

6 September 2024

ASX: ENV

DRILLING BROADENS POTENTIAL REE **MINERALISATION FOOTPRINT AT CODA NORTH**

Enova Mining Ltd (ASX: ENV) is pleased to report significant exploration drilling advances at the CODA project

KEY HIGHLIGHTS

- Enova has successfully completed 14 diamond drill (DD) holes and 21 reverse circulation (RC) drill holes to date, with over 1,500 samples from the CODA North tenements currently at SGS Geosol laboratory in Vespasiano for assaying, poised to deliver important insights into the project's high-grade rare earth element (REE) potential,
- Enova has successfully completed 850 metres of diamond drilling and 985 • metres of reverse circulation (RC) drilling, with significant potential REE mineralisation intersected across key target areas of the CODA North project, reinforcing the project's high-grade potential,
- The maximum thickness of the kamafugite strata, key host rock of potential REE mineralisation, encountered during drilling is up to 70 metres, indicating a robust and potentially high-yielding mineralised zone, which underscores the significant resource potential of the project,
- The current exploration has successfully covered a significant portion of ٠ the CODA North tenements, which spans over 3,535 hectares, highlighting the vast expanse and impressive potential of this strategically important project,
- Sample assay analysis is ongoing at SGS Geosol laboratory with the first batch of results from substantial potential high-grade REE mineralised zones expected for release by mid-September, thereby further validating the geological continuity and enhancing the resource potential of the CODA North project,
- Enova is now concentrating on the next phase of resource definition drilling, with a strategic focus on expanding and fine-tuning the potential high-grade REE zones. This effort is geared towards advancing the CODA North project to a detailed resource estimation and paving the way for a scoping study for eventual economic extraction of REE minerals.

Enova Mining CEO Eric Vesel, commented on current drilling progress and the continued discovery of significant mineralised zones at CODA North,

"Exploration drilling has gained traction over the last month and is rapidly uncovering significant intercepts of potential REE mineralisation in kamafugite host rock. We all anxiously await the first batch of assays to be released around mid-September from over 1,500 samples currently being analysed at SGS Geosol.

enova mining limited

www.enovamining.com ASX:ENV **Registered** Office Level 26, 360 Collins Street, Melbourne VIC 3000, AUSTRALIA

contact@enovamining.com +61 3 9867 7199

Our decision to add a diamond drill rig in mid-July underscores our commitment to accelerating the campaign, advancing the project to the next phase by defining and expanding the mineralised zones for detailed resource estimation. At the same time, we are preparing samples for metallurgical characterisation and then leach testing. This foundational development work is necessary to recognising project viability, appreciating the value to our assets and our business. Our team is confident and capable of defining and establishing a scalable high-grade project at CODA North in a short-time frame. CODA North holds strong potential to establish Enova as a major player in the REE sector, significantly enhancing the global supply of critical rare earth metals. I extend my gratitude to our dedicated team for their exceptional efforts, and I look forward to providing further updates as we continue to advance this exciting project."

SIGNIFICANT REE MINERALISED ZONE INTERSECTED

Enova Mining Ltd has successfully completed its planned 14 diamond drill (DD) holes (Figure 2 and Figure 5), marking a significant milestone in our exploration campaign. These diamond drill holes have provided high-quality core samples essential for detailed geological analysis and resource estimation. The data collected is essential for validating the mineralisation model and refining our understanding of the deposit's potential. This accomplishment not only underscores our commitment to advancing the project but also enhances our ability to make informed decisions as we progress towards resource definition and development.

Figure 1: Vast expanse of exploration area of CODA North with subsurface REE mineralised zone (Drone footage)

Figure 2: Diamond drill rig is in operation in CODA North

Figure 3: Field data documentation by Enova's Professional Geology Team.

To date, Enova Mining Ltd has completed 21 reverse circulation (RC) drill holes (Figure 1, Figure 4, Figure 5 and Figure 6), significantly advancing our exploration efforts at the CODA North project. The RC drilling has enabled rapid and effective evaluation of mineralisation across a peripheral area compared to diamond drilling. This approach has provided critical insights into the distribution and grade of the mineralised zones, helping to delineate the extent of the resource and refine our geological models. The results from these RC drill holes are instrumental in validating our exploration strategy and will play a key role in advancing the project towards a comprehensive resource estimate and eventual development (subject to viability).

Figure 4: RC Drilling in action supported by drilling crew (Drone footage)

The RC drilling has been pivotal in confirming the continuity of high-grade mineralisation, complementing the data obtained from our diamond drilling program. This dual-drilling approach has enhanced our ability to map out the mineralised zones with greater accuracy and confidence, further de-risking the project and underscoring its potential. As we continue to analyse the data and integrate these findings into our resource models, we remain focused on maximising the value and strategic significance of the CODA North project.

A collar location plan of the drilling completed to date at CODA North is provided below in Figure 5. A total of 1,835 lineal metres has been drilled to date.

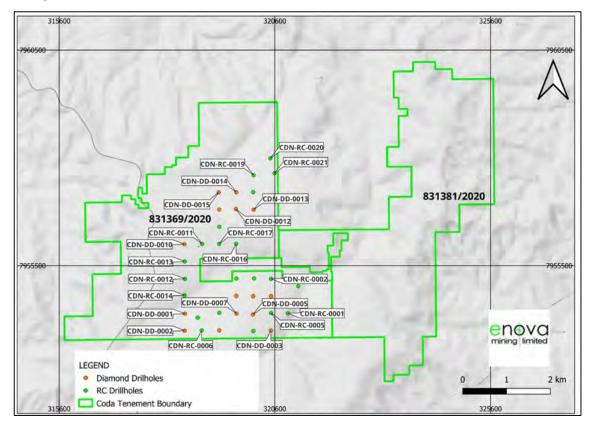


Figure 5: Drillhole locations in CODA North area

Enova's exploration efforts at CODA North have uncovered significant mineralised zones within the kamafugite lithostratigraphic units of the Patos formation, a component of the Cretaceous Mata Do Corda Group. This finding underscores the considerable potential for valuable REE mineral resources in the region, enhancing the project's promising outlook and strategic significance.

