

19,493ppm TREO Recorded at Poços de Caldas

HIGHLIGHTS:

- Second batch of auger drill results returned from Axel's Caldas Project in the Poços de Caldas Alkaline Complex, neighbouring Meteoric Resources (ASX:MEI) and Viridis Mining & Metals (ASX:VMM) world class REE Deposits
- Exceptionally thick, consistent high grade intercepts at surface from shallow auger holes include:

CAL-AUG-003: **20m @ 3,082ppm TREO (26% MREO)** from surface

including: **8m @ 4,053ppm TREO (31%)** from 9m

with: **1m @ 6,536ppm TREO (32%)** from 15m

CAL-AUG-009: 13m @ 5,735ppm TREO (25% MREO) from surface

including: 5m @ 10,526ppm TREO (30% MREO) from 8m

with: <u>1m @ 19,493ppm TREO (33%) from 11m</u>

CAL-AUG-014: **14m @ 3,051ppm TREO (25% MREO)** from surface

including: 5m @ 4,666pm TREO (30% MREO) from 9m

with: **3m @ 6,118ppm TREO (35%)** from 11m

CAL-AUG-019: **10m @ 4,874ppm TREO (34% MREO)** from surface

including: **6m @ 6,730pm TREO (38% MREO)** from 4m

with: **1m @ 7,166ppm TREO (40%)** from 11m

- High value magnetic rare earths consistently over 40% MREO
- 20 auger holes completed to date with assays averaging 3,229ppm TREO
- All holes ended in mineralisation, limited only by the shallow augur drill depth capacity and are expected to continue at depth
- Auger drilling at Caldas continues whilst the Caladão REE+Gallium discovery progresses towards Maiden Resource calculation

Axel REE Limited (**ASX: AXL**, "**Axel**" or "**the Company**) is pleased to announce the results of the second batch of assays from the ongoing auger drill program at its 100% owned Caldas Project. The Caldas Project is located in the Poços de Caldas Alkaline Complex, a world-class rare earth element (**REE**) intrusive in the southwest portion of the State of Minas Gerais.

Managing Director, Dr Fernando Tallarico, said:

"We are extremely excited with the latest results of our ongoing auger drill program at Caldas. The REE mineralisation continues to be consistent, high grade and with excellent high-value magnetic rare earth proportions over 40%.

The deepest hole we have drilled so far only reached 23 meters as auger drilling typically has a limited depth of penetration. It is exciting that these auger holes have all ended in increasingly high grade mineralisation, highlighting the exploration upside at depth.

Axel shareholders have a lot to look forward to. The Caldas project is in a well-known world class alkaline complex and is already delivering excellent results replicating the major adjacent discoveries by Meteoric Resources and Viridis. Meanwhile at our flagship Caladão REE and Gallium discovery, we are progressing to JORC Resource estimation and metallurgical testing.

We look forward to continuing our consistent newsflow as further progress is made."

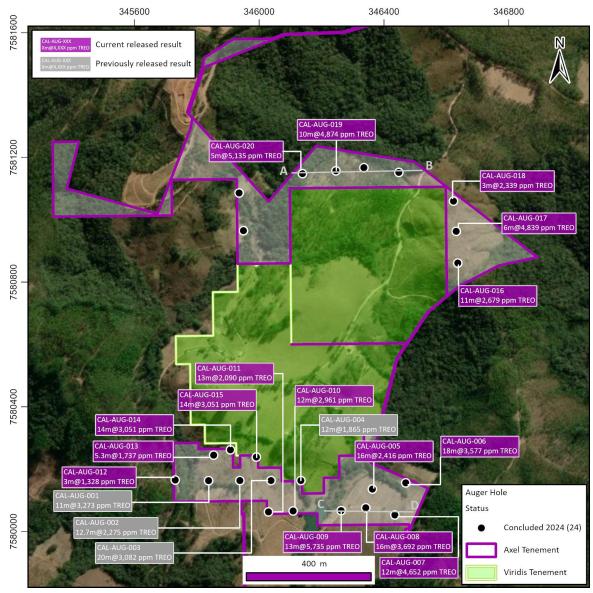


Figure 1 - Plan view of consistently high grade auger drill intercepts at Axel's Prospect at Caldas

This unique Alkaline Complex has a diameter of over 30km and hosts globally significant ionic adsorption clay (IAC) REE discoveries including Meteoric Resources NL's (ASX: MEI) Caldeira Mineral Resource Estimate (MRE) of 740Mt @ 2,572ppm TREO (Measured + Inferred + Indicated)¹ and Viridis Mining & Minerals Limited's (ASX:VMM) Colossus MRE of 493Mt @ 2,508ppm TREO (Measured + Indicated + Inferred)². Mineralisation is associated with the weathering profile that produces abundant clay minerals such as kaolinite, that are typically rich in rare earth elements.

