ASX Announcement

Multiple high-grade gold samples identified at Yalgoo

16 January 2025

HIGHLIGHTS

 Rock chip assay results returned from first pass mapping and sampling program at the Yalgoo Project including:

PRE

LITHIUM

0	Crescent East:	128.5g/t Au (24GGR060)
		78.9g/t Au (24GNR373)
		5.5g/t Au (24GGR059)
0	Bourkes United:	106.6g/t Au (24GGR051)
0	Olive Queen (South)	54.8g/t Au (24GNR363)
		12.7g/t Au (24GNR224)
		3.1g/t Au (24GNR365)
0	Mulloo Hill:	18.1g/t Au (24GNR179)
0	Broken Mount:	13.1g/t Au (24GNR160)
		3.6g/t Au (24GNR159)

- High-grade gold results were returned from both previously untested areas and proximal to known mineralised trends across multiple prospects
- The sampling program aimed to enhance the understanding of the geology and controls of gold mineralisation across the project area
- Further regional sampling results highlight the broader exploration potential across the project area including along the largely untested Mulloo shear zone
- Drill testing of gold targets in the Wadgingarra area due to commence in Q1 2025 pending heritage clearance
- Regional lithostructural interpretation has commenced which will aid drill targeting across the project area

Premier1 Lithium Limited (**ASX:PLC**) ("**Premier1**" or the "**Company**") is pleased to announce that the Company's first pass geological mapping and geochemical sampling program at its Yalgoo Project in the Murchison Region (Figure 1) has returned numerous high-grade gold results across multiple prospect areas.

Managing Director Jason Froud commented:

"We are very excited by the results which confirm the high-grade gold potential of the Yalgoo Project area. Whilst high gold grade results were returned from the known mineralised trends at Olive Queen, Bourkes United and Broken Mount it is important to note that many samples are from previously untested areas. This includes a new mineralised trend some 500m east of the Cresent prospect, with grades up to 128g/t Au, and at Mulloo Hill, with grades up to 18.1g/t Au. Mulloo Hill is approximately 15km south of the Crescent/Wadgingarra area and presents an entirely new, greenfield target. These results highlight the underexplored nature of the project area and its broader prospectivity, providing compelling targets for future exploration."

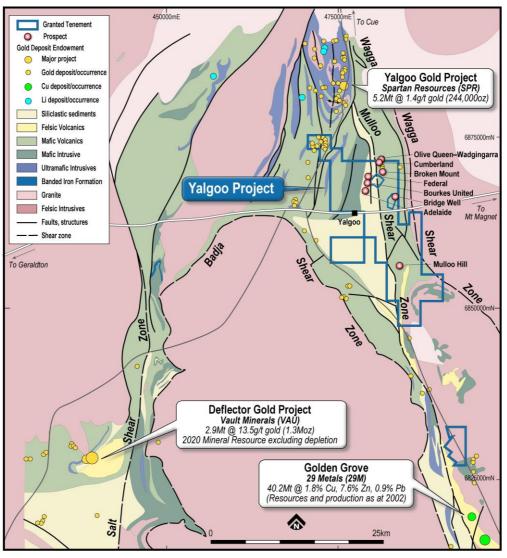


Figure 1: Yalgoo project location and regional geology

Sampling details and results

A total of 168 rock chip samples were collected as part of the Company's first pass geological and structural mapping program at the Yalgoo Project.

The mapping and geochemical sampling program was primarily focused on understanding the geological and structural framework of the project area. The high-grade results obtained are particularly encouraging, given the systematic sampling approach employed. Additionally, selected samples were collected to help determine the controls on known mineralisation at key prospects, including Olive Queen, Crescent, Cumberland, Carlisle, Broken Mount, and Bourkes United, as well as several other regional and conceptual targets across the project area.

Data from this program, along with recently acquired geophysical datasets¹, historical drilling results² and Premier1 soil sampling data, will support the exploration team in identifying drill targets for the upcoming drilling campaign.

¹ Premier1 Lithium Limited. ASX Announcement 13 November 2024.

² Premier1 Lithium Limited. ASX Announcement 26 September 2024.

A key objective was to gain a deeper understanding of the geological and structural context at various areas of known gold mineralisation. Many samples were collected to analyse the geochemistry of rock types previously mapped by the Geological Survey of Western Australia and other entities. The data is being integrated with geological and structural observations made by the Premier1 exploration team, along with recently acquired airborne magnetic data, to develop a lithostructural model of the project area. This model will play a crucial role in guiding future drill targeting.

A number of samples were collected across previously untested areas including at Crescent East, approximately 500m east of the known gold mineralisation at Crescent and at Mulloo Hill, a greenfields target some 15 km south of the known gold mineralisation at Wadgingarra (Figure 2). Significant results include:

Crescent East:	128.5 g/t Au (24GGR060)
	78.9 g/t Au (24GNR373)
	5.5 g/t Au (24GGR059)
	1.8 g/t Au (24GNR374)
Mulloo Hill:	18.1 g/t Au (24GNR179)
	1.2 g/t Au (24GNR351)

Crescent East comprises northeast-southwest gold-bearing brecciated quartz veining (Figure 2) within interpreted mafic and ultramafic lithologies, which are mostly covered by laterite and colluvium. Sampling by Premier 1 to date has identified a surface anomaly extending over 500m of strike (Figure 4). The prospect area has only received minor drill testing at the southeast extent (including RC052: 4m at 1.2 g/t Au and RC056: 6m at 0.9 g/t Au)³ with the main strike extent untested providing a compelling exploration target.

