ASX:ENV

9 October 2024

CODA NORTH DRILLING RESULTS CONTINUE TO IMPRESS
WITH HIGH GRADE HITS OF UP TO 7,402 PPM TREO
NOTABLE THICK INTERSECTION 49m @ 2,358 PPM TREO
SUPERIOR GRADE INTERCEPTS UP TO 17m @ 4,285 PPM TREO
MAJOR MILESTONE ACHIEVED WITH 3,000m DRILLED

Enova Mining Ltd (ASX: ENV) reports continued drilling success at CODA North, with high-grade intercepts further underscoring the project's robust potential

- Enova Mining Ltd (ASX: ENV) has completed 24 diamond drill (DD) holes totalling 1,310m and 40 reverse circulation (RC) holes spanning 1,791m at the CODA North project. Over 1,000 samples are currently undergoing assay analysis at the SGS Geosol laboratory in Vespasiano, Minas Gerais, Brazil,
- Significant TREO (maximum mineralised intercepts and high-grade runs) results are,

Hole ID	From (m)	To (m)	Intercept	TREO (ppm)	NdPr %
CDN-DD-0006	34	81.1	47.1	2,035	21.6
including	34	43	9	3,880	20.0
CDN-DD-0007	6	59.6	53.6	1,803	20.7
including	28	40	12	3,016	20.3
CDN-DD-0008	4	45	41	2,276	21.2
including	13.3	39	25.7	2,987	21.7
CDN-DD-0009	3	37	34	2,474	20.1
including	11	34	23	3,105	21.1
CDN-RC-0006	17	62	45	2,491	21.2
including	22	36	14	3,524	21.9
and	39	51	12	2,654	21.2
CDN-RC-0007	3	35	32	2,853	20.8
including	13	32	19	4,101	22.8
CDN-RC-0008	4	49	45	2,144	19.4
including	20	45	25	2,969	19.6
CDN-RC-0009	2	51	49	2,358	21.5
including	6	26	20	3,672	22.2
CDN-RC-0011	6	41	35	1,823	21.6
including	26	40	14	2,966	23.0

¹ Significant TREO results have been calculated at nominal cut-off 1000 ppm and 2000 ppm

Notable high-grade REE assays² in this release include:

Hole ID	From (m)	To (m)	Intercept	TREO (ppm)
CDN-DD-0008	17	29	12	3,293
CDN-DD-0009	15	26	11	3,766
CDN-RC-0007	14	31	17	4,285
CDN-RC-0009	9	24	15	4,049

- ✓ confirming the widespread presence of significant mineralisation across the tenement,
- The broad distribution of high-grade intercepts across volcanoclastic Patos formation demonstrates extensive mineralisation, enhancing the scalability and growth potential of the project,
- This announcement presents results from ten additional drill holes over a 20 square kilometre area. Additional drilling was completed that awaits assay results which are expected to uncover further resource upside,
- Enova's strategic advantage:
 - Encouraging assay results enhance confidence in geological continuity, bolstering future resource definition drilling, resource classification, and development strategies,
- High TREO grades position Enova to capitalise on the increasing global demand for rare earth elements.

Enova CEO Eric Vesel commented,

CODA North Continues to Deliver Outstanding Results

"The latest drill results continue to reinforce our confidence in a substantial, high-grade REE deposit at CODA North, providing strong supporting data that we will soon translate into a robust resource model. Our team has strategically covered the CODA North area with a combination of widely spaced holes and infill drilling. We're committed to reporting assay results as they become available. We are also focused on metallurgical testing of our mineralisation with several expert service providers preparing to process our samples. The progress we've made to date is truly remarkable, and we're excited to build upon this success."

HIGH-GRADE AND THICK REE MINERALISTION IN CODA NORTH:

Drilling Results Confirm Continuous Mineralisation

Enova Mining Limited is excited to announce the results from ten additional high-grade drill hole assays from CODA North exploration, further highlighting the project's unique resource potential within the singular vast unencumbered area (Figures 1 and 2). These assay results

² Notable high-grade REE assays have been calculated at nominal cut-off 3000ppm

demonstrate substantial mineralisation thickness and confirm the existence of extensive near-surface high-grade zones across the CODA North tenement. The new data enhances our understanding of the resource's scale, continuity, and grade, supporting our strategy for continued exploration and reinforcing our positive outlook for CODA North's future growth.

Recent drilling at the CODA North tenements has yielded exceptional results, confirming extensive high-grade rare earth element (REE) mineralisation. The drilling campaign, utilising both diamond (DD) and reverse circulation (RC) methods, has completed 24 DD holes totalling 1,310m and 40 RC holes totalling 1,791 m (see Figures 3 and 4, Table 1). More than 1,500 samples from these drill holes have been dispatched to the SGS Geosol laboratory in Vespasiano, MG, for assay. Preliminary data reveals substantial mineralised zones, indicating the potential for a significant expansion of the project's resource base.

Drilling	Number of drill holes	Total meterage		
Diamond drill holes	24	1,310 m		
Reverse Circulation drill holes	38	1,791 m		
Total	62	3,101 m		

Table 1: Drilling statistics until 18 Sep 2024

Enova's Exploration Success Continues to Accelerate

Recent drilling at CODA North has uncovered significant high-grade REE mineralisation within the Patos Formation. These findings confirm a robust, continuous REE system within volcanoclastic Patos formation extending from east to western edge of the plateau, that's substantially larger than anticipated. This major discovery validates our geological model and positions Enova for significant resource growth and enhanced project value. The Board are excited about the potential to significantly expand our exploration footprint and unlock further value for our shareholders.

Figure 1: Expansive and easily accessible open terrain at the CODA North exploration site (Photo taken during site visit of Enova's Senior Management in September)

Figure 2: Enova's CODA North: Vast crop lands, high-potential landscape for REE Exploration (Enova's diamond drill rig on the horizon)

Figure 3: Enova's Coda North: Diamond drill rig in operation

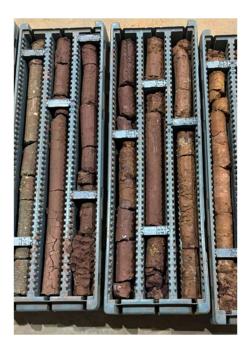


Figure 4: Brown saprolite core from diamond drilling representing kamafugite litho-unit

Figure 5: Drill offsider is placing diamond core in core box

Enova's Strategic Advantage

The high-grade REE mineralisation unearthed here is poised to become a cornerstone of Enova's future growth. This consistent REE mineralisation confirms the project's exceptional potential, assuming its position as a flagship asset within our portfolio. With more assay results on the horizon, the company remain focused on maximising the value of CODA North. By expanding the understanding of the mineralised zones and identifying additional high-value targets, we are positioning the company for significant resource expansion and long-term economic benefits.

Enova will continue to leverage the success of our recent drilling intercepts to guide future exploration efforts at CODA North. The goal is to unlock the full potential of this unique saprolite hosted mineralisation and create substantial value for our shareholders.

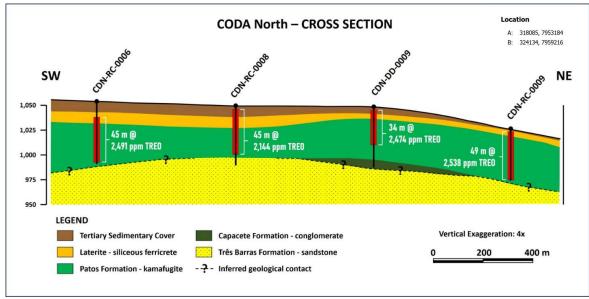


Figure 6: Schematic cross section (only significant values such as maximum intercepts and high grades of the current announcement are shown)

Enova's High Performing Team Drives Exploration Success

Enova's team is meticulously preparing samples, using industry-standard techniques to ensure data accuracy. This collaborative effort, involving geologists, technicians, and field staff, is fundamental to our exploration success. Their expertise and commitment to accuracy fuels our drive to uncover significant mineral resources at CODA North. The Board are confident that their dedication will continue to deliver exceptional results and propel Enova forward.

Figure 7: Diamond drill cores are reviewed by competent person

Figure 8: Enova professional geologist sub-sampling by using riffle splitter

Figure 9: RC drill chips of variegated colour of saprolite are stored in chip library

Figure 10: Enova's technical team visited the state-of-the-art facility of SGS Geosol laboratory, Vespasiano

A map showing the completed drill hole collar locations (to date) and the 10 holes reported in this announcement at CODA North is given in Figure 11, below

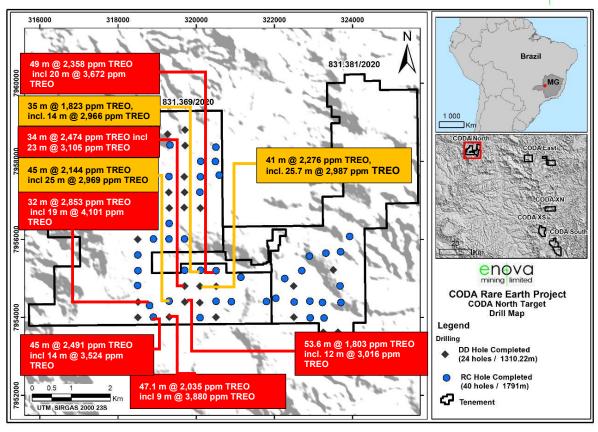


Figure 11: Drillhole map of CODA North (only significant values such as maximum intercepts and high grades of the current announcement are shown)

NEXT STEPS

Enova's Aggressive Drilling Campaign Targets Resource Expansion and Upgradation

Enova's next phase of drilling at CODA North will focus on expanding and refining the high-grade REE mineralised zones discovered in recent assays. A strategic combination of infill and step-out drilling will be used to accurately define the lateral extent of mineralisation and continuity. By increasing drill density in key areas, we aim to upgrade a significant portion of our identified resources to higher-confidence categories.

In parallel, our team will conduct rigorous resource modelling and metallurgical testing to ensure the resource estimate accurately reflects the deposit's true potential. These efforts will lay a solid foundation for future project development stages, including scoping studies and potential resource expansion.

