ASX Release 4th September 2025 # TRIUMPH DEEP DRILLING CONFIRMS NEW CONSTITUTION MINERALISATION IS OPEN AT DEPTH Dart Mining NL ("Dart" or the "Company") is pleased to announce an update on its ongoing Triumph diamond drilling programme. The drilling has aimed to provide information on the presence and grade of mineralisation at depth below the New Constitution Mineral Resource. This update includes assay results and mineralisation observations from drill hole TRDD013 and mineralisation observations from TRDD014 (assays pending). ## **HIGHLIGHTS** - Highlight significant assays for TRDD013 include: - 0.4m @ 34.6 g/t Au and 15.0 g/t Ag from 258.6m; - 0.5m @ 15.9 g/t Au and 68.3 g/t Ag from 62.5m; - 1.8m @ 3.1 g/t Au and 10.0 g/t Ag from 151.7m; - o including 0.4m @ 13.25 g/t Au and 39.3 g/t Ag from 151.7m; - 2.5m @ 2.3 g/t Au and 9.0 g/t Ag from 199.5m; - o including 0.5m @ 9.6 g/t Au and 32.5 g/t Ag from 199.5m - Drilling of TRDD013 has also confirmed the presence of new lodes to the east of the known mineralisation which is consistent with Dart's previously reported TRDD005 and TRDD006 drill holes (<u>ASX: DTM July 2025</u>); - Depth extent of the mineralisation is still considered open at depth and to the east with all of Dart's diamond drill holes intersecting multiple new lodes, confirm by assay and TRDD014 (assays pending) also confirming mineralisation from geological logging with up to 70% pyrite and 10% arsenopyrite in veins which were visually estimated from the core; - The focus on advancing diamond drilling at New Constitution has highlighted the potential to deepen the Mineral Resource by another 140m (currently ~180m) with sufficient drilling and that the zone of the New Constitution lodes are now twice as wide (from 100m to 190m wide) with the discovery of new lodes. Dart Mining NL ABN: 84 119 904 880 Level 6, 412 Collins Street Melbourne VIC 3000 Contact: James Chirnside Email: <u>ichirnside@dartmining.com.au</u> Mobile: +61 447 447 613 $Webpage: \underline{www.dartmining.com.au}$ LinkedIn: Dart Mining NL Twitter: @DartMining ASX: DTM Visual estimates of mineralisation presence and abundance contained in this announcement should never be considered a proxy or substitute for Laboratory analysis. Visual estimates potentially provide no information regarding concentration of economic grades or factors, impurities or deleterious physical properties relevant to valuation. Darts Chairman, James Chirnside, commented: "Dart is excited with the Deep Drilling phase of our maiden diamond work for two main reasons. One is the continued discoveries of new lodes to the east of the New Con prospect, and the second is that the intersection of mineralisation at depth was predicted very closely based on projections from higher in the sequence. The team will continue to look at these results in the context of gold grade and pathfinder elements to understand what, if any, changes in plunge orientation of the high-grade shoots exist at depth. Now that we know they extend at depth, we will focus on the high-grade zones for understanding the underground potential." The first of the deep drill holes completed by Dart has shown that zones of mineralisation to a total vertical depth of ~300m are present under the New Constitution deposit. These zones are consistent with discrete vein and alteration zones running nearly vertically through the host tonalite and match well with the existing Mineral Resource interpretation at shallower depths. Further, the drilling of TRDD013 assays has confirmed with a third Dart diamond drill hole that the new eastern lodes of New Constitution are extensive and can carry significant grade (TRDD013). As Dart continues to set drill collars further east, more and more new lodes are being intersected for further interpretation and analysis. Dart has completed **2,784m** (14 holes – TRDD014 is still underway) of diamond core drilling across New Constitution, South Constitution, and Big Hans (results previously released (<u>ASX: DTM July 2025</u>). The latest results from TRDD013 have been received and represented Dart's first deep drill hole into the Triumph Project. Table 1 outlines significant intercepts and highlights intercepts that are new lodes to the New Constitution zone. Logging of TRDD014 has been completed to the current depth (309m) and there is another 120m planned. Figure 1 shows the location of TRDD013 and TRDD014 relative to the existing New Constitution Mineral Resource. Figure 1: Plan map of TRDD013 and TRDD014 relative to existing MRE. Table 1: Summary of significant intercepts from TRDD013. | Drill Hole Name | From Depth (m) | Thickness (m) | Au g/t | Ag g/t | Notes | |-----------------|----------------|---------------|--------|--------|----------| | TRDD013 | 62.5 | 0.5 | 15.85 | 68.30 | New Lode | | TRDD013 | 72.6 | 1.5 | 0.85 | 7.28 | New Lode | | TRDD013 | 151.7 | 1.8 | 3.06 | 10.00 | New Lode | | Including | 151.7 | 0.4 | 13.25 | 39.3 | New Lode | | TRDD013 | 199.5 | 2.5 | 2.34 | 9.01 | New Lode | | Including | 199.5 | 0.5 | 9.64 | 32.5 | New Lode | | TRDD013 | 258.6 | 0.4 | 34.60 | 14.95 | | | TRDD013 | 279.0 | 1.0 | 0.70 | 0.84 | | | TRDD013 | 291.4 | 1.6 | 1.32 | 2.59 | | | Including | 292.0 | 0.5 | 2.82 | 6.53 | | | TRDD013 | 348.5 | 3.0 | 0.67 | 9.38 | | | Including | 349.5 | 1.0 | 1.45 | 20.9 | | The geological logging of TRDD014 highlights the strong presence of arsenopyrite, pyrite, and some sphalerite and is vein dominated, which is typical of Triumph mineralisation. Alteration, which can be seen in Figure 2, is characterised by strong sericitic to chloritic vein selvage alteration with observations of silicification and albitisation of the host tonalite. Figure 2 also highlights a highly mineralised vein with moderate levels of observed arsenopyrite, pyrite, and sphalerite. Importantly, the core shown in Figure 2 is not current in Mineral Resource and is a **NEW LODE** to the east of New Constitution. This highlights the depth potential of these new lodes. Dart will update the market on TRDD014 assays when they become available, including a cross section to highlight the assay results. Figure 2: Core tray highlighting broad zone of strong alteration and visual mineralisation present - TRDD014. Visual estimates of mineralisation presence and abundance contained in this announcement should never be considered a proxy or substitute for Laboratory analysis. Visual estimates potentially provide no information regarding concentration of economic grades or factors, impurities or deleterious physical properties relevant to valuation Dart's recent focus on deeper extensions to the high-grade zones of the Triumph prospects is to highlight the depth potential of the existing Mineral Resource. As shown in the cross sections in Figure 3, the diamond drilling Dart is progressing is both opening up newly discovered lodes and providing important depth extensions to the known mineralisation. Figure 3: TRDD013 cross section showing extensions as well as new zones of mineralisation and assays > 0.1 g/t Au. Table 2: Mineralisation Logging Details for TRDD014. | Hole ID | Meters
From | Meters
To | Width
(m) | Pyrite
% | Arsenopyrite % | Chalcopyrite
% | Sphalerite
% | Galena
% | Comments | |---------|----------------|--------------|--------------|-------------|----------------|-------------------|-----------------|-------------|------------------------| | TRDD014 | 33 | 35.6 | 2.6 | 5 | 0.5 | | 0.5 | | Mineralized fault zone | | TRDD014 | 35.6 | 43.2 | 7.6 | 0.5 | 0.2 | | | | | | TRDD014 | 43.2 | 56.4 | 13.2 | 0.2 | | | 0.1 | | | | TRDD014 | 56.4 | 56.85 | 0.45 | 70 | 1 | 1 | 20 | 5 | | | TRDD014 | 80.5 | 88 | 7.5 | 2 | | | 0.1 | | | | TRDD014 | 101.9 | 102.7 | 8.0 | | | 0.5 | 0.5 | | | | TRDD014 | 102.7 | 116.2 | 13.5 | 0.2 | | | 0.1 | | | | TRDD014 | 116.2 | 118.5 | 2.3 | 1 | | | 0.4 | | | | TRDD014 | 131.9 | 132.25 | 0.35 | 0.5 | | | | | | | TRDD014 | 146.65 | 154.5 | 7.85 | 0.2 | | | 0.1 | | | | TRDD014 | 154.5 | 154.7 | 0.2 | 10 | 2 | | 8 | 1 | | | TRDD014 | 166.3 | 166.75 | 0.45 | 1 | 2 | | | | | | TRDD014 | 189.75 | 189.85 | 0.1 | 2 | 10 | | 1 | | | | TRDD014 | 207 | 207.15 | 0.15 | 2 | | 1 | 5 | | | | TRDD014 | 233.75 | 234.05 | 0.3 | 10 | 10 | | 1 | | | | TRDD014 | 234.05 | 238.8 | 4.75 | 0.5 | | | | | | | TRDD014 | 271 | 272.45 | 1.45 | 0.2 | | | | | | | TRDD014 | 280.3 | 283.8 | 3.5 | 0.1 | | | | | | Visual estimates of mineralisation presence and abundance contained in this announcement should never be considered a proxy or substitute for Laboratory analysis. Visual estimates potentially provide no information regarding concentration of economic grades or factors, impurities or deleterious physical properties relevant to valuation ## **NEXT STEPS** At the Triumph Gold Project, Dart intends to: - Drill test depth potential beneath the Southern Mineralised Corridor and chargeability anomaly to the Northwest of New Constitution; - Undertake the first diamond drilling at the Advance mine where previous drill intercepts include 3m @ 24.97g/t gold, 1m @ 45g/t gold and 3m @ 9.7g/t gold (ASX: DTM 2 Dec 2024). - Continue Diamond drilling to expand the existing resources along strike and at depth; - In the current quarter complete and announce a high-quality Exploration Target for the Triumph Gold Project based upon existing drilling in areas where this drilling does not yet have the required density to proclaim a JORC Resource; - Undertake regional exploration, targeting the project area, as well as testing bulk tonnage targets including those at depth; - Continue to review and identify additional prospective target zones for exploration in addition to existing resource areas; and - Conduct an initial review of possible pathways to production for Triumph to determine the likely timeframes and information requirements for a more comprehensive study. Approved for release by the Board of Directors. For more information contact: <u>Please see our