Mulloo Hill is an entirely new, greenfields prospect comprising quartz veining within altered felsic intrusive rocks (Figure 2). The prospect is untested by any historical exploration. Premier1 will commence detailed geological mapping and sampling over this area as well as looking at potential geophysical surveys including drone magnetics.

Figure 2: Crescent East sample 24GGR060 (left) and Mulloo Hill sample 24GNR179 (right)

³ Premier1 Lithium Limited. ASX Announcement 26 September 2024.

Other high-grade results where there has been limited historical drilling or where historical workings are located include:

- Olive Queen (South)
- Carlisle
- Bourkes United:
- Broken Mount:
- Regional samples:
- 54.8 g/t Au (24GNR363) 12.7 g/t Au (24GNR224) 3.1 g/t Au (24GNR365) 1.4 g/t Au (24GNR158) 106.6 g/t Au (24GR051) 13.1 g/t Au (24GNR160) 3.6 g/t Au (24GNR159) 1.3 g/t Au (24GNR188) 0.29 g/t Au (24GNR181) 0.24 g/t Au (24GNR191)

The samples at Olive Queen (South) were taken approximately 300m south of the main historical workings at Olive Queen. Gold mineralisation is hosted within a strongly foliated schist (Figure 3). Although quartz veining and ironstone are present, the high-grade mineralisation appears constrained to the schist and has not been drill tested. This area presents a high priority drilling target for Premier1. Similarly, mineralisation at Bourkes United is hosted within foliated schist/shale material with only two historical drill holes in the adjacent area.

At Carlisle, sample 24GNR158 was taken adjacent to historical workings, along a northwest structure between Broken Mount and Carlisle which has seen no historical drill testing and is approximately 150m along strike from historical drill hole RC0040 (17m at 1.4 g/t Au from 10m)⁴.

Figure 3: Olive Queen sample 24GNR363 (left) and Bourkes United sample 24GNR051 (right)

Samples 24GNR159 and 24GNR160 (3.6g/t Au and 13.1g/t Au respectively) were taken adjacent to historical workings at Broken Mount, comprising limonitic stockwork veining. This area has received some drill testing. Further work will be required in this area prior to committing to any drilling.

More regionally, significant results include 24GNR188 (1.3g/t Au) and 24GNR191 (0.235 g/t Au) along an interpreted north-south structure 600m southwest of Bourkes United where no previous drilling has

⁴ Premier1 Lithium Limited. ASX Announcement 26 September 2024.

been undertaken. Samples with anomalous assays are summarised in Table 1 and highlight the regional prospectivity of the Yalgoo project, additional results from the sampling program are included in Appendix 1. Sample locations are shown in Figure 4 and Figure 5.

Sample Number	Easting	Northing	Au (g/t)	Cu (ppm)	Description	Prospect
24GGR060	481762	6871219	128.5	491	Brecciated quartz vein with iron oxide matrix	Crescent East
24GGR051	479131	6868480	106.6	113	Shale from historical workings	Bourkes United
24GNR373	481777	6871212	78.9	511	Quartz ironstone with goethite	Crescent East
24GNR363	481151	6871155	54.8	976	Highly foliated red schist	Olive Queen (south)
24GNR179	483569	6856201	18.1	15	Quartz vein in altered felsic intrusive	Mulloo Hill
24GNR160	481157	6870425	13.1	1,223	Mafic schist, quartz veining with minor secondary copper	Broken Mount
24GNR224	481140	6871167	12.7	403	Vuggy quartz ironstone. Adjacent to old workings	Olive Queen (south)
24GGR059	481904	6871129	5.5	1651	Brecciated quartz vein with iron oxide matrix	Crescent East
24GNR159	481159	6870439	3.6	585	Iron and limonite stockwork, narrow fault zone found in old quarry and adjacent to historical workings	Broken Mount
24GNR365	481140	6871110	3.1	317	Quartz ironstone	Olive Queen (south)
24GNR374	481729	6871260	1.8	254	Quartz ironstone	Crescent East
24GNR361	481148	6871163	1.7	116	Quartz ironstone with clay alteration	Olive Queen (south)
24GNR158	480965	6870651	1.4	544	Quartz ironstone from a mine shaft	Carlisle
24GNR188	478634	6868041	1.3	38	Iron rich sample	Regional sample
24GNR351	483566	6856197	1.2	8	Quartz veining in felsic porphyry	Mulloo Hill
24GNR163	479136	6868494	1.0	56	Quartz ironstone adjacent to working	Bourkes United
24GNR164	479124	6868305	0.84	12,945	Quartz with malachite near historical workings	Bourkes United
24GGR055	479154	6869491	0.68	16	Iron rich quartz vein with cubic vugs after pyrite	Federal North
24GNR253	481795	6871236	0.43	175	Quartz/ironstone float adjacent	Crescent East
24GNR165	479130	6868301	0.42	20	Quartz vein from shallow workings	Bourkes United
24GGR054	479644	6869689	0.41	57	Brecciated goethite and iron oxide with some quartz from a fault zone	Federal North
24GNR130	480837	6869936	0.36	1,199	Malachite in gabbro next to small historical working	Mulloo Shear Zone
24GNR372	481815	6871200	0.35	5	Unaltered quartz veining	Crescent East
24GNR218	480534	6870977	0.33	14	Highly weathered outcrop in stream with green and red staining	Mulloo Shear Zone
24GGR061	476425	6870388	0.29	30	Dolerite with quartz veining	Regional sample
24GNR225	481142	6871160	0.28	24	Sheared gabbro; chlorite alteration	Olive Queen (south)
24GNR377	481731	6871342	0.26	5	Unaltered quartz veining	Crescent East
24GNR104	476893	6870037	0.24	20,000	Quartz vein with ironstone and malachite adjacent to old trench	Wadgingarra Hill
24GNR191	478667	6868033	0.24	40	Large quartz vein	Regional sample
24GNR352	483579	6856264	0.23	5	Quartz veining in felsic porphyry	Mulloo Hill
24GNR364	481157	6871129	0.20	17	Dolerite /gabbro sample Olive Queen (se	
24GNR353	483581	6856293	0.20	2	Quartz veining in felsic porphyry Mulloo Hill	
24GNR106	476829	6869804	0.12	5,882	Quartz ironstone with malachite found adjacent to historical workings	Wadgingarra Hill

