

20 December 2024

Orient East returns 2066g/t silver equivalent - highest grade to date

Critical minerals and base metals explorer **Iltani Resources Limited** (ASX: ILT, "Iltani" or "the Company") is pleased to report further high-grade silver equivalent (Ag Eq.) results from the Orient East deposit at its Orient Silver-Indium Project in Herberton, North Queensland.

HIGHLIGHTS:

- Results for ten RC drill holes (ORR046 to ORR055) completed at Orient East continue to deliver outstanding results mineralisation extends over a strike length of 300m and remains open down-dip, and to the west with results to come from the most westerly holes completed.
- High-grade silver-rich massive sulphide mineralisation intersected in multiple drill holes.
- ORR055 delivered Orient's highest grades to date, with a peak result of 1m @ 2066.3 g/t Ag Eq. from 77m (676.0 g/t Ag, 251.0 g/t In, 16.75% Pb & 13.50% Zn) within a wider intercept of 4m @ 921.8 g/t Ag Eq. from 77m (305.1 g/t Ag, 102.7 g/t In, 7.72% Pb & 5.86% Zn) downhole.
- ORR055's high-grade intersection (77m to 81m) is part of a larger zone of extensive mineralisation which delivered **26m @ 178.5 g/t Ag Eq. from 58m** downhole.
- ORR050 was drilled down-dip of the high-grade mineralisation intersected in ORR041 and ORR042 and extended the high-grade mineralisation
 - ORR050 returned 11m @ 122.7 g/t Ag Eq. from 73m inc. 3m @ 184.1 g/t Ag Eq. from 79m downhole
 - High-grade mineralisation (ORR041, ORR042, & ORR050) intersected over a zone of 130m down-dip, to 80m depth from surface and remains open at depth.
- Orient East drilling also returned:
 - ORR051: 23m @ 104.5 g/t Ag Eq. from 32m inc. 3m @ 551.5 g/t Ag Eq. from 51m downhole. The intersection aligns with a shallow, broad lower-grade zone in ORR050 (27m at 45.2 g/t Ag Eq. including 2m at 180.6 g/t Ag Eq.) and may indicate an increase of grade with depth.
 - ORR046: 14m @ 135.2 g/t Ag Eq. from 49m inc. 2m @ 588 g/t Ag Eq. from 56m downhole; and
 - ORR049: 28m @ 191.5 g/t Ag Eq. from 36m inc. 19m @ 259.8 g/t Ag Eq. from 44m downhole; with a high-grade intercept of 3m @ 664.6 g/t Ag Eq. from 60m with a peak assay of 1m @ 1144.4 g/t Ag Eq. (324 g/t Ag, 0.7 g/t In, 7.05% Pb & 11.35% Zn) from 61m downhole.
- Assay results are expected to be received from the remaining Orient East drill holes (ORR056 to ORR060), plus Orient South (ORR061) and the first seven drill holes of the Orient West JORC Infill program (ORR062 to ORR068) over the next 4 to 8 weeks
- Orient East Exploration Target expected late January 2025, subject to receipt of assay results.

Iltani Managing Director Donald Garner commented:

"Continuing to exceed our expectations, the latest set of drillholes from Orient East have delivered more **thick zones of high-grade silver-lead-zinc-indium mineralisation** at open pittable depths plus more **exceptional silver-rich massive sulphide mineralisation**.

ORR053 delivered the highest-grade intersection drilled to date at Orient of 1m @ 2066.3 g/t Ag Eq. from 77m within a wider intercept of 4m @ 921.8 g/t Ag Eq. from 77m downhole.

Our drilling is demonstrating the continuity of the vein systems, with ORR050 drilled down-dip of the high-grade mineralisation intersected in ORR041 and ORR042. The mineralisation intersected is now continuous over 130m down-dip and remains open at depth. The high-grade intersections are all shallow and would fall within an expected pit shell.

Also of note was the mineralisation intersected in ORR049 from surface to 64m downhole, with a higher-grade intersection of **28m @ 191.5 g/t Ag Eq. from 36m**, again supporting the case for potential open pit mining.

Assay results are now pending from the remaining Orient East drill holes (ORR056 to ORR060), plus ORR061 (Orient South) and the first seven drill holes of the Orient West JORC Infill program (ORR062 to ORR068) over the next 4 to 8 weeks."

<u>www.iltaniresources.com.au</u> Page **2** of **25**

1. Orient Silver-Indium Project

Iltani Resources' Orient Silver-Indium project (Figure 2) is located on Iltani's wholly owned exploration permit EPM 27223, approximately 20km from Herberton in Northern Queensland.

Iltani Tenement Other Tenements Restricted Areas Caldera margin Cover rocks Permian granites Permian volcanics Carboniferous granites Carboniferous volcanics Hodgkins Basin sediments 8100000mN **Herberton Project** Deadman Creek (Ag Pb Zn In) FPM 27168 **Boonmoo Epithermal** Vein System EPM 27221 Orient Project (Ag Pb Zn In) Isabel Extende Boonmoo Sag Caldera 8060000mN

Figure 2 Orient Project Location

Mineralisation at the Orient Project consists of a series of epithermal vein systems with associated stockwork mineralisation and extensive alteration (Orient West, Orient East, Orient North and Deadman Creek) identified over an area of at least approximately 6km² (refer to Figure 3).

Prior to the latest program, Iltani had completed a total of 35 drill holes for 5,758m drilled at Orient, with most of the drilling completed at Orient West where Iltani defined the Exploration Target of:

Orient West Global Exploration Target: 74 - 100 Mt @ 55 - 65 g/t Ag Equivalent (30 g/t Ag Eq. cutoff grade) inclusive of high-grade core material in multiple lenses of 20 - 24Mt @ 110 - 120 g/t Ag Equivalent (80 g/t Ag Eq. cut-off grade)

The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared in accordance with the 2012 Edition of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code')

This announcement refers to an Exploration Target estimate which was announced on 18 July 2024 (Iltani Defines Orient West Exploration Target). Iltani confirms that it is not aware of any new information or data that materially affects the information included in the release and that all material assumptions and technical parameters underpinning the results or estimates in the release continue to apply and have not materially changed.

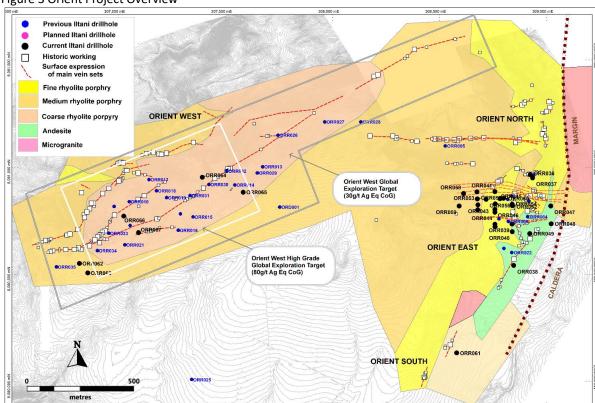


Figure 3 Orient Project Overview

Mineralisation targeted at Orient East is believed to be terminated to the east by the caldera margin, however all indications are that the mineralisation is open to the west (where it is under cover) and has the potential to intersect the Orient West vein system. Iltani added eight drill holes to the recently completed Orient East drilling program to target the mineralisation striking to the west.

