

ASX ANNOUNCEMENT

WANDEAN GOLD DISCOVERY

- Nagambie Mining (ASX: NAG) is delighted to declare Wandean, 9 km north west of the Nagambie Mine, a virgin gold discovery following the receipt of assays from the latest drilling program.
- Wandean now shown to host continuous gold mineralisation grading better than the target average grade of 1.0 g/t gold for economic heap leach treatment at the Nagambie Mine. The mineralisation remains open to the east.
- 37.8 g/t gold intersected (36.4 g/t repeat), the highest gold grade to date for Wandean and more than double the best oxide gold assay recorded at the Nagambie Mine in the 1990s of 16.3 g/t gold.
- Some of the better oxide intersections for the latest exploration drilling program at Wandean are:
 - <u>5m at 11.4 g/t</u> gold from 53m down hole (including 3m at 18.7 g/t from 53m and 1m at 37.8 g/t from 54m) in drill hole WRC 101;
 - <u>13m at 1.74 g/t</u> from 20m (including 4m at 3.3 g/t from 24m) in WRC 58;
 - 10m at 1.50 g/t from 39m (including 4m at 2.4 g/t from 40m) plus 7m at 1.93 g/t from 58m (including 3m at 3.2 g/t from 59m) in WRC 56; and
- The gold mineralisation is closely associated with subvertical zones of silicified mudstones and sandstones in the saprolite weathered zone.
- Very encouraging preliminary gold leach results augur well for Wandean heap leach gold recovery.

COMMENTARY

The Company Chairman, Mike Trumbull said: "Nagambie Mining now has two open-pit, heap-leachable gold discoveries, Apollo at Clonbinane and Wandean, to progress to production. There is clear potential for more discoveries to be made in the 100% controlled Nagambie and Clonbinane Goldfields.

"In July 2012, we announced that we had 'cracked the code' for the Nagambie region and planned to systematically hunt down Nagambie Mine-style gold ore bodies that are amenable to low cost mining and ore treatment. To announce the discovery of Wandean two years later is very gratifying."

NAGAMBIE MINING

Nagambie Mining is focussed on the discovery and development of shallow, open-pit and heapleachable gold deposits.

The Company controls 100% of tenements encompassing historic Victorian goldfields at Nagambie, Clonbinane, Redcastle and Rushworth.

A preliminary Inferred Resource of 47,000 ounces of gold was estimated in 2008 for Clonbinane.

Nagambie Mining is testing new structural and mineralisation concepts for gold mineralisation by employing geological, geophysical and geochemical techniques.

Nagambie Mining is also pursuing construction material and landfill opportunities at the Nagambie Mine site in order to maximise the value of the freehold land owned by the Company.

> <u>SHARES ON ISSUE</u> 301,414,010

ASX CODE: NAG

Nagambie Mining Limited ABN 42 111 587 163

Registered, Operations & Head Office 533 Zanelli Road Nagambie Vic 3608 PO Box 339

> Tel: (03) 5794 1750 Fax: (03) 5794 1790

www.nagambiemining.com.au

info@nagambiemining.com.au

Board

Mike Trumbull (Chairman) Geoff Turner (Exploration Dir.) Kevin Perrin (Finance Dir.) Alfonso Grillo (Company Sec.)

ADDITIONAL COMMENTARY

The Company Chairman also said: "Nagambie Mining believes that disseminated gold targets such as Wandean and Apollo are far superior to the more typical Victorian nuggetty quartz vein targets that have proven to be very difficult to evaluate, develop and mine profitably. Duplicate samples at Wandean have provided excellent correlation, even at high grades, so the gold is very evenly distributed and we do not have any of the coarse gold problems that occur with Ballarat & Bendigo-style mineralisation.

"Nagambie Mining is targeting a total operating cost for Wandean including trucking the oxide gold mineralisation to the Nagambie Mine, 9 km to the south east, for heap leach treatment of A\$900 per ounce of gold or less. The Company is targeting a total operating cost for Apollo including trucking the oxide mineralisation to the Nagambie Mine, 60 km to the north via the Hume and Goulburn Valley Freeways, for heap leach treatment of A\$600 per ounce of gold or less.

"With the gold price trading in the general range of A\$1,350 to A\$1,550 per ounce over the last year, Nagambie Mining is well positioned to move forward with both Wandean and Apollo."

WANDEAN THIRD-PHASE RC DRILLING PROGRAM

Wandean is 4 km north of Nagambie in central Victoria and 9 km north west of the Nagambie Mine in EL 5430 (refer Figure 1).