Table 1: Significant assay results from rock chip sample program

The results from these samples will help Premier1 understand the controls on mineralisation in areas of historical mineralisation given the limited geochemical and structural data available in the historical records and reports.

A Programme of Work (PoW) for drilling within the Wadgingarra area has been lodged and approved by the Department of Energy, Mines, Industry Regulation and Safety. Heritage clearance is ongoing with the Yamatji Southern Regional Corporation. A heritage survey prior to drilling is scheduled for early February 2025.

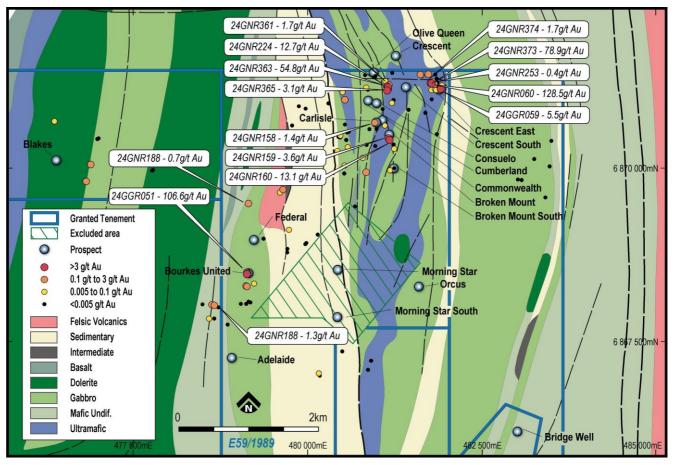


Figure 4: Location of rock chip samples within the Wadgingarra area

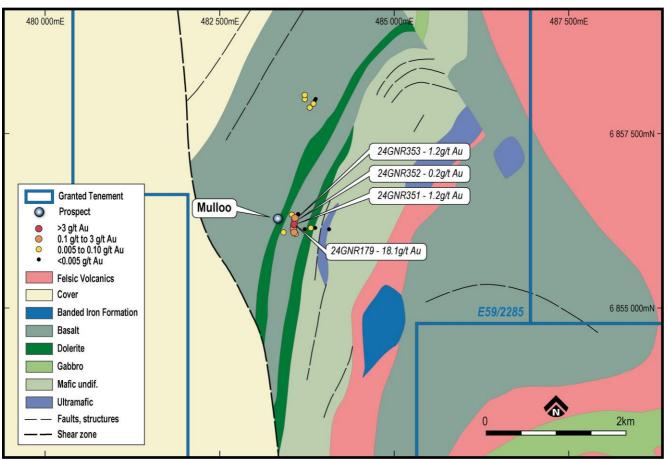


Figure 5: Location of rock chip samples within the Mulloo Hill area

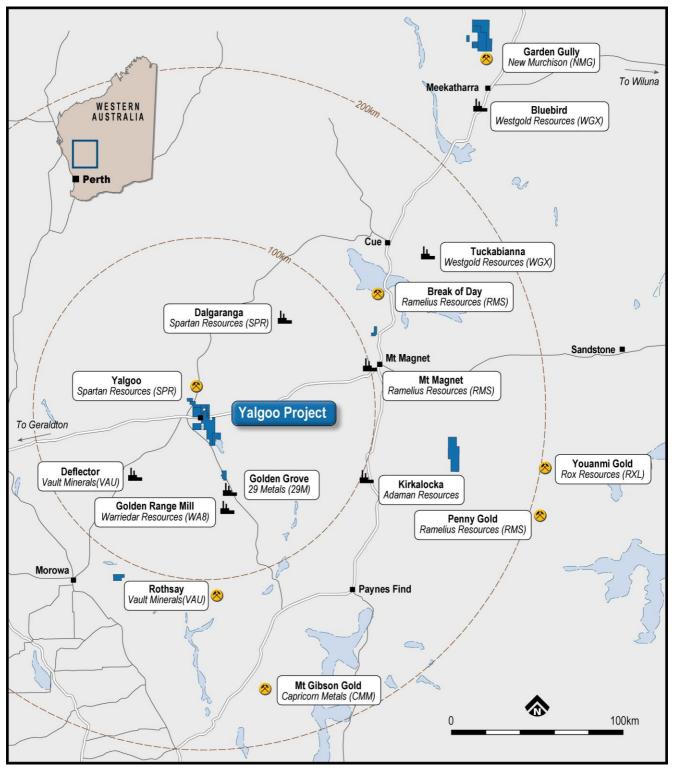


Figure 6: Location of Yalgoo Project

This release was approved by the Premier1 Lithium Board.

ENQUIRIES

Jason Froud Managing Director T: +61 8 6188 8181 info@premier1lithium.com.au Aiden Bradley Media & Investor Relations M: +61 414 348 666 aiden@nwrcommunications.com.au

ABOUT PREMIER1 LITHIUM

Premier1 Lithium (**ASX:PLC**), is focused on tapping into the potential of Western Australia's renowned mineral resources. Our strategic exploration approach in this world-class mining jurisdiction is driven by a commitment to uncover valuable resources efficiently and effectively. Our processes are driven by strict project review, capital discipline and focus on highest impact exploration opportunities within lithium, gold and copper. Our projects are situated in the heart of Western Australia's renowned greenstone belts, home to the world's largest lithium-bearing LCT pegmatite deposits.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to Exploration Results is based on information compiled by Jason Froud, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Froud is a full-time employee and the Managing Director of Premier1 Lithium Limited. Mr Froud has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Froud consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

