

INVESTMENT HIGHLIGHTS

- Developing a large scale coking coal basin
- Two exceptionally well located coking coal deposits
- Combined Resources of 593 Mt
- Amaam North^A:
- Project F
 - 9.2 Mt of Reserves^F, 5.6 Mt Proven &
 3.6 Mt Probable^F
 - 72.3 Mt total Resource 12.6Mt Measured^D, 13.2Mt Indicated^C & 46.6Mt Inferred^B
 - Outstanding exploration upside for resource growth
 - 35km from TIG's owned and operated Beringovsky coal port
 - BFS completed
 - Short timeline to first production from low capital and operating cost mine
 - Mining Licence in place

Amaam^A:

- 521 Mt total Resource comprising
 3.1 Mt of Measured^D, 91Mt
 Indicated^C & 428Mt Inferred^B
- 25km from planned port site and only 8 days shipping to China, Korea and Japan
- High vitrinite content (>90%) coking coal with excellent coking properties
- PFS completed on 5Mtpa coking coal mine

BOARD OF DIRECTORS

Antony Manini Non-executive Chairman

Owen Hegarty Non-executive Director

Craig Wiggill
Non-executive Director

Andrew Gray
Non-executive Director

Tav Morgan Non-executive Director

Tagir Sitdekov Non-executive Director

CHIEF EXECUTIVE OFFICER Craig Parry

Tigers Realm Coal Limited
ACN 146 752 561 ASX code: "TIG"
Level 7, 333 Collins St, Melbourne VIC 3000
T: (+61) 3 8644 1326

Amaam Projects Resources and Exploration Targets Update

Total Project Resources and Exploration Target

- Up to 1.1 Bt of coal estimated across the Amaam and Amaam North licences based on current Resources^{B,C,D} and Exploration Targets^E
- Total Resources^{B,C,D} comprise 593 Mt of coal with 120 Mt in the Measured^D and Indicated^C categories
- Exploration Target^E estimated at 180 to 520 Mt

Amaam

- Drilling completed in 2014 increased the Total Amaam Coal Resource by 12% to 521 Mt. Resources comprise 3.1 Mt of Measured^D, 91 Mt of Indicated^C and 428 Mt of Inferred^B Resources (JORC 2012)
- Extensive drilling at Area 2 delineated 11 Mt of Resources, the majority within Measured^D and Indicated^C classifications, and at depths amenable to open pit mining
- Significant new Resources reported within Area 4, with drilling extended to the south and west
- Successful completion of 3000m infill drilling program in Area 3

Amaam North

- 560m of infill drilling in Q1 2015 resulted in further thick intersections of coal, which further demonstrates extensive seam thickening along strike east of Project F in the area of future Project F mine expansion
- Encouraging Raw Coal Quality results received for Middle Chukchi coal in the Western Target Area from November drilling program

Craig Parry, CEO, said:

Whilst the company focus is now on securing funding and developing Project F, the drilling we are doing to meet our licence commitments continues to yield excellent results. With a modest amount of drilling the exploration and resource delineation team has proven up more valuable resource tonnes at Amaam. We see Amaam as a medium to long term value driver for the Company and these additional Resources are an important addition.

AMAAM COKING COAL PROJECT

Tigers Realm Coal (TIG) owns 80%^A of the Amaam Coking Coal Project which is located in the Chukotka Province of far eastern Russia. The Amaam Coking Coal Project consists of two tenements: Amaam and Amaam North.

TIG is focused on securing funding to support development of Project F at Amaam North. It has received a Mining Licence and other key permits for commencement of mining coal and is seeking to begin development subject to securing suitable project finance.

Amaam Resource Estimate increased by 12%

Following the 2014 drilling program completed at the Amaam deposit, TIG's Resource consultant, Resolve Geo Pty Ltd, has estimated a total of 521 Mt of Coal Resources at Amaam. This represents a 57 Mt, or 12%, increase over the previous Resource Estimate reported in February 2014. The Resources include 3.1 Mt of Measured Resources, 91 Mt of Indicated Resources and 428 Mt of Inferred Resources (JORC 2012). In Area 3, the key area targeted for initial production, Total Resources increased to 190 Mt with Indicated Resources of 48 Mt and a Measured Resource component of 1.1 Mt.

Of the total Resource at Amaam, 425 Mt is in the open pit domain i.e. Resources less than 400m from surface. Between 400m and 800m, the Inferred and Indicated Resource totals 93 Mt, providing very good potential for future underground operations. Underground Resources are limited to seams thicker than 1.2m.

This Resource Estimate uses an additional 9,011m of drilling (figure 1) compared to the Resource Estimate reported in February 2014, predominantly in Area 2, the South of Area 4 and in the western extents of Area 4 and Area 3. Resources have been re-estimated for all areas.

The Resource Estimate is based on 41,945m of drilling completed since 2008. In addition the Resource Estimate uses outcrop mapping completed since 2008 by NPCC and TIG, and historic drilling and outcrop mapping, trenching, shafts and adits completed by Russian geological expeditions. Since acquiring the project in 2009, TIG (as manager of the project) has completed 36,800m of drilling.

Drilling for the purposes of this Resource upgrade commenced in November 2013 and was completed in April 2014. The drilling program continues to confirm TIG's geological interpretation of the deposit as a large scale, high quality, coking coal resource. While the average cumulative thickness of the deposit is estimated to be between 10-11m, drill holes have intersected apparent cumulative coal thicknesses up to 25m.

The confidence in the geological setting and disposition of the coal formation has continued to improve with the 9,011m of additional drilling used for this Resource Estimate. Large parts of Area 3 are now drilled to a spacing of around 600m by 300m, and a large extent of Area 4 is drilled to a spacing of around 400 by 600m, including the extended southern region. TIG believes the determination of coal volumes within the Inferred Resource Estimate is at a higher confidence level than the classification implies. However, a lower amount of Indicated Resources has been reported because of lower core recovery, particularly in the programs before TIG took over management of the Project, and thinner seams (between 0.3m and 1.0m) which were not sampled in drill programs prior to TIG's involvement in the project.

Figure 1 shows a map of the Amaam deposit illustrating the surface geology and extents of the Resources from the 2013/14 drilling season.

A structural block has been identified and drilled in Amaam which contains cretaceous coal seams to the north of Area 2 (Figure 1). Initial drilling confirms an open pit Inferred Resource of 3.8Mt. The seams show strong continuity and uniform thickness (3 seams totalling 3-4m) over a strike of approximately 2.5km. These coal seams are older than the Chukchi coals in Amaam and are potentially conformable stratigraphically with Area 2 coals.