Iltani has also completed one RC hole (ORR061) to test an area of historical workings at Orient South. In 2025, Iltani also intends to test a cluster of mapped vein systems and old workings at Orient North, which are approximately 250m north of the current drilling at Orient East. As such, Orient North represents a high-priority target and has the potential to become an additional mining centre at the Orient Project.

<u>www.iltaniresources.com.au</u> Page **4** of **25**

2. Orient East Drilling Results

Iltani is pleased to announce assay results from drillholes ORR046 to ORR055 at Orient East, part of the larger Orient Silver-Indium project. The 10 RC drill holes are part of a larger 25-hole program targeting the Orient East core area (approximately 300m by 400m) where there are multiple intersecting higher-grade vein systems with associated low-grade stockwork mineralisation, many at shallow depth, representing the potential to define an open pittable resource.

Notable results include the highest grades drilled to date by Iltani at Orient in ORR055, which intersected a 4m zone of high-grade silver-rich massive sulphide mineralisation from 77m downhole:

4m @ 921.8 g/t Ag Eq. (305.1 g/t Ag, 102.7 g/t In, 7.72% Pb & 5.86% Zn) from 77m inc. 1m @ 2066.3 g/t Ag Eq. (676.0 g/t Ag, 251.0 g/t In, 16.75% Pb & 13.50% Zn) from 77m from a larger intercept of 26m @ 178.5 g/t Ag Eq. from 58m downhole.

Assay results have also been received from ORR050 which was drilled on the same section line as ORR041 (7m @ 342.5 g/t Ag Eq. inc. 1m @ 1063.9 g/t Ag Eq. from 37m downhole) and ORR042 (19m @ 378.8 g/t Ag Eq. from 64m downhole inc. 5m @ 427.2 g/t Ag Eq. from 67m downhole; and 6m @ 746.7 g/t Ag Eq. from 75m downhole, with the second high-grade zone including 1m @ 1707.2 g/t Ag Eq. (574.0 g/t Ag, 147.5 g/t In, 14.2% Pb & 11.15% Zn) from 77m downhole

ORR050 intersected 11m @ 122.7 g/t Ag Eq. from 73m inc. 3m 184.1 g/t Ag Eq. from 79m downhole.

The high-grade mineralisation (ORR041, ORR042, & ORR050) has been intersected over a zone of 130m down-dip and remains open at depth. The high-grade intersections are all shallow, to a maximum 80m from surface, and would fall within an expected pit shell.

ORR051 was drilled on the same section as ORR041, ORR042 & ORR050, targeting a shallow parallel zone to the south and intersected 23m @ 104.5 g/t Ag Eq. from 32m inc. 3m @ 551.5 g/t Ag Eq. from 51m downhole.

The intersection corresponds to a shallow zone in ORR050 of 27m at 45.2 g/t Ag Eq. from 28m including 2m at 180.6 g/t Ag Eq. from 51m with the intersection in ORR051 potentially indicating an increase in grade at depth. The hole was not drilled to a depth sufficient to intersect the high grade zone present in ORR041, ORR042 & ORR050; this will be rectified during the next phase of drilling.

The drilling also returned these notable results:

- ORR046: 14m @ 135.2 g/t Ag Eq. from 49m inc. inc. 2m @ 588 g/t Ag Eq. from 56m downhole;
- ORR049: 28m @ 191.5 g/t Ag Eq. from 36m inc. 19m @ 259.8 g/t Ag Eq. from 44m downhole; with a high-grade intercept of 3m @ 664.6 g/t Ag Eq. from 60m with a peak assay of 1m @ 1144.4 g/t Ag Eq. (324 g/t Ag, 0.7 g/t In, 7.05% Pb & 11.35% Zn) from 61m downhole.

Iltani's initial 2023 RC drilling program at Orient East investigated mineralisation associated with the small cluster of historic workings covering an area of 100m by 100m in the east of the current drill program. The results from this program provided the impetus to undertake further drilling to determine the lateral and depth extent of mineralisation. The recently completed program was undertaken on a nominal 80m line spacing with intercepts 40m to 50m apart. Some infill holes to 40m line spacing were completed to better define geometry and mineralisation continuity.

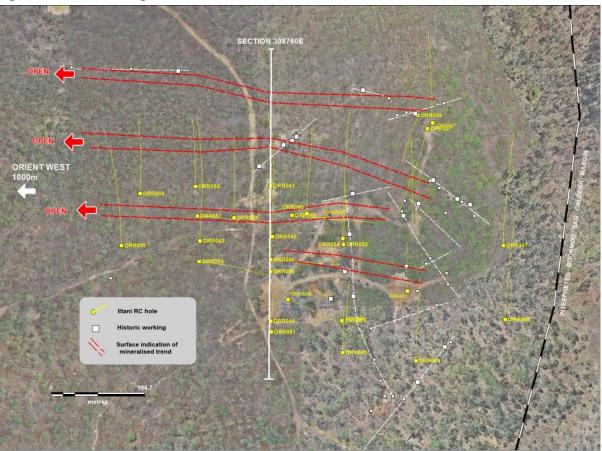
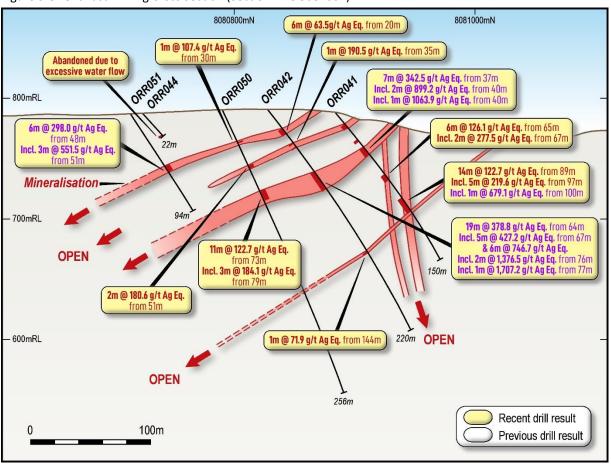
As at Orient West, galena-sphalerite mineralisation is strongly associated with magnetic pyrrhotite, providing an excellent visual and geophysical indicator for mineralisation. Due to the strong visual control, nominal 4m composite samples were collected throughout areas deemed unmineralised or low-grade, with 1m samples collected through the higher sulphide content (assumed to be higher-grade Ag-Pb-Zn-In) zones. Both the 1m and 4m samples were despatched to the lab for analysis.