Investor Hub for further information</u> **James Chirnside** Managing Director Dart Mining NL jchirnside@dartmining.com.au +61 419 605 842 **Owen Greenberger** Head of Exploration / Investor Relations Dart Mining NL ogreenberger@dartmining.com.au ### **About Dart Mining** The Triumph Gold Project is Dart's first step into an advanced intrusion related gold system project in Queensland. Dart will look to develop a regional presence in Queensland through advanced stage intrusion related and epithermal gold projects. Dart Mining will continue to evaluate several historic goldfields in Central and Northeast Victoria including the Rushworth Goldfield and the new porphyry and lithium province in Northeast Victoria identified by Dart. The area is prospective for precious, base, and strategic metals. Dart Mining has built a strategic and highly prospective gold exploration portfolio in Central and Northeast regions of Victoria, where historic surface and alluvial gold mining indicates the existence of potentially large gold endowment. #### **Competent Person's Statement** The information in this report has been prepared, compiled, and verified by Mr. Owen Greenberger (B.Sc. Geology), a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Greenberger is Head of Exploration for Dart Mining. Mr. Greenberger has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Greenberger takes responsibility for the exploration results, and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The information in this report that relates to Mineral Resources is based on information compiled and reviewed by Mr Andrew Dawes, who is a Member of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr Andrew Dawes is employed by AHD Resources and consults to Dart Mining NL. Mr Andrew Dawes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Mineral Resources. Mr Andrew Dawes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Dart Mining confirms that it is not aware of any new information or data that materially affects the information included in this, or referenced relevant market announcements and, in the case of estimates of mineral resources or ore reserves, that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed ### **Forward-Looking Statement** Certain statements contained in this document constitute forward-looking statements. Forward-looking statements include, but are not limited to, Dart Mining's current expectations, estimates and projections about the industry in which Dart Mining operates, and beliefs and assumptions regarding Dart Mining's future performance. Such forward-looking statements are based on a number of estimates and assumptions made by the Company and its consultants in light of experience, current conditions and expectations of future developments which the Company believes are appropriate in the current circumstances. When used in this document, words such as; "anticipate", "could", "intends", "estimate", "potential", "plan", "seeks", "may", "should", and similar expressions are forward-looking statements. Although Dart Mining believes that its expectations presented in these forward-looking statements are reasonable, such statements are subject to known and unknown risks, uncertainties and other factors, which may cause the actual results, achievements and performance of the Company to be materially different from the future results and achievements expressed or implied by such forward-looking statements. Investors are cautioned that forward-looking information is no guarantee of future performance and accordingly, investors are cautioned not to place undue reliance on these forward-looking statements. ## **APPENDIX ONE** # **JORC Code, 2012 Edition – Table 1** # **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |--------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Sampling has been made on NQ diamond drilled core. Sampling is whole core sampling based on the geologists sub sampling (down to 30cm) logging definition. As it is whole core, no sub-sampling techniques were used. Samples are prepared with PREP-31B which includes crush to 70 % passing 2mm, riffle split off 1kg, pulverise split to better than 85% passing 75 microns. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer,
rotary air blast, auger, Bangka, sonic, etc) and details (eg core
diameter, triple or standard tube, depth of diamond tails, face-
sampling bit or other type, whether core is oriented and if so,
by what method, etc). | Drilling is diamond drilling NQ core size and is triple tube drilling. Core
is oriented where possible using the Reflex ACT III tool. | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to | Core is measured after each run and core recovery based on the drill metres is recorded. Once in the transition and fresh material, Triumph experiences limited to no core loss with the exception of intensely broken zones where recovery is still > 95%. | | Criteria | JORC Code explanation | Commentary | |---|--