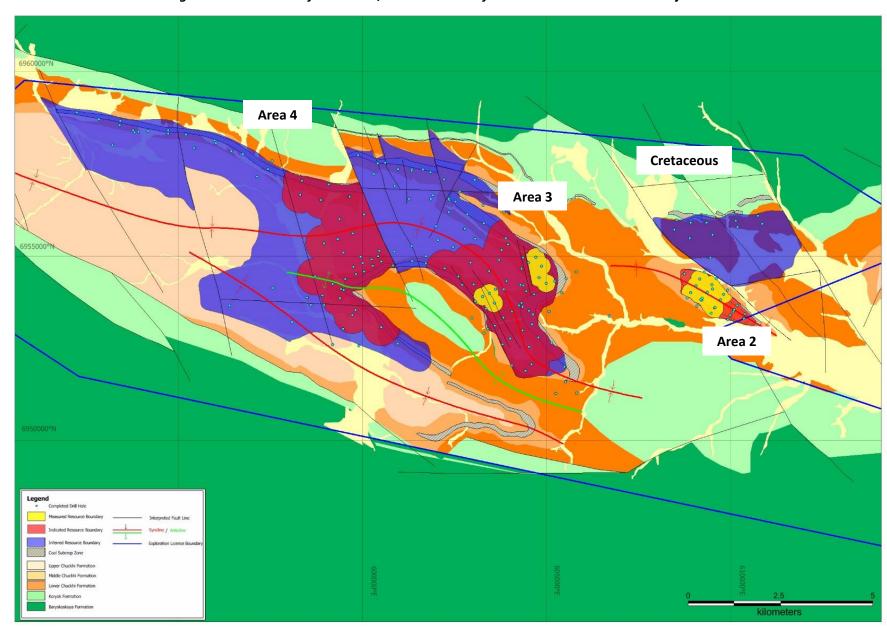


Figure 1: Distribution of Measured, Indicated and Inferred Resources at Amaam Project

The following tables detail the Amaam Resource Estimate. Totals below may not sum due to rounding.

Measured Resources for the Amaam Project (100% basis)

Area	Open Pit ¹ (Mt)	Underground ² (Mt)	Total (Mt)
Area 3	1.1	-	1.1
Area 2	2	-	2
Total (rounded)	3.1	0.0	3.1

Indicated Resources for the Amaam Project (100% basis)

Area	Open Pit¹ (Mt)	Underground ² (Mt)	Total (Mt)
Area 2	7	-	7
Area 3	47	0.7	48
Area 4	35	0.8	36
Total (rounded)	89	2	91

Inferred Resources for the Amaam Project (100% basis):

Area	Open Pit ¹ (Mt)	Underground ² (Mt)	Total (Mt)
Area 2	2	-	2
Area 3	127	14	141
Area 4	204	70	274
Cretaceous	4	7	11
Total (rounded)	337	91	428

Total Resources for the Amaam Project (100% basis):

Area	Open Pit ¹ (Mt)	Underground ² (Mt)	Total (Mt)
Area 2	11	-	11
Area 3	175	15	190
Area 4	239	71	310
Cretaceous	4	7	11
Total (rounded)	425	93	521

^{1.} Assumes coal seams greater 0.3m to a depth of 400m for Areas 2 – 4. Assumes coal seams greater 0.3m to a depth of 75m for Cretaceous.

Coal Quality by Area (air dried basis)

	Area 2	Area 3	Area 4EC	Total
Mt	11	190	310	510
Relative density g/cm3	1.61	1.60	1.63	1.62
Air dried moisture %	1.0	1.0	1.2	1.7
Ash %	32.2	32.6	34.5	33.7
Volatile matter %	22.7	23.0	23.6	23.3
Fixed Carbon %	39.2	42.1	37.1	39.0
Sulphur %	0.9	0.9	0.8	0.83
Calorific value kcal/kg	5098	5362	4946	5102

^{2.} Assumes coal seams greater than 1.2m deeper than 400m and up to 800m for Areas 2 – 4. Assumes coal seams greater than 1.2m deeper than 75m for Cretaceous.

Coal Quality by Depth - Areas 2, 3 and 4 (air dried basis)

Depth	Tonnage	RD ad	Moisture	Ash %ad	VM %ad	FC %ad	TS %ad	CV Kcal/kg,
	Mt		%ad					ad
0-100m	108	1.61	1.0	33.3	22.8	38.8	0.84	5047
100-200m	109	1.60	1.1	32.6	23.3	39.4	0.92	5146
200-300m	111	1.61	1.1	33.0	23.7	39.3	0.89	5168
300-400m	98	1.63	1.1	34.3	23.2	38.5	0.86	5053

Coal Quality by Depth - Cretaceous (air dried basis)

Depth	Tonnage Mt	RD ad	Moisture %ad	Ash %ad	VM %ad	FC %ad	TS %ad	CV Kcal/kg, ad
0-75m	4	1.62	1.1	30.3	24.6	44.0	0.34	5658
75-800m	7	1.61	1.0	29.6	24.0	45.4	1.98	5702

Amaam Exploration Target

The table below outlines the additional Exploration Target (exclusive of Resources) by Area for Amaam. Totals below may not sum due to rounding.

Amaam Exploration Target

Amaam Middle Chukchi	Open Pit ¹ (Mt)	Underground ² (Mt)	Total (Mt)
Area 1	2 to 3	-	2 to 3
Area 2	-	-	-
Area 3	-	-	-
Area 4	0	20 to 30	20 to 30
Cretaceous	1 to 2	3 to 5	4 to 7
Total (rounded)	3 to 5	25 to 35	25 to 40

- 1. Assumes coal seams greater 0.3m to a depth of 400m for Areas 1 4. Assumes coal seams greater 0.3m to a depth of 75m for Cretaceous.
- 2. Assumes coal seams greater than 1.2m deeper than 400m and up to 800m for Areas 1 4. Assumes coal seams greater than 1.2m deeper than 75m for Cretaceous.

Amaam 2014/15 Winter Drilling Program

In April 2015, TIG completed a short diamond drilling program at Amaam Area 3 (Figure 2). The primary goal was to increase resource definition and structural confidence in the shallow "open pit" sections of the Mining Licence. In addition Limit of Oxidation (LOX) drilling was also completed in the sub-crop zone of Area 3. TIG is confident that the infill program will further increase Measured Resources currently reported within Area 3. On site laboratory results conclude the limit of oxidation is approximately 10-15m depth from surface (Figure 3), and samples have been dispatched to SGS laboratory in Novokuznetsk for detailed analysis.

Amaam North

In February 2015, TIG successfully completed a further 560m infill diamond drilling program in the Project F Eastern Extension area. The program aimed to significantly upgrade Resource confidence in the thick coal sequences discovered in this area for ongoing feasibility studies into expanding production beyond Project F (Figure 4).