Figure 6: RC drilling in operation in CODA North

Figure 7: Very high magnetic susceptibility in saprolite from the hole CDN-RC-0012

Figure 8: Enova's professional geology team using dry riffle splitter for sub-sampling

Figure 9: Enova's professional geology team weighing samples

Over 1,500 drill samples have been dispatched to SGS Geosol laboratory in Vespasiano for assay analysis from Patos De Minas sample shade warehouse (see

Figure 10), including the samples already submitted in recent weeks. Enova's exploration team is meticulously overseeing the submission process and managing field activities to ensure efficient handling. Assay results will be announced as they are received.

Figure 10: Drill sample are being stacked under the protection of the Patos warehouse prior to dispatch to laboratory

MINERAL POTENTIAL OF CODA

The CODA tenements overlay the Patos geologic formation, with REE enriched Ionic Absorption Clays (IAC). Significant exploration drilling results from the CODA project¹ confirm the potential for REE enriched IAC in the Northern and Southern CODA tenements where drilling has been completed. The extent of the mineralised area at CODA North prospect is yet to be determined. All intersections from CODA South start from surface and are open in all directions including depth.

Enova is in discussions with metallurgical laboratories within Brazil and abroad to investigate the metallurgical character of the CODA mineralisation. Metallurgical samples have been provided to a local laboratory for processing. CODA is well placed with mineralised zones of IAC with exceptionally high REE grade. This is underpinned by CODA's potential for broad areas of mineralised zones of exceptional thickness which translate to a significant resource base giving longevity to future extractive operations.

¹ ASX announcement, "World Class Clay hosted rare earth grade uncovered at Coda North", 18 March 2024

REGIONAL GEOLOGY AND TENEMENT OVERVIEW

Enova is encouraged by the location and size of the tenements in relation to prospective geological features. The prospective geological unit present in the CODA project is composed of the Patos Formation. It formed during the Upper Cretaceous period, when a massive volcanic event occurred in the western part of Minas Gerais state. The volcanic activity exhibited both effusive (lava flows) and explosive (pyroclastic deposits) eruptions. The predominant rock type in this formation is kamafugite, which is classified as an alkaline-ultramafic rock. High-grade REE are also enriched in this formation.

The prospective unit consists of a horizontal bed of kamafugite, which can be up to 40 metres thick, overlain by overburden that varies from 0 to 50 metres. Weathering processes with thick clay zones are prevalent throughout this profile, leading to the accumulation of REE closer to the upper part of the formation. The rocks within this formation are predominantly soft and friable, with an extremely fine particle size. These characteristics are considered advantageous for the exploration of lonic Clay REE deposits. (Refer to Figure 11 below for the locations of the tenements at the CODA Project.)

TENEMENTS/PERMITS

The title holder of the tenements is RBM Consultoria Mineral, who filed transfer requests of the granted exploration permits to its sole owner, Rodrigo de Brito Mello. The application cannot be transferred until the permit is published, however Rodrigo and RBM Consultoria Mineral will undertake contractual obligations to transfer the title to Enova as soon as the permit is published in the official gazette. Details of the CODA tenements are provided in the following table.

License ID	Area (Ha)	Ownership	In transference to	Status
831381-2020	1,537.60	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
831369-2020	1,997.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830699-2021	1,999.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830737-2021	1,999.60	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
831598-2020	1,807.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
831388-2020	1,999.60	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830691-2021	1,992.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830698-2021	1,997.40	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
	15,332.40			

Table 1: CODA Project tenements Minas Gerais, Brazil

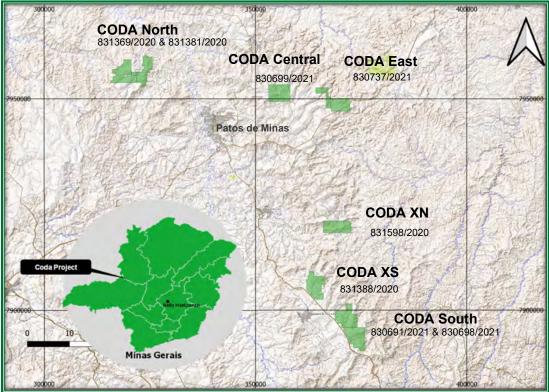


Figure 11: The CODA REE project tenements (100% ENV) Minas Gerais, Brazil

ATTRACTIVE BUSINESS ENVIRONMENT

Brazil has a developed and sophisticated mining industry, and is amongst the leading exporters of iron ore, tin, bauxite, manganese, copper, gold, rare earth, and lithium. The country investment risk is considered low and business environment as secure, based on:

- Mining is recognised as a key economic industry in Brazil and the State of Minas Gerais,
- Progressive mining policies, seeking investment, encouraging explorers and new developments,
- Mining investment free of government mandated ownership,
- Low sovereign risk and government interference,
- Attractive cost base and sophisticated support network for the mining industry,
- High level of exploration/mining technical skills and expertise in country.

MANAGING OUR COMMITMENTS

Enova is currently focussed on completing its exploration drilling program at the CODA North project. Enova also remains committed to the development of Charley Creek rare earth project with ongoing activities proceeding without disruption.

The Company will also continue to review projects and business opportunities as they arise.

Enova has a new website, updated with our Brazilian projects. The web address remains the same, <u>www.enovamining.com</u>.

The market will be kept appraised of developments, as required under ASX Listing Rules and in accord with continuous disclosure requirements.

Approved for release by the Board of Enova Mining Limited

Eric Vesel, Enova Mining Limited CEO/ Executive Director

Contact: eric@enovamining.com

Competent Person Statement

The information related to Exploration Targets and Exploration Results is based on data compiled by Subhajit Deb Roy, a Competent Person and Chartered Professional Member of The Australasian Institute of Mining and Metallurgy. Mr Deb Roy is currently working as Exploration Manager with Enova Mining. Mr. Deb Roy has over 20 years of geological experience in the mining industry in range of mineral commodities and geological settings. He has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Deb Roy consents to the inclusion in presenting the matters based on his information in the release.