APPENDIX 1

Rock chip assay results

Sample Number	Easting	Northing	Au (g/t)	Cu (ppm)	As (ppm)	Bi (ppm)	Sb (ppm)	Ag (ppm)	Pb (ppm)
24GGR050	479231	6868339	0.09	310	60	0.12	5.57	0.11	131.2
24GGR051	479131	6868480	106.62	113	716	1.36	8.75	6.75	899.9
24GGR052	479131	6868506	0.11	69	7	0.02	2.22	BDL	11.3
24GGR053	479607	6869642	0.07	17	35	0.17	6.69	BDL	80.2
24GGR054	479644	6869689	0.41	57	83	2.33	9.06	0.07	42.4
24GGR055	479154	6869491	0.68	16	293	2.57	5.03	1.6	416.4
24GGR056	480426	6870236	0.02	21	42	0.12	2.19	BDL	15.9
24GGR057	481772	6871114	0.02	403	153	0.2	1.21	BDL	9.8
24GGR059	481904	6871129	5.5	1,651	102	140.56	3.79	1	5.4
24GGR060	481762	6871219	128.54	491	29	1667.7	2.13	12.92	10.9
24GGR062	476377	6870663	0.06	51	2	2.17	0.44	BDL	35.2
24GNR102	477004	6870420	BDL	5	1	0.04	0.22	BDL	2.9
24GNR103	476989	6870415	BDL	7	10	0.08	0.67	BDL	3.9
24GNR104	476893	6870037	0.24	20,000	139	2.8	0.14	1.01	4.1
24GNR105	476892	6870047	0.05	1,380	87	0.5	0.16	1.65	5.6
24GNR106	476829	6869804	0.12	5,882	30	1.92	0.18	0.42	6.2
24GNR107	477791	6869970	BDL	37	39	0.05	4.38	BDL	3.7
24GNR108	479370	6868986	BDL	21	3	0.04	0.56	BDL	6.3
24GNR109	479734	6869113	0.01	21	38	0.13	2.59	BDL	6
24GNR110	480145	6869043	BDL	71	2	0.16	1.27	0.06	16.6
24GNR112	479712	6868839	BDL	52	78	0.19	2.06	BDL	10.1
24GNR113	479968	6868908	BDL	9	2	0.11	2.94	BDL	7.4
24GNR114	479982	6868924	BDL	56	1	0.02	2.28	BDL	3.8
24GNR116	479710	6868788	BDL	168	448	0.43	3.24	0.11	63.3
24GNR118	477776	6869963	BDL	60	13	0.08	1.33	BDL	5.2
24GNR120	480173	6867023	BDL	12	37	0.2	10.68	BDL	43.5
24GNR121	480159	6867055	0.02	4	3	0.02	2.24	BDL	5.5
24GNR122	480864	6867108	BDL	6	4	0.03	2.24	BDL	1.1
24GNR123	480907	6867238	BDL	14	14	0.03	5.42	BDL	11.8
24GNR124	480497	6867373	BDL	3	12	0.06	0.84	BDL	3.8
24GNR127	479952	6870161	BDL	168	31	0.07	2.4	BDL	63.8
24GNR128	480510	6870015	BDL	9	5	0.13	1.46	BDL	3.8
24GNR129	480528	6870033	0.03	184	3	0.35	0.3	0.24	3.6
24GNR130	480836	6869936	0.01	3,502	11	0.04	2.8	BDL	2.9
24GNR130B	480837	6869936	0.36	1,199	4	1	0.49	0.82	6.4