Axel holds a significant position at this Alkaline Complex, with 23,200 hectares in exploration permits and applications at the Caldas Project. So far, the company has completed 29 auger holes, totalling 330 meters. The chemical assays confirm the presence of an extraordinary concentration of Total Rare Earth Element Oxides (TREO), including an impressive concentration of magnetic rare earth oxides (MREO), particularly high value Neodymium (Nd) and Praseodymium (Pr).

The assays to date at Caldas have returned excellent results with assays from all 20 auger holes mineralised averaging 3,229ppm TREO and 100% of assays returning above the cutoff 1,000ppm TREO (1m interval assays). The intercepts show that the clay-hosted mineralisation at Caldas is thick over 20 meters, highgrade and open at depth.

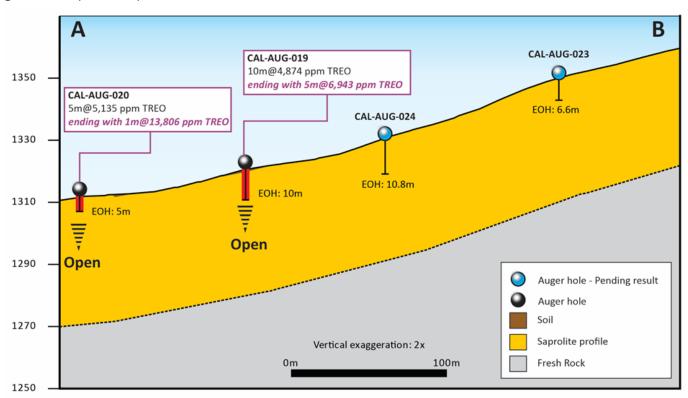


Figure 2 - Cross section A-B highlighting auger hole CAL-AUG-019 and CAL-AUG-020 (CAL-AUG-023 and CAL-AUG-024 assays pending). Note increasingly high grade mineralisation at end of hole.

¹ Meteoric Resources NL ASX release 5 August 2024 "Updated Figueria Mineral Resources Estimate"

² Viridis Mining and Minerals Limited ASX release 22 January 2025 "Colossus Hits Largest M&I and Highest-Grade MREO Resource"

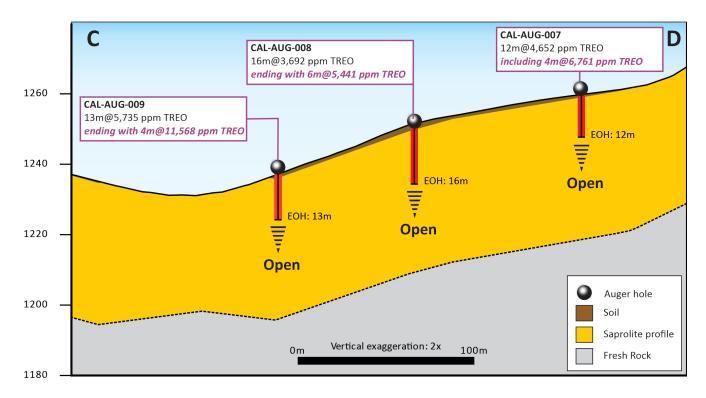


Figure 3 - Cross section C-D highlighting auger hole CAL-AUG-007, CAL-AUG-008 and CAL-AUG-009

	From	То	Interval	TREO	MREO	MREO	NdPr	DyTb
HoleID	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
CAL-AUG-001	0	11	11	3,273	894	24	847	47
including	7	11	4	4,978	1,678	33	1,586	92
with	9	10	1	7,099	2,466	34	2,310	89
CAL-AUG-002	0	12.7	12.7	2,275	578	23	543	35
CAL-AUG-003	0	20	20	3,082	853	26	805	48
including	9	17	8	4,053	1,268	31	1,195	74
with	15	16	1	6,536	2,077	32	1,935	143
CAL-AUG-004	0	12	12	1,865	398	20	370	27
CAL-AUG-005	0	16	16	2,416	425	16	393	32
CAL-AUG-006	0	18	18	3,577	635	17	602	33
including	15	18	3	4,927	1,254	26	1,205	49
CAL-AUG-007	0	12	12	4,652	1,386	28	1,323	63
including	6	10	4	6,761	2,241	33	2,136	106
with	8	9	1	8,286	2,864	35	2,717	147
CAL-AUG-008	0	16	16	3,692	836	19	793	43
including	10	16	6	5,441	1,526	28	1,465	61
CAL-AUG-009	0	13	13	5,735	1,412	18	1,359	54
including	9	13	4	11,568	3,229	30	3,132	97
with	11	12	1	19,493	6,462	33	6,289	172
including CAL-AUG-009 including	10 0 9	16 13 13	6 13 4	5,441 5,735 11,568	1,526 1,412 3,229	28 18 30	1,465 1,359 3,132	61 54 97