Forward-looking statements

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Precautionary Statement

The information contained in this announcement regarding the exploration results at CODA North is based on data collected from diamond and reverse circulation (RC) drilling programs. While the identification of significant mineralised zones within the Patos formation of the Mata Do Corda Group suggests the potential for Rare Earth Element (REE) mineral resources, it is important to note the following cautionary considerations. The project is currently at an exploration stage, and while initial drilling results are promising, further exploration and evaluation are necessary to ascertain the extent, quality, and economic viability of the mineral resources. Potential mineralisation identified by sampling in drill holes is currently undergoing comprehensive assaying, mineralogical evaluation, structural analysis and metallurgical test work. Until these analyses are completed, surety of resource estimates in the future remains speculative.

Disclaimer

This ASX announcement (Announcement) has been prepared by Enova Mining Limited ("Enova" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Enova, its subsidiaries, and their activities, which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Enova.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Enova's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are many risks, both specific to Enova and of a general nature which may affect the future operating and financial performance of Enova and the value of an investment in Enova including but not limited to economic conditions, stock market fluctuations, commodity price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Enova and its projects, are forward-looking statements that: may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions; are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Enova, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and, involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Enova disclaims any intent or obligation to update publicly any forward-looking statements, whether because of new information, future events, or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements. All forward-looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantee of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein. No verification: although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified

APPENDIX A JORC TABLE 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg	Coda North consisting of 831369/2020 and 831381/2020 areas were
techniques	cut channels, random chips, or	sampled using a diamond drill rig, and a Reverse Circulation drill rig.
	specific specialised industry	Diamond drillholes
	standard measurement tools	The drill cores representing in-situ rocks are collected in plastic core
	appropriate to the minerals under	trays, and depth markers record the depth at the end of each drill run.
	investigation, such as down hole	In the initial holes composite sample was collected for 2m or 4m or
	gamma sondes, or handheld XRF	longer intervals in the unmineralised or less mineralised overburden
	instruments, etc). These examples	litho-stratigraphic unit which is undifferentiated detritus and/or
	should not be taken as limiting the	lateritised cover.
	broad meaning of sampling.	Samples were collected at every 1m for underlying mineralised zone
	 Include reference to measures taken 	in Patos formation.
	to ensure sample representivity and	In the unconsolidated drill samples, the core was halved with a metal
	the appropriate calibration of any	spatula and bagged in plastic bags, while a powered saw halved the
	measurement tools or systems	hard and consolidated rock, bagged, and each sample was tagged
	used.	with sample number.
		Reverse Circulation (RC) drillholes
	Aspects of the determination of	2m or 4m or longer composite sample was collected in the
	mineralisation that are Material to	unmineralised or less mineralised overburden litho-stratigraphic unit
	the Public Report.	which is undifferentiated detritus and/or lateritised cover.
	In cases where 'industry standard'	Samples were collected at every 1m for underlying mineralised zone
	work has been done this would be	in Patos formation.
	relatively simple (eg 'reverse	
		All samples were sent for preparation to the contracted laboratories,
	1 m samples from which 3 kg was	SGS Geosol in Vespasian,MG, Brazil.
	pulverised to produce a 30 g charge	The undifferentiated detritus cover layer has been visually
	for fire assay'). In other cases, more	differentiated from kamafugite of Patos formation by professional
	explanation may be required, such	geologist and additionally, magnetic susceptibility test carried out to
	as where there is coarse gold that	differentiate the kamfugite litho-unit within Patos formation from
	has inherent sampling problems.	overlying and underlying formations.
	Unusual commodities or	
	mineralisation types (eg submarine	
	nodules) may warrant disclosure of	
	detailed information.	
Drilling	Drill type (eg core, reverse	Diamond Drillholes
techniques	circulation, open-hole hammer,	Diamond drilling was carried out by Maquesonda MACH 1210 rig,
	rotary air blast, auger, Bangka,	drilling vertically and sampled generally at intervals of 1.0m within the
	sonic, etc) and details (eg core	mineralised strata. The drilling used a wireline diamond core of HQ
	diameter, triple or standard tube,	diameter of 2.63 inches (core diameter).
	depth of diamond tails, face-	Drilling of each hole was conducted by the diamond core rig and
	sampling bit or other type, whether	terminated upon intercepting between 1 to 10 meters of Areado
	core is oriented and if so, by what	Group, indicative of penetration into the underlying unmineralised or
	method, etc).	less mineralised zone.
		Reverse Circulation Drillholes
		RC drilling was conducted using with a 4.75-inch diameter downhole
		rigs.
		-
		The drill site preparation included clearing, levelling the ground, and
		delineating the drilling area. The RC drilling was terminated upon