Sample Number	Easting	Northing	Au (g/t)	Cu (ppm)	As (ppm)	Bi (ppm)	Sb (ppm)	Ag (ppm)	Pb (ppm)
24GNR131	480680	6869449	BDL	12	2	0.04	1.86	BDL	1.7
24GNR132	480526	6869919	BDL	8	2	0.11	0.83	BDL	2.2
24GNR133	480146	6871123	BDL	9	4	0.08	1.31	BDL	15.6
24GNR134	479873	6871082	BDL	15	10	0.13	1.22	BDL	2
24GNR135	479878	6870882	BDL	31	7	0.11	3.11	BDL	10.8
24GNR136	479973	6870849	BDL	34	4	0.11	1.96	BDL	9.6
24GNR137	480300	6870927	BDL	134	14	0.27	2	0.06	6.8
24GNR138	480499	6871082	0.06	86	347	4.48	20.43	BDL	3.5
24GNR139	480822	6871328	BDL	6	10	0.03	0.25	BDL	1.5
24GNR140	480866	6871121	BDL	650	2,285	0.4	11.22	BDL	10.9
24GNR142	480469	6870437	BDL	34	22	0.1	1.65	BDL	3.8
24GNR143	479777	6870607	BDL	50	42	0.1	1.89	BDL	4.6
24GNR144	481925	6871182	0.01	387	59	0.05	0.31	BDL	3.4
24GNR145	481852	6870482	BDL	39	34	0.07	1.12	BDL	3.6
24GNR146	481777	6870982	BDL	10	23	0.01	1.51	BDL	1.3
24GNR147	481446	6870832	BDL	5	28	0.02	2.86	BDL	0.7
24GNR148	481689	6870790	BDL	6	1	0.01	0.07	BDL	0.5
24GNR149	483493	6870388	0.01	11	2	0.06	0.18	BDL	0.7
24GNR150	483493	6870389	BDL	81	2	0.12	0.11	BDL	3.3
24GNR151	483248	6870126	BDL	74	1	0.05	0.29	BDL	2.4
24GNR152	483247	6870126	BDL	70	1	0.38	1.3	BDL	5.4
24GNR153	483469	6870020	BDL	13	1	0.07	0.57	BDL	0.7
24GNR154	483065	6869826	BDL	163	1	0.11	1.1	BDL	1.7
24GNR155	483012	6869833	BDL	23	1	0.05	0.64	BDL	2.7
24GNR156	483406	6869576	BDL	6	4	0.35	0.66	BDL	11.8
24GNR157	480965	6870649	0.13	440	2,174	8.1	1.68	0.48	2.2
24GNR158	480965	6870651	1.36	544	5,903	20.6	10.5	0.66	3.2
24GNR159	481159	6870439	3.55	585	1,904	17.13	14.51	0.29	4.7
24GNR160	481157	6870425	13.07	1,223	1,910	91.45	10.36	0.36	5.6
24GNR161	481240	6870274	0.05	20	50	0.23	0.38	BDL	1.8
24GNR162	480790	6870143	0.01	5	43	0.09	34.62	0.06	12.1
24GNR163	479136	6868494	0.99	56	29	0.12	1.01	BDL	11.7
24GNR164	479124	6868305	0.84	12,945	4	0.87	2.33	0.3	298
24GNR165	479130	6868301	0.42	20	2	0.01	0.51	BDL	1.6
24GNR166	481171	6870400	0.01	20	16	0.03	1.36	BDL	2.3
24GNR167	481105	6870607	0.01	4	31	0.03	0.25	BDL	2.1
24GNR168	483626	6856350	BDL	130	85	0.1	2.9	0.07	13.6
24GNR169	483626	6856348	BDL	42	3	0.03	0.23	BDL	4.7