Amaam North Western Target, Coal Quality Update

In October/November 2014, TIG successfully completed a small exploration program consisting of two cored holes in the Western Target Area of the Amaam North Licence (Inset 1 in Figure 4). The program tested the thickness and quality of the Middle Chukchi coal-bearing sequences that exist on a large scale throughout the Amaam North Licence. Initial raw coal quality from the Western Target is encouraging showing good Crucible Swell Numbers (CSN), consistent with coking coals, and further exploration will be undertaken in this part of the basin.

Two holes were drilled in this area, both intersected coal. A third drill hole (AL15007) was abandoned at shallow depth. The two holes which intersected coal had correlative seams typical of the Middle Chukchi seen in the Amaam Project. AL15005 intersected what has been interpreted as the full Middle Chukchi sequence, and AL15010 intersected similar seams, however was terminated above the 2U seam.

Qualities exhibited within these two holes appear also fairly typical of the Middle Chukchi coals regionally, the exception being the high total sulphur values shown in a number of plies. It is noted there are a number of plies sampled and analysed within the middle Chukchi coals in Amaam which also show elevated sulphur, however the average number (once sufficient sampling has been acquired to determine a full domain resource), as is the case in the Amaam resource, is likely to reflect a lower number. The table below shows the seam thicknesses and characteristics of this new area of exploration.

Coal Seam thicknesses and qualities for AL15005 and AL15010, drilled in the Western Target Area

Hole No	Ply	Depth From	Depth To	Thickness	Linear	Relative Density	Air Dried Moisture	Ash	Volatile Matter	Fixed Carbon	Total Sulfur	Calorific Value	Calorific Value
		m	m	m	Recovery	ad	%ad	%ad	%ad	%ad	%ad	kcal/kg, ad	MJ/kg, ad
AL15005	5U	6.91	8.63	1.72	97	1.37	1.3	10.2	36.4	52.1	0.88	7351	30.8
AL15005	5M	10.55	10.95	0.40	100	1.41	2.1	11.0	32.7	54.2	1.36	6950	29.1
AL15005	5L	12.38	12.65	0.27	93	1.59	2.4	26.4	27.9	43.3	3.10	5493	23.0
AL15005	3U	37.82	38.53	0.71	58		not tested: Ins	sufficient r	ecovery to d	etermine repr	resentative	seam quality	
AL15005	3M	41.58	41.84	0.26	73	1.44	1.2	19.3	28.4	51.2	0.58	6640	27.8
AL15005	3L	53.13	53.54	0.41	95	1.41	1.1	14.0	34.6	50.2	0.99	7051	29.5
AL15005	2U	72.42	73.32	0.90	17		not tested: Ins	sufficient r	ecovery to d	etermine repr	resentative	seam quality	
AL15005	2M	80.47	80.85	0.38	74	1.54	0.9	28.0	29.0	42.0	4.39	5783	24.2
AL15005	1U	89.46	89.79	0.33	39	not tested: Insufficient recovery to determine representative seam quality							
AL15005	1M2	92.40	93.07	0.67	75	not tested: Insufficient recovery to determine representative seam quality							
AL15005	1M1	93.42	93.92	0.50	83	1.36	1.1	11.8	32.4	54.7	1.87	7248	30.3

Final depth: 134.9 - full seam packet intersected

AL15010	5U	40.46	41.56	1.10	100	1.31	1.0	6.9	39.9	52.3	1.64	7857	32.9
AL15010	5M	41.66	43.22	1.56	100	1.36	1.4	9.2	37.8	51.6	1.71	7394	31.0
AL15010	5L	45.15	45.47	0.32	100	1.35	1.1	10.3	37.7	50.9	3.07	7414	31.0
AL15010	3U	56.32	56.44	0.12	100	1.55	1.2	31.8	26.6	40.4	0.60	5444	22.8
AL15010	3M2	57.22	58.98	1.76	100	1.30	1.2	3.8	40.0	55.1	0.52	8055	33.7
AL15010	3M1	59.40	59.81	0.41	100	1.36	1.3	11.4	34.0	53.4	0.51	7332	30.7
AL15010	3L	77.10	77.39	0.29	100	1.42	1.0	19.3	34.9	44.7	0.87	6544	27.4