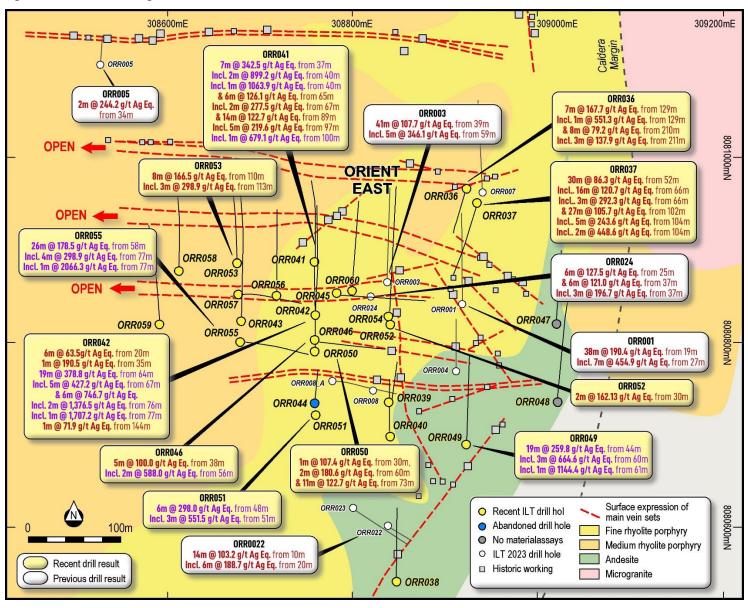
Table 1 Orient East RC Program: ORR046 to ORR055 Material Intercepts (30 g/t Ag Eq. lower cut with no upper cut applied).

Hole	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t	
ORR046	36.00	45.00	9.00	33.3	0.5	0.45%	0.53%	76.0	
inc.	38.00	43.00	5.00	48.0	0.7	0.54%	0.65%	100.0	
inc.	40.00	42.00	2.00	88.5	1.3	0.60%	0.81%	151.2	
ORR046	49.00	63.00	14.00	42.7	7.5	0.97%	1.09%	135.2	
inc.	56.00	58.00	2.00	192.0	46.1	4.13%	4.54%	588.0	
ORR049	0.00	64.00	64.00	26.1	0.1	0.59%	1.00%	97.2	
inc.	36.00	64.00	28.00	57.0	0.1	1.26%	1.78%	191.5	
inc.	44.00	63.00	19.00	79.6	0.1	1.70%	2.39%	259.8	
inc.	52.00	63.00	11.00	104.1	0.2	2.22%	3.25%	346.1	
inc.	52.00	54.00	2.00	155.5	0.3	3.34%	6.48%	599.1	
inc.	60.00	63.00	3.00	203.6	0.4	4.50%	6.00%	664.6	
inc.	61.00	62.00	1.00	324.0	0.7	7.05%	11.35%	1144.4	
ORR050	28.00	55.00	27.00	15.7	0.8	0.33%	0.34%	45.2	
inc.	30.00	31.00	1.00	35.4	2.1	0.68%	0.93%	107.4	
inc.	51.00	53.00	2.00	66.5	5.8	1.50%	1.16%	180.6	
ORR050	73.00	84.00	11.00	40.0	6.3	0.88%	0.96%	122.7	
inc.	79.00	82.00	3.00	55.5	13.4	1.32%	1.50%	184.1	
ORR051	32.00	55.00	23.00	32.3	9.3	0.74%	0.83%	104.5	
inc.	51.00	54.00	3.00	179.9	68.4	3.88%	4.02%	551.5	
ORR052	16.00	48.00	32.00	17.1	2.2	0.41%	0.51%	58.4	
inc.	30.00	32.00	2.00	53.6	9.5	1.19%	1.24%	162.3	
ORR053	110.00	118.00	8.00	42.8	14.0	1.19%	1.49%	166.5	
inc.	113.00	116.00	3.00	73.7	28.7	2.04%	2.77%	298.9	
ORR055	58.00	84.00	26.00	56.2	16.3	1.48%	1.24%	178.5	
inc.	77.00	81.00	4.00	305.1	102.7	7.72%	5.86%	921.8	
inc.	77.00	79.00	2.00	514.5	180.3	12.81%	9.77%	1544.4	
inc.	77.00	78.00	1.00	676.0	251.0	16.75%	13.50%	2066.3	
Intersectio	Intersection width is downhole width only								

www.iltaniresources.com.au Page **6** of **25**

Figure 4 Orient East drilling


Figure 5 Orient East Drilling Cross Section (Section Line 308760E)

www.iltaniresources.com.au Page **7** of **25**

Figure 6 Orient East Drilling Plan

www.iltaniresources.com.au Page 8 of 25

ASX RELEASE

Based on visual geology from the drilling, the program was extended west to eventually cover over 400m strike extent. It should be noted that there are no historic workings or surface indications of mineralisation west of the historic shafts where most of the current program was completed.

Holes ORR047, ORR048, ORR050, ORR052, ORR053, ORR054, targeted the primary zone of east-west-trending mineralisation. The drilling in conjunction with earlier holes has now defined a coherent zone of significant mineralisation over 300m strike extent to a maximum depth of 140m below surface.

ORR049 (28m @ 191.5 g/t Ag Eq. from 36m inc. 19m @ 259.8 g/t Ag Eq. from 44m downhole); with a high-grade intercept of 3m @ 664.6 g/t Ag Eq. from 60m, tested a second zone of mineralisation approximately 200m south of the main zone. The mineralisation was intersected up-dip in ORR004 (28m at 35.1 g/t Ag Eq from surface including 5m at 160 g/t Ag Eq.) and 80m west in ORR040 (68m at 41.1 g/t Ag Eq. from surface) and a further 80m west in ORR051 (23m @ 104.5 g/t Ag Eq. from 32m inc. 3m @ 551.5 g/t Ag Eq.). This zone has only been tested over 160m strike extent to a maximum depth of 60m and remains open to the west and at depth.

Mineralisation encountered in ORR055 was designed to test for north-south trending mineralised zones. The mineralisation encountered (4m @ 921.8 g/t Ag Eq. from 77m inc. 1m @ 2066.3 g/t Ag Eq. from 77m) from a larger intercept of 26m @ 178.5 g/t Ag Eq. from 58m, coincides with the intersection in up-dip hole ORR046 (14m @ 135.2 g/t Ag Eq. from 49m inc. inc. 2m @ 588 g/t Ag Eq. from 56m) and intersections in the north-oriented ORR050 (11m @ 122.7 g/t Ag Eq. from 73m inc. 3m 184.1 g/t Ag Eq. from 79m). There is currently insufficient drilling to properly define the north-south trend however, it appears that the high grades encountered in recent drilling may correspond with the intersection between east-west and north-south zones.

Holes ORRR047 and ORR048 were designed to test the eastern continuation of mineralisation. The holes intersected broad zones of andesite with no significant mineralisation encountered. The two holes are located near the interpreted Boonmoo Sag Complex caldera margin and appear to define the eastern extent of mineralisation.

Based on the drilling completed to date, mineralisation within the main zone tested at Orient East covers an extent of 400m by 350m to a depth of 220m below surface with the higher grade zones intercepted to date within 100m from surface. Mineralisation has not been closed off by drilling to the north, south, west or at depth. The north-south zones require further drilling including oriented diamond core to determine structural controls and geometry.