---| | | preferential loss/gain of fine/coarse material. | No relationship has been observed between sample recovery and gold
grade. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | The drill core has been geologically and geotechnically logged to a level to support appropriate mineral resource estimation, mining studies and metallurgical studies. Core is logged both qualitatively and quantitatively. Core tray photography is both wet and dry photography. All 2,784m have been logged so far. Sampling is discrete based on observed mineralisation, alteration, key structural features. | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Core is whole core sampling so no sub-sampling techniques in the field are used which ensures appropriate in-situ representation. The PREP-31B method includes crush to 70 % passing 2mm, riffle split off 1kg, pulverise split to better than 85% passing 75 microns. The larger 1kg riffle split is larger than the standard 250g to reduce sample size bias. Sampling size is suitable to represent the mineralisation intersected. | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | All samples were analysed at ALS Global (ALS, Brisbane). All samples were assayed for Au using a 50g fire assay with AU-ICP22 determination as well as ME-MS61 for multi element. In the case where key elements are over range, Ag, Pb, Zn, and Cu was completed using OG-62. As completed with OG46, and Au completed with GRA22. The three types of QAQC samples were used were Certified Reference Material (CRM/Standards), Field Duplicates, and Blank material. The Blanks consist of store-bought sand which has been shown to be barren based on previous work. The Blanks are used to provide information of any possible contamination or calibration issues during the crush, pulverisation, and analytical phases. The field duplicates utilised the spear to collect a second sample to test repeatability (precision) of the original sample. The standards samples are used to | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | | test the accuracy of the analyses. Three CRMs were OREAS standards and include: OREAS 277, OREAS 245, and OREAS 233. QAQC samples were entered into the sample stream at a rate of 1 in 20. Where lower detection limits were reported for assay results these were replaced by half the lower detection limit for geological interpretation and modelling purposes. | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | All core photos are reviewed by the Competent Person and also visited site during early drilling. No twinned holes have been undertaken. Data from the field log sheets is entered into a digital database, primarily an Excel spreadsheet with subsequent conversion into an SQL database maintained by EarthSQL at the completion of the hole. The Excel spreadsheet has been created with a series of validation criteria in the form of pulldown menus for each data entry that restricts what can be entered into each field and significantly reduces the error associated with data entry. Assay results are received from the laboratory in electronic (via email) format onsite and sent to Sample Data importing to the EarthSQL database. The electronic results are provided in an CSV file. | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Collars are collected by Dart Geologists using a dGPS Trimble device and is suitable for collecting collar XYZ. All collar coordinates are in MGA94 Z56. Downhole survey has been surveyed using Reflex survey tool. AHD Resources was provided a 3D elevation topography or digital terrain model ("DTM") for the Triumph area from Dart Mining in the form of a .msh file. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The drilling is in fill drilling of the existing Mineral Resource Estimate. As
such, the geological continuity is known and expected. Where new
lodes are intercepted, multiple drill holes confirm the new lodes along
strike. Given the close proximity to the existing MRE, the spacing is
sufficient to have confidence in the continuity. | | Criteria | JORC Code explanation | Commentary | |---|--
---| | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No sample compositing has been applied. Drilling is typically orientated perpendicular to the interpreted strike of mineralization where possible. Darts objecting in drilling TRDD012 was the see if the structures continue southward or to the east (towards Super Hans). Observations of the structural logging highlight all south striking mineralised veins. The drill hole is drilled approximately 35 degrees to the strike orientation of the interpreted mineralisation but considering the consistent sub perpendicular drilling due to topography constraints and the discrete sampling by the field geologist, the impact of orientation bias is limited. | | Sample