	From	То	Interval	TREO	MREO	MREO	NdPr	DyTb
HoleID	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
CAL-AUG-010	0	12	12	2,961	856	28	807	50
CAL-AUG-011	0	13	13	2,090	444	21	419	25
CAL-AUG-012	0	3	3	1,328	93	7	83	11
CAL-AUG-013	0	5.3	5.3	1,737	219	13	203	16
CAL-AUG-014	0	14	14	3,051	759	20	717	42
including	11	14	3	6,118	2,126	35	2,017	109
CAL-AUG-015	0	23	23	2,692	742	21	711	31
including	18	23	5	2,209	2,209	38	2,125	84
with	18	19	1	8,554	3,724	44	3,599	130
CAL-AUG-016	0	11	11	2,679	628	23	593	35
CAL-AUG-017	0	6	6	4,839	1,453	29	1,378	76
CAL-AUG-018	0	3	3	2,339	481	21	458	23
CAL-AUG-019	0	10	10	4,874	1,666	29	1,588	78
including	5	10	5	6,943	2,620	38	2,496	123
CAL-AUG-020	0	5	5	5,135	1,751	27	1,671	80
including	4	5	1	13,806	5,760	42	5,507	254

Table 1 - Summary of auger REE intercepts (1,000ppm TREO cutoff). Blue shaded are ultra-high grades over 6,000ppm TREO and over 30% MREO

This announcement was authorised by the Board of Directors.

For enquiries regarding this release please contact:

Fernando Tallarico Managing Director

fernando@axelreelimited.com.au

Investor & Media Relations Andrew Willis

awillis@nwrcommunications.com.au

About Axel REE

Axel REE is a critical minerals exploration company which is primarily focused on exploring the Caladão, Caldas, Itiquira, and Corrente rare earth elements (**REE**) projects in Brazil. Together, the project portfolio covers over 1,105km² of exploration tenure in Brazil, the third largest country globally in terms of REE Reserves.

The Company's mission is to explore and develop REE and other critical minerals in vastly underexplored Brazil. These minerals are crucial for the advancement of modern technology and the transition towards a more sustainable global economy. Axel's strategy includes extensive exploration plans to fully realize the potential of its current projects and seek new opportunities.

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources, or Ore Reserves is based on information compiled by Dr. Fernando Tallarico, who is a member of the Association of Professional Geoscientists of Ontario, and Dr. Paul Woolrich, who is a Competent Person and a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Dr Woolrich is a consultant to the Company and Dr Tallarico is

a full-time employee of the Company. Dr. Tallarico and Dr. Woolrich have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources, and Ore Reserves. Dr. Tallarico and Dr. Woolrich consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

Forward Looking Statement

This announcement contains projections and forward-looking information that involve various risks and uncertainties regarding future events. Such forward-looking information can include without limitation statements based on current expectations involving a number of risks and uncertainties and are not guarantees of future performance of the Company. These risks and uncertainties could cause actual results and the Company's plans and objectives to differ materially from those expressed in the forward-looking information. Actual results and future events could differ materially from anticipated in such information. These and all subsequent written and oral forward-looking information are based on estimates and opinions of management on the dates they are made and expressly qualified in their entirety by this notice. The Company assumes no obligation to update forward-looking information should circumstances or management's estimates or opinions change.

Reference to Previous Announcements

ASX: AXL

ACN: 665 921 273

In addition to new results reported in this announcement, the information that relates to previous exploration results is extracted from:

- AXL ASX release 23 September 2024, "Up to 7,099ppm TREO from high grade batch assays at Caldas"
- AXL ASX release 2 September 2024, "Drill Program Commences at Pocos de Caldas Caldera"

The Company confirms that it is not aware of any new information or data that materially affects the information contained in these announcements and, in the case of estimates of mineral resources, that all material assumptions and technical parameters underpinning the estimates in the announcements continue to apply and have not materially changed.

