisted of core recovery, length of core greater than ten centimetres, longest piece, fracture count, alpha and beta angles for all joint types and lithological contacts, joint infill types and their strength as well as nature of joint surface.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	NQ core was cut, and half core was taken as sample with quarter core for duplicates.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	HQ core size was only drilled in the upper weathered portion and no HQ core was sampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation was undertaken at ALS Laboratory Johannesburg (ALS), an ISO accredited laboratory, and is considered appropriate. ALS
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field 	utilises industry best practice for sample preparation for analysis involving drying of samples, weighing samples, crushing to <2mm if required. Crushed samples are riffle-split and a 250g portion pulverised with
		+85% passing through 75 microns.
	duplicate/second-half sampling.Whether sample sizes are appropriate to the grain size of the material	Crushing and pulverising QC tests were applied by ALS and found acceptable.
	being sampled.	 Quarter core field duplicates were taken for 5 samples. All sample sizes are deemed appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Core from OFMSD078, OFMSD079, OFMND242 and OFMND243, was scanned by a RADOS™ XRF core scanning unit. Results from continuous scanning were reported at 1cm intervals.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	• Areas of sampling were selected based on visual observations and readings from a handheld Niton XL3t 500 XRF analyser (standard analytical range >25 elements from S to U with additional elements Mg, Al, Si and P via helium purge.
	Nature of quality control procedures adopted (e.g. standards, blanks,	Samples submitted to ALS were analysed for base metals and gold.
	duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples were analysed by an appropriate high-grade aqua regia ICP-AES method, ALS code ME-ICP41a.
		Samples where assays returned >5% Cu were re-assayed by aqua regia digestion and ICP-AES method, ALS code MEOG-46.
		 Samples were assayed for gold by fire assay and AAS, ALS code AU- AA25 method.
		• Orion inserted CRMs every 10 th sample. A total of fourteen CRMs were inserted. CRMs were alternated throughout the sample stream and where possible matched to the sample material being analysed.
		 Three CRMs were used. AMIS0399 (1.014%Cu), AMIS0809 (2.97%Cu) and AMIS088 (0.3%Cu).
		Fifty-nine (59) CRMs returned acceptable results within two Standard Deviations of the CRM average. Four (4) CRMs returned unacceptable results above the two Standard Deviations of the CRM average. The affected batch was re-assayed, and in the repeat analysis the CRMs.

Criteria	JORC Code explanation	Commentary
		returned acceptable results within two Standard Deviations of the CRM average Chip blanks are inserted at the beginning of each batch and after any sample that may be considered high grade. A total of nine (9) blanks were used. Acceptable results were returned indicating no contamination. The laboratory conducts their own checks which are also monitored. The accuracy and precision of the geochemical data reported on has deemed to be acceptable. Results from the five (5) quarter core field duplicates showed a correlation coefficient of 0.98. No external laboratory checks have been carried out at this stage.
Verification of Sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Orion's exploration geologist personally supervised the drilling and sampling along with a team of experienced geologists. Due to the high degrees of deviation in both dip and azimuth of the historical holes, twin holes were not planned. However, with the high density of historical drilling in some areas, some Orion-drilled holes intersected mineralisation in relative proximity to historical intersections. The intersection in OFMND242 is approximately 11m from an intersection in historical hole FMN215 and approximately 14m from an intersection in historical hole FMN217. The intersection in OFMND243 is approximately 25m from an intersection in historical hole FMS0079 is approximately 16m from an intersection in historical hole FMS047. OFMS078 broadly correlates with historical hole FMS044 approximately 20m away. While there are local variations between the Orion and historical drill hole intersections, considering the irregular nature of the intrusive related mineralisation, the intersections in the Orion holes broadly correlate with the historical drilling. The CP has reviewed the raw laboratory data and confirmed the calculation of the significant intersections. No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar positions of the FMS, FMN and FMNb prospect holes were initially located using a hand-held Garmin GPS and have been subsequently surveyed by a qualified surveyor using a differential GPS. On completion drill collars are capped and labelled. The local South African Lo17 WGS84 (Hartebeesthoek 94) grid system is