Figure 1 Nagambie Mining Tenements (excluding Clonbinane Tenements to the South)

A total of 52 RC (reverse circulation) percussion holes, WRC054 through to WRC105, were drilled in the latest program.

The hole locations are shown in Figure 2, the detailed hole descriptions are set out in Table 2 in Appendix 1 and the assay results are set out in Table 3 in Appendix 1.

Figure 2 Wandean Third-Phase Drill Plan (Phase Three Holes in Green.)

Holes were drilled at an oblique angle to the strike as outcrop mapping showed the presence of sheeted quartz veins oriented in a north south direction. As these thin quartz veins are suspected as being the host to the primary gold-antimony-arsenic mineralisation, the drill direction was selected to both intersect these veins and test across the host stratigraphy.

Holes were drilled to the base of oxidation at around 60 metres downhole depth.

Geological logging and interpretation shows the gold mineralisation is associated with subvertical zones of silicification within saprolitic mudstones and sandstones.

Interpreted sections (Figures 3 and 4) show zones of low grade gold mineralisation less than 0.5 g/t gold (shown in yellow) enveloping discrete and continuous zones of higher grade mineralisation greater than 0.5 g/t gold (shown in red).

All intersections greater than 2.0 g/t gold for the third-phase drilling program and the second-phase drilling program at Wandean are set out in Table 1, sorted by grade. Drill hole numbers for the second-phase drilling program (intersections announced on 20 January 2014) are in bold with an asterisk (*).

Of the total of 52 intersections greater than 2.0 g/t gold, only 13 intersections (25%) are associated with 5% or more quartz (shown in bold red). With 75% of the intersections greater than 2.0 g/t gold being associated with minimal quartz (0% to 5%), significant supergene enrichment of the sedimentary beds in the oxide zone is indicated.

The average percentage quartz in the Wandean gold mineralisation is very low for a Victorian gold deposit. Nagambie Mining considers that no drilling and blasting would be required at Wandean.

Figure 3 Cross Section 334735E

Table 1 Gold Intersections + 2.0 g/t						
RC Hole	From	То	Lithology	Quartz %	Au (g/t)	
WRC101	54	55	sandstone	25	37.80	
WRC 23*	7	8	mudstone		21.10	
WRC101	55	56	sandstone	2	12.00	
WRC 42*	1	2	siltstone		10.60	
WRC101	53	54	sandstone	8	6.36	
WRC 34*	31	32	mudstone	0.1	6.17	
WRC086	13	14	sandstone		6.15	
WRC 41*	32	33	mudstone		5.42	
WRC 49*	62	63	mudstone		5.31	
WRC061	30	31	mudstone	30	5.30	
WRC068	38	39	mudstone	1	5.14	
WRC058	26	27	silicified	1	5.06	
WRC058	10	11	silicified		4.83	
WRC 46*	34	35	mudstone		4 80	
WRC 25*	48	49	mudstone	30	4.39	
WRC056	59	60	silicified	3	4 22	
WRC058	25	26	silicified	2	4 18	
WRC055	19	20	silicified	10	4 15	
WRC 40*	52	53	sandstone	1	3 59	
WRC056	61	62	mudstone	0.5	3 56	
WRC080	55	56	mudstone	0.5	3.56	
WRC060	21	22	cilicified	2	2.47	
WRC056	<u> </u>	42	Silicilieu	0.5	3.47 2.20	
WRC056	41	42	sanusione	0.5	3.30 2.25	
WRC056	4Z 51	43	Silicilieu	0.5	3.30	
WRC035	52	52	sanusione	2	3.30	
	21		Sildle	0.5	3.19	
	24	32	mudstone	20	3.19	
WRC059	21	30	mudstone	10	3.07	
	21	32	mudatana	10	2.07	
	40	50		2	2.97	
WRC060	49	30	Sanusione	<u> </u>	2.09	
WRC059	<u> </u>	51	niucisione	<u> </u>	2.01	
WRC030	30	51	Silicineu	1	2.00	
	37	38	mudstone	40	2.60	
	49	50	sandstone	40	2.32	
	44	45	snale	2	2.45	
WRC058	21	28	SIIICITIED	3	2.42	
	44	45	Silicified)	2.42	
WRC089	54	55	sandstone	0.5	2.36	
WRC056	64	65	mudstone	2	2.28	
WRC061	33	34	sandstone	50	2.22	
	56	57	snale	0.1	2.16	
WRC075	33	34	mudstone	20	2.15	
	12	13	sandstone		2.15	
WRC092	30	31	mudstone		2.14	
WRC 21*	14	15	sandstone	15	2.13	
WRC086	43	44	silicitied		2.10	
WRC059	50	51	mudstone	15	2.09	
WRC 35*	23	24	mudstone		2.08	
WRC064	8	9	mudstone	0.5	2.04	
WRC 21*	9	10	sandstone	0.1	2.01	
WRC082	34	35	shale		2.00	