Final depth: 100- hole terminated before intersecting lower seams

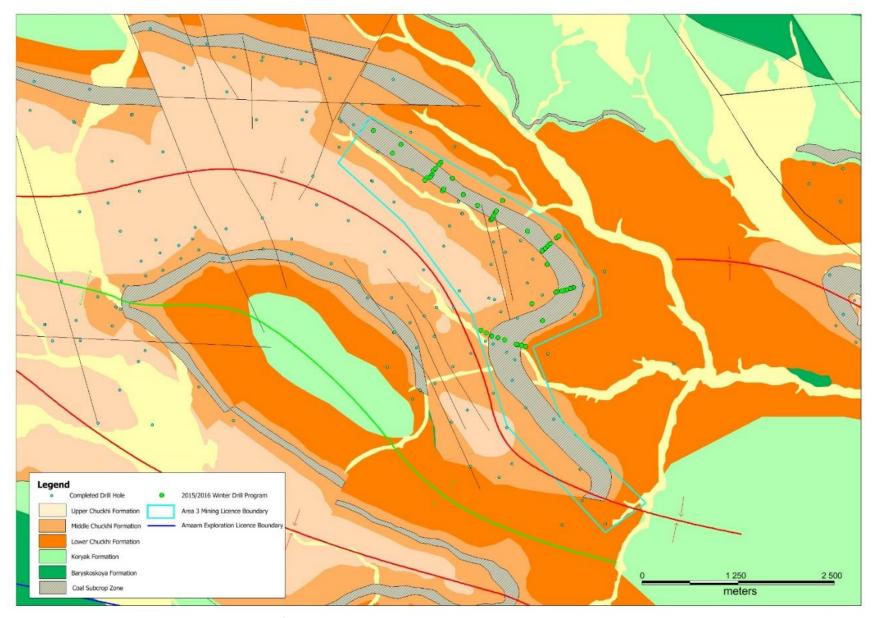


Figure 2: Infill drilling program winter 2015/16 at Amaam Area 3

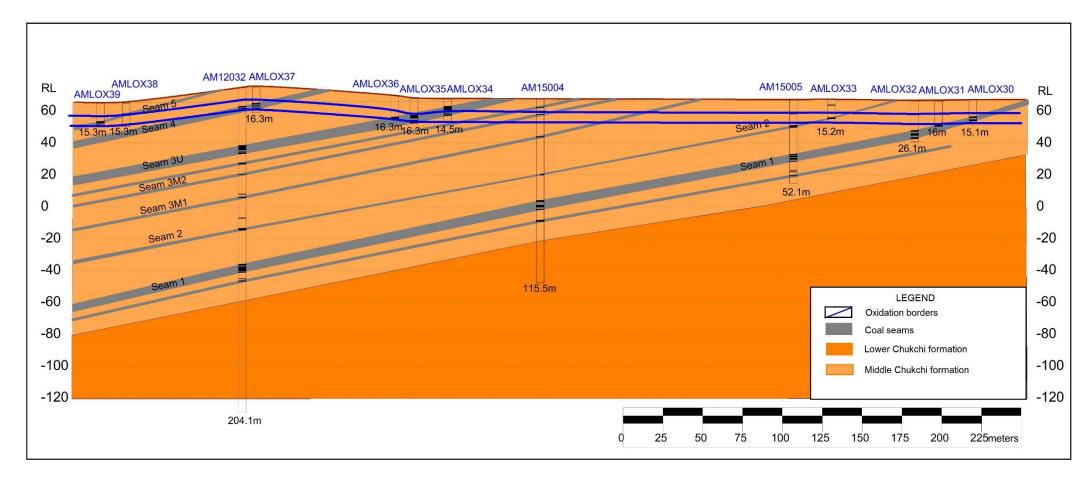


Figure 3: Section displaying LOX zone (10-15m depth of oxidation) at Amaam Area 3.

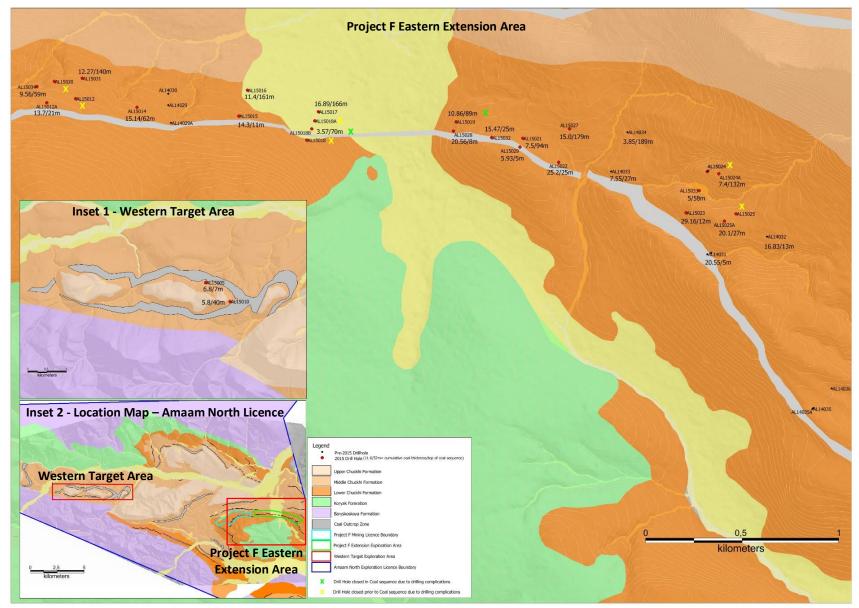


Figure 4: Amaam North: Main Figure shows Project F Eastern Extension drilling; Inset 1 shows the Western Target Area; Inset 2 shows the Amaam North licence block and targets

The following tables detail the Amaam North Resource Estimate. Totals may not sum due to rounding.

Coal Resources for the Amaam North - Project F (100% basis)

Resource Category	Open Pit1 (Mt)	Underground ² (Mt)	Total (Mt)
Measured - Coking	12.6	0	12.6
Indicated- Coking	7.7	3.9	11.5
Inferred - Coking	33.2	9.9	43.1
Indicated - Thermal	1.7	0	1.7
Inferred - Thermal	3.5	0	3.5
Total	58.6	13.7	72.3

By Depth	Coking (Mt)	Thermal (Mt)	Total (Mt)
Surface to 50m	15.5	5.2	20.7
50 to 100m	20.1	-	20.1
100 to 150m	17.8	-	17.8
Greater than 150m	13.7	-	13.7
Total	67.2	5.2	72.3

Coal Quality by Depth (air dried basis)

	Open Pit ¹	Underground ²	Total
In Situ Tonnes (Mt)	58.6	13.7	72.3
In-Situ Density (ISD) g/cm3	1.42	1.40	1.42
Air dried moisture (ADM) %ad	1.2	1.4	1.2
Ash %ad	17.9	15.5	17.5
Volatile Matter (VM) %ad	26.0	26.9	26.2
Fixed Carbon(FC) %ad	54.9	56.3	55.1
Sulphur (S) %ad	0.32	0.28	0.31
Calorific value (CV) kcal/kg ad	6633	6883	6679

- 1. Assumes coal seams greater 0.3m to a depth of 150m
- 2. Assumes coal seams greater than 1.2m deeper than 150m

Coal Quality by Ply (air dried basis)

Ply	Mt	ISD	ADM	Ash	VM	FC	S	CV
422	5.1	1.39	1.2	14.1	27.3	57.4	0.83	7019
421	2.9	1.38	1.1	13.5	26.7	58.7	0.40	7038
402	0.6	1.53	1.3	29.4	23.9	45.4	0.28	5549
41	24.3	1.38	1.3	13.9	27.5	57.4	0.29	6953
35	5.0	1.50	1.1	25.1	24.5	49.3	0.26	5974
34	1.6	1.47	1.1	26.9	24.5	47.5	0.24	5785
33	0.4	1.56	1.2	32.1	24.9	41.9	0.18	5233
32	2.9	1.47	1.1	21.4	25.9	51.5	0.20	6343
31	3.2	1.42	1.1	17.3	26.5	55.0	0.22	6729
22	1.0	1.47	1.1	21.3	24.4	53.2	0.24	6316
21	4.4	1.44	1.2	18.1	24.2	56.6	0.24	6658
12	3.6	1.47	1.2	20.2	23.0	55.7	0.26	6425
11	1.8	1.57	1.1	31.9	21.5	45.4	0.23	5279
5	1.8	1.49	1.6	30.4	23.1	44.9	0.27	6008
WS4 ³	13.7	1.40	1.4	15.5	26.9	56.3	0.28	6883
Total	72.3	1.42	1.26	17.6	26.1	55.0	0.3	6697

3. Underground working section comprising seam 41 and seam 42

Contact details

Further details about Tigers Realm Coal can be found at www.tigersrealmcoal.com

For further information, contact:

Craig Parry, Chief Executive Officer +61 3 8644 1300

Competent Person Statement:

The information compiled in this report relating to resources is based on information compiled by Neil Biggs, who is a member of the Australian Institute of Mining and Metallurgy (AusIMM) and who is employed by Resolve Geo Pty Ltd. Neil has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Neil Biggs consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Signed,

Neil Biggs

Date: 9 July 2015

About Tigers Realm Coal Limited (ASX: TIG)

Tigers Realm Coal Limited ("TIG", "Tigers Realm Coal" or "the Company") is an Australian based resources company. The Company's vision is to build a global coking coal company by rapidly advancing its projects through resource delineation, feasibility studies and mine development to establish profitable operations.