Table 2 - Assay Results (1,000ppm TREO cutoff)

	From	То	Interval	TREO	MREO	MREO	NdPr	DyTb
HoleID	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
CAL-AUG-005	0	1		1,813	108	6	91	16
CAL-AUG-005	1	2		1,802	82	5	66	16
CAL-AUG-005	2	3		1,826	103	6	78	25
CAL-AUG-005	3	4		2,360	165	7	142	24
CAL-AUG-005	4	5		2,100	265	13	240	25
CAL-AUG-005	5	6		1,577	161	10	142	20
CAL-AUG-005	6	7		2,088	263	13	238	25
CAL-AUG-005	7	8	16 m @2 416 m m TDFO	2,948	459	16	413	46
CAL-AUG-005	8	9	16m@2,416 ppm TREO	2,709	549	20	506	43
CAL-AUG-005	9	10		3,524	787	22	738	49
CAL-AUG-005	10	11		3,669	965	26	913	52
CAL-AUG-005	11	12		2,995	727	24	683	44
CAL-AUG-005	12	13		2,879	730	25	690	40
CAL-AUG-005	13	14		2,113	528	25	498	30
CAL-AUG-005	14	15		2,172	489	23	459	30
CAL-AUG-005	15	16		2,083	419	20	388	32
CAL-AUG-006	0	1		2,571	306	12	281	26
CAL-AUG-006	1	2		3,765	509	14	465	44
CAL-AUG-006	2	3		3,559	473	13	438	35
CAL-AUG-006	3	4		2,397	387	16	362	25
CAL-AUG-006	4	5		2,258	382	17	356	25
CAL-AUG-006	5	6		2,956	503	17	474	29
CAL-AUG-006	6	7		2,902	524	18	491	33
CAL-AUG-006	7	8		5,692	590	10	557	32
CAL-AUG-006	8	9		2,567	464	18	441	23
CAL-AUG-006	9	10	18m@3,577 ppm TREO	5,802	780	13	741	39
CAL-AUG-006	10	11		2,809	517	18	487	30
CAL-AUG-006	11	12		2,406	211	9	196	15
CAL-AUG-006	12	13		3,711	548	15	522	26
CAL-AUG-006	13	14		2,814	589	21	562	27
CAL-AUG-006	14	15		3,398	880	26	849	31
CAL-AUG-006	15	16		4,288	1,019	24	983	36
CAL-AUG-006	16	17		4,993	1,227	25	1,175	52
CAL-AUG-006	17	18		5,499	1,517	28	1,458	59
CAL-AUG-007	0	1		2,925	235	8	219	15
CAL-AUG-007	1	2		2,501	512	20	490	22
CAL-AUG-007	2	3		3,086	818	27	791	27
CAL-AUG-007	3	4		3,369	970	29	937	33
CAL-AUG-007	4	5		3,685	1,130	31	1,091	39
CAL-AUG-007	5	6	10 0 1 050 TDEO	4,560	1,510	33	1,459	51
CAL-AUG-007	6	7	12m@4,652 ppm TREO	6,134	2,116	34	2,036	80
CAL-AUG-007	7	8		6,190	2,071	33	1,977	94
CAL-AUG-007	8	9		8,286	2,864	35	2,717	147
CAL-AUG-007	9	10		6,434	1,914	30	1,813	102
CAL-AUG-007	10	11		4,414	1,231	28	1,159	72
CAL-AUG-007	11	12		4,242	1,259	30	1,182	77
CAL-AUG-008	0	1		2,477	190	8	169	21
CAL-AUG-008	1	2	16m@2 000 TDEO	2,276	137	6	113	24
CAL-AUG-008	2	3	16m@3,692 ppm TREO	1,950	119	6	96	23
CAL-AUG-008	3	4		2,022	157	8	126	31