Further high-priority targets remain at Orient North, Orient South, and the 1000m zone between Orient East and Orient West. The Deadman Creek Prospect is located 1,600m north from Orient East and is located in a similar setting proximal to the caldera margin within the same host lithologies. To date a single hole has been completed at Orient South with no drilling undertaken at the other prospects.

www.iltaniresources.com.au Page 9 of 25

3. Orient Silver-Indium System

Assay results announced from the 10 holes of the recently completed 25-hole drilling campaign at Orient East have demonstrated Orient East's potential to host a large-scale mining operation (open pit and UG) targeting the silver-lead-zinc-indium mineralisation.

Completion of an Orient East Exploration Target (likely late January 2025, subject to receipt of assay results) will set the stage for an exciting period of exploration commencing in early 2025. Iltani plans to mobilise at least two drill rigs to site to:

- Complete the Orient West JORC Resource Infill drilling (seven drill holes completed with an additional 42 drill holes to complete); and
- Follow up the recent Orient East drilling and commence a JORC Resource Infill drilling program at Orient East.

Latest drilling at Orient East has also highlighted the potential for the Orient East and West systems to be linked. The Orient East mineralisation is closed off to the east by the caldera margin, and remains open to the west, where it would ultimately intersect the Orient West vein system (a distance of approx. 1,000m).

To date, Iltani has drilled two holes in the area between Orient East and West (refer to Figure 6):

- ORR005 which intersected 2m @ 244.2 g/t Ag Eq. from 34.0m downhole; and
- ORR025 which intersected multiple silver-lead-zinc-indium veins and returned 2m @ 145.3 g/t Ag Eq. from 163.0m downhole; 2m @ 143.1 g/t Ag Eq. from 219.0m downhole; and 1m @ 64.2 g/t Ag Eq. from 186.0m downhole.

Provious litani drillhole
Planned litani drillhole
Current litani drillhole
Historic working
Surface expression
of nain veris sets
Fline rhyolite porphry
Medium rhyolite porp

Figure 7 Orient Silver-Indium System

Page **10** of **25**

ASX RELEASE

The majority of this area (with the exception of the vein system tested by ORR005) is under a thin layer of more recent cover (sheetwash) and has not been explored. During 2025, Iltani intends to aggressively explore this area, seeking to link the known mineralisation at Orient East and West.

Iltani also intends to commence exploration at Orient North, testing the cluster of mapped veins and old workings.

Authorisation

This announcement has been approved for issue by Donald Garner, Iltani Resources Managing Director.

Contact Details

For further information, please contact:

Donald Garner

Managing Director Iltani Resources Limited +61 438 338 496 dgarner@iltaniresources.com.au

Nathan Ryan

Investor Relations NWR Communications +61 420 582 887 nathan.ryan@nwrcommunications.com.au

Competent Persons Statement

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Erik Norum who is a member of The Australasian Institute of Geologists (AIG), and is an employee of Iltani Resources Limited., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Norum consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Exploration Target

The Exploration Target estimate has been prepared by Mr Stuart Hutchin, who is a Member of the Australian Institute of Geoscientists. Mr Hutchin is a full time employee of Mining One Consultants. Mr Hutchin has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Hutchin consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

www.iltaniresources.com.au Page **11** of **25**

Metallurgical Equivalent Calculation

The equivalent silver formula is Ag Eq. = Ag + (Pb x 35.5) + (Zn x 50.2) + (In x 0.47)

Table 2 Metal Equivalent Calculation - Recoveries and Commodity Prices

Metal	Price/Unit	Recovery
Silver	US\$20/oz	87%
Lead	US\$1.00/lb	90%
Zinc	US\$1.50/lb	85%
Indium	US\$350/kg	85%

Please refer to the release dated 14 November 2023 (Test Work Confirms Silver-Indium Production Potential) detailing the historical test work which Iltani is using to support the metal equivalent calculation.

The metal equivalent calculation (Ag Eq.) assumes lead and silver will be recovered to a lead concentrate and zinc, silver and indium will be recovered to a zinc concentrate. It is Iltani's opinion that all the elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

It should be noted that there are other metals present, notably antimony and tin, that have the potential to be included in the metallurgical equivalent calculation, but at this stage, Iltani has chosen not to do so. These metals will likely also be recovered to the concentrates, notably the lead concentrate, however Iltani is currently assuming that these metals will not be payable, so are excluded from the metallurgical equivalent calculation.

Should this situation change, and the antimony and tin become payable in the lead concentrate and/or metallurgical test work indicates that the antimony or tin can be recovered to a separate concentrate where they are payable, then the metallurgical equivalent calculation could be expanded to include these metals.

www.iltaniresources.com.au Page 12 of 25

About Iltani Resources

Iltani Resources (ASX: ILT) is an ASX listed company focused exploring for the base metals and critical minerals required to create a low emission future. It has built a portfolio of advanced exploration projects in Queensland and Tasmania with multiple high quality, drill-ready targets. Iltani has completed drilling at the Orient Silver-Indium Project, part of its Herberton Project, in Northern Queensland. The drilling has returned outstanding intercepts of silver-lead-zinc-indium mineralisation, positioning Orient as Australia's most exciting silver-indium discovery.

Other projects include the Northern Base Metal Project in Northern Queensland plus the Mt Read Volcanics Project in Tasmania.

Herberton Project Silver, Base Metals (Cu Pb Zn) & Critical Raw Materials (In Sb Sn) Cairns Northern Base Metal Project Base Metals (Cu Pb Zn) Port Hedland Northern Queensland Territory Rockhampton Alice Springs Western Australia Brisbane South Australia Kalgoorlie = Perth New South Esperance Sydney Canberra = ctoria Mt Read Volcanics Project Tasmania Base Metals (Cu Pb Zn) 1000km Hobart