. . . -

* Gold intersections + 2.0 g/t announced on 20 January 2014

TESTS INDICATE THAT GOLD IS EVENLY DISTRIBUTED WITH HIGH LEACH RECOVERIES

Samples from holes WRC 82 and WRC 101, with a good spread of assay results above a cut off of 0.3 g/t gold, were re-submitted to ALS-Minerals for 1 to 2 kilogram cyanide leaching enhanced with LeachWell® tabs. The calculated grade (refer Table 2) is the sum of the gold extracted after 24 hours of leaching plus the gold remaining in the residue. Cyanide recovery is the gold extracted versus the calculated grade.

Correlation of these calculated grades with the initial assays obtained by 25 gram aqua regia digest and AAS is high. The correlation for the 37.8 g/t sample is 96% and the simple average for the 10 samples is 100%. Such high correlations indicate that the gold is evenly distributed in the sample and fine grained in nature, even for the high grade samples. The evenly distributed, fine-grained (nonnuggetty) nature of the gold will greatly assist grade control sampling of benches during mining operations.

The 24-hour leaching extracted an average of 96% of the calculated grade and, for this limited sample size, an average of 96% of the initial assays (refer Table 2). These high laboratory gold recovery figures augur well for heap leach recoveries for Wandean gold mineralisation. The average heap leach recovery for the Nagambie Mine gold mineralisation of 80% in the 1990s could be exceeded for Wandean.

Uele	From	То	AAS	24 Hr Cyanide	FA on Residue*	Calculated Grade	Calculated Grade	Cyanide
Hole	(m)	(m)	Au	Au	Au	Au	versus	Recovery
			(ppm)	(ppm)	(ppm)	(ppm)	AAS (%)	(%)
WRC101	54	55	37.80	35.90	0.48	36.38	96%	99%
WRC101	55	56	12.00	11.00	0.84	11.84	99%	93%
WRC101	53	54	6.36	7.36	0.44	7.80	123%	94%
WRC082	34	35	2.00	1.76	0.12	1.88	94%	94%
WRC101	48	49	1.34	1.26	0.25	1.51	112%	84%
WRC082	36	37	1.29	1.10	0.11	1.21	94%	91%
WRC101	49	50	0.76	0.73	0.04	0.77	101%	95%
WRC101	57	58	0.52	0.48	0.04	0.52	100%	92%
WRC101	50	51	0.48	0.45	0.04	0.49	102%	92%
WRC101	56	57	0.48	0.57	0.05	0.62	129%	92%
Av	verages		6.30	6.06	0.24	6.30	100%	96%

 Table 2
 Comparative Cyanide Leach Data

* Average of two residue samples

Notably, the third-phase drilling program has shown that:

- Gold mineralisation is continuous in the vertical and horizontal sense;
- · Gold occurs evenly distributed and fine grained in nature; and
- Early indications are that recovery by cyanide leaching in the laboratory after 24 hours could average as high as 96% of the assayed grade, which indicates that heap leach recovery for Wandean mineralisation could exceed the 80% average figure achieved at the Nagambie Mine in the 1990s.

4 ph June.

Geoff Turner Exploration Director Phone: (03) 5443 2002 Email: <u>geoff@explorems.com.au</u>

STATEMENT AS TO COMPETENCY

The Exploration Results in this report have been compiled by Mr Geoff Turner, who is a Fellow of the Australian Institute of Geoscientists, has more than ten years in the estimation, assessment, and evaluation of mineral resources and ore reserves, and has more than 20 years in exploration for the relevant style of mineralisation that is being reported. In these regards, Geoff Turner qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Geoff Turner is a Director of Nagambie Mining Limited and consents to the inclusion in this report of these matters based on the information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This report contains "forward-looking statements" within the meaning of securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "outlook", "guidance" or other similar words, and include statements regarding certain plans, strategies and objectives of management and expected financial performance. These forward-looking statements involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Nagambie Mining and any of its officers, employees, agents or associates. Actual results, performance or achievements may vary materially from any projections and forward-looking statements and the assumptions on which those statements are based. Exploration potential is conceptual in nature, there has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Readers are cautioned not to place undue reliance on forward-looking statements and Nagambie Mining assumes no obligation to update such information.