			intercenting between 1 to 10 meters of Areado Group, indicative of
			intercepting between 1 to 10 meters of Areado Group, indicative of
			penetration into the underlying unmineralised or less mineralised
			zone.
			Diamond drilling was predominantly used for establishing the extent of
			the ore body while RC drilling being used to test the continuity of
D ''' '	_		mineralised zone between diamond drillholes.
Drill sample	•	Method of recording and assessing	Recovery in Diamond Drillholes
recovery		core and chip sample recoveries	Calculated after each run, comparing the length of core recovery vs
		and results assessed.	drill depth. Overall core recoveries are above 90% in diamond drilling
	•	Measures taken to maximise sample	
		recovery and ensure representative	
		nature of the samples.	Every 1m sample in the mineralised strata is collected in plastic bags
	•	Whether a relationship exists	and weighed (Figure 9). Each sample averages approximately 6-12kg
			which is considered acceptable given the hole diameter and the
			specific density of the material. However, the recovery was initially
		·····	above 50% due to high clay content in the strata and later holes the
		loss/gain of fine/coarse material.	recovery of drill cuttings increased up to 70%.
			Any sample bias due to low recovery will be determined after the
, ·	_		assay and mineral characterisation completed.
Logging	•	Whether core and chip samples	
		have been geologically and	Lithological descriptions (Appendix -2 Table 3) are carried out at site
		geotechnically logged to a level of	or in Enova's warehouse facility by professional geologist, covering
			the pedolith, saprolite, SAP rock and underlying Areado group and the
		-	contacts. Parameters logged include grain size, texture, colour
		and metallurgical studies.	mineralogy, magnetism, type of alterations (hydrothermal or
	•	Whether logging is qualitative or	weathering) and type of lithologic contact, which can help to identify
		quantitative in nature. Core (or	the parent rock before weathering.
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	All drill holes are photographed and stored at the core facility in Patos
	•	The total length and percentage of	De Minas.
		the relevant intersections logged.	Devenue Circulation Drillholog
			Reverse Circulation Drillholes
			A professional geologist logs the material at the drill site or in the
			Enova's warehouse facility, covering the pedolith, saprolite, SAP rock
			and Areado group and the contacts. Other parameters recorded include grain size, texture, and colour, which can help identify the
			parent rock before weathering.
			Due to the nature of the drilling, sampling is done at 1m intervals within
			the mineralised zone. 1m samples weighing approximately 6-12kg
			(Figure 9) are collected in a bucket and presented for sampling and
			logging. The average weight improved to 15kg with increasing
			recovery of samples.
			The chip trays of all drilled holes have a digital photographic record
			and are stored at the Enova's warehouse facility in Patos De Minas.
Sub-sampling	-	If core whether out or cown and	Diamond Drillholes
techniques and	~	If core, whether cut or sawn and whether quarter, half or all cores	Collection and labelling: Samples of diamond cores are taken at 1.0n
sample	1	taken.	intervals from mineralised kamafugite lithological unit
			The cores are split longitudinally using a spatula for unconsolidated
preparation	ſ	If non-core, whether riffled, tube	portions or using riffle splitter (Figure 8) and a rock-cutting saw for hard
		sampled, rotary split, etc and	
		whether sampled wet or dry.	rock. The samples were placed in labelled plastic bags and in the process
	•	For all sample types, the nature,	

1		quality, and appropriateness of the	of dispatching to SGS Geosol laboratory in Vespasiano.
		sample preparation technique.	Field Duplicates: Duplicates are taken approximately every 20
		Quality control procedures adopted	samples using quarter core for QA/QC procedures
		for all sub-sampling stages to	Reverse Circulation (RC) Drillholes
			RC drillholes samples are currently sent to SGS Geosol Laboratory for
		· · · · · · · · · · · · · · · · · · ·	preparation and subsampling. SGS Geosol laboratory follows industry
	•		standard protocols for sub-sampling procedure.
		, 3	
		situ material collected, including for	The sample assays will be conducted in the following method
		instance results for field	SGS Laboratory
		duplicate/second-half sampling.	At the lab, SGS-Geosol commercial laboratory, in Vespasiano, the
	•		samples are dried at 60° or 105° C, 75% material crushed to a nominal
		appropriate to the grain size of the	3mm using a jaw crusher before being split using Jones riffle splitter
		material being sampled.	for pulverising.
			The aliquots are pulverised to a nominal >95% of 300g passing 150
			micron for which a 100g sample is then selected for analysis. A spatula
			is used to sample from the pulverised sample for digestion.
			Quality Control: The laboratory follows strict quality control
			procedures, ensuring the accuracy and precision of the assay data.
			Internally, the laboratory uses duplicate assays, standards, and blanks
			to maintain quality.
Quality of	•	The nature, quality and	Samples are analysed at the SGS Geosol laboratory in batches of
assay data and		appropriateness of the assaying and	approximately 100 samples including control samples (duplicate,
laboratory tests		laboratory procedures used and	blank, and standards).
		whether the technique is considered	Industry standard protocols are used by SGS-Geosol to prepare the
		partial or total.	samples for analysis. Samples are dried, and a sub sample of 300g
	•	For geophysical tools,	was pulverised. For rare earth element analysis, samples are
		spectrometers, handheld XRF	prepared with lithium/Metaborate fusion and are analysed by
		instruments, etc, the parameters	Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or
		used in determining the analysis	Inductively Coupled Plasma Optical Emission Spectrometry (ICP-
		including instrument make and	OES).
		model, reading times, calibrations	3.1) ICP95A Determinação por Fusão com Metaborato de Lítio - ICP OES PM-000033
		factors applied and their derivation,	Determinação por Fusão com Metaborato de Lítio - ICP OES PM-000001 A/203 001-75 (%) Ba 10-10000 (gem) CaO 0.01-60 (%) Cr2O3 0.01-10 (%) F203 0.01-75 (%) K2O 0.01-20 (%) MonO 0.01-10 (%) MonO 0.01-10 (%)
		etc.	Na2O 0.01 - 30 (%) P2OS 0.01 - 25 (%) Si O2 0.01 - 90 (%) Sr 10 - 100000 (ppm) TiO2 0.01 - 25 (%) V 5 - 10000 (ppm) Zn 5 - 10000 (ppm) Zr 10 - 1000000 (ppm)
	•	Nature of quality control procedures	
		adopted (eg standards, blanks,	3.2) IMS95A Determinação por Fusão com Metaborato de Lítio - ICP MS PM-000003
		duplicates, external laboratory	Determinação por Fusão com Metaborato de Lítio - ICP MS PM-000000 Ce 0.1 - 10000 (ppm) Ca 0.5 - 10000 (ppm) Ca 0.4 - 10000 (ppm) Dy 0.5 - 10000 (ppm) Er 0.5 - 10000 (ppm) Ca 0.6 - 10000 (ppm) Dy 0.5 - 10000 (ppm) Er 0.5 - 10000 (ppm) Ga 0.1 - 10000 (ppm)
		checks) and whether acceptable	Gd 0.05 - 1000 (ppm) Hf 0.05 - 500 (ppm) La 0.05 - 1000 (ppm) La 0.1 - 10000 (ppm) Lu 0.05 - 1000 (ppm) Mo 2 - 10000 (ppm) Nb 0.05 - 1000 (ppm) Nd 0.1 - 100000 (ppm)
		levels of accuracy (ie lack of bias)	Ni 5 - 10000 (ppm) Pr 0.05 - 1000 (ppm) Rb 0.2 - 10000 (ppm) Sm 0.1 - 1000 (ppm) Sn 0.3 - 1000 (ppm) Ta 0.05 - 10000 (ppm) Tb 0.05 - 10000 (ppm) Th 0.1 - 1000 (ppm)
		and precision have been	TI 0.5 - 1000 (ppm) Tm 0.05 - 1000 (ppm) U 0.05 - 10000 (ppm) W 0.1 - 10000 (ppm) Y 0.05 - 10000 (ppm) Yb 0.1 - 10000 (ppm) W 0.1 - 10000 (ppm)
		established.	
			QA/QC samples are included amongst the submitted samples. Both
			standards, duplicates and blank QA/QC samples were included in the
			sample submission.
			Oreas 460 and Oreas 461 samples sent from Australia were used in
			12gm package as certified reference material at an interval every 15-
	1		20 samples.
			The assays were done using ICP MS, ICP AES after Fusion with Lithium Metaborate - ICP MS for major Oxides.