Figure 8 Location of Iltani Resources' projects in Queensland and Tasmania

www.iltaniresources.com.au Page 13 of 25

Table 3 Orient RC Drill Program Drillhole Data

Prospect	Hole_ID	Hole Type	Depth (m)	Grid_Datum	East	North	RL	Dip	Azimuth
Orient East	ORR036	RC	250	MGA94_55	308924	8080965	834	-75	195
Orient East	ORR037	RC	160	MGA94_55	308935	8080950	844	-50	195
Orient East	ORR038	RC	126	MGA94_55	308847	8080542	790	-50	360
Orient East	ORR039	RC	94	MGA94_55	308839	8080735	797	-60	360
Orient East	ORR040	RC	112	MGA94_55	308840	8080699	811	-60	360
Orient East	ORR041	RC	148	MGA94_55	308759	8080886	797	-50	360
Orient East	ORR042	RC	220	MGA94_55	308761	8080829	806	-50	360
Orient East	ORR043	RC	220	MGA94_55	308680	8080824	795	-50	360
Orient East	ORR044	RC	22	MGA94_55	308759	8080734	793	-60	360
Orient East	ORR045	RC	160	MGA94_55	308783	8080853	809	-55	90
Orient East	ORR046	RC	160	MGA94_55	308759	8080803	799	-60	90
Orient East	ORR047	RC	202	MGA94_55	309020	8080819	794	-50	360
Orient East	ORR048	RC	220	MGA94_55	309022	8080736	794	-50	360
Orient East	ORR049	RC	154	MGA94_55	308922	8080690	790	-50	360
Orient East	ORR050	RC	256	MGA94_55	308759	8080790	802	-65	360
Orient East	ORR051	RC	94	MGA94_55	308760	8080722	801	-60	360
Orient East	ORR052	RC	123	MGA94_55	308841	8080820	816	-55	360
Orient East	ORR053	RC	125	MGA94_55	308675	8080885	805	-50	360
Orient East	ORR054	RC	256	MGA94_55	308840	8080827	816	-50	360
Orient East	ORR055	RC	154	MGA94_55	308679	8080801	793	-60	90
Orient East	ORR056	RC	160	MGA94_55	308718	8080850	795	-50	360
Orient East	ORR057	RC	136	MGA94_55	308677	8080852	802	-60	90
Orient East	ORR058	RC	148	MGA94_55	308613	8080877	803	-50	360
Orient East	ORR059	RC	196	MGA94_55	308592	8080819	788	-50	360
Orient East	ORR060	RC	160	MGA94_55	308800	8080855	794	-50	360
Orient South	ORR061	RC	118	MGA94_55	308580	8080134	760	-60	310
Orient West	ORR062	RC	202	MGA94_55	306826	8080556	780	-60	320
Orient West	ORR063	RC	208	MGA94_55	306857	8080507	779	-60	320
Orient West	ORR064	RC	214	MGA94_55	307392	8080953	785	-60	320
Orient West	ORR065	RC	244	MGA94_55	307583	8080883	802	-50	320
Orient West	ORR066	RC	160	MGA94_55	307025	8080772	801	-58	320
Orient West	ORR067	RC	256	MGA94_55	307094	8080695	793	-60	320
Orient West	ORR068	RC	220	MGA94_55	306935	8080567	783	-50	320

www.iltaniresources.com.au Page **14** of **25**

Table 4 Orient East RC Drill Program Assay Data (ORR046)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR046	125369	35.00	36.00	1.00	2.3	0.0	0.05%	0.06%	7.0
ORR046	125370	36.00	37.00	1.00	14.0	0.5	0.38%	0.51%	53.6
ORR046	125371	37.00	38.00	1.00	16.2	0.2	0.41%	0.47%	54.6
ORR046	125372	38.00	39.00	1.00	17.9	0.2	0.50%	0.50%	61.0
ORR046	125373	39.00	40.00	1.00	23.6	0.2	0.49%	0.49%	65.6
ORR046	125374	40.00	41.00	1.00	137.0	0.4	0.45%	0.52%	179.0
ORR046	125375	41.00	42.00	1.00	39.9	2.2	0.75%	1.11%	123.4
ORR046	125376	42.00	43.00	1.00	21.8	0.7	0.53%	0.61%	71.2
ORR046	125377	43.00	44.00	1.00	9.0	0.1	0.23%	0.26%	30.1
ORR046	125378	44.00	45.00	1.00	20.3	0.2	0.34%	0.26%	45.4
ORR046	125379	45.00	46.00	1.00	1.7	0.1	0.02%	0.02%	3.7
ORR046	125380	46.00	47.00	1.00	2.4	0.0	0.01%	0.02%	3.9
ORR046	125381	47.00	48.00	1.00	2.6	0.0	0.01%	0.01%	3.7
ORR046	125382	48.00	49.00	1.00	3.1	0.0	0.03%	0.03%	5.7
ORR046	125383	49.00	50.00	1.00	19.7	0.3	0.52%	0.54%	65.3
ORR046	125384	standard							
ORR046	125385	50.00	51.00	1.00	9.9	0.0	0.24%	0.21%	29.1
ORR046	125386	51.00	52.00	1.00	7.4	0.1	0.17%	0.24%	25.5
ORR046	125387	52.00	53.00	1.00	24.6	2.0	0.66%	0.89%	93.8
ORR046	125388	53.00	54.00	1.00	15.7	0.9	0.44%	0.51%	57.4
ORR046	125389	54.00	55.00	1.00	16.4	1.3	0.44%	0.53%	59.1
ORR046	125390	55.00	56.00	1.00	27.6	3.2	0.63%	0.67%	85.0
ORR046	125391	56.00	57.00	1.00	178.0	46.6	3.78%	4.36%	553.0
ORR046	125392	57.00	58.00	1.00	206.0	45.6	4.47%	4.72%	623.1
ORR046	125393	58.00	59.00	1.00	33.5	2.9	0.81%	0.90%	108.5
ORR046	125394	59.00	60.00	1.00	21.9	0.8	0.52%	0.56%	68.5
ORR046	125395	60.00	61.00	1.00	8.2	0.2	0.24%	0.25%	29.4
ORR046	125396	61.00	62.00	1.00	7.8	0.3	0.21%	0.27%	29.3
ORR046	125397	62.00	63.00	1.00	21.4	0.3	0.44%	0.56%	65.2
ORR046	125398	63.00	64.00	1.00	5.4	0.1	0.10%	0.10%	14.1
ORR046	125399	64.00	68.00	4.00	0.5	0.1	0.01%	0.02%	1.7

www.iltaniresources.com.au Page **15** of **25**

Table 5 Orient East RC Drill Program Assay Data (ORR049)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR049	125534	0.00	4.00	4.00	2.9	0.2	0.08%	0.48%	30.1
ORR049	125535	4.00	8.00	4.00	1.8	0.1	0.01%	0.52%	28.2
ORR049	125536	8.00	12.00	4.00	4.8	0.0	0.24%	0.49%	38.0
ORR049	125537	12.00	16.00	4.00	0.4	0.1	0.01%	0.38%	19.8
ORR049	125538	16.00	20.00	4.00	0.4	0.1	0.02%	0.36%	19.1
ORR049	125539	20.00	24.00	4.00	0.2	0.1	0.01%	0.45%	23.1
ORR049	125540	24.00	28.00	4.00	2.1	0.0	0.03%	0.34%	19.9
ORR049	125541	28.00	32.00	4.00	4.4	0.0	0.12%	0.33%	25.2
ORR049	125542	32.00	36.00	4.00	1.4	0.0	0.04%	0.16%	11.1
ORR049	125543	36.00	40.00	4.00	7.7	0.0	0.37%	0.54%	47.6
ORR049	125544	40.00	44.00	4.00	8.9	0.0	0.30%	0.46%	42.6
ORR049	125545	44.00	45.00	1.00	118.0	0.1	2.25%	2.83%	340.0
ORR049	125546	45.00	46.00	1.00	105.0	0.1	2.24%	2.26%	298.0
ORR049	125547	standard							
ORR049	125548	46.00	47.00	1.00	48.5	0.1	1.09%	1.36%	155.1
ORR049	125549	47.00	48.00	1.00	10.8	0.0	0.26%	0.33%	36.6
ORR049	125550	48.00	49.00	1.00	6.9	0.0	0.24%	0.39%	34.8
ORR049	125551	49.00	50.00	1.00	18.1	0.0	0.44%	0.84%	75.6
ORR049	125552	50.00	51.00	1.00	38.6	0.0	0.92%	1.13%	128.0
ORR049	125553	51.00	52.00	1.00	20.3	0.0	0.39%	0.55%	61.7
ORR049	125554	52.00	53.00	1.00	196.0	0.2	4.38%	7.22%	714.0
ORR049	125555	53.00	54.00	1.00	115.0	0.4	2.29%	5.73%	484.1
ORR049	125556	54.00	55.00	1.00	41.1	0.0	0.78%	0.99%	118.4
ORR049	125557	55.00	56.00	1.00	26.1	0.0	0.53%	0.69%	79.3
ORR049	125558	56.00	57.00	1.00	25.1	0.0	0.54%	0.74%	81.3
ORR049	125559	57.00	58.00	1.00	41.8	0.0	0.80%	0.62%	101.4
ORR049	125560	58.00	59.00	1.00	41.1	0.0	0.84%	0.95%	118.5
ORR049	125561	59.00	60.00	1.00	48.7	0.0	0.80%	0.78%	116.0
ORR049	125562	60.00	61.00	1.00	74.7	0.0	1.48%	1.82%	218.4
ORR049	125563	61.00	62.00	1.00	324.0	0.7	7.05%	11.35%	1144.4
ORR049	125564	62.00	63.00	1.00	212.0	0.4	4.97%	4.83%	631.1
ORR049	125565	63.00	64.00	1.00	18.0	0.0	0.45%	0.60%	64.1