11.1.15	From	To	Interval	TREO	MREO	MREO	NdPr	DyTb
HoleID	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
CAL AUG 008	4	5		2,103	213	10	176	36
CAL AUG 008	5 6	6 7		2,220	306	14	269	37
CAL AUG 008	7	8		2,308	348 738	15	324 703	24
CAL-AUG-008 CAL-AUG-008	8	9		3,286 4,372	1,081	22 25	1,029	35 52
CAL-AUG-008	9	10		3,415	925	27	887	38
CAL-AUG-008	10	11		6,244	1,733	28	1,671	62
CAL-AUG-008	11	12		5,689	1,611	28	1,550	61
CAL-AUG-008	12	13		5,497	1,649	30	1,591	59
CAL-AUG-008	13	14		4,908	1,374	28	1,321	53
CAL-AUG-008	14	15		5,509	1,558	28	1,495	63
CAL-AUG-008	15	16		4,797	1,232	26	1,163	69
CAL-AUG-009	0	1		2,065	92	4	71	21
CAL-AUG-009	1	2		2,393	148	6	126	22
CAL-AUG-009	2	3		1,980	160	8	134	26
CAL-AUG-009	3	4		2,035	237	12	208	28
CAL-AUG-009	4	5		2,348	338	14	308	30
CAL-AUG-009	5	6		2,731	401	15	368	33
CAL-AUG-009	6	7		4,257	267	6	242	25
CAL-AUG-009	7	8		4,119	571	14	546	25
CAL-AUG-009	8	9		6,358	1,767	28	1,714	53
CAL-AUG-009	9	10	13m@5,735 ppm TREO	8,716	2,875	33	2,794	82
CAL-AUG-009	10	11		8,157	2,426	30	2,346	80
CAL-AUG-009	11	12		19,493	6,462	33	6,289	172
CAL-AUG-009	12	13		9,904	2,617	26	2,519	99
CAL-AUG-010	0	1		1,641	177	11	163	14
CAL-AUG-010	1	2		1,726	368	21	349	19
CAL-AUG-010	2	3		2,787	726	26	689	37
CAL-AUG-010	3	4		2,679	768	29	733	36
CAL-AUG-010	4	5		3,291	1,053	32	1,005	48
CAL-AUG-010	5	6	12m@2 061 nnm TDEO	3,288	1,095	33	1,040	55
CAL-AUG-010	6	7	12m@2,961 ppm TREO	3,587	1,153	32	1,091	63
CAL-AUG-010	7	8		3,083	914	30	861	54
CAL-AUG-010	8	9		3,402	1,012	30	946	66
CAL-AUG-010	9	10		3,859	1,191	31	1,112	80
CAL-AUG-010	10	11		3,319	998	30	934	65
CAL-AUG-010	11	12		2,866	815	28	758	57
CAL-AUG-011	0	1		1,583	142	9	128	14
CAL-AUG-011	1	2		1,765	146	8	132	14
CAL-AUG-011	2	3		1,938	169	9	155	15
CAL-AUG-011	3	4		2,508	307	12	290	17
CAL-AUG-011	4	5		2,956	648	22	619	29
CAL-AUG-011	5	6		2,636	732	28	699	33
CAL-AUG-011	6	7	13m@2,090 ppm TREO	2,266	654	29	623	32
CAL-AUG-011	7	8		2,595	740	29	701	39
CAL-AUG-011	8	9		2,188	614	28	580	35
CAL-AUG-011	9	10		2,229	589	26	555	35
CAL-AUG-011	10	11		1,430	326	23	307	19
CAL-AUG-011	11	12		1,579	352	22	332	20
CAL AUG 012	12	13		1,491	350	23	329	21
CAL AUG 012	0	1	3m@1,328 ppm TREO	1,291	65 50	5	56	9
CAL-AUG-012	1	2	• •	1,170	58	5	49	9

	From	То	Interval	TREO	MREO	MREO	NdPr	DyTb
HoleID	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
CAL-AUG-012	2	3		1,523	157	10	143	14
CAL-AUG-013	0	1		2,012	137	7	125	12
CAL-AUG-013	1	2		1,703	146	9	132	14
CAL-AUG-013	2	3	5.3m@1,737 ppm	1,602	190	12	175	15
CAL-AUG-013	3	4	TREO	1,717	230	13	211	19
CAL-AUG-013	4	5.3		1,672	353	21	334	19
CAL-AUG-014	0	1		1,945	114	6	104	10
CAL-AUG-014	1	2		1,632	144	9	133	11
CAL-AUG-014	2	3		1,375	136	10	125	10
CAL-AUG-014	3	4		1,778	144	8	133	11
CAL-AUG-014	4	5		2,175	385	18	365	21
CAL-AUG-014	5	6		2,492	313	13	297	16
CAL-AUG-014	6	7	14m@3,051 ppm TREO	1,220	350	29	333	17
CAL-AUG-014	7	8	14111@3,031 pp111 TKLO	3,817	998	26	946	53
CAL-AUG-014	8	9		2,952	486	16	435	51
CAL-AUG-014	9	10		2,416	454	19	425	29
CAL-AUG-014	10	11		2,558	718	28	687	31
CAL-AUG-014	11	12		5,899	1,973	33	1,870	104
CAL-AUG-014	12	13		6,897	2,538	37	2,416	122
CAL-AUG-014	13	14		5,558	1,868	34	1,766	102
CAL-AUG-015	0	1		1,769	114	6	104	10
CAL-AUG-015	1	2		1,382	114	8	103	11
CAL-AUG-015	2	3		1,198	125	10	115	10
CAL-AUG-015	3	4		1,233	152	12	142	10
CAL-AUG-015	4	5		1,463	194	13	183	11
CAL-AUG-015	5	6		1,320	198	15	188	11
CAL-AUG-015	6	7		1,632	341	21	326	15
CAL-AUG-015	7	8		1,608	284	18	269	14
CAL-AUG-015	8	9		1,469	244	17	232	12
CAL-AUG-015 CAL-AUG-015	9 10	10		1,713	326	19	311	15 15
CAL-AUG-015	11	11 12		1,630 2,319	266 436	16 19	251 416	15 20
CAL-AUG-015	12	13		2,183	446	20	423	22
CAL-AUG-015	13	14		2,304	462	20	441	21
CAL-AUG-015	14	15		2,692	525	20	503	23
CAL-AUG-015	15	16		2,589	534	21	512	22
CAL-AUG-015	16	17		2,622	623	24	600	23
CAL-AUG-015	17	18	22	2,702	637	24	612	24
CAL-AUG-015	18	19	23m@2,692 ppm TREO	8,554	3,729	44	3,599	130
CAL-AUG-015	19	20		4,629	1,639	35	1,579	59
CAL-AUG-015	20	21		3,561	1,150	32	1,106	44
CAL-AUG-015	21	22		6,762	2,804	41	2,684	120
CAL-AUG-015	22	23		4,579	1,724	38	1,655	69
CAL-AUG-016	0	1		2,994	677	23	642	35
CAL-AUG-016	1	2		3,829	1,032	27	979	53
CAL-AUG-016	2	3		3,434	956	28	900	56
CAL-AUG-016	3	4		3,196	759	24	711	48
CAL-AUG-016	4	5	11m@2,679 ppm TREO	2,911	644	22	599	46
CAL-AUG-016	5	6		2,049	410	20	380	31
CAL-AUG-016	6	7		1,962	415	21	388	26
CAL-AUG-016	7	8		2,449	475	19	450	25
CAL-AUG-016	8	9		1,981	404	20	384	20