security | The measures taken to ensure sample security. | Samples are under the care of Dart Geologists from logging through to
delivery to ALS in Brisbane. | | Audits or reviews | The results of any audits or reviews of sampling techniques
and data. | No external reviews of audits on this drilling have been completed. Drilling has been reviewed internally within Dart. | # **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement
and land
tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Triumph project consists of EPM 18486 and EPM 19343, both 100% owned by Dart Exploration (QLD) Pty Ltd, a wholly owned subsidiary of Dart Mining NL. The tenements are in good standing, and no known impediments exist. ML80035 (Norton Mine ML or Norton Mining Lease) (covering an area of 0.2km) is located within the project area and is excluded from the tenure. Exploration is prohibited within a small area of Category B environmentally protected area as well as a National Park shown in Figure 2. The current approved Environmental Authority (EA) allows for advanced exploration activities to occur up to the National Park (NP) boundary. | | Criteria | JORC Code explanation | Commentary | |-----------------------------------|---|--| | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | The first record of modern exploration being undertaken in the area was carried out by Delhi Australian Petroleum Limited (Delhi) from 1966 to 1971. Initially Delhi undertook gridding, mapping of the old workings, dump sampling and an IP survey. The IP survey highlighted five anomalous zones in and around the old Norton workings. Three of these zones, at the Frampton, Bald Hill and Galena prospects, were drill tested with five holes by Noranda Australia Limited in 1969 in joint venture with Delhi. Following Noranda's withdrawal from the joint venture Delhi completed a further three drillholes, one at each of the Bald Hill, Frampton and New Constitution prospects. Frampton is now part of ML 80035. Significant gold intersections in drillholes outside of ML 80035 were reported, for example NCDH-1 at the New Constitution prospect that returned 1.5 m @ 5.5 g/t Au and 24.5 g/t Ag from 109.8 m depth. A significant amount of exploration was undertaken by Amoco Minerals Australia Company, its successor Cyprus Minerals Australia Company and joint venture partners Pacific Goldmines, Astrik Resources and Climax Mining Limited on EPM 3581 between 1985 and 1988. Much of this work was focused on close-spaced drilling at the Frampton, Chandler and Never Never prospects now within the Norton Gold Fields ML – to outline ore reserves. Within the area of EPM 18486 the work on historical EPM 3581 consisted of stream sediment, rock and float sampling as well as trenching at Bald Hill and Han's Big Dyke and drilling at Bald Hill. Nine holes at the eastern end of the Frampton-Chandler prospect also lie within SHN's EPM 18486. Seven of these holes intersected narrow (0.2 m to 1 m) intervals of high-grade gold mineralisation – examples being 1 m at 16.6 g/t, 1 m at 12.0 g/t and 0.2 m at 24.6 g/t. From 1993 to 1999 much of the area was held by Gold Exploration Pty Ltd and subsequently Coffee Gold NL under EPM 9778. MDL 130, then covering the core of the Norton goldfield, | | Criteria | JORC Code explanation | Commentary | |----------|---
---| | | | was excluded from this project. The work undertaken during this period was minimal and consisted mainly of rock chip sampling and geological reconnaissance work. Following a hiatus of several years the Norton Goldfield and surrounding area was held under EPM 13584 and ML 80035, initially by AT Prowse and latterly by Norton Gold Fields Limited from 2002. EPM 13584 has been surrendered but ML 80035 still exists. From 2020 to 2023, Sunshine Gold Ltd completed an extensive RC and DD programme with the aim to define a maiden Mineral Resource at Triumph. Through their work, Sunshine Gold Ltd declared a Mineral Resource for Triumph in March 2022. | | Geology | Deposit type, geological setting and style of mineralisation. | The local geology comprises the metasedimentary Wandilla Formation (part of the Devonian-Carboniferous Curtis Island Group), intruded by a series of complex Permo-Triassic granitoid units and complexes including the Many Peaks Granodiorite, Castletower Granite and Norton Tonalite. The project is positioned on the Norton Splay, a regional-scale north-west trending fault located 7km to the east of the upper Boyne rift valley (part of a major crustal dislocation of the Yarrol Fault Zone). The fault divides the Norton Tonalite complex, with a majority of the Wandilla Formation to the west and granitoids to the east. Most of the Norton Tonalite complex is recessive, forming a 25 km2 area of low relief. Approximately 90% of the tenure is concealed beneath shallow sedimentary cover rocks (<10 m thick) thus masking prospective basement rocks. The intrusive phases include the host Norton Tonalite, interpreted as an apophysis of