APPENDIX 1

The Reverse Circulation (RC) holes were drilled at a 60° angle to the south-east or at a 60° angle to the north-west on fence lines approximately 40 to 150 metres apart. Holes were drilled on 25 metres spacing to a nominal depth of 60 metres. Nominal hole diameter was 125 mm.

11-1-	East	North	RL		A - ' (]		
Hole	(MGA)	(MGA)	(AHD)	Depth (m)	Azimuth	Declination	
WRC054	334782	5931268	132.681	60	334	-60	
WRC055	334783	5931248	132.496	60	338	-60	
WRC056	334783	5931228	132.539	66	337	-60	
WRC057	334739	5931270	133.737	60	336	-60	
WRC058	334739	5931250	133.842	60	338	-60	
WRC059	334739	5931230	133.561	60	336	-60	
WRC060	334676	5931258	135.141	60	339	-60	
WRC061	334678	5931238	134.943	60	337	-60	
WRC062	334678	5931218	134.791	60	335	-60	
WRC063	334599	5931256	136.621	60	335	-60	
WRC064	334601	5931235	136.733	60	334	-60	
WRC065	334603	5931215	136.539	60	338	-60	
WRC066	334603	5931195	136.275	60	337	-60	
WRC067	334521	5931241	139.293	60	338	-60	
WRC068	334521	5931221	139.426	44	337	-60	
WRC069	334521	5931201	139.294	60	335	-60	
WRC070	334521	5931181	138.843	60	335	-60	
WRC071	334441	5931181	142,930	60	337	-60	
WRC072	334441	5931160	142.120	60	337	-60	
WRC073	334441	5931140	141.228	42	334	-60	
WRC074	334441	5931120	140.287	60	335	-60	
WRC075	334399	5931159	144.468	54	337	-60	
WRC076	334399	5931139	143,595	60	335	-60	
WRC077	334399	5931119	142 522	60	337	-60	
WRC078	334400	5931099	141.064	60	336	-60	
WRC079	334833	5931286	131 246	56	336	-60	
WRC080	334832	5931266	131.151	60	336	-60	
WRC081	334832	5931246	131 073	56	336	-60	
WRC082	334831	5931226	131.283	60	336	-60	
WRC083	334401	5931080	139.488	60	338	-60	
WRC084	334442	5931101	139.070	60	336	-60	
WRC085	334443	5931081	137,891	60	337	-60	
WRC086	335040	5931298	130.931	60	156	-60	
WRC087	335040	5931252	131.412	39	156	-60	
WRC088	334748	5931415	132.843	60	156	-60	
WRC089	334750	5931391	132.801	60	155	-60	
WRC090	334748	5931375	133.239	60	156	-60	
WRC091	334748	5931355	133.103	60	154	-60	
WRC092	334076	5931103	137.035	59	346	-60	
WRC093	334076	5931084	135.643	60	313	-60	
WRC094	334054	5931115	139.397	60	345	-60	
WRC095	334088	5931077	134,713	66	338	-60	
WRC096	334205	5931071	136.708	72	335	-60	
WRC097	334191	5931053	134.693	60	335	-60	
WRC098	334206	5931093	138.798	60	335	-60	
WRC099	334915	5931317	129.809	60	338	-60	
WRC100	334915	5931297	129.978	60	336	-60	
WRC101	334914	5931279	129.858	60	335	-60	
WRC102	334583	5931388	134.269	90	157	-60	
WRC103	334583	5931368	134.817	60	158	-60	
WRC104	334583	5931348	135.331	60	158	-60	
WRC105	334792	5931211	131.990	120	336	-60	

 Table 3
 Drill Hole Collars (Collars surveyed by registered surveyor)

Samples were collected from the cyclone at 1 metre intervals, riffle split to obtain an assay sample, and logged. Initially, every second sample was sent to ALS-Minerals Adelaide for sample preparation and pulverisation then forwarded to ALS-Minerals Perth for analysis for gold, arsenic and antimony by aqua regia digestion and ICP-MS determination.

Where gold mineralisation was detected (using a nominal 0.1 g/t gold threshold), the intervening samples were selected and sent for analysis using the same protocols.