Halaib	From	To	Interval	TREO	MREO	MREO	NdPr	DyTb
HoleID	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)
CAL-AUG-016	9	10		2,296	606	26	581	25
CAL-AUG-016	10	11		2,373	531	22	507	24
CAL-AUG-017	0	1		3,628	712	20	678	35
CAL-AUG-017	1	2		4,702	1,432	30	1,374	58
CAL-AUG-017	2	3	6m@4,839 ppm TREO	3,843	1,146	30	1,094	53
CAL-AUG-017	3	4	опте 1,000 ррш 11.20	6,438	2,204	34	2,094	109
CAL-AUG-017	4	5		5,808	1,823	31	1,715	108
CAL-AUG-017	5	6		4,617	1,402	30	1,311	91
CAL-AUG-018	0	1		2,546	375	15	354	21
CAL-AUG-018	1	2	3m@2,339 ppm TREO	1,916	497	26	474	23
CAL-AUG-018	2	3		2,556	571	22	545	26
CAL-AUG-019	0	1		2,075	229	11	211	17
CAL-AUG-019	1	2		1,937	212	11	190	22
CAL-AUG-019	2	3		1,632	224	14	203	22
CAL-AUG-019	3	4		2,716	735	27	700	36
CAL-AUG-019	4	5	10m@4 974 nnm TDEO	5,666	2,167	38	2,098	70
CAL-AUG-019	5	6	10m@4,874 ppm TREO	7,166	2,846	40	2,737	108
CAL-AUG-019	6	7		6,802	2,617	38	2,505	112
CAL-AUG-019	7	8		6,785	2,561	38	2,442	119
CAL-AUG-019	8	9		6,067	2,306	38	2,184	122
CAL-AUG-019	9	10		7,895	2,768	35	2,613	155
CAL-AUG-020	0	1		2,069	316	15	294	22
CAL-AUG-020	1	2		2,476	430	17	403	27
CAL-AUG-020	2	3	5m@5,135 ppm TREO	3,499	867	25	826	41
CAL-AUG-020	3	4		3,825	1,383	36	1,325	58
CAL-AUG-020	4	5		13,806	5,760	42	5,507	254