the Permo-Triassic (268 Ma) Many Peaks Granodiorite that intrudes and hornfelses the Wandilla Formation. The Norton Tonalite pluton is compositionally zoned from marginal gabbro and diorite to quartz diorite, tonalite, granodiorite and possibly monzogranite. The Castletower leuco-granite south of the Norton Tonalite is interpreted as Triassic (221 Ma) and therefore should cut the | | Criteria | JORC Code explanation | Commentary | |----------|-----------------------|---| | | | Norton Tonalite. A later monzodiorite/aplite phase is present as a series of dikes and is interpreted to be related to the main phase of gold mineralisation at Triumph and is interpreted as being of Triassic age. • Gold mineralisation is localised along the contact between Norton Tonalite and the monzodiorite and monzonite phases of the dikes and is inferred to be genetically related to a quartz monzonite phase in the interior of the dikes. Portions of it are sheared and heavily altered, with several of these zones hosting orebodies at the Norton Goldfield. Within this area and surrounds, gold-silver-copper-lead-zinc-arsenic mineralisation within sulphidic zones is hosted in composite intrusions of several types of dioritic and granodioritic rock. These intrusives exhibit at least two phases of alteration, which may represent at least two different distinct phases or a spatial association and fractionation between the phases. Alteration within and peripheral to mineralised sulphidic veins occurs as spatially and temporally associated strong to intense phyllic (sericite/muscovite ± pyrite-silica) alteration with predominantly narrow vein selvages. Pockets of weak to strong potassic (biotite-K feldspar) alteration associated with weak copper mineralisation occur in rare outcrop to the north of the Norton township. • Trachyandesite dikes and plugs cut the gold mineralisation and are also cut by the Norton Fault. Examples include a plug and dike swarm at the Advance prospect which cuts the mineralisation there. The trachyandesite is interpreted as Triassic by comparison with regional units. Vesicular basalt grading to dolerite dikes also cut the mineralisation, but their exact relation to the trachyandesite is unclear. The dikes are in the peripheral parts of the lode away from and not connected with the monzodiorite, trachyandesite and basaltic dikes are all part of one Late Triassic volcanic formation, but this is not clearly | | Criteria | JORC Code explanation | Commentary | |----------|-----------------------|--| | Criteria | JORC Code explanation | established. The mineralisation at Triumph is interpreted as an intrusion related gold system (IRGS). In these systems, metals are derived from a central mineralising granitic intrusion and generally show a strong metal zonation. Gold can be focused more distally, up to 1-3 km from the intrusion. Most IRGS show strong associations with bismuth, tungsten, tin, tellurium, arsenic, molybdenum and antimony. They are typically low in sulphide content and show weak areal extent of hydrothermal alteration. IRGS are generally associated with felsic plutons and stocks, of intermediate oxidation states, with both magnetite and ilmenite series represented. These gold systems are generally located in continental settings in-board of convergent plate margins. Within this area and surrounds, gold-silver-copper-lead-zinc-arsenic mineralisation within sulphidic
zones is hosted in composite intrusions of several types of dioritic and granodioritic rock. These intrusives exhibit at least two phases of alteration, which may represent at least two different distinct phases or a spatial association and fractionation between the phases. Alteration within and peripheral to mineralised sulphidic veins occurs as spatially and temporally associated strong to intense phyllic (sericite/muscovite ± pyrite-silica) alteration with predominantly narrow vein selvages. Pockets of weak to strong potassic (biotite-K feldspar) alteration associated with weak copper mineralisation occur in rare outcrop to the north of the Norton township. | | | | outcrop to the north of the Norton township. Gold mineralisation is hosted within quartz-sulphide veins and is associated with pyrite and arsenopyrite, with gold and silver likely contained within the pyrite, with the iron pyrite likely an | | | | associated but not host sulphide. The veins typically show a sericite(-chlorite) alteration halo, however this appears to be more associated with the quartz veining itself rather than sulphides. Considering this association, it could be hypothesised | | | | that the gold mineralisation is related to a later phase. | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | A complete account of drillholes completed is outlined in APPENDIX Two: Drillhole Summary. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Weighted average based on sample length and gold and silver grade has been applied to compositing drill hole assay data for domain compositing. No metal equivalents have been used. | | Relationship