Beyond CODA North, we're also actively exploring other tenements within the CODA package. Our immediate targets include CODA Central and CODA East. We'll carefully consider the timing of local crop planting seasons to determine when to explore the southern tenements. This multi-pronged exploration strategy demonstrates our commitment to maximising value and unlocking the full potential of the CODA project.

MINERAL POTENTIAL OF CODA

The CODA tenements overlay the Patos geologic formation, with potential for REE enriched Ionic Absorption Clays (IAC). Significant historical exploration drilling results from the CODA project (Reference 1) confirm the potential for REE enriched IAC in the Northern and Southern CODA tenements where drilling has been completed. The extent of the mineralised area at CODA North prospect is yet to be determined. All intersections from CODA South start from surface and are open in all directions including depth.

Enova is in discussions with metallurgical laboratories within Brazil and abroad to investigate the metallurgical character of the CODA mineralisation. Metallurgical samples have been provided to a local laboratory for processing. CODA is well placed with mineralised zones of potential IAC with exceptionally high REE grade. This is underpinned by CODA's potential for broad areas of mineralised zones of exceptional thickness which translate to a significant resource base giving longevity to future extractive operations.

REGIONAL GEOLOGY AND TENEMENT OVERVIEW

Enova is encouraged by the location and size of the tenements in relation to prospective geological features. The prospective geological unit present in the CODA project is composed of the Patos Formation. It formed during the Upper Cretaceous period, when a massive volcanic event occurred in the western part of Minas Gerais state. The volcanic activity exhibited both effusive (lava flows) and explosive (pyroclastic deposits) eruptions. The predominant rock type in this formation is kamafugite, which is classified as an alkaline-ultramafic rock. High-grade REE are also enriched in this formation.

Regionally the prospective unit consists of a horizontal bed of kamafugite, which can be up to 40 metres thick. Overburden at CODA varies from 0 to 30 metres. Weathering processes with thick clay zones are prevalent throughout this profile, leading to the accumulation of REE closer to the upper part of the formation. The rocks within this formation are predominantly soft and friable, with an extremely fine particle size. These characteristics are considered advantageous for the exploration of Ionic Clay REE deposits. (Refer to Figure 12 below for the locations of the tenements at the CODA Project.)

TENEMENTS/PERMITS

The title holder of the tenements is RBM Consultoria Mineral, who filed transfer requests of the granted exploration permits to its sole owner, Rodrigo de Brito Mello. The application cannot be transferred until the permit is published, however Rodrigo and RBM Consultoria Mineral will undertake contractual obligations to transfer the title to Enova as soon as the permit is published in the official gazette. Details of the CODA tenements are provided in the following table.

License ID	Area (Ha)	Ownership	In transference to	Status
831381-2020	1,537.60	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
831369-2020	1,997.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830699-2021	1,999.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830737-2021	1,999.60	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
831598-2020	1,807.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
831388-2020	1,999.60	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830691-2021	1,992.80	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
830698-2021	1,997.40	RBM CONSULTORIA MINERAL LTDA	Rodrigo De Brito Mello	Granted
	15,332.40			

Table 2: CODA Project tenements Minas Gerais, Brazil

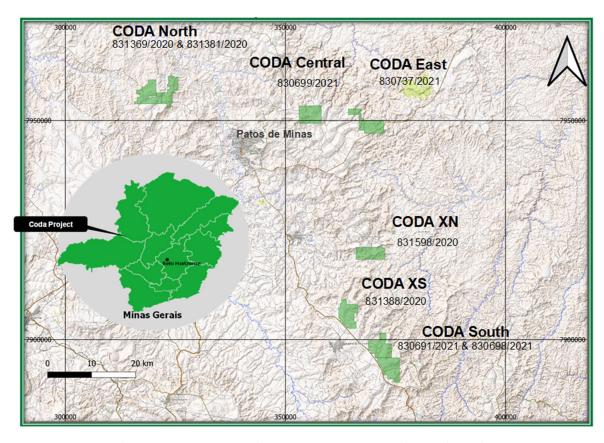


Figure 12: The CODA REE project tenements (100% ENV) Minas Gerais, Brazil

ATTRACTIVE BUSINESS ENVIRONMENT

Brazil has well developed and sophisticated mining industry, and is amongst the leading exporters of iron ore, tin, bauxite, manganese, copper, gold, rare earth and lithium. The sovereign investment risk is low, and business environment is secured, based on:

- Mining is recognised as a key economic industry in Brazil and the State of Minas Gerais.
- Progressive mining policies, seeking investment, encouraging explorers and new developments,
- Mining investment free of government mandated ownership,
- Low sovereign risk and government interference,
- Attractive cost base and sophisticated support network for the mining industry
- High level of exploration/mining technical skills and expertise in country

MANAGING OUR COMMITMENTS

Enova is currently focussed on the exploration drilling program at the CODA project. Enova also remains committed to the development of Charley Creek rare earth project with metallurgical process improvement test work in progress in Brisbane.

The Company will also continue to review projects and business opportunities as they arise.

The market will be kept appraised of developments, as required under ASX Listing Rules and in accord with continuous disclosure requirements.

Approved for release by the Board of Enova Mining Limited

Eric Vesel,

Enova Mining Limited CEO/ Executive Director

Contact:

eric@enovamining.com

References:

- 1. ASX announcement, "World Class Clay hosted rare earth grade uncovered at Coda North", 18 March 2024
- 2. ASX Announcement "DIAMOND DRILLING COMMENCES AT CODA", 16 July 2024
- 3. ASX Announcement "SIGNIFICANT REE MINERALISED ZONES INTERSECTED IN DRILLING AT CODA", 7 August 2024
- ASX Announcement "DRILLING BROADENS POTENTIAL REE MINERALISATION FOOTPRINT AT CODA NORTH", 6 September 2024
- 5. ASX Announcement "CODA NORTH DEMONSTRATES SIGNIFICANT GROWTH POTENTIAL", 24 September 2024

Competent Person Statement

The information related to Exploration Targets and Exploration Results is based on data compiled by Subhajit Deb Roy, a Competent Person and Chartered Member of The Australasian Institute of Mining and Metallurgy. Mr Deb Roy is currently working as Exploration Manager with Enova Mining. Subhajit has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Subhajit consents to the inclusion in presenting the matters based on his information in the form.

Forward-looking statements

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Precautionary Statement

The information contained in this announcement regarding the exploration results at CODA North is based on data collected from diamond and reverse circulation (RC) drilling programs. While the identification of significant mineralised zones within the Patos formation of the Mata Do Corda Group suggests the potential for Rare Earth Element (REE) mineral resources, it is important to note the following cautionary considerations. The project is currently at an exploration stage, and while initial drilling results are promising, further exploration and evaluation are necessary to ascertain the extent, quality, and economic viability of the mineral resources. Potential mineralisation identified by sampling in drill holes is currently undergoing comprehensive assaying, mineralogical evaluation, structural analysis and metallurgical test work. Until these analyses are completed, surety of resource estimates in the future remains speculative.

Disclaimer

This ASX announcement (Announcement) has been prepared by Enova Mining Limited ("Enova" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Enova, its subsidiaries, and their activities, which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Enova.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Enova's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are many risks, both specific to Enova and of a general nature which may affect the future operating and financial performance of Enova and the value of an investment in Enova including but not limited to economic conditions, stock market fluctuations, commodity price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Enova and its projects, are forward-looking statements that: may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions; are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Enova, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and, involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Enova disclaims any intent or obligation to update publicly any forward-looking statements, whether because of new information, future events, or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements. All forward-looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantee of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein. No verification: although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified

APPENDIX A JORC TABLE 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary				
Sampling	Nature and quality of sampling (eg	Coda North consisting of 831369/2020 and 831381/2020 areas were				
techniques	cut channels, random chips, or	sampled using a diamond drill rig, and a Reverse Circulation drill rig.				
	specific specialised industry	Diamond drillholes				
	standard measurement tools	The drill cores representing in-situ rocks are collected in plastic core				
	appropriate to the minerals under	trays, and depth markers record the depth at the end of each drill run.				
	investigation, such as down hole	In the initial holes sample was collected for every 2m or every 4m or				
	gamma sondes, or handheld XRF	longer intervals in the unmineralised or less mineralised overburden				
	instruments, etc). These examples	litho-stratigraphic unit which is tertiary undifferentiated detritus and/or				
	should not be taken as limiting the	lateritised cover.				
	broad meaning of sampling.	Samples were collected at every 1m for underlying mineralised zone				
	Include reference to measures	in Patos formation.				
	taken to ensure sample	In the unconsolidated drill samples, the core was halved with a metal				
	representivity and the appropriate	spatula and bagged in plastic bags, while a powered saw halved the				
	calibration of any measurement	hard and consolidated rock, bagged, and each sample was tagged				
	tools or systems used.	with sample number.				
	Aspects of the determination of	Reverse Circulation (RC) drillholes				
	mineralisation that are Material to	In RC drillholes, sample was collected at 2m or 4m or longer in the				
	the Public Report.	unmineralised or less mineralised overburden litho-stratigraphic unit				
	In cases where 'industry standard'	which is tertiary undifferentiated detritus and/or lateritised cover.				
	work has been done this would be	Samples were collected at every 1m for underlying mineralised zone				
	relatively simple (eg 'reverse	in Patos formation.				
	circulation drilling was used to	All samples were sent for preparation to the contracted laboratory,				
	obtain 1 m samples from which 3 kg	SGS Geosol in Vespasiano, MG, Brazil.				
	was pulverised to produce a 30 g	The sample was riffle split and one part is sent for assaying and other				
	charge for fire assay'). In other	part is stored and returned to Patos De Minas as umpire sample.				
	cases, more explanation may be	The tertiary undifferentiated detritus cover layer has been visually				
	required, such as where there is	differentiated from kamafugite of Patos formation by professional				
	coarse gold that has inherent	geologist and additionally, magnetic susceptibility test carried out by				
	sampling problems. Unusual	Terraplus KT10-V2 device to differentiate the ferromagnetic iron				
	commodities or mineralisation types	bearing kamafugite litho-unit within Patos formation from overlying				
	(eg submarine nodules) may	and underlying formations.				
	warrant disclosure of detailed					
	information.					
Drilling	Drill type (eg core, reverse	Diamond Drillholes				
techniques	circulation, open-hole hammer,	Diamond drilling was carried out by Maquesonda MACH 1210 rig,				
•	rotary air blast, auger, Bangka,	drilling vertically and sampled generally at intervals of 1.0m within the				
	sonic, etc) and details (eg core	mineralised strata. The drilling used a wireline diamond core of HQ				
	diameter, triple or standard tube,	diameter of 2.63 inches (core diameter).				
	depth of diamond tails, face-	Drilling of each hole was conducted by the diamond core rig and				
	sampling bit or other type, whether	terminated upon intercepting between 1 to 10 meters of underlying				
	core is oriented and if so, by what	Areado Group, indicative of penetration into the underlying				
	method, etc).	unmineralised or less mineralised zone.				