Sample Number	Easting	Northing	Au (g/t)	Cu (ppm)	As (ppm)	Bi (ppm)	Sb (ppm)	Ag (ppm)	Pb (ppm)
24GNR170	483804	6856152	0.01	128	268	0.07	1.15	BDL	47.9
24GNR171	483807	6856156	BDL	9	4	0.02	0.19	BDL	2.9
24GNR172	483868	6856152	BDL	5	2	0.01	0.09	BDL	1.8
24GNR173	484071	6856131	BDL	74	389	0.07	1.78	BDL	21.9
24GNR174	483718	6856135	BDL	36	13	0.02	2.04	BDL	3
24GNR175	483557	6856155	BDL	5	100	0.02	6.72	BDL	8.7
24GNR176	483561	6856165	0.01	7	86	0.05	7.98	BDL	14.3
24GNR177	483569	6856161	0.02	5	93	0.02	6.99	BDL	12.2
24GNR178	483569	6856161	0.03	14	262	0.04	10.97	0.08	19.4
24GNR179	483569	6856201	18.14	15	10,000	5.54	379.74	64.72	10000
24GNR180	483419	6856090	0.04	7	35	0.03	1.15	0.52	53.3
24GNR181	483720	6858048	0.01	16	7	0.46	0.72	0.07	30.5
24GNR182	483722	6858035	BDL	6	8	0.12	0.6	0.06	19.6
24GNR183	483727	6857997	0.06	11	50	0.11	1.83	0.15	67.5
24GNR184	483864	6857971	BDL	7	4	0.05	0.17	BDL	7.3
24GNR185	483880	6857996	BDL	43	12	0.08	0.25	BDL	6.1
24GNR186	483850	6857930	0.03	38	8	0.02	1.02	BDL	10.1
24GNR187	483791	6857871	0.02	49	4	0.05	0.44	BDL	5.6
24GNR188	478634	6868041	1.27	38	5	0.18	2.22	0.17	143.3
24GNR189	478631	6868037	0.01	34	11	0.02	1.49	BDL	4.8
24GNR190	478657	6868029	0.01	66	13	1.28	2.33	0.06	48.6
24GNR191	478667	6868033	0.24	40	1	0.13	3.59	BDL	21.7
24GNR192	478724	6868004	BDL	296	28	0.94	1.9	BDL	39
24GNR193	479043	6868050	BDL	14	1	0.04	2.93	BDL	4.8
24GNR194	479122	6868053	BDL	3	1	BDL	0.35	BDL	1.2
24GNR195	479158	6868081	BDL	11	23	0.04	1.63	BDL	7.9
24GNR196	479158	6868081	BDL	11	5	0.01	0.56	BDL	2
24GNR197	479184	6868072	BDL	11	5	0.03	1.04	BDL	8.5
24GNR198	479184	6868073	BDL	7	3	0.04	1.03	BDL	9.4
24GNR199	478854	6867756	BDL	45	4	0.07	0.43	BDL	4.6
24GNR200	478662	6867846	BDL	6	74	0.05	3.26	BDL	7.8
24GNR201	478594	6867843	0.01	3	3	0.04	0.88	BDL	7.4
24GNR202	478495	6868046	BDL	5	3	0.02	4.01	BDL	2.6
24GNR203	480577	6870296	0.01	321	31	0.86	0.63	0.63	3
24GNR204	480844	6870328	BDL	48	61	0.09	1.5	0.06	6.5
24GNR205	480970	6870312	BDL	20	13	0.05	1.05	BDL	1.3
24GNR206	481180	6869966	0.01	48	43	0.52	1.13	BDL	5
24GNR207	481241	6869996	0.01	127	1,182	0.03	2.08	BDL	2.2

Sample Number	Easting	Northing	Au (g/t)	Cu (ppm)	As (ppm)	Bi (ppm)	Sb (ppm)	Ag (ppm)	Pb (ppm)
24GNR207B	481240	6869997	BDL	18	63	0.09	0.94	BDL	2.4
24GNR208	481242	6869994	BDL	77	181	0.03	1	BDL	1.3
24GNR209	481231	6870333	BDL	34	39	0.04	0.39	BDL	3.3
24GNR210	480988	6870554	BDL	7	2	0.05	1.27	BDL	1.7
24GNR211	480886	6870554	BDL	3	3	0.02	0.61	BDL	2.2
24GNR212	480593	6870517	BDL	1	5	0.01	0.66	BDL	0.8
24GNR213	480472	6870458	0.1	191	3	0.03	0.42	0.07	6.9
24GNR214	480443	6870441	BDL	12	18	0.07	0.91	BDL	12.8
24GNR215	480567	6870507	BDL	5	112	0.06	5.75	BDL	1
24GNR216	480536	6870621	BDL	71	5	0.46	0.85	0.06	2.9
24GNR217	481074	6870843	BDL	30	6	0.06	0.26	BDL	1.3
24GNR218	480534	6870977	0.33	14	64	0.79	6.95	BDL	2.2
24GNR219	478450	6865382	BDL	5	3	BDL	1.03	BDL	1
24GNR220	478498	6865169	BDL	15	1	0.03	0.42	BDL	1.9
24GNR221	478498	6865169	0.06	24	4	0.01	2.04	0.18	7.5
24GNR222	481232	6870969	BDL	23	2	0.11	0.62	BDL	2.7
24GNR223	481206	6870930	0.01	99	6	0.21	0.67	BDL	2.8
24GNR224	481140	6871167	12.72	403	2,305	36.69	19.03	0.32	2.4
24GNR225	481142	6871160	0.28	24	29	0.23	0.37	BDL	3
24GNR226	480843	6871150	0.01	4	3	0.05	0.26	BDL	1.4
24GNR235	480969	6871312	BDL	21	3	0.05	0.55	BDL	3.4
24GNR236	481214	6871359	BDL	11	17	0.02	0.49	BDL	0.9
24GNR250	481724	6871276	0.132	228	19	12.35	0.46	BDL	1.8
24GNR251	481705	6871281	0.048	169	13	2.93	0.97	BDL	2.5
24GNR252	481762	6871245	0.116	395	36	0.4	0.3	BDL	2.9
24GNR253	481795	6871236	0.429	175	8	3.65	0.16	0.05	1.9
24GNR254	481824	6871340	BDL	4	5	0.03	0.69	BDL	2.2
24GNR255	481851	6871280	BDL	6	47	0.01	0.94	BDL	1.8
24GNR350	483518	6856150	BDL	9	63	0.07	7.23	BDL	18.8
24GNR351	483566	6856197	1.16	8	3,391	1.04	71.02	5.44	3141.1
24GNR352	483579	6856264	0.23	5	1,223	0.08	74.91	0.08	138.6
24GNR353	483581	6856293	0.2	2	235	0.03	59.12	0.18	75.5
24GNR354	483584	6856287	0.03	9	407	0.17	130.43	0.14	228.2
24GNR355	483534	6856341	0.01	8	14	BDL	2.64	BDL	9.4
24GNR356	483564	6856182	BDL	6	3	BDL	0.89	BDL	5
24GNR357	483557	6856137	0.14	13	693	0.18	39.1	0.43	62.8
24GNR358	483592	6856069	0.01	14	9	BDL	1.45	BDL	5.2
24GNR359	483568	6856090	0.14	13	133	0.01	5.23	BDL	10