Duplicate samples were taken at regular intervals and sent for analysis, and a set of Certified Reference Materials (CRMs) were also sent as a laboratory check. The duplicate samples have a high correlation coefficient for gold assays of 96% to an assay value of 10 g/t gold – above this correlation is less, as expected for this type of deposit. The laboratory returned gold values from 7% lower to 20% higher than the nominal value of the CRMs, with an overall average value of just 0.8% deviation. This suggests that the gold values in the samples may be slightly under-reported.

Geological data are as yet insufficient to determine the orientation of each of the zones of mineralisation reported. Thus true thicknesses cannot at this time be determined - downhole intersections only are reported.

	From	То	Au	Intersection		
Hole	(m)	(m)	(maa)	(m)	Peak Values	
WRC054		no significant intersection				
WRC055	17	23	1.31	6	2m @ 2.7g/t from 18m	
WRC055	27	30	0.49	3		
WRC055	33	36	0.39	3		
WRC055	38	43	0.76	5		
WRC055	48	53	1.27	5		
WRC056	39	49	1.5	10	4m @ 2.4g/t from 40m	3m @ 1.5g/t from 46m
WRC056	50	55	0.85	5	1m @ 2.6g/t from 50m	
WRC056	58	65	1.93	7	3m @ 3.2g/t from 59m	1m @ 2.3g/t from 64m
WRC057				no si	gnificant intersection	
WRC058	3	16	0.88	13	1m @ 4.8g/t from 10m	
WRC058	20	33	1.74	13	1m @ 3.5g/t from 21m	4m @3.3g/t from 24m
WRC058	37	42	0.69	5		
WRC058	55	60	0.34	5		
WRC059	16	37	0.94	21	1m @ 3.1g/t from 34m	1m @ 2.6g/t from 36m
WRC059	38	52	0.73	14	1m @ 2.1g/t from 50m	
WRC059	57	60	0.98	3		
WRC060	no significant intersection					
WRC061	27	37	1.71	10	4m @ 3.1g/t from 30m	
WRC061	38	46	0.58	8		
WRC062	no significant intersection					
WRC063						I
WRC064	7	12	0.82	5	1m @ 2.0g/t from 8m	
WRC064	42	46	1.16	4	1m @ 2.4g/t from 44m	
WRC064	50	53	1.02	3		
WRC065						
WRC066	no significant intersection					
WRC067	 					1
WRC068	36	39	2.19	3	1m @ 5.1g/t from 38m	
WRC068	1					
WRC069	no significant intersection					
WRC070						
WRC071						

Table 4Drill Assay Results

(Downhole-weighted average gold grades calculated using a 0.3 g/t cut-off grade. High grades not cut.)

NAGAMBIE MINING LIMITED

Gold Discovery – 17 July 2014

Hole	From	То	Au	Intersection	Peak	/alues
	(m)	(m)	(ppm)	(m)		
WRC072						
WRC073						
WRC074						
WRC075	28	29	0.98	1		
WRC075	33	36	0.97	3	1m @ 2.2g/t from 33n	
WRC076						
WRC077				no si	gnificant intersection	
	52	57	1 5 2	Δ	2m @ 2 /g/t from 5/m	
	12	24	0.45	6	2111 @ 2.4g/t 110111 34111	
WRC082	7	24	0.45	1		
WRC082	, 16	17	0.55	1		
WRC082	33	40	0.85	7	1m @ 2 00g/t from 34m	
WRC082	42	46	0.73	4		
WRC082	47	49	0.55	2		
WRC082	51	60	0.47	9		
WRC083			-	-		
WRC084				no si	gnificant intersection	
WRC085					-	
WRC086	12	14	3.56	2	1m @ 6.2g/t from 13m	
WRC086	42	52	0.95	10	1m @ 2.1g/t from 43m	2m @ 2.0g/t from 48m
WRC087	23	38	0.69	15	2m @ 1.7g/t from 23m	
WRC088	42	45	0.64	3		
WRC088	52	55	0.92	3		
WRC088	59	60	0.4	1		
WRC089	37	39	1.6	2	1m @ 2.6g/t from 37m	
WRC089	51	55	1.74	4	3m @ 2.2g/t from 52m	
WRC090				no si	gnificant intersection	
WRC091	20	22	0.96	2	1m @ 2 1g/t from 20m	
WRC092	29	32	0.80	1		
WRC093	50	55	0.0	1		
WRC094						
WRC095				no si	gnificant intersection	
WRC096						
WRC097	33	34	1.72	1		
WRC098						
WRC099				no si	gnincant intersection	
WRC100	19	20	1.95	1		
WRC100	33	35	0.34	2		
WRC101	48	51	0.86	3		
WRC101	53	58	11.43	5	3m @ 18.7g/t from 53m	1m @ 37.8g/t from 54m
WRC102	0	1	0.57	1		
WRC102	41	42	1.14	1		
WRC103	31	32	0.48	1		
WRC104	42	44	0.55	2	:f:+:	
WRC105	no significant intersection					