Verification of	•	The verification of significant	Enova's Brazilian team of professional geologist (Figure 7) has
sampling and	ľ	intersections by either independent	reviewed the data collated and compared with electronic copies to
assaying		• •	verify the accuracy. Assay data, in electronic form, is checked to verify
accaying		The use of twinned holes.	to ensure the datafiles are correctly handled in spreadsheets where
			calculations are needed. The process of verifying sampling and
			assaying is still ongoing as drilling progresses.
		entry procedures, data verification,	This was a maiden drilling program by Enova. Hence, twinned holes
		data storage (physical and	were not drilled to verify the representation of historical drill data.
		electronic) protocols. Discuss any adjustment to assay	2m or 4m or longer interval composite samples of the overburden
	Ī	Biocaco any adjustment to accuy	strata of undifferentiated detritus and/or lateritised cover. 1m samples
		uala.	taken from the mineralised zone of kamafugite within Patos formation
			Field geological data was recorded on logs (Appendix 2 Table 3) and
			typed into a spreadsheet for subsequent import to a database.
			Assay data is received in spreadsheet form from the laboratory
Location of	•	Accuracy and quality of surveys	The drill hole collars were picked up using a Garmin handheld GPS.
data points			Datum for all sitework is considered SIRGAS 2000, Zone 23 South or
		down-hole surveys), trenches, mine	WGS 84 UTM Zone 23S. The error in the handheld GPS is around
		workings and other locations used in	±3m (Appendix 1, Table 2).
		Mineral Resource estimation.	This universal grid system facilitates consistent data interpretation and
	•	Specification of the grid system	integration with other geospatial datasets.
		used.	
	•	Quality and adequacy of topographic	
		control.	
Data spacing	•	Data spacing for reporting of	The average spacing between adjacent planned holes is about 400m
and distribution	1	Exploration Results.	x 400 m, varied according to the extent, width, and length of the
	•	Whether the data spacing and	tenements.
		distribution is sufficient to establish	Diamond drilling is to provide insights into extent of the potential
		the degree of geological and grade	mineralised zones. The exploratory nature of the diamond drilling
		continuity appropriate for the Mineral	further supports the overall geological understanding. Hence, they are
		Resource and Ore Reserve	drilled at larger spacings 400m x 400m. However, the current holes
		estimation procedure(s) and	are being drilled at the margin of the grid which put the holes apart by
		classifications applied.	more than 400 m spacings.
	•	Whether sample compositing has	Reverse circulation (RC) drilling carried out on a structured grid with a
		been applied.	400 x 400 metres spacing. This grid pattern is tailored to enhancing
			our understanding of the mineral distribution and geological continuity
			across the target zone. The grid spacing may be adjusted according
			to the outcome of intersects of mineralised zone in each hole.
			2m or 4m or longer interval sample compositing was used to produce
			a sample for assay unmineralised and less mineralised overburden
			zone. No other compositing of samples done at this stage.
		<u></u>	No resources are reported.
Orientation of	•		Mineralisation is moderately flat lying. The drillholes are vertical, which
		achieves unbiased sampling of	is closely perpendicular to mineralised horizons.
data in relation			Vertical drillholes are considered appropriate due to the
to geological			labore stariation of the demonit. The demonit is a sum summer of the
		-	characteristics of the deposit. The deposit is a supergene enrichment
to geological		deposit type.	type with a greater horizontal extent compared to the thickness of the
to geological	•	deposit type. If the relationship between the	type with a greater horizontal extent compared to the thickness of the mineralised body. This kind of deposit is typically expansive
to geological	•	deposit type. If the relationship between the drilling orientation and the	type with a greater horizontal extent compared to the thickness of the mineralised body. This kind of deposit is typically expansive horizontally with a relatively uniform thickness.
to geological	•	deposit type. If the relationship between the drilling orientation and the orientation of key mineralised	type with a greater horizontal extent compared to the thickness of the mineralised body. This kind of deposit is typically expansive

introduced a sampling bias, this	orientation is well-aligned with the known geology of the deposit,
should be assessed and reported if	ensuring accurate representation and unbiased sampling of the
material.	mineralized zones. Any potential bias due to drilling orientation is
	considered negligible in this context.
The measures taken to ensure	All samples were collected by field personnel and meticulously packed
sample security.	in labelled plastic bags. They were then transported directly to the
	SGS-GEOSOL in Brazil. The samples were secured during transit to
	prevent tampering, contamination, or loss. A chain of custody was
	maintained from the field to the laboratory, with proper documentation
	accompanying each batch to ensure transparency and traceability
	throughout the sampling process. Utilising a reputable laboratory
	further ensures the security and integrity of the assay results.
• The results of any audits or reviews	The site is attended by Enova's Brazilian Professional Geology Team
of sampling techniques and data.	to inspect drilling and sampling procedures, verify survey methods,
	inspect the storage shed, verification geological records, review
	QAQC procedures and review the geologic model.
	 should be assessed and reported if material. The measures taken to ensure sample security. The results of any audits or reviews