www.iltaniresources.com.au Page **16** of **25**

Table 6 Orient East RC Drill Program Assay Data (ORR050)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR050	125596	24.00	28.00	4.00	0.5	0.0	0.00%	0.01%	1.1
ORR050	125597	28.00	29.00	1.00	8.8	0.2	0.21%	0.30%	31.1
ORR050	125598	29.00	30.00	1.00	8.6	0.3	0.22%	0.21%	27.0
ORR050	125599	30.00	31.00	1.00	35.4	2.1	0.68%	0.93%	107.4
ORR050	125600	31.00	32.00	1.00	1.8	0.1	0.03%	0.03%	4.4
ORR050	125601	32.00	33.00	1.00	18.7	0.3	0.14%	0.18%	33.0
ORR050	125602	33.00	34.00	1.00	7.7	0.1	0.07%	0.08%	14.1
ORR050	125603	34.00	35.00	1.00	1.5	0.0	0.03%	0.05%	5.3
ORR050	125604	35.00	36.00	1.00	8.3	1.6	0.21%	0.45%	39.4
ORR050	125605	36.00	37.00	1.00	6.6	0.2	0.15%	0.17%	20.4
ORR050	125606	37.00	38.00	1.00	3.9	0.0	0.01%	0.01%	4.8
ORR050	125607	38.00	39.00	1.00	13.1	0.3	0.36%	0.32%	42.1
ORR050	125608	39.00	40.00	1.00	16.3	0.2	0.31%	0.36%	45.4
ORR050	125609	40.00	41.00	1.00	17.7	0.2	0.24%	0.27%	40.0
ORR050	125610	41.00	42.00	1.00	13.3	0.1	0.18%	0.19%	29.3
ORR050	125611	42.00	43.00	1.00	12.8	0.2	0.24%	0.23%	33.2
ORR050	125612	43.00	44.00	1.00	14.9	0.2	0.35%	0.39%	46.7
ORR050	125613	44.00	45.00	1.00	5.5	0.0	0.04%	0.05%	9.3
ORR050	125614	45.00	46.00	1.00	6.7	0.0	0.02%	0.03%	9.0
ORR050	125615	standard							
ORR050	125616	46.00	47.00	1.00	8.8	0.1	0.20%	0.21%	26.6
ORR050	125617	47.00	48.00	1.00	13.7	0.3	0.46%	0.53%	56.8
ORR050	125618	48.00	49.00	1.00	15.6	0.3	0.44%	0.49%	55.7
ORR050	125619	49.00	50.00	1.00	8.2	0.1	0.24%	0.26%	29.4
ORR050	125620	50.00	51.00	1.00	16.4	0.7	0.46%	0.49%	57.8
ORR050	125621	51.00	52.00	1.00	110.0	10.4	2.44%	1.60%	281.8
ORR050	125622	52.00	53.00	1.00	22.9	1.3	0.57%	0.71%	79.4
ORR050	125623	53.00	54.00	1.00	10.0	0.7	0.26%	0.34%	36.3
ORR050	125624	54.00	55.00	1.00	17.8	0.6	0.42%	0.43%	54.7
ORR050	125625	55.00	56.00	1.00	5.1	0.1	0.14%	0.12%	16.0
ORR050	125636	72.00	73.00	1.00	3.0	0.0	0.07%	0.08%	9.3
ORR050	125637	73.00	74.00	1.00	61.0	0.1	0.51%	0.49%	103.6
ORR050	125638	74.00	75.00	1.00	33.2	5.4	0.78%	0.90%	108.7
ORR050	125639	75.00	76.00	1.00	57.9	8.2	1.51%	1.28%	179.2
ORR050	125640	76.00	77.00	1.00	22.7	2.5	0.62%	0.90%	90.7
ORR050	125641	77.00	78.00	1.00	25.8	5.5	0.61%	0.78%	89.2
ORR050	125642	78.00	79.00	1.00	25.5	2.4	0.62%	0.66%	82.0
ORR050	125643	79.00	80.00	1.00	51.1	10.0	1.17%	1.54%	174.4
ORR050	125644	80.00	81.00	1.00	34.2	5.8	0.82%	0.93%	112.7
ORR050	125645	81.00	82.00	1.00	81.2	24.4	1.96%	2.05%	265.2
ORR050	125646	82.00	83.00	1.00	36.6	5.0	0.83%	0.74%	105.5
ORR050	125647	83.00	84.00	1.00	11.2	0.6	0.28%	0.33%	38.0

<u>www.iltaniresources.com.au</u> Page **17** of **25**

Table 7 Orient East RC Drill Program Assay Data (ORR051)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR051	125703	28.00	32.00	4.00	0.3	0.0	0.00%	0.01%	0.6
ORR051	125704	32.00	36.00	4.00	9.8	0.1	0.28%	0.37%	38.4
ORR051	125705	36.00	40.00	4.00	9.0	0.1	0.25%	0.33%	34.2
ORR051	125706	40.00	44.00	4.00	8.8	0.2	0.22%	0.38%	35.8
ORR051	125707	44.00	48.00	4.00	9.6	0.6	0.26%	0.33%	35.9
ORR051	125708	48.00	49.00	1.00	19.3	1.6	0.47%	0.57%	65.1
ORR051	125709	49.00	50.00	1.00	7.3	0.2	0.12%	0.15%	19.5
ORR051	125710	50.00	51.00	1.00	15.2	0.7	0.36%	0.40%	48.6
ORR051	125711	51.00	52.00	1.00	194.0	99.1	3.77%	6.11%	681.1
ORR051	125712	52.00	53.00	1.00	292.0	92.2	6.47%	5.18%	825.1
ORR051	125713	53.00	54.00	1.00	53.7	13.8	1.40%	0.77%	148.4
ORR051	125714	54.00	55.00	1.00	12.6	3.2	0.36%	0.24%	38.5
ORR051	125715	55.00	56.00	1.00	3.0	0.9	0.06%	0.06%	8.6