Sample Number	Easting	Northing	Au (g/t)	Cu (ppm)	As (ppm)	Bi (ppm)	Sb (ppm)	Ag (ppm)	Pb (ppm)
24GNR360	483421	6856093	BDL	22	2	0.04	0.3	BDL	2.6
24GNR361	481148	6871163	1.69	116	749	9.64	6.61	0.05	4
24GNR362	481147	6871165	0.07	11	38	0.37	0.48	BDL	5.9
24GNR363	481151	6871155	54.8	976	530	1.05	0.65	0.06	3.3
24GNR364	481157	6871129	0.2	17	20	0.25	0.7	BDL	4.4
24GNR365	481140	6871110	3.11	317	33	43.87	0.41	BDL	3.1
24GNR366	481166	6871187	0.11	8	2	0.19	0.32	BDL	1.7
24GNR367	481117	6871241	0.01	5	2	0.24	0.38	BDL	2.6
24GNR368	481824	6871132	0.01	36	8	0.06	0.93	BDL	1.7
24GNR369	481841	6871116	0.01	5	4	0.01	0.62	BDL	1.9
24GNR370	481860	6871153	BDL	6	1	0.04	0.12	BDL	2
24GNR371	481861	6871222	BDL	4	21	0.03	5.58	BDL	1.5
24GNR372	481815	6871200	0.35	4.7	1	0.18	0.15	BDL	2.7
24GNR373	481777	6871212	78.9	511	32	959.36	2.19	20.78	6.1
24GNR374	481729	6871260	1.75	254	11	13.52	0.19	0.2	1.6
24GNR375	481634	6871325	0.07	8	10	1.54	0.69	BDL	2.2
24GNR376	481616	6871335	0.11	7	10	4.92	0.18	BDL	2.1
24GNR377	481731	6871342	0.26	5	1	6.93	0.13	BDL	1.1

JORC CODE¹ 2012 EDITION – TABLE 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

The following Table 1 relates to surface sampling activities conducted over Premier1 Lithium Ltd's Yalgoo Project tenements E 59/2244, E 59/2285 to E 59/2288, E 59/ 2506 held by Venture Z Pty Ltd and E 59/1989 held by Bright Point Gold Pty Ltd.

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Samples were collected during a regional geological mapping program where the focus was on lithological sampling to support the geological and geochemical mapping of the project areas. In addition, sampling of shear zones and quartz veins was completed in context of the geological and structural mapping. A small number of samples were collected adjacent to historical workings with an aim of understanding the geological and structural controls on mineralisation at various locations including Cumberland, Olive Queen, Bourkes United, Broken Mount and various other historical workings across the project area.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails,face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Not Applicable. Drilling not completed.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not Applicable. Drilling not completed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• All surface rock chip samples were qualitatively logged using Premier1 Lithium lithological logging system as part of the geological and structural mapping program undertaken across the project area. A photograph of each sample was taken to assist in the interpretation of geochemical results. The sampling and logging is not sufficient for use in a Mineral Resource Estimation
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No subsampling was completed.