between
mineralisatio
n widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | Drilling orientations relative to the interpretation of veins is not always ideal for the deposits at Triumph due to topographic constraints. Diamond core structural measurements through mineralised vein intercepts were used to guide the vein 3D modelling interpretation. Therefore, in areas where intercepts were at a low angle relative to the interpretation, the downhol mineralisation length was taken into account in the 3D interpretation to represent true thickness. As the veins are sub-vertical, drilling has been undertaken from both sides of the vein structures. The interpretation shows continuity along strike and at depth from the drilling results to date. Core orientation and structure/vein orientations are collected. Drilling of TRDD012 is approximately 35 degrees to the strike of mineralisation as the drill hole was looking to highlight | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | | alternative observations of cross cutting/diverging structures. The drilling observations of true thickness are consistent with the surrounding mineralisation interpretation, and the Competent Person is satisfied that this orientation of drilling is still representative through the diamond logging and sub sampling. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery being
reported These should include, but not be limited to a plan view of
drill hole collar locations and appropriate sectional views. | Included in the body of the announcement. | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not
practicable, representative reporting of both low and high grades
and/or widths should be practiced to avoid misleading reporting of
Exploration Results. | Not relevant to this announcement as no new sample results
are being reported. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported
including (but not limited to): geological observations; geophysical
survey results; geochemical survey results; bulk samples – size and
method of treatment; metallurgical test results; bulk density,
groundwater, geotechnical and rock characteristics; potential
deleterious or contaminating substances. | IP geophysical data presented or discussed in this report was collected by Roar Resources (100% owned by Metal Bank). Metal Factor processing was applied to the dipole IP data. Metal Factor processing creates a single image to enhance elevated IP chargeability coincident with lower IP resistivity. Remodeling of the 2011 IP data was completed by consultant Mike Sexton using far superior 2D geophysical modelling software in 2016. (ASX: MBK Nov 2016, MBK Jan 2017) | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Plans for further work are outlined in the body of the
announcement which include an upgrade and growth drill
programme to the existing Mineral Resources. | ## **APPENDIX TWO:** # TABLE 1 DRILL HOLE SUMMARY OF CURRENT DRILLING | Hole ID | Easting | Northing | Elevation | Max Depth
(m) | Dip
(deg) | Azimuth
(deg) | Assay Results | |---------|----------|-----------|-----------|---------------------------|--------------|------------------
--| | TRDD013 | 334502.2 | 7308895.5 | 153.61 | 408 | -60 | 225 | Assays reported in full | | TRDD014 | 334269.8 | 7308900.9 | 142.60 | 309
(current
depth) | -50 | 55 | Awaiting assays and completion of drill hole | # TABLE 2 ASSAY SUMMARY FOR FIRST DRILL HOLES | Hole ID | From (m) | To (m) | Width (m) | Au (g/t) | Ag (g/t) | |---------|----------|--------|-----------|----------|----------| | TRDD013 | 62 | 62.5 | 0.5 | 0.01 | 0.14 | | TRDD013 | 62.5 | 63 | 0.5 | 15.85 | 68.30 | | TRDD013 | 63 | 63.5 | 0.5 | 0.01 | 0.21 | | TRDD013 | 63.5 | 64 | 0.5 | 0.08 | 8.24 | | TRDD013 | 64 | 64.5 | 0.5 | 0.02 | 0.10 | | TRDD013 | 66.8 | 67.1 | 0.3 | 0.02 | 1.42 | | TRDD013 | 71.6 | 72.1 | 0.5 | 0.00 | 0.04 | | TRDD013 | 72.1 | 72.6 | 0.5 | 0.02 | 0.25 | | TRDD013 | 72.6 | 73.1 | 0.5 | 0.02 | 0.51 | | TRDD013 | 73.1 | 73.65 | 0.55 | 2.26 | 18.15 | | TRDD013 | 73.65 | 74.1 | 0.45 | 0.05 | 1.50 | | TRDD013 | 74.1 | 74.5 | 0.4 | 0.03 | 0.48 | | TRDD013 | 74.5 | 75 | 0.5 | 0.23 | 1.26 | | TRDD013 | 75 | 75.5 | 0.5 | 0.01 | 0.47 | | TRDD013 | 75.5 | 76 | 0.5 | 0.00 | 0.03 | | TRDD013 | 76 | 76.5 | 0.5 | 0.00 | 0.15 | | TRDD013 | 76.5 | 77 | 0.5 | 0.01 | 0.49 | | TRDD013 | 77 | 77.6 | 0.6 | 0.06 | 0.44 | | TRDD013 | 77.6 | 78.2 | 0.6 | 0.01 | 0.05 | | TRDD013 | 78.2 | 78.75 | 0.55 | 0.08 | 0.29 | | TRDD013 | 78.75 | 79.4 | 0.65 | 0.01 | 0.29 | | TRDD013 | 79.4 | 79.9 | 0.5 | 0.03 | 0.28 | | TRDD013 | 79.9 | 80.5 | 0.6 | 0.00 | 0.02 | | TRDD013 | 80.5 | 81.1 | 0.6 | 0.00 | 0.02 | | TRDD013 | 81.1 | 81.6 | 0.5 | 0.01 | 0.38 | | TRDD013 | 81.6 | 82.1 | 0.5 | 0.00 | 0.10 | | TRDD013 | 82.1 | 82.6 | 0.5 | 0.00 | 0.08 | | TRDD013 | 105 | 105.5 | 0.5 | 0.00 | 0.04 | | TRDD013 | 105.5 | 106 | 0.5 | 0.01 | 0.18 | | TRDD013 | 106 | 106.6 | 0.6 | 0.00 | 0.03 | | TRDD013 | 106.6 | 107 | 0.4 | 0.02 | 0.09 | | TRDD013 | 107 | 107.5 | 0.5 | 0.01 | 0.06 | | TRDD013 | 107.5 | 108 | 0.5 | 0.00 | 0.06 | | TRDD013 | 108 | 108.4 | 0.4 | 0.00 | 0.11 | | TRDD013 | 108.4 | 109 | 0.6 | 0.03 | 0.25 | | TRDD013 | 109 | 109.5 | 0.5 | 0.09 | 0.21 | | TRDD013 | 109.5 | 110 | 0.5 | 0.05 | 0.13 | | TRDD013 | 110 | 110.5 | 0.5 | 0.00 | 0.05 | |----------|-------|-------|-----|-------|-------| | TRDD013 | 110.5 | 111 | 0.5 | 0.00 | 0.04 | | TRDD013 | 111 | 111.5 | 0.5 | 0.00 | 0.06 | | TRDD013 | 111.5 | 112 | 0.5 | 0.00 | 0.12 | | TRDD013 | 112 | 112.5 | 0.5 | 0.00 | 0.04 | | TRDD013 | 112.5 | 113 | 0.5 | 0.00 | 0.07 | | TRDD013 | 113 | 113.5 | 0.5 | 0.00 | 0.77 | | TRDD013 | 113.5 | 114 | 0.5 | 0.00 | 2.65 | | TRDD013 | 114 | 114.5 | 0.5 | 0.00 | 0.07 | | TRDD013 | 114.5 | 115 | 0.5 | 0.00 | 0.05 | | TRDD013 | 147.7 | 148.1 | 0.4 | 0.01 | 0.11 | | TRDD013 | 149.7 | 150.2 | 0.5 | 0.00 | 0.03 | | TRDD013 | 150.2 | 150.7 | 0.5 | 0.74 | 6.54 | | TRDD013 | 150.7 | 151.2 | 0.5 | 0.00 | 0.09 | | TRDD013 | 151.2 | 151.7 | 0.5 | 0.00 | 0.09 | | TRDD013 | 151.7 | 152.1 | 0.4 | 13.25 | 39.30 | | TRDD013 | 152.1 | 152.5 | 0.4 | 0.05 | 0.69 | | TRDD013 | 152.5 | 153 | 0.5 | 0.02 | 1.84 | | TRDD013 | 153 | 153.5 | 0.5 | 0.37 | 2.26 | | TRDD013 | 153.5 | 154 | 0.5 | 0.00 | 0.06 | | TRDD013 | 188.2 | 188.7 | 0.5 | 0.05 | 0.83 | | TRDD013 | 188.7 | 189.2 | 0.5 | 0.01 | 0.18 | | TRDD013 | 189.2 | 189.8 | 0.6 | 0.01 | 0.16 | | TRDD013 | 189.8 | 190.3 | 0.5 | 0.00 | 0.23 | | TRDD013 | 190.3 | 190.8 | 0.5 | 0.01 | 0.25 | | TRDD013 | 190.8 | 191.3 | 0.5 | 0.01 | 0.07 | | TRDD013 | 191.3 | 191.8 | 0.5 | 0.01 | 0.04 | | TRDD013 | 191.8 | 192.2 | 0.4 | 0.20 | 5.51 | | TRDD013 | 196.9 | 197.3 | 0.4 | 0.15 | 1.10 | | TRDD013 | 197.3 | 197.8 | 0.5 | 0.88 | 10.05 | | TRDD013 | 197.8 | 198.4 | 0.6 | 0.14 | 1.80 | | TRDD013 | 198.4 | 199 | 0.6 | 0.00 | 0.06 | | TRDD013 | 199 | 199.5 | 0.5 | 0.01 | 0.39 | | TRDD013 | 199.5 | 200 | 0.5 | 9.64 | 32.50 | | TRDD013 | 200 | 200.5 | 0.5 | 0.01 | 0.33 | | TRDD013 | 200.5 | 201 | 0.5 | 1.22 | 5.93 | | TRDD013 | 201 | 201.5 | 0.5 | 0.04 | 0.22 | | TRDD013 | 201.5 | 202 | 0.5 | 0.82 | 6.06 | | TRDD013 | 202 | 202.5 | 0.5 | 0.01 | 0.14 | | TRDD013 | 212.5 | 213 | 0.5 | 0.00 | 0.06 | | TRDD013 | 213 | 213.5 | 0.5 | 0.05 | 17.35 | | TRDD013 | 213.5 | 214 | 0.5 | 0.00 | 0.15 | | TRDD013 | 214 | 214.5 | 0.5 | 0.00 | 0.04 | | TRDD013 | 214.5 | 215 | 0.5 | 0.07 | 1.26 | | TRDD013 | 215 | 215.5 | 0.5 | 0.14 | 0.81 | | TRDD013 | 215.5 | 216 | 0.5 | 0.21 | 1.40 | | TRDD013 | 216 | 216.5 | 0.5 | 0.09 | 0.81 | | TRDD013 | 216.5 | 217 | 0.5 | 0.20 | 0.93 | | TRDD013 | 217 | 217.5 | 0.5 | 0.01 | 0.18 | | TRDD013 | | | - | | | | <u> </u> | 225 | 225.5 | 0.5 | 0.01 | 0.54 | | TRDD013 | 226 | 226.5 | 0.5 | 0.06 | 0.77 | |---------|-------|-------|-----|-------|-------| | TRDD013 | 226.5 | 227 | 0.5 | 0.01 | 0.13 | | TRDD013 | 241.9 | 242.5 | 0.6 | 0.00 | 0.10 | | TRDD013 | 242.5 | 243 | 0.5 | 0.01 | 0.07 | | TRDD013 | 243 | 243.5 | 0.5 | 0.09 | 0.19 | | TRDD013 | 258.6 | 259 | 0.4 | 34.60 | 14.95 | | TRDD013 | 278.5 | 279 | 0.5 | 0.03 | 0.17 | | TRDD013 | 279 | 279.5 | 0.5 | 0.47 | 0.63 | | TRDD013 | 279.5 | 280 | 0.5 | 0.93 | 1.04 | | TRDD013 | 280 | 280.5 | 0.5 | 0.13 | 0.28 | | TRDD013 | 290.9 | 291.4 | 0.5 | 0.01 | 0.05 | | TRDD013 | 291.4 | 292 | 0.6 | 1.15 | 1.20 | | TRDD013 | 292 | 292.5 | 0.5 | 2.82 | 6.53 | | TRDD013 | 292.5 | 293 | 0.5 | 0.03 | 0.33 | | TRDD013 | 293 | 293.5 | 0.5 | 0.01 | 0.14 | | TRDD013 | 293.5 | 294 | 0.5 | 0.02 | 0.37 | | TRDD013 | 294 | 294.5 | 0.5 | 0.01 | 0.33 | | TRDD013 | 294.5 | 295.1 | 0.6 | 0.01 | 0.44 | | TRDD013 | 295.1 | 295.6 | 0.5 | 0.00 | 0.10 | | TRDD013 | 295.6 | 296 | 0.4 | 0.07 | 0.59 | | TRDD013 | 296 | 296.5 | 0.5 | 0.01 | 0.31 | | TRDD013 | 296.5 | 297 | 0.5 | 0.24 | 0.55 | | TRDD013 | 307.2 | 307.8 | 0.6 | 0.06 | 1.22 | | TRDD013 | 311.3 | 311.9 | 0.6 | 0.49 | 2.64 | | TRDD013 | 311.9 | 312.5 | 0.6 | 0.33 | 2.04 | | TRDD013 | 326 | 326.4 | 0.4 | 0.12 | 0.28 | | TRDD013 | 326.4 | 327 | 0.6 | 0.01 | 0.16 | | TRDD013 | 327 | 327.5 | 0.5 | 0.01 | 0.06 | | TRDD013 | 347.5 | 348 | 0.5 | 0.05 | 0.03 | | TRDD013 | 348 | 348.5 | 0.5 | 0.06 | 1.99 | | TRDD013 | 348.5 | 349 | 0.5 | 0.48 | 3.64 | | TRDD013 | 349 | 349.5 | 0.5 | 0.08 | 0.97 | | TRDD013 | 349.5 | 350 | 0.5 | 1.81 | 11.40 | | TRDD013 | 350 | 350.5 | 0.5 | 1.08 | 30.40 | | TRDD013 | 350.5 | 351 | 0.5 | 0.17 | 5.87 | | TRDD013 | 351 | 351.5 | 0.5 | 0.44 | 4.01 | | TRDD013 | 351.5 | 352 | 0.5 | 0.01 | 1.12 | | TRDD013 | 352 | 352.5 | 0.5 | 0.03 | 2.99 | | TRDD013 | 352.5 | 353 | 0.5 | 0.01 | 0.16 | | TRDD013 | 369 | 369.6 | 0.6 | 0.01 | 0.59 | | TRDD013 | 369.6 | 370.1 | 0.5 | 0.03 | 3.01 | | TRDD013 | 370.1 | 370.6 | 0.5 | 0.02 | 0.35 | | TRDD013 | 385 | 385.5 | 0.5 | 0.01 | 0.84 | | TRDD013 | 385.5 | 386.1 | 0.6 | 0.01 | 2.26 | | TRDD013 | 386.1 | 386.7 | 0.6 | 0.02 | 2.24 |