Competent Persons Statement

The information compiled in this announcement relating to exploration results, exploration targets or Coal Resources at Amaam and Amaam North is based on information provided by TIG and compiled by Neil Biggs, who is a member of the Australasian Institute of Mining and Metallurgy and who is employed by Resolve Coal Pty Ltd, and has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the JORC Code. Neil Biggs consents to the inclusion in the announcement of the matters based on his information in the form and context which it appears.

Note A – Tigers Realm Coal's interests in the Amaam Coking Coal Project

Amaam tenement: TIG's current beneficial ownership is 80% of Eastshore Coal Holding Limited ("Eastshore"), a company incorporated in Cyprus which is the sole shareholder of CJSC Northern Pacific Coal Company, a Russian company, which holds the Amaam tenement. Bering Coal Investments Limited, a company incorporated in Cyprus, holds the other 20% of Eastshore. TIG will fund all project expenditure in the Amaam tenement until a bankable feasibility study is completed as agreed by the Eastshore shareholders. After completion of a bankable feasibility study each Eastshore shareholder is required to contribute to further project expenditure on a pro-rata basis. Siberian Tigers International Corporation, a company incorporated in Cyprus, is entitled to receive a royalty of 3% gross sales revenue from coal produced from within the Amaam licence.

Amaam North tenement: TIG has 80% beneficial ownership of Rosmiro Investments Limited ("Rosmiro"), the sole shareholder of Beringpromogul LLC, the Russian company which owns the Amaam North exploration licence. B.S. Chukchi Investments Limited holds the other 20% of Rosmiro. TIG will fund all project expenditure until a bankable feasibility study is completed as agreed by the Rosmiro shareholders. After completion of a bankable feasibility study each Rosmiro shareholder is required to contribute to further project expenditure on a pro-rata basis. Siberian Tigers International Corporation, a company incorporated in Cyprus, is entitled to receive a royalty of 3% gross sales revenue from coal produced from within the Amaam North licence. In the event

of TIG's partner not contributing to finance the project capital requirement and diluting its share below 20%, a royalty is payable to the JV partner proportionately to the amount of dilution, up to a maximum of 2%.

Note B - Inferred Resources

According to the commentary accompanying the JORC Code an 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade (or quality) are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade (or quality) continuity. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to an Ore Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration

Note C - Indicated Resources

According to the commentary accompanying the JORC Code an 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of modifying factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, and is sufficient to assume geological and grade (or quality) continuity between points of observation where data and samples are gathered.

Note D - Measured Resources

According to the commentary accompanying the JORC Code a 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, and is sufficient to confirm geological and grade (or quality) continuity between points of observation where data and samples are gathered. A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proved Ore Reserve or under certain circumstances to a Probable Ore Reserve.

Note E - Exploration Target

According to the commentary accompanying the JORC Code An Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade (or quality), relates to mineralisation for which there has been insufficient exploration to estimate a Mineral Resource. Any such information relating to an Exploration Target must be expressed so that it cannot be misrepresented or misconstrued as an estimate of a Mineral Resource or Ore Reserve. The terms Resource or Reserve must not be used in this context.

Note F - Reserves

According to the commentary accompanying the JORC Code a 'Reserve' is the economically mineable part of a Measured and/or Indicated Mineral Resource. It includes diluting materials and allowances for losses, which may occur when the material is mined or extracted and is defined by studies at Pre-Feasibility or Feasibility level as appropriate that include application of Modifying Factors. Such studies demonstrate that, at the time of reporting, extraction could reasonably be justified.

APPENDIX A

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 HQ core was used to obtain coal samples of seams and plies for raw and proximate analysis. All holes were geophysically logged using down hole wireline tools. Calibration and quality appear to be in line with industry standards and seam correlation and characteristics are readily discernible. Sampling and sub-sampling of core for analysis provides accurate and reliable adherence to lithological boundaries and provides sufficient information to determine seam and ply quality.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All coal quality holes were cored using a HQ3 size barrel, 61.1 mm core diameter. Drill holes are cored from surface
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill sample recoveries are assessed both on a linear core measurement and a mass recovery basis (dispatch mass/lab mass/calculated expected mass) A linear/mass recovery cutoff of 85% applies to points of observation. 95% was deemed inappropriate as the broken nature of the core was such that the majority of seam recoveries were determined by mass recovery. Resolve deemed that laboratory RD's were not sufficient to work within a 95% cutoff given many seams are thin. Seams with a

Criteria	JORC Code explanation	Commentary		
		 75% - 85% recovery were considered as supporting points of observation to bridge between >85% POB's when geophysical seam continuity was strong. This typically applies to areas where drill holes are closely spaced and recovery is problematic. Loss intervals were determined after reconciliation to geophysical logs and lab determined mass recovery. 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging is available for all drill holes used within the model build and resource estimate. Quality is of a good standard and depths have been reconciled to geophysics. Only fully cored holes have been drilled – no open holes have been drilled at Amaam The total length of logged drill core is 36,570 (137 drill holes) This resource estimate involved 5650m of new drilling (24 drill holes) All contained within Area 3. 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Core is split into lithological boundaries as per an accepted sampling protocol. Coal seams are not sampled in increments thicker than 1m, and seams are also sampled at any lithological changes or notable differences in coal brightness. Sampling is completed after geophysical logs have been obtained, and the hole depth data has been corrected and seam correlations made. Any stone partings in the seam in excess of 5cm are typically sampled separately. Roof, Floor and thicker partings are sampled (typically 20cm) for dilution.		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Coal quality testing is carried out within the SGS laboratories in Novokuznetsk under the direct supervision of A & B Mylec. The laboratory has been subjected to independent audit prior to the commencement of work for TRC. Coal quality is checked and collated by A & B Mylec before inclusion in the geological/coal quality models.		