JORC 2012 Edition, Table 1 Checklist

Sampling Techniques and	
Data	
Criteria	Explanation
Drilling & Sampling	RC drilling, samples collected at cyclone, riffle split to ~3 kg.
techniques	Alternate samples initially assayed, where mineralisation is
	indicated, intervening samples sent for assay.
Drill sample recovery	Sample volumes at cyclone noted qualitatively, as well as
	presence or absence of water. Sample weights recorded at
	laboratory.
	Geological control maintained at the drill site at all times, to
	ensure best drilling practices maintained.
	There is no relationship between gold grades and submitted
	sample weight.
Logging	Cuttings geologically logged at 1m intervals for lithology,
	alteration, quartz veining and structural features (such as
	cleavage, breccia).
	Water content noted, as well as sample quality.
Sub-sampling techniques	Samples riffle split when dry, grab sampled when damp or wet.
and sample preparation	This sampling procedure is appropriate for the mineral style.
	Duplicate samples taken approximately every 30 samples.
	Gold is fine grained and disseminated, so the sample size
	(approximately 3 kg) is appropriate.
Quality of assay data and	Gold determined by Aqua Regia digestion and ICP-MS.
laboratory tests	Experience has shown this method to be applicable for fine
	grained disseminated gold mineralisation in sediments.
	Laboratory QC and external QC by duplicates and CRMs show
	good correlation and repeatability.
Verification of sampling and	• The verification of significant intersections by either independent
assaying	or alternative company personnel. none
	• The use of twinned noies. none
	• Data logged onto paper and transcribed and verified. Cyclone
Location of data points	bags stored at Nagamble for reference and validation.
	and AHD.
Data spacing and	Holes drilled on fence lines at 40 to 150 metre intervals, with
distribution	collars at a nominal 25 metre spacing.
	• This spacing is not of sufficient density to allow the estimation of
	a mineral resource.
	Sample compositing has not been applied.
Orientation of data in	Most holes drilled at a high angle to both regional and local
relation to geological	structures.
structure	
Sample security	• All samples were controlled by the responsible geologist, and
	stored in locked facility prior to despatch to laboratory.
A 11/2	Retained samples stored inside a locked facility.
Audits or reviews	None of the data have been subject to an audit or review by
Reporting of Exploration	
Results	
Criteria	
Unterna	Explanation
Mineral tenement and land	Explanation • The Wandean Prospect is within EL5430, 100% owned by
Mineral tenement and land	Explanation The Wandean Prospect is within EL5430, 100% owned by Nagambie Mining Limited
Mineral tenement and land tenure status	 Explanation The Wandean Prospect is within EL5430, 100% owned by Nagambie Mining Limited. None in the area drilled

Sampling Techniques and	
Data	
Criteria	Explanation
Geology	Disseminated gold (+arsenic & antimony) mineralisation in
	silicified sediments, very similar in style to that mined at the
	Nagambie Mine.
	Some supergene gold mineralisation component.
Drill hole Information	 A summary of all information material to the understanding of
	the exploration results including a tabulation of the following
	information for all Material drill holes:
	Provided in Table 3.
Data aggregation methods	 Table 4 - Downhole weighted average gold grades were
	calculated using a 0.3 g/t gold cut off. High grades not cut.
Relationship between	 The geometry of the mineralisation with respect to the drill hole
mineralisation widths and	angle is not known at this stage.
intercept lengths	 Only down hole lengths reported, true widths are not known.
Diagrams	 Figure 2 shows a Plan of the drill hole collars.
	 Figure 3 shows a pair of Cross Sections.
Balanced reporting	 Locations of all holes drilled shown in Table 3, including those
	reporting no significant results.
Other substantive	 No other exploration results that have not previously been
exploration data	reported are material to this report.
Further work	 Further investigations planned, including costean logging and
	sampling, and ground geophysics.