Table 3 - Caldas Auger Hole Collars

HoleID	Hole Type	Easting	Northing	RL (m)	EOH	Azimuth	Dip	Tenement
CAL-AUG-001	Auger	345,838.00	7,580,163.00	1,244.00	11.00	0	-90	830.889/2023
CAL-AUG-002	Auger	345,938.20	7,580,163.40	1,261.00	12.70	0	-90	830.889/2023
CAL-AUG-003	Auger	346,038.20	7,580,163.40	1,259.00	20.00	0	-90	830.889/2023
CAL-AUG-004	Auger	346,134.00	7,580,163.40	1,247.00	12.00	0	-90	830.889/2023
CAL-AUG-005	Auger	346,363.00	7,580,136.00	1,247.00	16.00	0	-90	830.889/2023
CAL-AUG-006	Auger	346,470.00	7,580,156.00	1,259.90	18.00	0	-90	830.889/2023
CAL-AUG-007	Auger	346,435.00	7,580,053.00	1,265.10	12.00	0	-90	830.889/2023
CAL-AUG-008	Auger	346,342.00	7,580,076.00	1,251.00	16.00	0	-90	830.889/2023
CAL-AUG-009	Auger	346,263.00	7,580,067.00	1,241.00	13.00	0	-90	830.889/2023
CAL-AUG-010	Auger	346,109.00	7,580,066.00	1,247.40	12.00	0	-90	830.889/2023
CAL-AUG-011	Auger	346,030.00	7,580,063.00	1,248.00	13.00	0	-90	830.889/2023
CAL-AUG-012	Auger	345,731.00	7,580,165.00	1,244.00	3.00	0	-90	830.889/2023
CAL-AUG-013	Auger	345,854.00	7,580,245.00	1,255.10	5.30	0	-90	830.889/2023

HoleID	Hole Type	Easting	Northing	RL (m)	EOH	Azimuth	Dip	Tenement
CAL-AUG-014	Auger	345,908.00	7,580,262.00	1,271.90	14.00	0	-90	830.889/2023
CAL-AUG-015	Auger	345,991.00	7,580,239.00	1,282.10	23.00	0	-90	830.889/2023
CAL-AUG-016	Auger	346,637.00	7,580,861.00	1,380.70	11.00	0	-90	830.889/2023
CAL-AUG-017	Auger	346,632.00	7,580,963.00	1,391.10	6.00	0	-90	830.889/2023
CAL-AUG-018	Auger	346,623.00	7,581,060.00	1,388.00	3.00	0	-90	830.889/2023
CAL-AUG-019	Auger	346,246.00	7,581,157.00	1,322.00	10.00	0	-90	830.889/2023
CAL-AUG-020	Auger	346,139.00	7,581,148.00	1,299.80	5.00	0	-90	830.889/2023

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

ASX: AXL

ACN: 665 921 273

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done, this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Auger holes • At each drill site, the surface was thoroughly cleared. Soil and saprolite samples were gathered every 1 meter with precision, carefully logged and photographed. Each sample was then sealed in plastic bags and clearly labelled for identification.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Auger drilling • A motorized 2.5HP soil auger with a 4" drill bit, reaching depths of up to 20 meters, was used to drill. The drilling is an open hole, meaning there is a significant chance of contamination from the surface and other parts of the auger hole. Holes are vertical and not oriented.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger drilling No recoveries are recorded. No relationship is believed to exist between recovery and grade.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	The geology was described in a core facility by a geologist - logging focused on the soil (humic) horizon, saprolite, and fresh rock boundaries. The depth of geological boundaries is honored and described with downhole depth – not meter by meter. Other important parameters for collecting data include grain size, texture, and color, which can help identify the parent rock before weathering. All drilled holes have a digital photographic record. The log is stored in a Microsoft Excel template with inbuilt validation tables and a pick list to avoid data entry errors.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sample preparation (drying, crushing, splitting and pulverising) is carried out by SGS laboratory, in Vespasiano MG, using industry-standard protocols: • dried at 60°C • the fresh rock is 75% crushed to sub 3mm • the saprolite is just disaggregated with hammers • Riffle split sub-sample • 250 g pulverized to 95% passing 150 mesh, monitored by sieving. • Aliquot selection from pulp packet
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	1 blank sample, 1 certified reference material (standard) sample and 1 field duplicate sample were inserted by company into each 25 sample sequence. Standard laboratory QA/QC procedures were followed, including inclusion of standard, duplicate and blank samples. The assay technique used was Sodium Peroxide Fusion ICP OES / ICP MS (SGS code ICM90A). Elements analyzed at ppm levels: Al 100 – 250,000 Dy 0.05 – 1,000 Ce 0.1 – 10,000 Eu 0.05 – 1,000 Er 0.05 – 1,000 Gd 0.05 – 1,000 La 0.1 – 10,000 Li 10 – 15,000 Nd 0.1 – 10,000 Pr 0.05 – 1,000 Sm 0.1 – 1,000 Tb 0.05 – 1,000 Th 0.1 – 1,000 Tm 0.05 – 1,000 U 0.05 – 10,000 Y 0.05 – 1,000