Section 2 - Reporting of Exploration Results

JORC Code explanation	Commentary
• Type, reference name/number,	The title holder of the tenements is RBM Consultoria Mineral, who filed
location and ownership including	transfer requests of the granted exploration permits to its sole owner,
agreements or material issues	Rodrigo de Brito Mello. The application cannot be transferred until the
with third parties such as joint	permit is published, however Rodrigo and RBM Consultoria Mineral
ventures, partnerships, overriding	will undertake contractual obligations to transfer the title to Enova as
royalties, native title interests,	soon as the permit is published in the official gazette. Details of the
historical sites, wilderness or	CODA tenements are provided in the following table (Table 1).
national park and environmental	The current exploration is taking place in Coda North area consisting
settings.	of tenements 831369/2020 and 831381/2020.
• The security of the tenure held at	Enova has submitted the required fees and annual reports of the
the time of reporting along with	above tenements to ANM on and before 2 August 2024 and the
any known impediments to	renewal of the tenements is under process through to the next year.
obtaining a licence to operate in	
the area.	
 Acknowledgment and appraisal o 	The area was earlier explored by Vicenza and the significant results
exploration by other parties.	of historical drilling of Coda North is announced via ASX release ²
	dated 18 March 2024
Deposit type, geological setting	The prospective geological unit present in the CODA project is
and style of mineralisation.	composed of the Patos formation. It formed during the Upper
	Cretaceous period, when a massive volcanic event occurred in the
	western part of Minas Gerais state. The volcanic activity exhibited both
	effusive (lava flows) and explosive (pyroclastic deposits) eruptions.
	The predominant rock type in this formation is kamafugite, which is
	classified as an alkaline-ultramafic rock. High-grade REE are also
	enriched in this formation.
	 location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal o exploration by other parties.

² ASX announcement "World class clay hosted rare earth grades uncovered at coda north" dated 18 March 2024

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following 	The prospective unit consists of a horizontal bed of kamafugite, which can be up to 40 metres thick, overlain by overburden that varies from 0 to 50 metres. Weathering processes with thick clay zones are prevalent throughout this profile, leading to the accumulation of REE closer to the upper part of the formation. The rocks within this formation are predominantly soft and friable, with an extremely fine particle size. These characteristics are considered advantageous for the exploration of lonic Clay REE deposits. The data and information of about the drillholes are given below, Total number of holes completed. Diamond Drill holes 14 RC drillholes 21
	 holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer, Appendix 1 Table2 for Drillhole Collar Information
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in 	The data will be compiled in Collar, Survey and Geology files. Once Assay will be received the Assay data will be compiled in the Assay table. The database will be compiled as per industry best practices and for the use of resource modelling in the next stage. The conversion of Total Rare Earth Oxide (TREO) will be calculated using standard conversion table as mentioned below. The conversion of elemental assay results to expected common rare earth oxide products, uses conversion factors applied relating to the atomic composition of common rare earth oxide sale products. The following calculation for TREO provides REE to RE oxide conversion factors and lists the REE included: TREO= (Ce*1.23) +(Dy*1.15) +(Er*1.14) +(Gd*1.15) +(Ho*1.15) +(La*1.17) +(Lu*1.14) +(Nd*1.17) +(Pr*1.21) +(Sm*1.16) +(Tb*1.18) +(Tm*1.14) +(Y*1.27) +(Yb*1.14)

	values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	particularly important in the t reporting of Exploration Results. If the geometry of the inineralisation with respect to the drill hole angle is known, its nature should be reported.	Due to the geometry of the mineralisation, the vertical orientation of the drill holes, the downhole lengths are likely to be close approximations of the true widths of the mineralised zones. In instances where discrepancies between downhole lengths and true widths may occur, it should be noted as "downhole thickness or length, not the true width". All drill holes are vertical and suitable for the deposit type, ensuring unbiased sampling of the mineralisation
Diagrams	(with scales) and tabulations of in intercepts should be included for a any significant discovery being reported These should include,	The data provided in this report aids readers in comprehending the nformation more effectively. The document includes various diagrams and supplementary details, which enhance the clarity and accessibility of the geological findings and exploration results. Please refer to the Figure 1 to 9 for drilling, sampling related data and information and Figure 11 for Coda North tenement and Figure 5 for drillhole locations.
Balanced	Where comprehensive reporting	The data presented in this report aims to offer a transparent and
reporting	practicable, representative t reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. t f	comprehensive overview of the exploration activities and findings. It thoroughly covers information on sampling techniques, geological context, prior exploration work, and assay results. Relevant cross- references to previous announcements are included to ensure continuity and clarity. Diagrams, such as drillhole plan and tenements maps and tables, are provided to facilitate a deeper understanding of the data. Additionally, the report distinctly mentions the source of the samples, whether from saprolitic clays, kamafugite lithounits under Patos formation, to ensure a balanced perspective. This report represents the exploration activities and findings without any undue bias or pemission.
Other substantive		There is no additional substantive, relevant and significant exploration
exploration data	meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	data to report currently.

Further work	•	The nature and scale of planned	In the current stage, resource delineation drilling is focused on
		further work (eg tests for lateral	systematically mapping the extent and continuity of the mineralised
		extensions or depth extensions or	zones identified during initial exploration. This involves both infill and
		large-scale step-out drilling).	step-out drilling to provide detailed information on the grade and
	•	Diagrams clearly highlighting the	distribution of the mineralised zones, reducing geological uncertainty
		areas of possible extensions,	and will improve the confidence and accuracy of the resource model
		including the main geological	in the next stage.
		interpretations and future drilling	As we move to the next stage, resource definition will take
		areas, provided this information is	precedence, leading to a compliant mineral resource estimate.
		not commercially sensitive	Diagrams and figures in the current document entail the future infill
			drilling requirement in the gaps to enhance the confidence on
			geological and grade continuity and resource categorisation.