Criteria	JORC Code explanation	Commentary
		used.
		All the FMS, FMN and FMNb holes were surveyed down-hole. A north seeking Reflex SPRINTIQ gyro tool was used for the down-hole surveys.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• At FMN, the two holes were drilled along strike approximately 100m apart targeting the sub-horizontal east-west striking northern section of the mineralisation whilst at FMS two drillholes were drilled on the same section, targeting updip and downdip mineralisation approximately 180m apart. At FMNb holes were sited approximately 50m apart along strike with two downdip holes 75m apart to intersect areas adjacent to the historical stoping.
		• Due to the irregular intrusive nature of the mineralisation, the historical drill spacing was kept relatively tight.
		The spacing for Orion holes within the FMS and FMN prospects, was designed to confirm historical information, provide geotechnical information, and provide additional samples for confirmatory metallurgical test work. The drill spacing is considered sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation and classifications.
		The spacing for Orion holes within the FMNb prospect, was designed to confirm historical information. The drill spacing is considered sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation.
		Two-metre samples were taken in wider zones of internal waste or barren zones separating hanging wall and footwall mineralised zones.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 To achieve unbiased sampling, drilling is oriented as close as practically possible to perpendicular, or at a maximum achievable angle, to the attitude of the mineralisation. Drill holes were inclined between -58° and -68° for FMN, between -58° and -68° for FMS and at -60° for FMNb. No sampling bias is anticipated as a result of drill hole orientations.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by the Company. Samples were stored on site in a secure locked building and then freighted directly to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

 Mineral tenement and land tenure status Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Newmont and GFSA: O'Okiep Copper Company (Pty) Ltd (OCC), historic different times by Newmont, GFSA and Metorex, held v an old order (prior to the MPRDA) mining right. Orion: Flat Mines Mining Right. A mining right, NC30/5/11/2/2 granted on 28 July 2022 to Southern African Tantalum (SAFTA) in terms of section 23 of the MPRDA to mine fifteen years. The right may be renewed for periods of The mining right was ceded to Orion indirect subsidic Mining Company (Pty) Ltd (NOMC) on 12 December 2 for copper ore and tungsten are over a portion of portion 13, a portion of portion 14 and a portion of portion 17 and a portion of portion 18 area measures 1,214Ha in extent. 	
 Known impediments to obtaining a licence to operate in the area. O'Okiep Copper Company (Pty) Ltd (OCC), historic different times by Newmont, GFSA and Metorex, held v an old order (prior to the MPRDA) mining right. Orion: Flat Mines Mining Right. A mining right, NC30/5/1/2/2 granted on 28 July 2022 to Southern African Tantalum (SAFTA) in terms of section 23 of the MPRDA to mine fifteen years. The right may be renewed for periods of The mining right was ceded to Orion indirect subsidic Mining Company (Pty) Ltd (NOMC) on 12 December 2 for copper ore and tungsten are over a portion of portion 13, a portion of portion 14 and a portion of portion 13, a portion of portion 14 and a portion of part Nababeep No 134 situated within the Administr Namaqualand. The area measures 1,214Ha in extent. 	elopment Act,
• Flat Mines Mining Right. A mining right, NC30/5/1/2/2 granted on 28 July 2022 to Southern African Tantalum (SAFTA) in terms of section 23 of the MPRDA to mine fifteen years. The right may be renewed for periods of The mining right was ceded to Orion indirect subsidic Mining Company (Pty) Ltd (NOMC) on 12 December 2 for copper ore and tungsten are over a portion of port of portion 13, a portion of portion 14 and a portion of p farm Nababeep No 134 situated within the Administr Namaqualand. The area measures 1,214Ha in extent.	
granted on 28 July 2022 to Southern African Tantalum (SAFTA) in terms of section 23 of the MPRDA to mine fifteen years. The right may be renewed for periods of The mining right was ceded to Orion indirect subsidice Mining Company (Pty) Ltd (NOMC) on 12 December 2 for copper ore and tungsten are over a portion of portion 13, a portion of portion 14 and a portion of part of portion 13, a portion of portion 14 and a portion of part Nababeep No 134 situated within the Administration Namaqualand. The area measures 1,214Ha in extent.	
	Mining (Pty) Ltd for a period of up to 30 years. ary, New Okiep 023. The right is ion 3, a portion ortion 21 of the
A prospecting right NC30/5/1/1/2/12850PR was grant 2023 to SAFTA in terms of section 17 of the MPRDA for the mining right for 3 years (renewable for 3 years) for minerals including gold and silver.	e same area as
• SAFTA PR. A prospecting right, NC30/5/1/1/2/12755PR v 21 June 2024 to SAFTA in terms of section 17 of the MPR for a period of 3 years, renewable for 3 years. The right is and tungsten ore for portion of Portion 3, portion of Portion 13, portion of Portion 14, Portion 15, Portion Portion 21 of the farm Nababeep 134 and Okiep Town situated within the Administrative District of Namaque area measures 7,164Ha in extent.	DA to prospect for copper ore tion 10, portion on 16, portion of inship Plot 2086.
 A prospecting right NC30/5/1/1/2/12848PR was grant 2024 to SAFTA in terms of section 17 of the MPRDA for the prospecting right NC12755PR for 3 years (renewable 26 additional minerals including gold and silver. Orion acquired 56.25% of the tenement rights through the section of the tenement of the section of the section of the tenement of the section of the tenement of the section of the sect	e same area as e for 3 years) for