Reverse Circulation Drillholes RC drilling was conducted using with a 4.75-inch diameter downhole The drill site preparation included clearing, levelling the ground, and delineating the drilling area. The RC drilling was terminated upon intercepting between 1 to 10 meters of underlying Areado Group, indicative of penetration into the underlying unmineralised or less mineralised zone Diamond drilling was predominantly used for establishing the extent of the ore body while RC drilling being used to test the continuity of mineralised zone between diamond drillholes. Drill sample Recovery in Diamond Drillholes · Method of recording and assessing recovery core and chip sample recoveries Calculated after each run, comparing the length of core recovery vs. drill depth by visual inspection. Overall core recoveries are above and results assessed. 90% in diamond drilling. Measures taken to maximise sample recovery and ensure Recovery in RC drillholes representative of the nature samples. Every 1m sample in the mineralised strata is collected in plastic bags • Whether a relationship and weighed. Each sample averages approximately 6-12kg, which is exists considered given the hole diameter, material loss sticky clay content between sample recovery and grade in the lithological units and the specific density of the material. The and whether sample bias may have estimated sample recovery was initially above 50% due to high clay due to preferential content in the strata, loss of drill cuttings and in the later drillholes the loss/gain of fine/coarse material. estimated recovery of drill cuttings improved up to 70%. The recovery has been estimated by visual inspection. Any sample bias due to low recovery will be determined after the assay and mineral characterisation completed. Logging **Diamond Drillholes** • Whether core and chip samples geologically Lithological descriptions are carried out at site or in Enova's have been geotechnically logged to a level of warehouse facility by professional geologist, describing broadly about the pedolith, saprolite, SAP rock and underlying Areado group detail to support appropriate Mineral Resource estimation, mining studies and the lithological contacts. Parameters such as grain size, texture, colour, mineralogy, magnetism, type of alterations (hydrothermal or and metallurgical studies. · Whether logging is qualitative or weathering) will be logged in detail in due course. The type of lithological contact is identified by visual inspections and magnetic quantitative in nature. Core (or susceptibility readings which can help to differentiate the overlying costean, channel, etc) photography. and underlying lithology from mineralised zone. · The total length and percentage of All drill holes are photographed and stored at the core facility in Patos the relevant intersections logged. De Minas. **Reverse Circulation Drillholes** A professional geologist logs the material at the drill site or in the Enova's warehouse facility, describing broadly about the pedolith, saprolite, SAP rock and Areado group and the lithological contacts. Other parameters including grain size, texture, and colour, will be logged in detail in due course which can help identify the parent rock before weathering. Due to the nature of the drilling, sampling is done at 1m intervals

within the mineralised zone. 1m samples weighing approximately 6-

1		401
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	12kg are collected in a bucket and presented for sampling and logging. The average weight improved up to 15kg with increasing recovery of samples by arresting the loss of drill cuttings. The chip trays of all drilled holes have a digital photographic record and are stored at the Enova's warehouse facility in Patos De Minas. A schematic north-south cross section is shown in Figure 6 Diamond Drillholes Collection and labelling: Samples of diamond cores are taken at 1.0m intervals from mineralised kamafugite lithological unit The cores are split longitudinally using a spatula for unconsolidated portions or using riffle splitter (Figure 8) and a rock-cutting saw for hard rock. The samples were placed in labelled plastic bags and in the process of dispatching to SGS Geosol laboratory in Vespasiano. Field Duplicates: Duplicates are inserted approximately every 20 samples using quarter core for QA/QC procedures Reverse Circulation (RC) Drillholes RC drillholes samples are currently sent to SGS Geosol Laboratory for preparation and subsampling. SGS Geosol laboratory follows industry standard protocols for sub-sampling procedure. The sample assays were conducted in the following method SGS Laboratory At the lab, SGS-Geosol commercial laboratory, in Vespasiano, the samples are dried at 60° or 105° C, 75% material crushed to a nominal 3mm using a jaw crusher before being split using Jones riffle splitter for pulverising. The aliquots are pulverised to a nominal >95% of 300g passing 150 micron for which a 100g sample is then selected for analysis. A spatula is used to sample from the pulverised sample for digestion. Quality Control: The laboratory follows strict quality control procedures, ensuring the accuracy and precision of the assay data. Internally, the laboratory uses duplicate assays, standards, and blanks to maintain quality.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures 	Samples are analysed at the SGS Geosol laboratory in batches of approximately 100 samples including control samples (duplicate, blank, and standards). Industry standard protocols are used by SGS-Geosol to prepare the samples for analysis. Samples are dried, and a sub sample of 300g was pulverised. For rare earth element analysis, samples are prepared with lithium/Metaborate fusion and are analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).

	adopted (eg standards, blanks,	3.1) ICP95A					
	duplicates, external laboratory	Determinação por Fusão com Metaborato de Lítio - ICP OES PM-000003/3					
	,	AI2O3 0.01 - 75 (%) Ba 10 - 100000 (ppm) CaO 0.01 - 80 (%) Cr2O3 0.01 - 10 (%) Fe2O3 0.01 - 75 (%) K2O 0.01 - 25 (%) MgO 0.01 - 30 (%) MnO 0.01 - 10 (%)					
	checks) and whether acceptable	Na2O 0.01 - 30 (%) P2O5 0.01 - 25 (%) SiO2 0.01 - 90 (%) Sr 10 - 100000 (ppm) TiO2 0.01 - 25 (%) V 5 - 10000 (ppm) Zn 5 - 10000 (ppm) Zr 10 - 100000 (ppm)					
	levels of accuracy (ie lack of bias)						
	and precision have been	3.2) IMS95A Determinação por Fusão com Metaborato de Lítio - ICP MS PM-00000303					
	established.	Ce 0.1 - 10000 (ppm) Co 0.5 - 10000 (ppm) Cs 0.05 - 10000 (ppm) Cu 5 - 100000 (ppm) Dy 0.05 - 10000 (ppm) Er 0.05 - 10000 (ppm) Eu 0.05 - 10000 (ppm) Ga 0.1 - 100000 (ppm)					
		Gd 0.05 - 1000 (ppm) Hf 0.05 - 500 (ppm) Ho 0.05 - 1000 (ppm) La 0.1 - 10000 (ppm) Lu 0.05 - 1000 (ppm) Mo 2 - 10000 (ppm) Nb 0.05 - 1000 (ppm) Nd 0.1 - 10000 (ppm)					
		Ni 5 - 10000 (ppm) Pr 0.05 - 1000 (ppm) Rb 0.2 - 10000 (ppm) Sm 0.1 - 1000 (ppm) Sn 0.3 - 1000 (ppm) Ta 0.05 - 10000 (ppm) Tb 0.05 - 10000 (ppm) Th 0.1 - 10000 (ppm)					
		TI 0.5-1000 (ppm) Tm 0.05-1000 (ppm) U 0.05-10000 (ppm) W 0,1-10000 (ppm) Y 0.05-10000 (ppm) Yb 0,1-1000 (ppm)					
		OA/OC complex are included amongst the submitted complex Dath					
		QA/QC samples are included amongst the submitted samples. Both					
		standards, duplicates and blank QA/QC samples were inserted in the					
		sample stream.					
		Oreas 460 and Oreas 461 samples sent from Australia which was					
		used in 12gm package as certified reference material at an interval					
		every 15-20 samples.					
		The assays were done using ICP MS, ICP AES after Fusion with					
		Lithium Metaborate - ICP MS for major Oxides.					
Verification of	The verification of significant	Enova's Brazilian team of professional geologist has reviewed the					
sampling and	intersections by either independent	data collated and compared with electronic copies to verify the					
assaying	or alternative company personnel.	accuracy. Assay data, in electronic form, is checked to verify to					
	The use of twinned holes.	ensure the datafiles are correctly handled in spreadsheets where					
	Documentation of primary data, data	calculations are needed. The process of verifying sampling and					
	entry procedures, data verification,	assaying is still ongoing as drilling progresses. Competent person					
	data storage (physical and	also visited the site to verify the sampling process.					
	electronic) protocols.	This was a maiden drilling program by Enova. Hence, twinned holes					
		were not drilled to verify the representation of historical drill data.					
	Discuss any adjustment to assay	2m or 4m or longer interval composite samples of the overburden					
	data.	strata of tertiary undifferentiated detritus and/or lateritised cover. 1m					
		samples taken from the mineralised zone of kamafugite within Patos					
		formation					
		Field geological data was recorded on logs (Appendix 2 Table 3) and					
		typed into a spreadsheet for subsequent import to a database.					
		Assay data is received in spreadsheet form from the laboratory					
Location of	Accuracy and quality of surveys	The drill hole collars were picked up using a Garmin handheld GPS.					
data points	used to locate drill holes (collar and	Datum for all sitework is considered SIRGAS 2000, Zone 23 South					
	down-hole surveys), trenches, mine	or WGS 84 UTM Zone 23S (Appendix 1, Table 2). The error in the					
	workings and other locations used in	handheld GPS is around ±3m					
	Mineral Resource estimation.	This universal grid system facilitates consistent data interpretation					
	Specification of the grid system	and integration with other geospatial datasets.					
	used.						
	Quality and adequacy of						
	topographic control.						
Data ensains		The average anguing between adjacent planned helps is about 400-					
Data spacing	Data spacing for reporting of	The average spacing between adjacent planned holes is about 400m					
and	Exploration Results.	x 400 m, varied according to the extent, width, and length of the					
distribution	Whether the data spacing and	tenements.					
	distribution is sufficient to establish	Diamond drilling is to provide insights into lateral extent of the					
	the degree of geological and grade	potential mineralised zones. The exploratory nature of the diamond					
	continuity appropriate for the	drilling further supports the overall geological understanding. Hence,					
	Mineral Resource and Ore Reserve	they are drilled at larger spacings 400m x 400m. However, the current					

estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	holes are being drilled at the margin of the grid which put the holes apart by more than 400 m spacings. Reverse circulation (RC) drilling carried out on a structured grid with a 400 x 400 metres spacing. This grid pattern is tailored to enhancing
Whether sample compositing has	Reverse circulation (RC) drilling carried out on a structured grid with
	()
been applied.	a 400 x 400 metres spacing. This grid pattern is tailored to enhancing
	our understanding of the mineral distribution and geological continuity
	across the target zone. The grid spacing may be adjusted according
	to the outcome of intersects of mineralised zone in each hole.
	2m or 4m or longer interval sample compositing was used to produce
	a sample for assay unmineralised and less mineralised overburden
	zone. No other compositing of samples done at this stage.
	No resources are reported.
Whether the orientation of sampling	Mineralisation is moderately flat lying. The drillholes are vertical,
achieves unbiased sampling of	which is closely perpendicular to mineralised horizons.
possible structures and the extent to	Vertical drillholes are considered appropriate due to the
•	characteristics of the deposit. The deposit is a supergene enrichment
_	type with a greater horizontal extent compared to the thickness of the
	mineralised body. This kind of deposit is typically extended
<i>'</i>	horizontally with a relatively less variable thickness.
	There is no evidence that the drilling orientation has introduced any
•	sampling bias regarding the critical mineralised structures. The
	drilling orientation is well-aligned with the known geology of the
should be assessed and reported if	deposit, ensuring accurate representation and unbiased sampling of
material.	the mineralised zones. Any potential bias due to drilling orientation is
	considered negligible in this context.
The measures taken to ensure	All samples were collected by qualified and skilled field geologists
sample security.	and meticulously packed in labelled plastic bags. They were then
	transported directly to the SGS-GEOSOL in Brazil. The samples were
	secured during transit to prevent tampering, contamination, or loss.
	A chain of custody was maintained from the field to the laboratory,
	with proper documentation accompanying each batch to ensure
	transparency and traceability throughout the sampling process.
	Utilising a reputable laboratory further ensures the security and
	integrity of the assay results.
The results of any audits or reviews	The site is attended by Enova's Brazilian Professional Geology Team
of sampling techniques and data.	to inspect drilling and sampling procedures, verify survey methods,
	inspect the storage shed, verification geological records, review
	QAQC procedures and review the geologic model. Currently the
	competent person has audited the project sites and visited CODA
	project site on 17 September 2024 (Figure 7)
	achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The measures taken to ensure sample security.

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement	Type, reference name/number,	The title holder of the tenements is RBM Consultoria Mineral, who
and land tenure	location and ownership including	filed transfer requests of the granted exploration permits to its sole
status	agreements or material issues with	owner, Rodrigo de Brito Mello. The application cannot be transferred
	third parties such as joint ventures,	until the permit is published, however Rodrigo and RBM Consultoria
	partnerships, overriding royalties,	Mineral will undertake contractual obligations to transfer the title to
	native title interests, historical	Enova as soon as the permit is published in the official gazette.
	sites, wilderness or national park	Details of the CODA tenements are provided in the following table
	and environmental settings.	(Table 2 and Figure 12).
	The security of the tenure held at	The current exploration is taking place in Coda North area consisting
	the time of reporting along with	of tenements 831369/2020 and 831381/2020.
	any known impediments to	Enova has submitted the required fees and annual reports of the
	obtaining a licence to operate in	above tenements to ANM on and before 2 August 2024 and the
	the area.	renewal of the tenements is under process through to the next year.
Exploration done	Acknowledgment and appraisal of	The area was earlier explored by Vicenza and the significant results
by other parties	exploration by other parties.	of historical drilling of Coda North is announced via ASX release ³
		dated 18 March 2024. The historical data provide the guidance for
		current exploration drilling
Geology	Deposit type, geological setting	The prospective geological unit present in the CODA project is
	and style of mineralisation.	composed of the Patos formation. It formed during the Upper
		Cretaceous period, when a massive volcanic event occurred in the
		western part of Minas Gerais state. The volcanic activity exhibited
		both effusive (lava flows) and explosive (pyroclastic deposits)
		eruptions. The predominant rock type in this formation is kamafugite,
		which is classified as an alkaline-ultramafic rock. High-grade REE
		are also enriched in this formation.
		The prospective unit consists of a horizontal bed of kamafugite,
		which can be up to 40 metres thick, overlain by overburden that
		varies from 0 to 50 metres. Weathering processes with thick clay
		zones are prevalent throughout this profile, leading to the
		accumulation of REE closer to the upper part of the formation. The
		rocks within this formation are predominantly soft and friable, with an
		extremely fine particle size. These characteristics are considered
		advantageous for the exploration of Clay hosted REE deposits.

³ ASX announcement "World class clay hosted rare earth grades uncovered at CODA North" dated 18 March 2024

Drill hole Information

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
- easting and northing of the drill hole collar
- elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

The data and information of about the drillholes are given below,

Total number of holes completed (Table 1)

Diamond Drill holes 24

RC drillholes 40

Collar information of all drillholes completed so far is given in Table 3

The current report documents the significant assays of 10 drillholes (Refer table 4 and Figure 11) evaluated by Enova team.

Further assays are being received and evaluated under work in progress.

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

The data are being compiled in Collar, Survey, Assay and Geology files. The Assay data has been compiled in the Assay table and TREO and NdPr% are given in the Appendix C, table 4. The database has been compiled as per industry standard practices and for the use of resource modelling in the next stage.

The conversion of Total Rare Earth Oxide (TREO) will be calculated using standard conversion table as mentioned below.

The conversion of elemental assay results to expected common rare earth oxide products, uses conversion factors applied relating to the atomic composition of common rare earth oxide sale products. The following calculation for TREO provides REE to RE oxide conversion factors and lists the REE included:

TREO=

```
(Ce*1.23) +(Dy*1.15) +(Er*1.14) +(Gd*1.15)
+(Ho*1.15) +(La*1.17) +(Lu*1.14) +(Nd*1.17) +(Pr*1.21) +(Sm*1.16)
+(Tb*1.18) +(Tm*1.14)
+(Y*1.27) +(Yb*1.14)
```

For the reporting of significant intersections, the downhole aggregation for the cut-off calculation is based on the average of 3 consecutive samples that are greater than the nominal cutoff. No more than 2 sample below cut-off is accepted in any 3m consecutive aggregation but the aggregation with the below cut-off sample must remain above the nominal cut-off.

Nominal cut-offs of 1000 ppm and 2000 ppm have been applied for calculation of the significant results. Notable high-grade assays have been calculated with nominal cut-off 3000 ppm.

		A schematic cross section in North South direction is shown in Figure 6.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Due to the geometry of the mineralisation, the vertical orientation of the drill holes, the downhole lengths are likely to be close approximations of the true widths of the mineralised zones. In instances where discrepancies between downhole lengths and true widths may occur, it should be noted as "downhole thickness or length, not the true width". All drill holes are vertical and suitable for the deposit type, ensuring unbiased sampling of the mineralisation
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The data provided in this report aids readers in comprehending the information more effectively. The document includes various diagrams and supplementary details, which enhance the clarity and accessibility of the geological findings and exploration results. Please refer to the Figure 1 to 11 for drilling, sampling related data and information and Figure 12 for Coda North tenement and Figure 11 for drillhole locations.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The data presented in this report aims to offer a transparent and comprehensive overview of the exploration activities and findings. It thoroughly covers information on sampling techniques, geological context, prior exploration work, and assay results. Relevant cross-references to previous announcements are included to ensure continuity and clarity. Diagrams, such as drillhole plan and tenements maps and tables, are provided to facilitate a deeper understanding of the data. Additionally, the report distinctly mentions the source of the samples, whether from saprolitic clays, kamafugite lithounits under Patos formation, to ensure a balanced perspective. This report represents the exploration activities and findings without any undue bias or omission.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no additional substantive, relevant and significant exploration data to report currently.

Further work

- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive

In the current stage, resource delineation drilling is focused on systematically mapping the extent and continuity of the mineralised zones identified during initial exploration. This involves both infill and step-out drilling to provide detailed information on the grade and distribution of the mineralised zones, reducing geological uncertainty and will improve the confidence and accuracy of the resource model in the next stage.

As we move to the next stage, resource definition will take precedence, leading to a compliant mineral resource estimate. Diagrams and figures in the current document entail the future infill drilling requirement in the gaps to enhance the confidence on geological, grade continuity and resource categorisation.