Appendix -1

The drillholes completed in Coda North Area

HoleID	Project	Target	East_UTM	North_UTM	Elev	Datum	Zone	DIP	EOH (m)	DrillType
CDN-DD-0001	CODA	North	318514.2430	7954393.1180	1016.1750	WGS84	23S	90	39.36	DD
CDN-DD-0002	CODA	North	318509.1070	7954000.7770	1045.5960	WGS84	23S	90	57.1	DD
CDN-DD-0003	CODA	North	320507.1210	7954002.0970	1032.5940	WGS84	23S	90	53.42	DD
CDN-DD-0004	CODA	North	320513.5940	7954795.2570	1042.5720	WGS84	23S	90	79.9	DD
CDN-DD-0005	CODA	North	320092.7850	7954374.7610	1073.7280	WGS84	23S	90	81.21	DD
CDN-DD-0006	CODA	North	319310.2090	7954006.5060	1057.6750	WGS84	23S	90	81.11	DD
CDN-DD-0007	CODA	North	319709.8490	7954395.9390	1061.3830	WGS84	23S	90	61.81	DD
CDN-DD-0008	CODA	North	320096.4060	7954796.8600	1052.6370	WGS84	23S	90	63.09	DD
CDN-DD-0009	CODA	North	319706.8580	7954801.5940	1048.2030	WGS84	23S	90	59.45	DD
CDN-DD-0010	CODA	North	318501.9340	7955997.4790	1063.5790	WGS84	23S	90	68.65	DD
CDN-DD-0011	CODA	North	319309.7230	7956800.6830	1019.8230	WGS84	23S	90	45.89	DD
CDN-DD-0012	CODA	North	319697.1410	7956813.4230	1056.7030	WGS84	23S	90	43.31	DD
CDN-DD-0013	CODA	North	320110.3640	7956800.2750	1064.6670	WGS84	23S	90	54.27	DD
CDN-DD-0014	CODA	North	319705.8060	7957204.4650	1047.4190	WGS84	23S	90	36.24	DD
CDN-DD-0015	CODA	North	319298.1050	7957202.3820	956.8120	WGS84	23S	90	27.71	DD
CDN-RC-0001	CODA	North	320905.4100	7954402.7800	1013.6150	WGS84	23S	90	50	RC
CDN-RC-0002	CODA	North	320511.8270	7955196.2730	1011.5860	WGS84	23S	90	42	RC
CDN-RC-0003	CODA	North	320100.8390	7953991.2930	1055.6710	WGS84	23S	90	48	RC
CDN-RC-0004	CODA	North	321144.6840	7955026.3310	996.659	WGS84	23S	90	30	RC
CDN-RC-0005	CODA	North	320512.4660	7954410.2640	1046.2830	WGS84	23S	90	67	RC
CDN-RC-0006	CODA	North	318903.9350	7954005.7500	1054.6310	WGS84	23S	90	62	RC
CDN-RC-0007	CODA	North	318811.9840	7954302.0840	1036.3290	WGS84	23S	90	40	RC
CDN-RC-0008	CODA	North	319312.3660	7954414.0930	1049.2380	WGS84	23S	90	56	RC
CDN-RC-0009	CODA	North	320117.8920	7955206.2870	1026.0340	WGS84	23S	90	51	RC
CDN-RC-0010	CODA	North	319710.1470	7955202.2160	1015.9080	WGS84	23S	90	35	RC
CDN-RC-0011	CODA	North	318911.6630	7956005.9100	1054.3350	WGS85	23S	90	44	RC
CDN-RC-0012	CODA	North	318513.6870	7955195.0750	1043.3560	WGS86	23S	90	58	RC
CDN-RC-0013	CODA	North	318509.0160	7955597.1740	1054.2750	WGS87	23S	90	59	RC
CDN-RC-0014	CODA	North	318502.8400	7954814.4140	1014.5290	WGS88	23S	90	36	RC
CDN-RC-0015	CODA	North	319312.7430	7956403.5520	1062.3590	WGS89	23S	90	58	RC
CDN-RC-0016	CODA	North	319702.4270	7956007.8640	979.000	WGS90	23S	90	27	RC
CDN-RC-0017	CODA	North	319308.1570	7956006.6800	1023.8420	WGS91	23S	90	28	RC
CDN-RC-0018	CODA	North	320096.6030	7957206.9340	1059.1700	WGS92	23S	90	41	RC
CDN-RC-0019	CODA	North	320108.1060	7957600.4370	1047.5010	WGS93	23S	90	40	RC
CDN-RC-0020	CODA	North	320494.8310	7957991.9350	1047.1420	WGS94	23S	90	51	RC
CDN-RC-0021	CODA	North	320592.2110	7957644.6180	1069.6200	WGS95	23S	90	62	RC

Table 2: The coordinates of Diamond and RC drillholes completed in Coda North area

Appendix -2

HoleID	FROM	то	Lithology	Stratigraphy
CDN-DD-0001	0	22.4	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0001	22.4	24.35	Kamafugite	Patos Formation
CDN-DD-0001	24.35	31	Ignibrite	Patos Formation
CDN-DD-0001	31	34.5	Ignibrite	Patos Formation
CDN-DD-0001	34.5	39.36	Sandstone	Areado Group
CDN-DD-0002	0	11.48	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0002	11.48	50.64	Kamafugite	Patos Formation
CDN-DD-0002	50.64	57.1	Ignibrite	Patos Formation
CDN-DD-0003	0	7	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0003	7	49	Kamafugite	Patos Formation
CDN-DD-0003	49	53.42	Conglomerate	Capacete Formation
CDN-DD-0004	0	6.65	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0004	6.65	11	Laterite	Tertiary Sedimentary Cover
CDN-DD-0004	11	71.5	Kamafugite	Patos Formation
CDN-DD-0004	71.5	79.9	Conglomerate	Capacete Formation
CDN-DD-0005	0	19.71	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0005	19.71	26.57	Laterite	Tertiary Sedimentary Cover
CDN-DD-0005	26.57	81.59	Kamafugite	Patos Formation
CDN-DD-0005	81.59	81.21	Sandstone	Areado Group
CDN-DD-0006	0	20	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0006	20	28.83	Laterite	Tertiary Sedimentary Cover
CDN-DD-0006	28.83	80	Kamafugite	Patos Formation
CDN-DD-0006	80	81.11	Sandstone	Areado Group
CDN-DD-0007	0	24	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0007	24	26	Laterite	Tertiary Sedimentary Cover
CDN-DD-0007	27	59.61	Kamafugite	Patos Formation
CDN-DD-0007	59.61	60	Sandstone	Areado Group
CDN-DD-0007	60	61.81	Kamafugite	Patos Formation
CDN-DD-0008	0	7.89	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0008	7.89	13.3	Laterite	Tertiary Sedimentary Cover
CDN-DD-0008	13.3	63.09	Kamafugite	Patos Formation
CDN-DD-0009	0	7	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0009	7	11	Laterite	Tertiary Sedimentary Cover
CDN-DD-0009	11	57	Kamafugite	Patos Formation
CDN-DD-0009	57	59.45	Kamafugite	Patos Formation
CDN-DD-0010	0	28.15	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0010	28.15	32.84	Laterite	Tertiary Sedimentary Cover
CDN-DD-0010	32.84	68.21	Kamafugite	Patos Formation
CDN-DD-0010	68.21	68.65	Sandstone	Areado Group
CDN-DD-0011	0	11.49	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0011	11.49	16.04	Laterite	Tertiary Sedimentary Cover
CDN-DD-0011	16.04	26	Kamafugite	Patos Formation
CDN-DD-0011	26	45.89		Areado or Bambui Group
CDN-DD-0012	0	21	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover

enova mining limited www.enovamining.com ASX:ENV

Registered Office Level 26, 360 Collins Street, Melbourne VIC 3000, AUSTRALIA

<u>contact@enovamining.com</u> +61 3 9867 7199

				· · · · · · · · · · · · · · · · · · ·
CDN-DD-0012	21	30.16	Laterite	Tertiary Sedimentary Cover
CDN-DD-0012	30.16	42.71	Kamafugite	Patos Formation
CDN-DD-0012	42.71	43.31	Sandstone	Areado Group
CDN-DD-0013	0	21.32	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0013	21.32	29.49	Laterite	Tertiary Sedimentary Cover
CDN-DD-0013	29.49	53.72	Kamafugite	Patos Formation
CDN-DD-0013	53.72	54.27	Sandstone	Areado Group
CDN-DD-0014	0	16.64	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0014	16.64	20.69	Laterite	Tertiary Sedimentary Cover
CDN-DD-0014	20.69	35.24	Kamafugite	Patos Formation
CDN-DD-0014	35.24	36.24	Sandstone	Areado Group
CDN-DD-0015	0	9.76	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-DD-0015	9.76	15.8	Laterite	Tertiary Sedimentary Cover
CDN-DD-0015	15.8	25.51	Kamafugite	Patos Formation
CDN-DD-0015	25.51	27.71	Sandstone	Areado Group
CDN-RC-0001	0	4	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0001	4	50	Kamafugite	Patos Formation
CDN-RC-0002	0	5	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0002	5	42	Kamafugite	Patos Formation
CDN-RC-0003	0	21	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0003	21	48	Kamafugite	Patos Formation
CDN-RC-0004	0	3	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0004	3	24	Kamafugite	Patos Formation
CDN-RC-0004	24	27	Ignibrite	Patos Formation
CDN-RC-0004	27	30	Sandstone	Areado Group
CDN-RC-0005	0	7	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0005	7	40	Kamafugite	Patos Formation
CDN-RC-0005	40	67	Ignibrite	Patos Formation
CDN-RC-0006	0	20	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0006	21	62	Kamafugite	Patos Formation
CDN-RC-0007	0	11	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0007	12	38	Kamafugite	Patos Formation
CDN-RC-0007	39	40	Sandstone	Areado Group
CDN-RC-0008	0	17	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0008	18	56	Kamafugite	Patos Formation
CDN-RC-0009	0	8	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0009	9	51	Kamafugite	Patos Formation
CDN-RC-0010	0	2	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0010	3	31	Kamafugite	Patos Formation
CDN-RC-0010	31	35	Sandstone	Areado Group
CDN-RC-0011	0	26	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0011	27	40	Kamafugite	Patos Formation
CDN-RC-0011	41	44	Sandstone	Areado Group
CDN-RC-0012	0	8	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0012	9	18	Laterite	Tertiary Sedimentary Cover
CDN-RC-0012	-	-		,,

CDN-RC-0012	57	58	Sandstone	Areado Group
CDN-RC-0013	0	30	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0013	31	35		Tertiary Sedimentary Cover
CDN-RC-0013	36	57	Kamafugite	Patos Formation
		-		
CDN-RC-0013	58	59	Sandstone	Areado Group
CDN-RC-0014	0	19	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0014	20	29	Laterite	Tertiary Sedimentary Cover
CDN-RC-0014	30	33	Kamafugite	Patos Formation
CDN-RC-0014	34	36	Sandstone	Areado Group
CDN-RC-0015	0	29	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0015	30	33	Laterite	Tertiary Sedimentary Cover
CDN-RC-0015	34	54	Kamafugite	Patos Formation
CDN-RC-0015	55	58	Sandstone	Areado Group
CDN-RC-0016	0	3	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0016	4	11	Laterite	Tertiary Sedimentary Cover
CDN-RC-0016	12	24	Kamafugite	Patos Formation
CDN-RC-0016	25	27	Sandstone	Areado Group
CDN-RC-0017	0	10	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0017	11	13	Laterite	Tertiary Sedimentary Cover
CDN-RC-0017	14	26	Kamafugite	Patos Formation
CDN-RC-0017	27	28	Sandstone	Areado Group
CDN-RC-0018	0	18	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0018	19	27	Laterite	Tertiary Sedimentary Cover
CDN-RC-0018	28	39	Kamafugite	Patos Formation
CDN-RC-0018	40	41	Sandstone	Areado Group
CDN-RC-0019	0	15	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0019	16	20	Laterite	Tertiary Sedimentary Cover
CDN-RC-0019	21	37	Kamafugite	Patos Formation
CDN-RC-0019	37	40	Sandstone	Areado Group
CDN-RC-0020	1	13	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0020	14	19	Laterite	Tertiary Sedimentary Cover
CDN-RC-0020	20	48	Kamafugite	Patos Formation
CDN-RC-0020	49	51	Sandstone	Areado Group
CDN-RC-0021	0	8	Tertiary Sedimentary Cover	Tertiary Sedimentary Cover
CDN-RC-0021	9	30	Laterite	Tertiary Sedimentary Cover
CDN-RC-0021	31	60	Kamafugite	Patos Formation
CDN-RC-0021	61	62	Sandstone	Areado Group
02111000021	51	<u>~</u> 2		/ Toddo Oroup

Table 3: Preliminary lithological logs of the drillholes of Coda North area