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The primary method for verification of the sampling intervals is through wireline geophysical logs. Corrected depths are supplied to the laboratories. Seam correlations are completed on site and independently checked and amended as required by Resolve.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The survey equipment used was a GNSSJAVAD Triumph-1. Survey included removal of snow to ground surface, and location of the collar. (UTM60 north – WGS84) Four pairs of 80cm IKONOS stereo imagery were used to create the 2m DTM and 5m contours covering 437 km2 over Amaam. This is considered adequate for the purposes of reporting resources at the current classification. Reconciliation of topographic height to surveyed collar height was completed and showed some errors in reconciliation, though these errors were generally <3m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes within Area 3 have been drilled at approximately 250m apart along strike and down dip in the shallower regions of the deposit. Structural and grade continuity is well established across the majority of the deposit, however small scale faulting in apparent in several drill holes and has been taken into account when reviewing confidence classification.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes are vertically drilled. Dip is estimated to be approximately 15 - 60 degrees and coal is modelled using these apparent dips. Holes over 200m include downhole survey. This data concludes that drill hole deviation is minimal. For the purpose of the resource estimate all holes can be considered to be vertical holes. Regional structure is determined through cross sectional analysis and drill core review. Resource polygons are truncated by major faults as appropriate for its classification.
Sample security	The measures taken to ensure sample security.	 Resolve has undertaken a site visit to review drilling, logging and sampling operations. While full chain of custody through to Moscow has not been observed, Resolve are broadly satisfied that samples are transported and delivered securely.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Resolve have completed a review of data collection techniques in February 2014, Field data capture techniques are generally of a high quality. The practicalities of working in the Chukotka environment mean that the documentation and recovery of the data by geologists

Criteria	JORC Code explanation	Commentary
		at the drill rig is impractical and raises safety concerns, Resolve considers this the only main outcome from the audit which results in a loss of data quality, as core is being reviewed and logged after core retrieval and transport have contributed to a degradation in the geomechanical state.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 All coal seam depths and sample numbers have been independently verified and corrected. Any remaining transcription errors may have no bearing on the process of resource estimation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• The competent person undertook a field visit to Amaam in the summer of 2010. Time was spent verifying the location and quality of outcrop and reviewing nearby historical Drill hole data. The competent person conducted a site visit in February of 2014, including a full review of geological data acquisition, data management and integrity and sampling protocols. Geologists on site are deemed to be highly competent in their technical field. Minor amendments to data acquisition procedures are suggested, however have no bearing on the integrity or potential error within this estimate.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Resolve considers the interpretation at Amaam to be generally sound. Small scale faults are apparent in the majority of core observed. The results in ongoing difficulties in retrieving competent coal core from the drill holes. Faulting, the friability of the high vitrinite coal, along with the generally thin nature of the seams also adds some risk to the interpretation within broken core. Resolve is however satisfied that the quality of geophysical wireline logging, and the close spacing of drill holes, results in an interpretation befitting the classifications applied.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 Coal resources with Amaam are domained into 4 broad areas, separated by faults with significant offset. Approximately 30km of strike is estimated within the areas considered for Resource estimation. Amaam is a gently overarching synclinal structure trending east to west. The depth of the axis of the synclinal structure ranges from <50m to >800m. Depths of the syncline in Area 3 and 4 are currently understood to be influenced by faulting.

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Coal seam models were completed on a ply basis (daughter seams) and stacked according to lithological sequence on a faulted structural reference surface. Structural, erosional and oxidization boundaries were applied, and Resources were estimated from a block model with a plan area block size of 50m x 50m. 50m is generally fitting to the drill hole spacing of cored holes, however in areas of sparser drilling a larger block size of 100m may be optimal. Coal/Parting thickness models, and coal quality was estimated using inverse distance to the power of 4. This was selected after a comparison between various interpolation methods and which best honoured the variable hole pacing across the deposit. Resources have been extracted from models similar in nature since 2011. The key difference between the models has been the review of the coal seam depth on the basis of new drilling. Seam classification polygons of an indicated and inferred classification were generally not truncated against smaller faults (10-25m throw) within the open pit domain. Faults of a larger throw (domain faults) were used to truncate polygons and resource extents as appropriate. Drill hole support in available in these instances. Densities for non-sampled seams or seams of low (<75%) recovery were estimated, and incorporated into the modelled RD. Proximate coal quality variables were estimated for these intersections by regression. Resources were reported using a 50% ash cutoff, incorporating both lab derived and estimated ash values into the models.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Coal tonnages are estimated on an Air dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 A 50% ash cutoff applies on a seam/ply composite basis.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions	 A 30cm seam cut off was used for open pit mining, assuming selective mining techniques. Seams below 30cm thickness are not considered practical to mine by this method. A 1.2m cutoff has been applied to underground resources. This required the modelling of an underground working section (seam 4). 1.2m is the minimum working height within neighbouring mines and has been implemented in this case.

Criteria	JORC Code explanation	Commentary
	made.	
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	• N/A
Environmenta I factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	Based on available data and an understanding of the deposit region, environmental factors will not impact the likelihood of economic extraction within Amaam.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Both laboratory RD, and Apparent RD (ARD) were determined by SGS. Densities for non-sampled seams or seams of low (<75%) recovery were estimated, and incorporated into the modelled RD. Proximate coal quality variables were estimated for these intersections by regression. Resolve therefore concedes that these estimated densities incorporated into the models present a source of risk to the overall tonnages reported.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Drill hole data spacing is adequate for Inferred and Indicated resources to be reported across the drilled area. Indicated resources applied on a 500m radius from a valid point of Observation (coal quality and continuity) Inferred resources applied on a 2km radius from a valid point of observation (coal quality inferred for holes without coal quality) The competent person considers that the view of the deposit is accurately reflected in the current classifications.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The style and integrity of Resolve's Resource Estimation at Amaam was reviewed by MBGS in 2012.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	appropriate in the context of the anticipated mining methodology. Resolve consider that the frequency of small scale structure apparent will always present some minor risk in an open pit environment.