Appendix -B

The drillholes collars presented in the current release

HoleID	Project	East_UTM	North_UTM	Elev	Datum	Zone	DIP	EOH (m)	Drill Type
CDN-DD-0001	CODA North	318514	7954393	1016	WGS84	23\$	90	39.36	DD
CDN-DD-0002	CODA North	318509	7954001	1046	WGS84	23\$	90	57.1	DD
CDN-DD-0003	CODA North	320507	7954002	1033	WGS84	23S	90	53.42	DD
CDN-DD-0004	CODA North	320514	7954795	1043	WGS84	23\$	90	79.9	DD
CDN-DD-0005	CODA North	320093	7954375	1074	WGS84	23S	90	81.21	DD
CDN-DD-0006	CODA North	319310	7954007	1058	WGS84	23S	90	81.11	DD
CDN-DD-0007	CODA North	319710	7954396	1061	WGS84	23S	90	61.81	DD
CDN-DD-0008	CODA North	320096	7954797	1053	WGS84	23\$	90	63.09	DD
CDN-DD-0009	CODA North	319707	7954802	1048	WGS84	23\$	90	59.45	DD
CDN-DD-0010	CODA North	318502	7955997	1064	WGS84	23S	90	68.65	DD
CDN-DD-0011	CODA North	319310	7956801	1020	WGS84	23\$	90	45.89	DD
CDN-DD-0012	CODA North	319697	7956813	1057	WGS84	23\$	90	43.31	DD
CDN-DD-0013	CODA North	320110	7956800	1065	WGS84	23S	90	54.27	DD
CDN-DD-0014	CODA North	319706	7957204	1047	WGS84	23S	90	36.24	DD
CDN-DD-0015	CODA North	319298	7957202	957	WGS84	23\$	90	27.71	DD
CDN-DD-0016	CODA North	319714	7957607	1021	WGS84	23S	90	25.58	DD
CDN-DD-0017	CODA North	319710	7958398	1011	WGS84	23S	90	27.72	DD
CDN-DD-0018	CODA North	319714	7958809	1029	WGS84	23S	90	30.1	DD
CDN-DD-0019	CODA North	319249	7958670	1023	WGS84	23S	90	50.63	DD
CDN-DD-0020	CODA North	322517	7954400	1050	WGS84	23S	90	40.81	DD
CDN-DD-0021	CODA North	322512	7954008	1067	WGS84	23S	90	80.05	DD
CDN-DD-0022	CODA North	323252	7953613	1011	WGS84	23S	90	85.22	DD
CDN-DD-0023	CODA North	323629	7953620	1045	WGS84	23S	90	57.5	DD
CDN-DD-0024	CODA North	323298	7953599	955	WGS84	23S	90	60.05	DD
CDN-RC-0001	CODA North	320905	7954403	1014	WGS84	23S	90	50	RC
CDN-RC-0002	CODA North	320512	7955196	1012	WGS84	23S	90	42	RC

CDN-RC-0003	CODA North	320101	7953991	1056	WGS84	23S	90	48	RC
CDN-RC-0004	CODA North	321145	7955026	997	WGS84	23S	90	30	RC
CDN-RC-0005	CODA North	320512	7954410	1046	WGS84	23S	90	67	RC
CDN-RC-0006	CODA North	318904	7954006	1055	WGS84	23S	90	62	RC
CDN-RC-0007	CODA North	318812	7954302	1036	WGS84	23S	90	40	RC
CDN-RC-0008	CODA North	319312	7954414	1049	WGS84	23S	90	56	RC
CDN-RC-0009	CODA North	320118	7955206	1026	WGS84	23S	90	51	RC
CDN-RC-0010	CODA North	319710	7955202	1016	WGS84	23S	90	35	RC
CDN-RC-0011	CODA North	318912	7956006	1054	WGS85	23S	90	44	RC
CDN-RC-0012	CODA North	318514	7955195	1043	WGS86	23S	90	58	RC
CDN-RC-0013	CODA North	318509	7955597	1054	WGS87	23S	90	59	RC
CDN-RC-0014	CODA North	318503	7954814	1015	WGS88	23S	90	36	RC
CDN-RC-0015	CODA North	319313	7956404	1062	WGS89	23S	90	58	RC
CDN-RC-0016	CODA North	319702	7956008	979	WGS90	23S	90	27	RC
CDN-RC-0017	CODA North	319308	7956007	1024	WGS91	23S	90	28	RC
CDN-RC-0018	CODA North	320097	7957207	1059	WGS92	23S	90	41	RC
CDN-RC-0019	CODA North	320108	7957600	1048	WGS93	23S	90	40	RC
CDN-RC-0020	CODA North	320495	7957992	1047	WGS94	23S	90	51	RC
CDN-RC-0021	CODA North	320592	7957645	1070	WGS95	23S	90	62	RC
CDN-RC-0022	CODA North	319311	7957605	1000	WGS96	23S	90	21	RC
CDN-RC-0023	CODA North	320108	7957994	1018	WGS97	23S	90	12	RC
CDN-RC-0024	CODA North	320510	7958365	1026	WGS98	23S	90	32	RC
CDN-RC-0025	CODA North	319337	7958404	1024	WGS99	23S	90	50	RC
CDN-RC-0026	CODA North	321794	7954422	1033	WGS100	23S	90	50	RC
CDN-RC-0027	CODA North	321712	7954802	1006	WGS101	23S	90	38	RC
CDN-RC-0028	CODA North	322270	7954994	978	WGS84	23S	90	35	RC
CDN-RC-0029	CODA North	322705	7955200	1003	WGS84	23S	90	29	RC
CDN-RC-0030	CODA North	322501	7954808	1032	WGS84	23S	90	67	RC
CDN-RC-0031	CODA North	322914	7954005	1051	WGS84	23S	90	72	RC

CDN-RC-0032	CODA North	323314	7953608	1057	WGS84	23S	90	54	RC
CDN-RC-0033	CODA North	322912	7954416	1043	WGS84	23S	90	57	RC
CDN-RC-0034	CODA North	323235	7954381	1013	WGS84	23S	90	37	RC
CDN-RC-0035	CODA North	323708	7954381	1007	WGS84	23S	90	33	RC
CDN-RC-0036	CODA North	323684	7954803	1029	WGS84	23S	90	52	RC
CDN-RC-0037	CODA North	323931	7956073	1040	WGS84	23S	90	48	RC
CDN-RC-0038	CODA North	323697	7955677	1050	WGS84	23S	90	60	RC
CDN-RC-0039	CODA North	323323	7955646	1042	WGS84	23S	90	52	RC
CDN-RC-0040	CODA North	322899	7955567	978	WGS84	23\$	90	15	RC

Table 3: The coordinates of Diamond and RC drillholes for which assays received in Coda North area

Appendix -C

SampleID	FROM	то	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-DD-0006-0001	0	3	3	737.5	15%	
CDN-DD-0006-0003	3	6	3	802.1	14%	
CDN-DD-0006-0004	6	9	3	998.7	15%	
CDN-DD-0006-0005	9	12	3	1,115.9	18%	Tertiary Sedimentary Cover
CDN-DD-0006-0006	12	15	3	1,214.2	20%	,
CDN-DD-0006-0007	15	18	3	1,176.3	21%	
CDN-DD-0006-0008	18	20	2	1,230.9	22%	
CDN-DD-0006-0009	20	22	2	1,079.8	24%	
CDN-DD-0006-0011	22	24	2	608.0	23%	
CDN-DD-0006-0012	24	26	2	563.8	22%	
CDN-DD-0006-0012	26	28.83	2.83	602.0	19%	Laterite
CDN-DD-0006-0014	28.83	30	1.17	564.8	19%	Edititit
CDN-DD-0006-0015	30	31	1	501.1	19%	
CDN-DD-0006-0017	31	32	1	771.0	19%	
CDN-DD-0006-0018	32	33	1	922.0	18%	
CDN-DD-0006-0019	33	34	1	824.0	16%	
CDN-DD-0006-0020	34	35	1	3,096.5		
	35	36	1		16%	
CDN-DD-0006-0022			1	7,141.8	22%	
CDN-DD-0006-0023	36	37		7,401.8	29%	
CDN-DD-0006-0024	37	38	1	2,849.3	26%	
CDN-DD-0006-0025	38	39	1	2,931.0	25%	
CDN-DD-0006-0026	39	40	1	3,077.3	30%	
CDN-DD-0006-0027	40	41	1	3,169.5	28%	
CDN-DD-0006-0028	41	42	1	3,124.6	22%	
CDN-DD-0006-0030	42	43	1	2,128.6	22%	
CDN-DD-0006-0031	43	44	1	1,689.7	22%	
CDN-DD-0006-0033	44	45	1	1,947.2	22%	
CDN-DD-0006-0034	45	46	1	1,741.6	21%	
CDN-DD-0006-0035	46	47	1	1,644.8	22%	
CDN-DD-0006-0036	47	48	1	2,084.7	21%	
CDN-DD-0006-0037	48	49	1	1,968.4	20%	
CDN-DD-0006-0038	49	50	1	1,566.5	21%	
CDN-DD-0006-0039	50	51	1	2,167.2	21%	
CDN-DD-0006-0041	51	52	1	2,438.8	23%	
CDN-DD-0006-0042	52	53	1	2,001.7	21%	
CDN-DD-0006-0043	53	54	1	2,049.1	22%	
CDN-DD-0006-0044	54	55	1	1,754.7	22%	Kamafugite
CDN-DD-0006-0045	55	56	1	1,449.8	22%	
CDN-DD-0006-0046	56	57	1	1,247.2	21%	
CDN-DD-0006-0048	57	58	1	1,942.8	21%	
CDN-DD-0006-0050	58	59	1	1,797.1	20%	
CDN-DD-0006-0051	59	60	1	1,317.8	20%	
CDN-DD-0006-0052	60	61	1	1,451.1	20%	
CDN-DD-0006-0053	61	62	1	1,515.8	20%	
CDN-DD-0006-0054	62	63	1	1,924.2	21%	
CDN-DD-0006-0055	63	64	1	1,619.7	21%	
CDN-DD-0006-0056	64	65	1	1,413.5	21%	
CDN-DD-0006-0057	65	66	1	1,755.1	21%	
CDN-DD-0006-0058	66	67	1	1,586.2	22%	
CDN-DD-0006-0060	67	68	1	1,756.7	21%	
CDN-DD-0006-0061	68	69	1	1,522.1	20%	
CDN-DD-0006-0062	69	70	1	1,252.9	20%	
CDN-DD-0006-0064	70	71	1	1,635.5	20%	
CDN-DD-0006-0065	71	72	1	1,557.4	20%	
CDN-DD-0006-0066	72	73	1	1,438.1	20%	
CDN-DD-0006-0067	73	74	1	1,441.5	20%	
CDN-DD-0006-0068	74	75	1	1,378.8	21%	
CDN-DD-0006-0070	75	76	1	1,010.2	22%	
CDN-DD-0006-0070	76	77	1	1,106.9	22%	
CDN-DD-0006-0071	77	78	1			
		78	1	1,234.0	22%	
CDN-DD-0006-0074	78 70		1	1,192.5	21%	
CDN-DD-0006-0074	79	80		1,098.6	21%	Candatara
CDN-DD-0006-0075	80	81.11	1.11	1,108.3	22%	Sandstone