Criteria	JORC Code explanation	Commentary
		Acquisition Agreement. The remaining 43.75% is held by the Industrial Development Corporation of South Africa (IDC) (refer ASX/JSE releases 2 August 2021, 7 September 2022, 14 November 2022, 17 April 2024, 6 May 2024). Applications for Section 11 consent in terms of the MPRDA to cede the rights to NOMC are submitted once each right is granted and are in preparation and process.
Exploration done by		The area was mined historically for copper and tungsten.
other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous explorers in the region includes Newmont, GFSA and SAFTA. Exploration was focussed on Cu.
		• Extensive historical drilling data (480 holes totalling 126,601m) is contained in the database inherited from Newmont, GFSA and SAFTA for FME, FMN and FMS. This includes 247 holes totalling 42,738m at FMN, 151 holes totalling 50,583m at FME and 82 holes totalling 33,280m at FMS.
		Sample and analytical details are contained within JORC Table 1 of ORN ASX/JSE Announcement from 28 August 2023.
Geology	Deposit type, geological setting and style of mineralisation.	The tenements are located over the Central and Western parts of the Okiep Copper District (OCD). The style of mineralisation is mafic hosted orogenic Cu-mineralisation.
		Copper mineralisation is primarily associated with irregular, elongated and steeply dipping Koperberg Suite mafic intrusives.
		The Koperberg Suite intrusives are mainly restricted to so-called "Steep Structures" of extensive strike lengths and steeply dipping to the north.
		The Koperberg Suite consists of intermediate to mafic rock types, predominated by anorthosite, diorite and norite.
		Mineralisation usually occurs as blebs to disseminated Cu mineral assemblages: bornite > chalcopyrite > chalcocite and less pyrite and pyrrhotite.
		The more mafic and magnetite-rich lithologies generally host the bulk of and higher-grade mineralisation.
		The OCD has a long exploration and mining history, and the geology is well known and understood.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to Table 5 in Appendix 1 for collar details of drill holes reported.
	 easting and northing of the drill hole collar 	
	o elevation or RL (Reduced Level – elevation above	
	sea level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 A minimum 0.7% Cu cut-off was used to calculate intercepts. Allowance was made for 3m internal waste. A cut-off of 1.0% Cu was used for the higher-grade inclusions.
 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of Weighted grades were constitution. The CP is of the opinion 	 Weighted grades were calculated as follows: %Cu x sample length(m) The CP is of the opinion that the above aggregation methods are acceptable for this type of deposit. 	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	These aggregation methods were also applied to historical holes and assay results.
		No metal equivalents are reported.No capping of assay results was required.
Relationship between mineralisation widths	These relationships are particularly important in the reporting of Exploration Results.	Drilling is generally oriented perpendicular, or at a maximum achievable angle to, the attitude of the mineralisation.
and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Generally, drill hole inclinations ranged between -58° to -65° towards the south while the mineralisation is expected to dip close to 80° towards the north.
		 Down holes lengths are reported in all instances apart from where true widths (TW) are specified.
		Where true widths (TW) are specified they are calculated by measuring the intersection width perpendicular to the interpreted mineralisation trend.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to body of the announcement for plans, plots and tables. Drilling data was incorporated and monitored in MicromineTM software together with interpretation models based on the available historical drill data.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	In the Competent Person's opinion, the Exploration Results reported in this announcement have been reported in a balanced manner.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Geotechnical samples are being selected for submission to Rocklabs for test work including point load test, uniaxial compressive strength test (UCS), triaxial compression test (TCS), base friction angle test (BFA), uniaxial tensile strength (UTS), point load test (PLT), shear test on joints and density test.

Criteria	JORC Code explanation	Commentary
		Drilling is continuing on Flat Mine South prospect.
		Further surface geophysical surveys may inter alia include ground, drone and/or airborne magnetics, gravity and electrical methods.