APPENDIX B - Drill Holes used in February 2014 Amaam Resource Estimate of Area 3

Hole_Name	Easting	Northing	Elevation	Inclination	Azimuth	Total_Depth
AM11L13	602369.960	6956518.480	128.530	-90	0	43.00
AM11L15	602345.140	6956556.270	127.980	-90	0	41.75
AM08001	594178.840	6958394.390	170.270	-90	0	501.70
AM08003	599498.020	6954075.920	164.950	-90	0	230.80
AM08004	593435.040	6958669.880	166.440	-90	0	351.00
AM09001	603708.340	6954899.550	159.160	-90	0	424.50
AM09002	602345.780	6956185.480	137.540	-90	0	271.50
AM09003	604774.200	6952791.300	97.911	-90	0	160.00
AM09004	605486.950	6951991.780	123.530	-90	0	142.50
AM10005	609712.460	6953816.410	53.801	-90	0	178.20
AM10007	608915.130	6954009.340	70.404	-90	0	175.50
AM10008	604452.030	6954045.450	112.640	-90	0	244.50
AM10009	603060.850	6955474.460	170.500	-90	0	449.60
AM10012	600974.690	6957361.690	156.140	-90	0	324.50
AM10014	603835.000	6954087.000	89.000	-90	0	319.50
AM10015	604634.320	6953418.290	68.736	-90	0	150.50
AM10016	604991.930	6954261.000	121.510	-90	0	174.80
AM10017	604866.880	6954728.060	142.620	-90	0	283.50
AM10018	603943.430	6955323.690	99.620	-90	0	214.00
AM10019	604356.190	6954954.340	135.330	-90	0	190.50
AM10020	603296.990	6955889.120	108.810	-90	0	150.00
AM10021	602849.930	6956133.200	116.600	-90	0	183.00
AM11001	614627.980	6954914.830	31.560	-90	0	155.00
AM11001A	614639.400	6954910.960	32.633	-90	0	154.50
AM11002	614966.880	6954802.220	23.253	-90	0	256.50
AM11006	609216.500	6953803.180	82.443	-90	0	106.50
AM11011	603826.510	6953329.950	71.154	-90	0	247.50
AM11012	603028.900	6954227.410	139.080	-90	0	256.50
AM11013	601724.070	6954993.150	184.540	-90	0	333.50
AM11014	602712.490	6954221.280	147.110	-90	0	136.50
AM11015	598892.470	6956508.480	138.800	-90	0	294.70
AM11015A	598883.010	6956521.270	140.890	-90	0	346.00
AM11016	597146.680	6957155.130	184.350	-90	0	404.30
AM11017	595460.040	6957938.050	202.150	-90	0	397.00
AM11017A	595441.540	6957942.020	202.470	-90	0	381.00
AM11018	593935.000	6958381.000	164.000	-90	0	144.40
AM11018A	593820.630	6958356.260	181.670	-90	0	109.00
AM11018B	593780.800	6958420.130	178.040	-90	0	397.00
AM11021	599436.590	6954105.600	89.198	-90	0	65.80
AM11021A	599434.300	6954107.270	88.793	-90	0	58.00
AM11022	597582.020	6954134.290	122.100	-90	0	618.80
AM11069	599953.920	6954981.130	162.500	-90	0	306.20
AM11070	598727.630	6954444.260	119.100	-90	0	457.30
AM11071	598512.460	6953875.280	98.247	-90	0	301.50

Hole_Name	Easting	Northing	Elevation	Inclination	Azimuth	Total_Depth
AM11071A	598505.510	6953877.820	97.657	-90	0	306.00
AM11072	596399.500	6953663.220	168.080	-90	0	214.50
AM11075	598963.280	6955347.620	104.590	-90	0	343.00
AM11075A	599335.660	6955462.110	115.290	-90	0	430.00
AM11083	598366.470	6957043.220	126.410	-90	0	202.50
AM11084	596447.200	6957847.970	150.260	-90	0	250.80
AM12014	605810.090	6951280.310	74.277	-90	0	57.10
AM12016	605249.940	6951267.040	107.980	-90	0	70.60
AM12017	605515.030	6951583.490	109.540	-90	0	139.50
AM12025	605064.240	6953498.120	67.525	-90	0	40.30
AM12026	604599.210	6953151.400	68.068	-90	0	111.00
AM12027	604351.560	6952984.350	79.074	-90	0	196.60
AM12028	604016.550	6952759.540	118.610	-90	0	319.50
AM12029	603301.120	6952906.350	82.498	-90	0	40.20
AM12030	603592.500	6953109.630	73.882	-90	0	205.50
AM12031	604060.870	6953498.250	72.275	-90	0	268.50
AM12032	604325.270	6953731.900	74.432	-90	0	204.10
AM12033	605412.340	6954007.260	96.898	-90	0	91.50
AM12034	605528.570	6954382.930	94.253	-90	0	61.50
AM12035	605802.980	6954568.550	79.152	-90	0	40.30
AM12037	604796.250	6954414.730	134.950	-90	0	242.73
AM12037	604367.750	6954205.820	143.580	-90	0	96.00
AM12038A	604296.860	6954221.860	143.380	-90	0	337.60
AM12038A	603587.750	6953725.920	111.340	-90	0	158.50
AM12040	603267.230	6953901.450	137.100	-90	0	210.00
	603611.240				0	
AM12042		6954097.310	84.446	-90		310.50
AM12044	603911.460	6954318.750	127.870	-90	0	401.00
AM12046	604323.780	6954660.930	151.530	-90	0	292.50
AM12048	604710.110	6954968.660	109.760	-90	0	161.35
AM12055	603784.190	6955159.140	134.460	-90	0	301.50
AM12056	603897.520	6955485.190	93.897	-90	0	193.50
AM12059	603850.050	6956193.990	117.950	-90	0	88.50
AM12061	602935.080	6954823.020	93.897	-90	0	416.70
AM12062	602604.240	6954440.450	151.370	-90	0	148.00
AM12063	602242.400	6954671.470	158.510	-90	0	232.80
AM12064	602463.810	6955234.960	91.333	-90	0	408.75
AM12067	603278.090	6956382.070	132.300	-90	0	201.00
AM12070	603048.570	6957071.940	137.570	-90	0	70.50
AM12073	602052.340	6955436.510	96.356	-90	0	433.00
AM12075	601354.870	6954861.170	176.580	-90	0	182.80
AM12076	601343.460	6955265.640	149.090	-90	0	434.00
AM12079	602222.960	6957083.660	142.630	-90	0	355.00
AM12082	601650.650	6957348.340	154.070	-90	0	229.60
AM12088	600421.310	6957514.480	166.440	-90	0	135.20
AM12099	598090.170	6953204.760	116.700	-90	0	415.50