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Yb 0,1 – 1,000 The sample preparation and assay techniques used are industry standard and provide total analysis. The SGS laboratory used for assays is ISO 9001 and 14001 and 17025 accredited. Apart from the routine QA/QC procedures by the Company and the laboratory, there was no other independent or alternative verification of sampling and assaying procedures. No twinned holes were used. Primary data collection follows a structured protocol, with standardized data entry procedures ensure that any issues are identified and rectified. All data is stored both in physical forms, such as hard copies and electronically, in secure databases with regular backups. The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (source: https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors)
		electronically, in secure databases with regular backups. The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (source: https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors) Element ppm
		Sm 1.1596 Sm2O3 Tb 1.1762 Tb4O7 Tm 1.1421 Tm2O3 Y 1.2699 Y2O3 Yb 1.1387 Yb2O3 Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3

Criteria	JORC Code explanation	Commentary
		HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3
		CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3
		(From U.S. Department of Energy, Critical Material Strategy, December 2011)
		MREO (Magnetic Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3
		NdPr = Nd2O3 + Pr6O11
		DyTb = Dy2O3 + Tb4O7
		In elemental from the classifications are:
		TREE:
		La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Tb+Lu+Y
		HREE: Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Tb+Lu+Y
		CREE: Nd+Eu+Tb+Dy+Y
		LREE: La+Ce+Pr+Nd
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	The UTM SIRGAS2000 zone 23S grid datum is used for current reporting. The auger and DDH collar coordinates for the holes reported are currently controlled by handheld GPS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Collar plan displayed in the body of the release. No resources are reported.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	All drill holes were drilled vertically, which is deemed the most suitable orientation for this type of supergene deposit. These deposits typically have a broad horizontal extent relative to the thickness of the mineralised body, exhibiting horizontal continuity with minimal variation in thickness. Given the extensive lateral spread and uniform thickness of the deposit, vertical drilling is optimal for achieving unbiased sampling. This orientation allows for consistent intersections of the horizontal mineralised zones, providing an accurate depiction of the geological framework and mineralisation. No evidence suggests that the vertical orientation has
		introduced any sampling bias concerning the key mineralised structures. The alignment of the drilling

Criteria	JO	RC Code explanation	Commentary
			with the deposit's known geology ensures accurate and representative sampling. Any potential bias from the drilling orientation is considered negligible.
Sample security	•	The measures taken to ensure sample security.	All samples were collected by field personnel and securely sealed in labeled plastic bags to ensure proper identification and prevent contamination. All samples for submission to the lab are packed in plastic bags (in batches) and sent to the lab where it is processed as reported above. The transport from the Caldas Project to the SGS laboratory in Pços de Caldas MG was undertaken by field personnel.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	No independent audit has been completed.

Section 2 Reporting of Exploration Results

ASX: AXL

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership, including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	All samples were sourced from tenements fully owned by Axel REE Ltd.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	In the Caldas Project, there is currently ongoing REE ionic absorption clay minerals exploration programs in course belongin to other junior explorers, e.g., Meteoric Resources (ASX:MEI) and Viridis Mining and Minerals Limited (ASX:VMM). There is also an exhausted uranium mine that belongs to Industrias Nucleares Brasileiras (INB). CBA, Companhia Brasileira de Aluminio (CBAV3) produces aluminium from bauxite ore since 1955.
Geology	Deposit type, geological setting and style of mineralisation.	The rare earth elements (REE) deposit type is supergene and related to lonic Absorption Clay minerals (IAC). The minealization is developed by the weathering of a Cretaceous Alkaline Igneous Complex, know as the Poços de Caldas Complex. The weathering of theses alkaline rocks produce a clayrich horizon that retains the REE minerals.
Drill hole Information	 A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes: 	Reported in the body of the announcement.

Doto	 Easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Data has been aggregated according to downhole intercept lengths above the lower cut-off grade. A lower cut-off grade of 1,000 ppm TREO (Total Rare Earth Oxides) has been applied using a minimum composite length of 1 meters and no internal diluition. Data acquisition for this project encompasses results from auger drilling. The dataset was compiled in its entirety, with no selective exclusion of information. All analytical techniques and data aggregation were conducted in strict accordance with industry best practices, as outlined in prior technical discussions.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	All holes are vertical, and mineralisation is developed in a flat-lying clay and transition zone within the regolith profile. Weathering is intense and develop thick clay-rich regoliths that extend laterally over the entire Poços de Caldas Alkaline Compex.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Reported in the body of the text.

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The data presented in this report aims to provide a transparent and comprehensive overview of the exploration activities and findings. All relevant information, including sampling techniques, geological context, prior exploration work, and assay results, has been thoroughly documented. Cross-references to previous announcements have been included where applicable to ensure continuity and clarity. The use of diagrams, such as geological maps and tables, is intended to enhance understanding of the data. This report accurately reflects the exploration activities and findings without bias or omission.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no additional substantive exploration data to report currently.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	As described in the text, there is a significant number of samples currently in the lab and results are expected to return in 2025.