Criteria	JORC Code Explanation	Commentary
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to Intertek, Maddington, WA for the analytical techniques detailed below: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr : Samples were dried, crushed and pulverised to 95% passing -75µm. The sample(s) have been digested and refluxed with a mixture of Acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids. The analytes have been determined by Inductively Coupled Plasma (ICP) Mass Emission Spectrometry (4A- MS48) Au: Samples were dried, crushed and pulverised to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical FA50/OE04 (ICP - OES) The laboratory is accredited and uses its own certified reference material as part of their own QA/QC. The laboratory has two duplicates, two replicates, one standard and one blank per 50 assays. Premier1 did not submitted QAQC samples
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data was collected by employees of the Company at the project site and verified in the Perth head office following field work. All observations were recorded digitally and entered into the company's database. Data verification and validation is checked upon entry into the database. Digital storage is managed by an independent data management company. Where the laboratory repeated an assay following a high-grade Au result, the average of the primary and repeat Au assay is reported.

Criteria	JORC Code Explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All sample points have their location recorded using a handheld Garmin GPX64sx GPS unit to an indicative accuracy of <5m. Elevation for each sample point was determined using the handheld GPS and sufficient for the sample types collected. All sample locations are MGA2020, Zone 50 grid system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This report is for the reporting of exploration results derived from early-stage surface sampling programs. Surface sampling including rock chip sampling reported in this release are used for exploration targeting purposes. Data is not sufficient to establish any degree of geological grade continuity.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Rock chip samples were collected during geological mapping traverses and represent several sampling types including litho- geochemical samples of regional rock units, quartz veins and sheared lithologies. Some samples have been collected where company geologists have identified structures during mapping however the purpose of the sampling is to understand the structural controls on mineralisation across the project area so not bias has been introduced. A small portion of the samples were collected from historical workings to inform Premier1 geologists on the mineralisation across the project area.
Sample security	The measures taken to ensure sample security.	 Rock chip samples were assigned a sample ID at the time of collection in line with company procedures and placed in a labelled calico bag. Samples were then placed in a bulk bag, labelled with a sample range and secured with cable ties and transported from the field by Premier1 personnel in Yalgoo where they were transported by staff directly to the laboratory in Perth. The laboratory then checks the physically received samples against a Premier1 generated sample submission list and reports back any discrepancies.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external or third-party audits or reviews have been completed.

SECTION 2: REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section)

Criteria		Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area 	 The results reported in this announcement are on granted exploration E 59/2244, E 59/2285 to E 59/2288, E 59/ 2506 held by Venture Z Pty Ltd and E 59/1989 held by Bright Point Gold Pty Ltd. Premier1 Lithium is in the process of earning 70% of all mineral rights except for rare earth elements (REE) from Venture Minerals for the Yalgoo project
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The release details a significant amount of historical exploration within the project area. A review of additional exploration activity including drilling, geophysical surveys, geochemical sampling and geological mapping is ongoing. Modern Exploration on the project extends back to the late 1960's. Areas of the project have been held by Venture Minerals, Bright Point Gold, Aurox Resources, Mt Kersey Mining, Mount Grace Gold, Prosperity Resources, Hunter Resources, Anglo Gold, Comet Resources Limited, Merrit Mining, Placer Prospecting and ESSO among others.
Geology	Deposit type, geological setting and style of mineralisation.	 The Golden Grove North project area sits at the northern end of the continuous Archean greenstone belt striking NNW through Yalgoo, in the Murchison Domain, part of the Yilgarn Block of the Western Australian Shield, in the Murchison Domain. The supracrustal rocks of Yalgoo greenstone belt comprise the Murchison supergroup. The supergroup greenstone belt comprises mafic to ultramafic, BIF, acid volcanics and sedimentary rocks, with abundant intrusions of mafic/ultramafic complexes, dolerite and granitoids. Units can be locally disrupted by faulting and folding. Heterogenous deformation affects the area, and narrow zones of high strain separate more weakly deformed rocks. The Yalgoo greenstone is notably host to gold, BIF and base metals deposits, both the Scuddles and the Golden Grove members hosting economic mineralisation, with notably the Golden Grove Zn-Cu-Au deposits described as one of the most significant Archaean volcanic hosted massive sulfide deposits in Australia. Gold mineralisation is almost entirely epigenetic and in the regional area is both structurally and stratigraphically controlled. Most epigenetic gold mineralisation occurs

Criteria	Commentary
	in, or adjacent to, the shear zones and/or associated fracture systems and the deposits are concentrated within BIF, basalts and the ultramafic rocks (Stewart, 2012). Many gold deposits occur within post-folding granitoid contacts, indicating either a genetic relationship to granitic intrusion or common source regions and structural controls (Stewart, 2012).
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill collar Elevation of RL (Reduced Level – elevation above sea level in metres) of the drill collar Dip and azimuth of the hole Down hole length and interception depth Hole length
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of A surface sample location plan is contained within Company announcements.

Criteria	Commentary
	drill hole collar locations and appropriate sectional views.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Not applicable. All samples reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. Reference to other relevant exploration data is contained in Company announcements.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. The compilation of historical data and data recently collected by Premier1 will inform future exploration targeting and strategy including planning and approvals for drilling in Q1 2025.