SampleID	FROM	то	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-DD-0007-0001	0	3	3	832.6	15%	Little 1081
CDN-DD-0007-0003	3	6	3	936.1	15%	
CDN-DD-0007-0005	6	9	3	1,065.1	16%	
CDN-DD-0007-0006	9	12	3	1,293.5	20%	
CDN-DD-0007-0007	12	15	3	1,345.2		Tertiary Sedimentary Cover
CDN-DD-0007-0007	15	17.78	2.78	1,493.6	22%	reitiary Sedimentary Cover
CDN-DD-0007-0008	17.78	20	2.70	1,041.6	23%	
CDN-DD-0007-0010	20	22	2.22	601.7	22%	
CDN-DD-0007-0010	20	24	2		22%	
CDN-DD-0007-0011	24	24.62	0.62	1,302.3 2,350.2	20%	
CDN-DD-0007-0012	24.62	24.02	1.38	1,412.6	18%	Laterite
CDN-DD-0007-0015	24.62	27	1.30	,	19%	Laterite
CDN-DD-0007-0015	27	28	1	1,691.4 1,633.1	18%	
CDN-DD-0007-0017 CDN-DD-0007-0018	28 29	29 30	1	2,038.1	17% 16%	
	30			1,737.4		
CDN-DD-0007-0020		31	1 1	2,480.4	19%	
CDN-DD-0007-0022	31	32		3,242.4	21%	
CDN-DD-0007-0023	32 33	33	1	2,511.3	18%	
CDN-DD-0007-0024		34	1	3,510.8	21%	
CDN-DD-0007-0025	34	35	1	5,340.1	21%	
CDN-DD-0007-0026	35	36	1	1,865.9	20%	
CDN-DD-0007-0027	36	37	1	3,788.2	22%	
CDN-DD-0007-0028	37	38	1	3,334.5	22%	
CDN-DD-0007-0029	38	39	1	4,295.7	23%	
CDN-DD-0007-0030	39	40	1	2,050.9	23%	
CDN-DD-0007-0031	40	41	1	1,848.4	24%	
CDN-DD-0007-0032	41	42	1	1,732.9	23%	
CDN-DD-0007-0033	42	43	1	1,970.9	23%	Kamafugite
CDN-DD-0007-0035	43	44	1	2,012.0	22%	_
CDN-DD-0007-0036	44	45	1	2,071.4	21%	
CDN-DD-0007-0038	45	46	1	1,671.4	22%	
CDN-DD-0007-0039	46	47	1	2,165.6	21%	
CDN-DD-0007-0041	47	48	1	1,571.8	22%	
CDN-DD-0007-0042	48	49	1	1,862.2	21%	
CDN-DD-0007-0043	49	50	1	1,453.2	21%	
CDN-DD-0007-0044	50	51	1	859.7	20%	
CDN-DD-0007-0045	51	52	1	1,865.9	21%	
CDN-DD-0007-0046	52	53	1	1,476.3	20%	
CDN-DD-0007-0047	53	54	1	1,651.3	21%	
CDN-DD-0007-0048	54	55	1	1,312.5	21%	
CDN-DD-0007-0049	55	56	1	1,327.1	21%	
CDN-DD-0007-0051	56	57	1	2,055.2	21%	1
CDN-DD-0007-0052	57	58	1	1,665.8	21%	
CDN-DD-0007-0053	58	59.61	1.61	1,110.4	20%	
CDN-DD-0007-0054	59.61	60	0.39	197.9	18%	
CDN-DD-0007-0055	60	61	1	840.3	22%	Sandstone
CDN-DD-0007-0056	61	61.81	0.81	1,270.5	21%	

SampleID	FROM	то	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-DD-0008-0001	0	2	2	946.4	15%	
CDN-DD-0008-0003	2	4	2	939.2	15%	
CDN-DD-0008-0004	4	6	2	1,088.4	15%	Tertiary Sedimentary Cover
CDN-DD-0008-0005	6	7.89	1.89	1,307.3	19%	
CDN-DD-0008-0006	7.89	10	2.11	652.7	21%	
CDN-DD-0008-0007	10	12	2	691.1	24%	Laterite
CDN-DD-0008-0008	12	13.3	1.3	1,158.5	23%	246776
CDN-DD-0008-0010	13.3	14	0.7	2,141.3	18%	
CDN-DD-0008-0011	14	15	1	1,355.7	20%	
CDN-DD-0008-0012	15	16	1	823.9	19%	
CDN-DD-0008-0013	16	17	1	2,436.1	20%	
CDN-DD-0008-0014	17	18	1	4,546.1	26%	
CDN-DD-0008-0015	18	19	1		26%	
CDN-DD-0008-0016	19	20	1	3,870.1 4,354.0	27%	
	20	21	1		26%	
CDN-DD-0008-0017	20	22	1	4,126.4	20%	
CDN-DD-0008-0018				2,018.4		
CDN-DD-0008-0019	22	23	1	3,099.2	25%	
CDN-DD-0008-0021	23	24	1	2,581.1	22%	
CDN-DD-0008-0023	24	25	1	2,048.2	20%	
CDN-DD-0008-0024	25	26	1	3,476.5	20%	
CDN-DD-0008-0026	26	27	1	3,179.9	20%	
CDN-DD-0008-0027	27	28	1	2,489.8	18%	
CDN-DD-0008-0028	28	29	1	3,728.1	21%	
CDN-DD-0008-0029	29	30	1	2,990.5	23%	
CDN-DD-0008-0030	30	31	1	2,322.8	25%	
CDN-DD-0008-0031	31	32	1	2,766.8	22%	
CDN-DD-0008-0032	32	33	1	1,830.2	18%	
CDN-DD-0008-0033	33	34	1	3,951.9	21%	
CDN-DD-0008-0034	34	35	1	3,526.9	22%	
CDN-DD-0008-0035	35	36	1	3,234.6	22%	
CDN-DD-0008-0036	36	37	1	3,425.5	21%	
CDN-DD-0008-0037	37	38	1	2,607.8	20%	Kamafugite
CDN-DD-0008-0038	38	39	1	2,975.1	20%	_
CDN-DD-0008-0040	39	40	1	1,742.5	21%	
CDN-DD-0008-0042	40	41	1	1,439.1	20%	
CDN-DD-0008-0044	41	42	1	1,743.0	21%	
CDN-DD-0008-0045	42	43	1	1,669.3	21%	
CDN-DD-0008-0046	43	44	1	1,503.1	21%	
CDN-DD-0008-0047	44	45	1	1,046.9	20%	
CDN-DD-0008-0048	45	46	1	949.4	20%	
CDN-DD-0008-0049	46	47	1	837.3	19%	
CDN-DD-0008-0050	47	48	1	713.8	19%	
CDN-DD-0008-0051	48	49	1	838.0	19%	
CDN-DD-0008-0052	49	50	1	1,050.7	20%	
CDN-DD-0008-0053	50	51	1	1,669.4	20%	
CDN-DD-0008-0054	51	52	1	1,469.1	21%	
CDN-DD-0008-0056	52	53	1	1,501.5	21%	
CDN-DD-0008-0057	53	54	1	1,449.5	21%	
CDN-DD-0008-0058	54	55	1	1,441.6	21%	
CDN-DD-0008-0060	55	56	1	1,500.6	21%	
CDN-DD-0008-0061	56	57	1	1,615.5	23%	
CDN-DD-0008-0062	57	58	1	1,716.1	21%	
CDN-DD-0008-0064	58	59	1	1,455.9	23%	
CDN-DD-0008-0065	59	60	1	1,378.2	21%	
CDN-DD-0008-0066	60	61	1	1,547.6	22%	
CDN-DD-0008-0067	61	62	1	1,467.7	22%	
CDN-DD-0008-0068	62	63.09	1.09	1,209.3	23%	

SampleID	FROM	то	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-DD-0009-0001	0	3	3	910.8	14%	<u> </u>
CDN-DD-0009-0003	3	6	3	1,253.8	14%	Tertiary Sedimentary Cover
CDN-DD-0009-0004	6	7	1	1,039.7	18%	, ,
CDN-DD-0009-0005	7	9	2	828.0	21%	
CDN-DD-0009-0007	9	11	2	959.3	23%	Laterite
CDN-DD-0009-0008	11	12	1	2,049.2	22%	
CDN-DD-0009-0009	12	13	1	2,082.6	18%	
CDN-DD-0009-0010	13	14	1	2,681.1	19%	
CDN-DD-0009-0012	14	15	1	2,337.3	20%	
CDN-DD-0009-0013	15	16	1	6,035.9	20%	
CDN-DD-0009-0014	16	17	1	4,016.3	20%	
CDN-DD-0009-0015	17	18	1	3,681.0	22%	
CDN-DD-0009-0016	18	19	1	2,997.1	25%	
CDN-DD-0009-0017	19	20	1	4,128.1	25%	
CDN-DD-0009-0019	20	21	1	1,769.3	23%	
CDN-DD-0009-0020	21	22	1	4,014.7	25%	
CDN-DD-0009-0021	22	23	1	4,249.3	21%	
CDN-DD-0009-0022	23	24	1	3,701.3	20%	
CDN-DD-0009-0023	24	25	1	2,716.3	21%	
CDN-DD-0009-0024	25	26	1	4,122.0	21%	
CDN-DD-0009-0025	26	27	1	2,615.1	20%	
CDN-DD-0009-0026	27	28	1	2,812.6	20%	
CDN-DD-0009-0028	28	29	1	2,056.5	20%	
CDN-DD-0009-0029	29	30	1	2,488.2	22%	
CDN-DD-0009-0031	30	31	1	2,551.4	21%	
CDN-DD-0009-0032	31	32	1	3,190.9	21%	
CDN-DD-0009-0033	32	33	1	2,615.7	21%	
CDN-DD-0009-0035	33	34	1	2,510.6	20%	
CDN-DD-0009-0036	34	35	1	1,978.5	15%	Manager St.
CDN-DD-0009-0037	35	36	1	1,321.3	20%	Kamafugite
CDN-DD-0009-0038	36	37	1	1,010.0	16%	
CDN-DD-0009-0039	37	38	1	699.8	16%	
CDN-DD-0009-0040	38	39	1	725.1	17%	
CDN-DD-0009-0041	39	40	1	538.5	16%	
CDN-DD-0009-0042	40	41	1	760.5	17%	
CDN-DD-0009-0043	41	42	1	938.1	18%	
CDN-DD-0009-0044	42	43	1	1,005.9	18%	
CDN-DD-0009-0045	43	44	1	1,459.5	19%	
CDN-DD-0009-0046	44	45	1	1,252.4	19%	
CDN-DD-0009-0048	45	46	1	1,766.4	22%	
CDN-DD-0009-0049	46	47	1	1,652.8	21%	
CDN-DD-0009-0051	47	48	1	2,089.0	21%	
CDN-DD-0009-0053	48	49	1	2,424.1	20%	
CDN-DD-0009-0054	49	50	1	2,219.8	20%	
CDN-DD-0009-0055	50	51	1	1,694.0	21%	
CDN-DD-0009-0056	51	52	1	1,202.6	19%	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CDN-DD-0009-0057	52	53	1	1,674.6	22%	
CDN-DD-0009-0058	53	54	1	1,015.6	21%	
CDN-DD-0009-0059	54	55	1	997.3	21%	
CDN-DD-0009-0060	55	56	1	1,152.0	20%	
CDN-DD-0009-0061	56	57	1	914.8	20%	
CDN-DD-0009-0062	57	58	1	540.2	16%	
CDN-DD-0009-0063	58	59.45	1.45	554.8	16%	