Table 8 Orient East RC Drill Program Assay Data (ORR052)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR052	125730	12.00	16.00	4.00	2.3	0.1	0.13%	0.03%	8.4
ORR052	125731	16.00	20.00	4.00	15.4	4.9	0.37%	0.65%	63.3
ORR052	125732	20.00	24.00	4.00	10.2	0.4	0.30%	0.41%	41.2
ORR052	125733	24.00	28.00	4.00	7.9	0.3	0.23%	0.30%	31.1
ORR052	125734	28.00	29.00	1.00	27.1	0.9	0.58%	0.64%	80.1
ORR052	125735	29.00	30.00	1.00	24.2	4.6	0.58%	0.75%	84.3
ORR052	125736	30.00	31.00	1.00	67.2	12.5	1.59%	1.54%	206.6
ORR052	125737	31.00	32.00	1.00	39.9	6.6	0.79%	0.94%	118.0
ORR052	125738	32.00	36.00	4.00	12.0	0.2	0.28%	0.33%	38.8
ORR052	125739	36.00	40.00	4.00	10.4	0.4	0.28%	0.34%	37.8
ORR052	125740	40.00	44.00	4.00	28.2	3.4	0.56%	0.66%	82.9
ORR052	125741	44.00	48.00	4.00	13.5	2.3	0.36%	0.45%	49.8
ORR052	125742	48.00	52.00	4.00	0.6	0.0	0.01%	0.01%	1.6

Table 9 Orient East RC Drill Program Assay Data (ORR053)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR053	125797	110.00	111.00	1.00	21.2	2.4	0.68%	0.70%	81.2
ORR053	125798	111.00	112.00	1.00	15.2	2.9	0.40%	0.41%	51.0
ORR053	125799	112.00	113.00	1.00	31.6	12.6	0.82%	1.22%	127.7
ORR053	125800	113.00	114.00	1.00	69.4	18.0	1.71%	1.69%	223.1
ORR053	125801	114.00	115.00	1.00	83.1	50.4	2.73%	4.96%	452.7
ORR053	125802	115.00	116.00	1.00	68.7	17.7	1.69%	1.67%	220.8
ORR053	125803	standard							
ORR053	125804	116.00	117.00	1.00	34.2	6.6	0.95%	0.69%	105.9
ORR053	125805	117.00	118.00	1.00	19.3	1.8	0.55%	0.60%	69.8
ORR053	125806	118.00	119.00	1.00	3.1	0.3	0.09%	0.11%	12.2

www.iltaniresources.com.au Page 18 of 25

Table 10 Orient East RC Drill Program Assay Data (ORR053)

Hole	Sample ID	From	То	Intersect	Ag g/t	In g/t	Pb %	Zn %	Ag Eq g/t
ORR055	125868	56.00	57.00	1.00	0.6	0.0	0.01%	0.01%	1.4
ORR055	125869	57.00	58.00	1.00	5.7	0.1	0.15%	0.22%	22.2
ORR055	125870	58.00	59.00	1.00	16.9	0.1	0.53%	0.60%	65.7
ORR055	125871	59.00	60.00	1.00	10.0	0.1	0.29%	0.35%	37.8
ORR055	125872	60.00	61.00	1.00	6.8	0.0	0.21%	0.22%	25.1
ORR055	125873	61.00	62.00	1.00	7.7	0.0	0.21%	0.30%	30.1
ORR055	125874	62.00	63.00	1.00	0.7	0.0	0.01%	0.03%	2.6
ORR055	125875	63.00	64.00	1.00	0.3	0.0	0.01%	0.01%	1.1
ORR055	125876	64.00	65.00	1.00	6.3	0.1	0.22%	0.24%	26.1
ORR055	125877	65.00	66.00	1.00	12.6	0.1	0.39%	0.46%	49.3
ORR055	125878	66.00	67.00	1.00	19.8	0.3	0.62%	0.44%	64.1
ORR055	125879	67.00	68.00	1.00	1.1	0.0	0.03%	0.02%	3.1
ORR055	125880	68.00	69.00	1.00	30.0	1.6	0.89%	1.38%	131.5
ORR055	125881	69.00	70.00	1.00	5.4	0.1	0.17%	0.18%	20.4
ORR055	125882	70.00	71.00	1.00	4.6	0.1	0.19%	0.22%	22.7
ORR055	125883	standard							
ORR055	125884	71.00	72.00	1.00	13.0	0.4	0.48%	0.54%	57.3
ORR055	125885	72.00	76.00	4.00	9.4	0.3	0.33%	0.38%	40.2
ORR055	125886	76.00	77.00	1.00	20.2	1.8	0.59%	0.66%	74.9
ORR055	125887	77.00	78.00	1.00	676.0	251.0	16.75%	13.50%	2066.3
ORR055	125888	78.00	79.00	1.00	353.0	109.5	8.87%	6.04%	1022.6
ORR055	125889	79.00	80.00	1.00	98.1	28.9	2.70%	2.14%	315.0
ORR055	125890	80.00	81.00	1.00	93.2	21.5	2.56%	1.78%	283.3
ORR055	125891	81.00	82.00	1.00	16.8	3.1	0.51%	0.52%	62.4
ORR055	125892	82.00	83.00	1.00	16.5	1.3	0.51%	0.62%	66.3
ORR055	125893	83.00	84.00	1.00	15.9	2.8	0.40%	0.44%	53.3
ORR055	125894	84.00	88.00	4.00	6.2	0.4	0.15%	0.18%	20.7
ORR055	125895	88.00	92.00	4.00	1.2	0.1	0.01%	0.01%	2.3

www.iltaniresources.com.au Page **19** of **25**

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling reported is reverse circulation (RC) drilling. Iltani Resources has completed 33 RC holes for 5,678m drilled. The drilling was completed by Charters Towers, Qld based drilling contractors Eagle Drilling Pty Ltd. RC drilling returned samples through a fully enclosed cyclone system, then via a remote controlled gate into a cone splitter. 1m RC samples were homogenised and collected by a static cone splitter to produce a representative 3-5kg sub sample. Sampling comprises 4m composite samples or, where visual mineralisation is encountered, 1m increment RC sub-samples, that were bagged and sent to Australian Laboratory Services Pty Ltd (ALS) in Townsville for preparation and analysis. Preparation consisted of drying of the sample and the entire sample being crushed to 70% passing 6mm and pulverised to 85% passing 75 microns in a ring and puck pulveriser. Analysis will consist of four acid digest with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (ME-MS61) analysis for the following elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y Zn, Zr. Ore grade sample analysis consisted of four acid digest with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) finish. This was carried out for Ag, Pb, Zn, Sn & In.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The drilling was completed using a truck mounted RC rig utilising 6m rods with reverse circulation capability. Drilling diameter was 6.5 inch RC hammer using a face sampling bit. RC hole length ranged from 94m to 256m with average hole length of 172m. Downhole surveys were undertaken at nominal 30m intervals during drilling utilising a digitally controlled Imdex Gyroscope instrument
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists 	 All samples were weighted and weights recorder in the logging sheet. Samples with no recovery or very low recoveries were recorded also in the logging sheet. A few samples were collected wet due to rig unable to keep the hole dry. Wet samples were noted in the logging sheet. Iltani personnel and Eagle Drilling crew monitor sample recovery, size and moisture, making