Hole_Name	Easting	Northing	Elevation	Inclination	Azimuth	Total_Depth
AM12102	598969.840	6953670.580	105.540	-90	0	181.00
AM12103	599729.110	6953396.490	79.542	-90	0	463.00
AM12104	599482.300	6953023.740	75.332	-90	0	457.40
AM12105	599909.180	6952569.030	69.672	-90	0	388.00
AM12106	599200.380	6952593.140	81.534	-90	0	170.80
AM12107	600046.650	6954584.880	157.610	-90	0	250.10
AM12108	599491.790	6955094.470	115.290	-90	0	375.00
AM12109	600466.160	6955142.180	172.860	-90	0	301.00
AM12111	599741.000	6955612.630	164.200	-90	0	370.70
AM12112	599381.780	6956005.830	152.560	-90	0	376.10
AM12113	600047.360	6956127.820	208.550	-90	0	350.20
AM12114	599639.940	6956609.990	151.190	-90	0	226.60
AM12114A	599651.030	6956612.300	150.040	-90	0	208.60
AM12115	599095.610	6956943.650	141.730	-90	0	147.20
AM12116	598320.110	6956665.020	146.040	-90	0	403.50
AM12117	597444.530	6957355.080	132.400	-90	0	244.00
AM12118	597555.080	6957580.810	141.440	-90	0	294.50
AM12119	596754.600	6957767.830	146.320	-90	0	331.00
AM12121	595996.080	6958139.530	171.200	-90	0	61.30
AM12121A	596035.610	6958067.070	166.330	-90	0	395.10
AM12123	595220.660	6958300.910	187.430	-90	0	114.90
AM13001	604509.306	6954816.310	137.380	-90	0	226.40
AM13001	604255.145	6953642.300	61.110	-90	0	166.50
AM13002	603405.468	6953016.060	73.428	-90	0	194.20
AM13003	603807.503	6952608.560	140.090	-90	0	256.50
AM13005	604660.601	6953963.040	86.720	-90	0	124.10
AM13006	605223.396	6954314.040	98.030	-90	0	58.40
AM13007	603571.317	6953720.980	106.000	-90	0	301.40
AM13007	603365.558	6953587.840	103.920	-90	0	141.00
AM13008	603055.131	6953772.750	114.650	-90	0	82.50
AM13010	601724.402	6954799.510	181.860	-90	0	178.50
AM13010	600878.356	6955124.940	136.360	-90	0	431.00
AM13011	600833.459	6954740.990				76.40
AM13012	600880.381	6956908.750	124.220 145.270	-90 -90	0	400.40
AM13013	602972.130	6953322.920	82.285	-90	0	70.50
			111.770	-90	0	
AM13016 AM13017	603452.280 602898.745	6953990.820 6954185.810		-90	0	301.00
			147.260			147.40
AM13018	603389.768	6954543.990	84.100	-90 00	0	433.20
AM13019	603212.656	6954377.770	122.850	-90	0	352.50
AM13020	602351.785	6954922.250	134.880	-90	0	373.50
AM13021	602781.139	6954632.970	133.380	-90	0	391.20
AM13022	601919.905	6956647.920	164.930	-90	0	404.50
AM13023	602524.391	6956498.650	122.630	-90	0	109.40
AM13066	602773.488	6955747.580	185.510	-90	0	421.50
AM14001	610069.603	6953493.048	47.676	-90	0	134.00

Hole_Name	Easting	Northing	Elevation	Inclination	Azimuth	Total_Depth
AM14001A	610066.135	6953482.046	46.270	-90	0	46.00
AM14001B	610095.508	6953542.295	45.681	-90	0	100.00
AM14001C	610080.000	6953514.342	50.292	-90	0	118.00
AM14002	609807.672	6953963.470	42.371	-90	0	88.40
AM14003	609558.686	6953590.721	59.465	-90	0	178.40
AM14004	609488.462	6954220.085	39.791	-90	0	94.50
AM14005	609363.525	6954014.789	47.847	-90	0	148.50
AM14006	609156.817	6954374.693	44.795	-90	0	118.50
AM14007	609059.267	6954188.332	49.244	-90	0	129.90
AM14008	608737.393	6954521.373	45.530	-90	0	64.40
AM14009	605111.792	6952647.840	100.228	-90	0	70.00
AM14010	604418.438	6951888.917	208.557	-90	0	124.50
AM14011	604572.938	6952051.022	221.718	-90	0	162.60
AM14012	604528.141	6952536.361	160.793	-90	0	252.40
AM14013	604056.350	6952032.333	157.314	-90	0	70.00
AM14014	601849.053	6957277.427	153.178	-90	0	234.10
AM14016	601352.078	6957359.555	125.730	-90	0	34.10
AM14016A	601336.909	6957316.415	125.837	-90	0	243.70
AM14019	600620.238	6957532.898	168.845	-90	0	229.50
AM14023	599883.748	6957734.430	178.427	-90	0	159.80
AM14034	594742.364	6958424.561	170.670	-90	0	30.50
AM14034A	594738.005	6958334.626	172.104	-90	0	118.40
AM14038	592852.407	6958716.893	146.416	-90	0	258.50
AM14041	592258.000	6958898.000	132.000	-90	0	150.40
AM14042	600513.721	6954850.030	141.679	-90	0	235.30
AM14043	600432.315	6954992.103	158.554	-90	0	330.00
AM14044	600280.000	6954733.000	157.000	-90	0	222.00
AM14045	599405.088	6953858.019	110.887	-90	0	184.40
AM14046	599817.663	6953530.656	89.485	-90	0	305.70
AM14047	610357.588	6953314.555	39.721	-90	0	112.40
AM14047A	610361.612	6953314.219	38.213	-90	0	68.50
AM14047B	610355.082	6953298.585	38.875	-90	0	103.00
AM14048	610173.251	6953657.426	35.337	-90	0	124.40
AM14048A	610175.273	6953656.809	31.223	-90	0	70.00
AM14049	609994.520	6953389.315	44.998	-90	0	43.40
AM14049A	609981.132	6953401.039	45.262	-90	0	126.50
AM14053	608911.773	6955909.588	127.995	-90	0	61.50
AM14054	608880.858	6955484.092	62.098	-90	0	133.50
AM14055	608536.186	6955970.289	110.344	-90	0	73.50
AM14056	608467.901	6955711.216	62.841	-90	0	151.50
AM14057	609344.047	6955907.057	130.808	-90	0	88.50
AM14059	610130.798	6955952.244	88.255	-90	0	77.70
AM14060	610184.646	6955792.515	63.918	-90	0	100.50
AM14061	610851.502	6955881.377	75.429	-90	0	145.50
AM14062	610737.955	6956094.570	105.251	-90	0	86.50

Hole_Name	Easting	Northing	Elevation	Inclination	Azimuth	Total_Depth
AM14063	600253.888	6954905.292	164.878	-90	0	295.30
AM14064	600009.156	6954810.429	163.207	-90	0	330.80
AM14065	599763.489	6954702.249	161.270	-90	0	115.20
AM14066	598914.537	6953930.920	142.582	-90	0	122.80
AM14067	599826.000	6954514.000	153.000	-90	0	254.50
AM14070	610387.156	6953430.889	32.287	-90	0	61.30
AM14072	609918.493	6953275.722	29.006	-90	0	50.00
AM14073	609466.351	6953443.667	48.160	-90	0	93.00
AM14074	609906.133	6954075.484	36.319	-90	0	50.00
AM14075	609078.374	6953644.616	72.726	-90	0	40.00
AM14076	609187.721	6953817.447	79.213	-90	0	112.00
AM14077	608820.612	6953863.622	88.298	-90	0	40.00
AM14079	598606.000	6953665.000	88.000	-90	0	384.80
AM14080	600518.518	6953065.176	83.108	-90	0	139.40
AM14081	599200.098	6954240.784	96.794	-90	0	151.10
AM14082	600965.325	6952622.820	79.301	-90	0	244.50
AM14083	599536.980	6954379.300	123.300	-90	0	123.30
AM14090	609445.658	6954953.445	38.881	-90	0	200.00