SampleID	From	То	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-RC-0006-0002	0	3	3	1,150.3	18%	<u> </u>
CDN-RC-0006-0003	3	5	2	1,264.0	18%	
CDN-RC-0006-0004	5	7	2	1,069.6	16%	
CDN-RC-0006-0005	7	9	2	1,221.7	18%	
CDN-RC-0006-0006	9	11	2	1,298.5	20%	
CDN-RC-0006-0007	11	13	2	968.0	22%	Tertiary Sedimentary Cover
CDN-RC-0006-0009	13	15	2	751.7	23%	
CDN-RC-0006-0010	15	17	2	616.1	22%	
CDN-RC-0006-0011	17	19	2	1,413.3	19%	
CDN-RC-0006-0012	19	21	2	1,644.6	18%	
CDN-RC-0006-0013	21	22	1	1,071.8	17%	
CDN-RC-0006-0014	22	23	1	3,625.1	17%	
CDN-RC-0006-0015	23	24	1	3,734.7	18%	
CDN-RC-0006-0017	24	25	1	3,950.2	16%	
CDN-RC-0006-0018	25	26	1	5,325.3	20%	
CDN-RC-0006-0019	26	27	1	3,930.8	21%	
CDN-RC-0006-0020	27	28	1	4,276.4	23%	
CDN-RC-0006-0021	28	29	1	4,128.8	25%	
CDN-RC-0006-0023	29	30	1	2,860.1	26%	
CDN-RC-0006-0024	30	31	1	3,300.9	24%	
CDN-RC-0006-0025	31	32	1	2,535.9	21%	
CDN-RC-0006-0026	32	33	1	3,866.0	28%	
CDN-RC-0006-0028	33	34	1	2,755.8	23%	
CDN-RC-0006-0029	34	35	1	2,455.8	23%	
CDN-RC-0006-0030	35	36	1	2,585.4	22%	
CDN-RC-0006-0031	36	37	1	1,083.5	22%	
CDN-RC-0006-0033	37	38	1	1,429.9	19%	
CDN-RC-0006-0034	38	39	1	1,527.6	20%	
CDN-RC-0006-0035	39	40	1	2,265.9	21%	
CDN-RC-0006-0036	40	41	1	2,590.7	21%	
CDN-RC-0006-0037	41	42	1	1,933.7	20%	Kamafugite
CDN-RC-0006-0038	42	43	1	2,854.8	21%	
CDN-RC-0006-0039	43	44	1	2,895.2	21%	
CDN-RC-0006-0040	44	45	1	2,827.5	21%	
CDN-RC-0006-0041	45	46	1	2,505.7	21%	
CDN-RC-0006-0043	46	47	1	2,485.0	21%	
CDN-RC-0006-0044	47	48	1	2,930.7	22%	
CDN-RC-0006-0045	48	49	1	2,820.5	22%	
CDN-RC-0006-0047	49	50	1	2,748.2	22%	
CDN-RC-0006-0049	50	51	1	2,988.6	21%	
CDN-RC-0006-0050	51	52	1	1,951.8	22%	
CDN-RC-0006-0051	52	53	1	1,824.5	22%	
CDN-RC-0006-0052	53	54	1	1,932.0	22%	
CDN-RC-0006-0053	54	55	1	2,025.3	22%	
CDN-RC-0006-0054	55	56	1	1,900.0	22%	
CDN-RC-0006-0055	56	57	1	1,827.3	22%	
CDN-RC-0006-0056	57	58	1	1,443.9	21%	
CDN-RC-0006-0057	58	59	1	1,363.9	21%	
CDN-RC-0006-0058	59	60	1	1,737.4	21%	
CDN-RC-0006-0059	60	61	1	1,822.3	22%	
CDN-RC-0006-0060	61	62	1	1,849.7	22%	

SampleID	From	То	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-RC-0007-0001	0	3	3	1,008.5	15%	
CDN-RC-0007-0003	3	6	3	1,144.7	15%	Tambia m. Cadima ambam. Cassan
CDN-RC-0007-0005	8	10	2	776.4	21%	Tertiary Sedimentary Cover
CDN-RC-0007-0007	10	12	2	696.7	21%	
CDN-RC-0007-0008	12	13	1	1,216.9	18%	
CDN-RC-0007-0009	13	14	1	2,084.7	18%	
CDN-RC-0007-0010	14	15	1	3,676.8	23%	
CDN-RC-0007-0011	15	16	1	4,107.2	21%	
CDN-RC-0007-0012	16	17	1	4,819.3	23%	
CDN-RC-0007-0013	17	18	1	5,874.4	27%	
CDN-RC-0007-0014	18	19	1	4,851.9	29%	
CDN-RC-0007-0015	19	20	1	4,681.8	27%	
CDN-RC-0007-0017	20	21	1	6,714.1	28%	
CDN-RC-0007-0018	21	22	1	5,148.3	24%	
CDN-RC-0007-0019	22	23	1	6,063.7	25%	
CDN-RC-0007-0020	23	24	1	3,050.4	21%	
CDN-RC-0007-0021	24	25	1	3,929.6	21%	Kamafugite
CDN-RC-0007-0023	25	26	1	4,200.0	22%	Kamarugite
CDN-RC-0007-0025	26	27	1	3,559.9	20%	
CDN-RC-0007-0026	27	28	1	3,092.9	20%	
CDN-RC-0007-0027	28	29	1	2,520.2	20%	
CDN-RC-0007-0028	29	30	1	3,040.2	21%	
CDN-RC-0007-0029	30	31	1	3,512.1	21%	
CDN-RC-0007-0030	31	32	1	2,994.1	21%	
CDN-RC-0007-0031	32	33	1	1,570.0	20%	
CDN-RC-0007-0033	33	34	1	1,176.7	21%	
CDN-RC-0007-0034	34	35	1	116.6	22%	
CDN-RC-0007-0035	35	36	1	86.8	22%	
CDN-RC-0007-0036	36	37	1	86.3	22%	-
CDN-RC-0007-0037	37	38	1	169.6	22%	
CDN-RC-0007-0038	38	39	1	403.1	21%	Sandstone
CDN-RC-0007-0039	39	40	1	191.4	20%	Saliustolle

SampleID	From	То	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-RC-0008-0001	0	2	2	906.2	15%	•
CDN-RC-0008-0003	2	4	2	917.5	15%	
CDN-RC-0008-0005	4	6	2	1,024.3	14%	
CDN-RC-0008-0006	6	8	2	1,068.2	16%	
CDN-RC-0008-0007	8	10	2	1,177.6	19%	Tertiary Sedimentary Cover
CDN-RC-0008-0008	10	12	2	1,090.9	20%	, , ,
CDN-RC-0008-0010	12	14	2	698.2	21%	
CDN-RC-0008-0011	14	16	2	777.9	22%	
CDN-RC-0008-0012	16	18	2	1,053.1	20%	
CDN-RC-0008-0013	18	19	1	1,191.5	18%	
CDN-RC-0008-0014	19	20	1	1,332.7	16%	
CDN-RC-0008-0015	20	21	1	3,889.8	18%	
CDN-RC-0008-0016	21	22	1	5,987.7	19%	
CDN-RC-0008-0017	22	23	1	4,122.6	19%	
CDN-RC-0008-0018	23	24	1	3,207.2	21%	
CDN-RC-0008-0019	24	25	1	3,031.0	22%	
CDN-RC-0008-0020	25	26	1	3,067.0	22%	
CDN-RC-0008-0022	26	27	1	3,441.7	21%	
CDN-RC-0008-0024	27	28	1	2,125.0	19%	
CDN-RC-0008-0026	28	29	1	1,652.8	20%	
CDN-RC-0008-0027	29	30	1	3,037.1	20%	
CDN-RC-0008-0028	30	31	1	2,735.4	22%	
CDN-RC-0008-0029	31	32	1	3,310.4	24%	
CDN-RC-0008-0030	32	33	1	3,155.1	23%	
CDN-RC-0008-0031	33	34	1	2,751.3	18%	
CDN-RC-0008-0032	34	35	1	2,994.5	19%	
CDN-RC-0008-0033	35	36	1	2,541.7	18%	
CDN-RC-0008-0034	36	37	1	2,577.4	14%	Kamafugite
CDN-RC-0008-0035	37	38	1	1,631.0	18%	Kamarugite
CDN-RC-0008-0036	38	39	1	2,135.7	17%	
CDN-RC-0008-0037	39	40	1	2,915.6	16%	
CDN-RC-0008-0038	40	41	1	2,828.6	15%	
CDN-RC-0008-0040	41	42	1	3,217.0	21%	
CDN-RC-0008-0042	42	43	1	2,870.9	21%	
CDN-RC-0008-0044	43	44	1	2,514.7	22%	
CDN-RC-0008-0045	44	45	1	2,491.2	22%	
CDN-RC-0008-0046	45	46	1	1,776.0	21%	
CDN-RC-0008-0047	46	47	1	1,608.1	21%	
CDN-RC-0008-0048	47	48	1	879.5	19%	
CDN-RC-0008-0049	48	49	1	1,668.8	20%	
CDN-RC-0008-0050	49	50	1	719.3	23%	
CDN-RC-0008-0051	50	51	1	790.1	23%	
CDN-RC-0008-0052	51	52	1	264.0	22%	
CDN-RC-0008-0053	52	53	1	112.1	20%	
CDN-RC-0008-0054	53	54	1	133.7	20%	
CDN-RC-0008-0056	54	55	1	92.8	19%	
CDN-RC-0008-0057	55	56	1	136.3	23%	