www.iltaniresources.com.au Page **20** of **25**

Criteria	JORC Code explanation	Commentary
	between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 appropriate adjustments as required to maintain quality. A cone splitter is mounted beneath the cyclone to ensure representative samples are collected. The cyclone and cone splitter were cleaned with compressed air necessary to minimise contamination. No significant contamination or bias has been noted in the current drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was carried out on RC chips by suitably qualified geologists. Lithology, veining, alteration, mineralisation and weathering are recorded in the geology table of the drill hole database. Final and detailed digital geological logs were forwarded from the field following sampling. Geological logging of the RC samples is qualitative and descriptive in nature. Observations were recorded appropriate to the sample type based on visual field estimates of sulphide content and sulphide mineral species. During the logging process Iltani retained representative samples (stored in chip trays) for future reference. All RC chip trays are photographed and the images electronically stored. All drill holes are logged to the end of hole (EoH).
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m increment samples were collected off the drill rig via cyclone - cone splitter into calico bags with a respective weight between 3-5kg. The onsite geologist selects the mineralised interval from logging of washed RC chips, based on identification of either rock alteration and/or visual sulphides. Industry standard sample preparation is conducted under controlled conditions within the laboratory and is considered appropriate for the sample types. QAQC samples (standards, blanks and field duplicates) were submitted at a frequency of at least 1 in 25. Regular reviews of the sampling were carried out by Iltani Geologist to ensure all procedures and best industry practice were followed. Sample sizes and preparation techniques are considered appropriate for the nature of mineralisation.

<u>www.iltaniresources.com.au</u> Page **21** of **25**

Cuitavia	IODC Code cymlenation	Commonton
Criteria Quality of assay	JORC Code explanation The nature quality and	Commentary
data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used 	 Industry standard assay techniques were used to assay for silver and base metal mineralisation (ICP for multi-elements with a four-acid digest)
	 and whether the technique is considered partial or total. For geophysical tools, 	 No geophysical tools, spectrometers or handheld XRF instruments have been used to determine assay results for any elements.
	spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Monitoring of results of blanks, duplicates and standards (inserted at a minimum rate of 1:25) is conducted regularly. QAQC data is reviewed for bias prior to uploading results in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	
Verification of	The verification of significant	No drill holes were twinned.
sampling and assaying	 intersections by either independent or alternative company personnel. The use of twinned holes. 	 Primary data is collected in the field via laptops in a self-validating data entry form; data verification and storage are accomplished by Iltani contractor and staff personnel.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All drillhole data was compiled in Excel worksheets and imported into Micromine in order to query 3D data and generate drill plans and cross sections.
	 Discuss any adjustment to assay data. 	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, 	 Drill hole collar locations are initially set out using a hand held GPS. Downhole surveys completed at nominal 30m
	mine workings and other locations used in Mineral Resource estimation.	intervals by driller using a digitally controlled Imdex Gyroscope instrument.
	 Specification of the grid system used. 	All exploration works are conducted in the GDA94 zone 55 datum.
	 Quality and adequacy of topographic control. 	Topographic control is based on a detailed drone survey and is considered adequate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	Drilling was targeted on selected veins and areas of potential stockwork mineralisation.
	Whether the data spacing and distribution is sufficient to	Drill hole spacing is not adequate to report geological or grade continuity.
	establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Sample compositing has been applied outside the zones of logged mineralisation, where 4m sample composites have been utilised. Iltani will resample the 4m composites on a 1m basis should the composites return high-grade assay results
	Whether sample compositing has been applied.	
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased	The drill holes were orientated in order to intersect the interpreted mineralisation zones as

www.iltaniresources.com.au Page 22 of 25

ASX RELEASE

Criteria	JORC Code explanation	Commentary
geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 perpendicular as possible based on information to date. Due to locally varying intersection angles between drillholes and lithological units all results will be defined as downhole widths. No drilling orientation and sampling bias has been recognised at this time and it is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 Samples were stored in sealed polyweave bags at the drill rig then put on a pallet and transported to ALS Townsville by using a freight carrying company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have been carried out at this point

www.iltaniresources.com.au Page 23 of 25

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Orient is located on EPM 27223. EPM 27223 is wholly owned by Iltani Resources Limited All leases/tenements are in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration activities have been carried out (underground mapping, diamond drilling, surface geochemical surveys and surface mapping, prefeasibility study) by Great Northern Mining Corporation and Mareeba Mining and Exploration over the West and East Orient areas from 1978 to 1989. Exploration activities have been carried out (soils and rock chip sampling) around Orient West and East by Monto Minerals Limited from 2014 to 2017 Red River Resources carried out mapping, sampling and geophysical exploration (drone mag survey and
Geology	Deposit type, geological setting and style of mineralisation.	 IP survey) in 2020 and 2021. Mineralisation occurs in primary vein systems up to 3m wide (controlled by fractures/shears) containing argentiferous galena, cerussite, anglesite, sphalerite, pyrite, marmatite, cassiterite (minor), and stannite (minor) surrounded by a stockwork of lesser veinlets of variable density. The lead-zinc-silver-indium mineralisation at Orient is believed to represent part of an epithermal precious metals system. The Orient vein and stockwork mineralisation are associated with a strongly faulted and deeply fractured zone near the margin of a major caldera subsidence structure.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is 	Iltani Resources has completed 33 RC (Reverse Circulation) drill holes for 5678m drilled (Refer to Table 3).

www.iltaniresources.com.au Page **24** of **25**

Criteria	JORC Code explanation	Commentary
	the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Iltani are using a 30 g/t Ag Eq. lower cut with no upper cut applied) to report material intersections Metal equivalents are used (silver equivalent) The equivalent silver formula is Ag Eq. = Ag + (Pb x 35.5) + (Zn x 50.2) + (In x 0.47) Metal Equivalent Calculation - Recoveries and Commodity Prices Metal Price/Unit Recovery Silver US\$20/oz 87% Lead US\$1.00/lb 90% Zinc US\$1.50/lb 85% Indium US\$300/kg 85% It is Iltani's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the 	Drilling is generally perpendicular to the structure by angled RC at 50° to 60° into structures dipping between 45° and 80°.
	down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections. 	Refer to plans and sections within report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported.	All meaningful and material data is reported
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Exploration of the target area is ongoing. Iltani plans to complete a further drilling at Orient during 2025.

www.iltaniresources.com.au Page **25** of **25**