SampleID	From	То	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-RC-0009-0001	0	2	2	799.1	18%	<u> </u>
CDN-RC-0009-0002	2	4	2	1,104.0	22%	
CDN-RC-0009-0004	4	6	2	1,748.6	20%	
CDN-RC-0009-0006	6	7	1	2,030.8	19%	Tertiary Sedimentary Cover
CDN-RC-0009-0007	7	8	1	2,233.5	19%	+
CDN-RC-0009-0008	8	9	1	2,672.3	20%	
CDN-RC-0009-0009	9	10	1	3,548.1	24%	
CDN-RC-0009-0010	10	11	1	3,355.7	23%	
CDN-RC-0009-0011	11	12	1	5,241.2	26%	
CDN-RC-0009-0013	12	13	1	5,852.9	28%	
CDN-RC-0009-0014	13	14	1	4,229.8	27%	
CDN-RC-0009-0015	14	15	1	3,791.7	25%	
CDN-RC-0009-0016	15	16	1	3,681.5	22%	
CDN-RC-0009-0017	16	17	1	3,956.4	22%	
CDN-RC-0009-0018	17	18	1	5,229.0	23%	
CDN-RC-0009-0019	18	19	1	3,868.9	21%	
CDN-RC-0009-0020	19	20	1	2,265.2	20%	
CDN-RC-0009-0021	20	21	1	3,167.8	21%	
CDN-RC-0009-0023	21	22	1	4,794.8	23%	
CDN-RC-0009-0025	22	23	1	4,259.5	21%	
CDN-RC-0009-0026	23	24	1	3,494.8	22%	
CDN-RC-0009-0028	24	25	1	2,854.4	21%	
CDN-RC-0009-0029	25	26	1	2,907.9	21%	
CDN-RC-0009-0030	26	27	1	1,629.0	21%	
CDN-RC-0009-0031	27	28	1	1,831.0	21%	
CDN-RC-0009-0032	28	29	1	1,496.8	20%	
CDN-RC-0009-0033	29	30	1	1,191.3	20%	Kamafugita
CDN-RC-0009-0034	30	31	1	1,460.4	20%	Kamafugite
CDN-RC-0009-0035	31	32	1	1,689.9	21%	
CDN-RC-0009-0036	32	33	1	1,577.0	20%	
CDN-RC-0009-0037	33	34	1	1,340.6	21%	
CDN-RC-0009-0038	34	35	1	1,399.4	21%	
CDN-RC-0009-0039	35	36	1	1,247.1	21%	
CDN-RC-0009-0040	36	37	1	1,559.6	22%	
CDN-RC-0009-0042	37	38	1	1,575.2	21%	
CDN-RC-0009-0044	38	39	1	1,541.6	22%	
CDN-RC-0009-0045	39	40	1	1,333.0	21%	
CDN-RC-0009-0047	40	41	1	1,598.4	20%	
CDN-RC-0009-0048	41	42	1	1,065.3	21%	
CDN-RC-0009-0049	42	43	1	1,139.5	21%	
CDN-RC-0009-0050	43	44	1	1,143.0	21%	
CDN-RC-0009-0051	44	45	1	1,468.9	21%	
CDN-RC-0009-0052	45	46	1	1,328.3	21%	
CDN-RC-0009-0053	46	47	1	1,461.2	21%	
CDN-RC-0009-0054	47	48	1	1,971.5	22%	
CDN-RC-0009-0055	48	49	1	1,812.3	23%	
CDN-RC-0009-0056	49	50	1	1,289.4	21%	
CDN-RC-0009-0058	50	51	1	1,249.1	21%	

SampleID	From	То	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology
CDN-RC-0010-0001	0	2	2	1,475.8	21%	Tankia w Cadina antaw Cawan
CDN-RC-0010-0002	2	3	1	3,229.8	26%	Tertiary Sedimentary Cover
CDN-RC-0010-0003	3	4	1	3,623.4	26%	
CDN-RC-0010-0005	4	5	1	3,831.8	27%	
CDN-RC-0010-0006	5	6	1	2,297.3	23%	
CDN-RC-0010-0007	6	7	1	3,396.3	20%	
CDN-RC-0010-0008	7	8	1	804.0	22%	
CDN-RC-0010-0010	8	9	1	277.2	22%	
CDN-RC-0010-0011	9	10	1	246.3	20%	
CDN-RC-0010-0012	10	11	1	217.8	21%	
CDN-RC-0010-0013	11	12	1	243.0	22%	
CDN-RC-0010-0014	12	13	1	206.9	21%	
CDN-RC-0010-0015	13	14	1	294.4	21%	
CDN-RC-0010-0016	14	15	1	277.5	21%	
CDN-RC-0010-0017	15	16	1	620.2	20%	
CDN-RC-0010-0018	16	17	1	443.4	18%	Kamafugite
CDN-RC-0010-0020	17	18	1	361.8	20%	Kamarugite
CDN-RC-0010-0021	18	19	1	968.9	21%	
CDN-RC-0010-0023	19	20	1	710.1	21%	
CDN-RC-0010-0024	20	21	1	1,398.7	21%	
CDN-RC-0010-0025	21	22	1	844.5	22%	
CDN-RC-0010-0026	22	23	1	1,010.9	20%	
CDN-RC-0010-0027	23	24	1	532.5	22%	
CDN-RC-0010-0029	24	25	1	579.3	20%	
CDN-RC-0010-0030	25	26	1	741.5	21%	
CDN-RC-0010-0031	26	27	1	214.7	19%	
CDN-RC-0010-0032	27	28	1	669.1	21%	
CDN-RC-0010-0033	28	29	1	268.0	20%	
CDN-RC-0010-0034	29	30	1	298.5	19%	
CDN-RC-0010-0035	30	31	1	237.8	20%	[
CDN-RC-0010-0036	31	33	2	132.3	19%	Sandstone
CDN-RC-0010-0037	33	35	2	55.2	17%	Sanustone

SampleID	From	То	Interval	TREO Inc Y2O3ppm	NdPr%	Lithology	
CDN-RC-0011-0001	0	2	2	646.5	15%		
CDN-RC-0011-0002	2	4	2	702.4	15%		
CDN-RC-0011-0004	4	6	2	979.2	15%		
CDN-RC-0011-0005	6	8	2	1,036.1	15%		
CDN-RC-0011-0006	8	10	2	1,043.0	18%		
CDN-RC-0011-0007	10	12	2	1,271.6	19%		
CDN-RC-0011-0008	12	14	2	1,057.6	21%	Tertiary Sedimentary Cover	
CDN-RC-0011-0009	14	16	2	1,194.9	21%	rertiary Sedimentary Cover	
CDN-RC-0011-0011	16	18	2	1,174.4	21%		
CDN-RC-0011-0012	18	20	2	1,261.6	22%		
CDN-RC-0011-0013	20	22	2	818.2	22%		
CDN-RC-0011-0014	22	24	2	629.4	22%		
CDN-RC-0011-0016	24	26	2	1,005.6	21%		
CDN-RC-0011-0017	26	27	1	2,394.0	21%		
CDN-RC-0011-0018	27	28	1	3,207.1	23%		
CDN-RC-0011-0019	28	29	1	3,524.5	23%		
CDN-RC-0011-0020	29	30	1	3,179.1	21%		
CDN-RC-00111-0021	30	31	1	5,068.9	23%		
CDN-RC-0011-0022	31	32	1	3,459.2	22%		
CDN-RC-0011-0023	32	33	1	2,921.4	21%		
CDN-RC-0011-0025	33	34	1	1,474.7	21%	Kamafugite	
CDN-RC-0011-0026	34	35	1	2,012.5	22%	Kamarugite	
CDN-RC-0011-0027	35	36	1	2,456.7	22%		
CDN-RC-0011-0028	36	37	1	1,667.2	23%		
CDN-RC-0011-0029	37	38	1	2,389.4	27%		
CDN-RC-0011-0030	38	39	1	2,975.1	27%		
CDN-RC-0011-0031	39	40	1	4,800.7	26%	1	
CDN-RC-0011-0032	40	41	1	1,303.6	26%		
CDN-RC-0011-0033	41	44	3	455.6	28%	Sandstone	

Table 4: Significant results of assays from drillholes of CODA North area

Appendix -D: Abbreviations & Legend

CREO = Critical Rare Earth Element Oxide

HREO = Heavy Rare Earth Element Oxide

IAC = Ion Adsorption Clay

LREO = Light Rare Earth Element Oxide

REE = Rare Earth Element

REO = Rare Earth Element Oxide

TREO = Total Rare Earth Element Oxides including Yttrium Oxide

 $NdPr\% = Percentage\ amount\ of\ neodymium\ and\ praseodymium\ oxides\ as\ a\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ amount\ of\ rare\ earth\ oxide\ proportion\ of\ the\ total\ proportion\ oxide\ proportion\ prop$

wt% = Weight percent

Colour legend

