

23 July 2015

Unity Mining Limited ABN 61 005 674 073

Corporate Details:

ASX Code: UML

Issued capital: 1140M ord. shares 9.58M unlisted Perf. Rights

Substantial Shareholders: Diversified Minerals Pty Ltd 136.5M (11.97%)

Directors: Non-Executive Chairman: Clive Jones Managing Director: Andrew McIlwain Non-Executive Directors: Ronnie Beevor Gary Davison Frank Terranova

Contact Details:

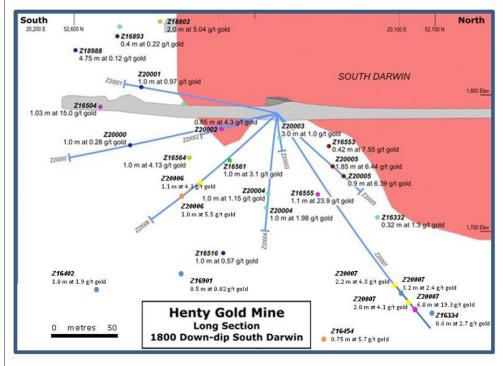
Unity Mining Limited Level 10 350 Collins St Melbourne Victoria 3000 Australia

Tel: +61 (0)3 8622 2300 Fax: +61 (0)3 8622 2399

Email: info@unitymining.com.au

Website: www.unitymining.com.au

Encouraging Henty Exploration Results


- High grade intersection down-dip of South Darwin
 - Hole Z20007 has returned 6.0 m at 19.3 g/t gold including:
 - O 1 metre at 70.8 g/t gold;
 - 2 metres at 41.8 g/t gold, or 3 metres at 28.7 g/t gold; and
 - 1 metre at 28.3 g/t

Unity Mining Limited (ASX:UML) (**Unity** or the **Company**) is pleased to announce encouraging results from early exploration drilling under the earn-in agreement with the PYBAR Group at the Henty Gold Mine in Tasmania.

A number of targets were identified and form the basis of Stage 1 of the earn-in agreement. These included up-dip in the Read Zone and down-dip from the previously mined high grade Darwin South area. Hole Z20007 targeted an area approximately 80 metres below the previously mined area and current interpretation confirms the continuation of mineralisation well below the previous known resource South Darwin position.

"It goes without saying that we are very encouraged by these initial results" commented Unity Managing Director, Mr Andrew McIlwain. "These down-dip intersections are approximately 80 metres below the South Darwin resource position. Significantly they are under the last area we mined in South Darwin - and these stopes were key contributors to higher grade mill feed that saw Henty deliver above budget and guidance in the past financial year.

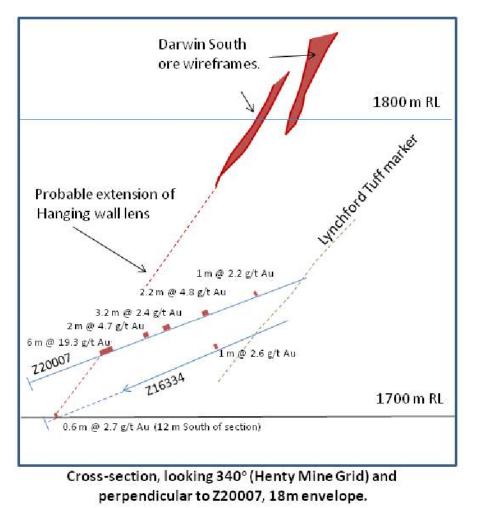

"Follow up drilling is planned and this will be conducted, along with targeting extensions to the Read Zone and the largely untested Collar Zone under the \$5 m earn-in agreement with the PYABR Group" he said.

Figure 1.

Figure 1 above, is a long section showing the location of hole Z20007 and other holes in the program. Hole Z20006, also targeting the area down-dip of South Darwin has returned assays including **1 metre at 5.5 g/t** gold. Full assay results are included in Table 1 below. Follow up drilling is in progress and assays are awaited.

Figure 2 below shows the interpreted extension of the Hanging wall lens in cross section.

Figure 2. Interpreted cross-section through Z20007. Assays shown here but not listed in the significant intersections of Table 1 are included in Table 3 of the attached Appendix 1.

Henty Gol	Henty Gold Mine Diamond Drilling - Intersection Details									
Program Number	-		Hole ID	Intersection Coordinates		From	То	o Length (m down	Au (g/t)	Ore Zone
			East	North	RL			hole)		
230	1790	Z20006	20160	52638	1767.4	110.9	112	1.1	4.3	FW
230	1790	Z20006	20149	52617	1762.3	135	136	1	5.5	HW
230	1790	Z20007	20082	52667	1723.4	155.8	158	2.2	4.8	FW
230	1790	Z20007	20075	52663 Includes	1729.4	164 165	166 166	2 1	4.1 8.1	HW
230	1790	Z20007	20063	52657	1723.8	177	183	6	19.3	HW
				Includes		177 177	178 179	1 2	70.8 41	
						177 182	180 183	3 1	28.7 28.3	

Table 1. Significant intersections for Z20006 and Z20007.

Appendix 1.

Hole_ID		e Max_Depth		No		RL	_
Z20006 Z20007	DD DD	176.40 212.30	20211.07 20210		733.29 733.97	1793.0 1792.72	
		ns for Z20006 an					
Hole_ID	Depth	DHSurvey_Meth	nod Dip		Orig_G	Frid_ID	Orig_Azimuth
Z20006	0	COLL	16	.38	Hent		208.0
Z20006	0	GYRO	15	.85	Hent		208.0
Z20006	4	GYRO	15	.65	Hent		208.0
Z20006	8	GYRO	1:	5.1	Hent		207.9
Z20006	12	GYRO	15	.07	Hent		207.9
Z20006	16	GYRO	14	.59	Hent		207.9
Z20006	20	GYRO	1	4.5	Hent		208.0
Z20006	24	GYRO	1	4.3	Hent		208.1
Z20006	28	GYRO	14	.29	Hent		208.0
Z20006	32	GYRO	14	.51	Hent		208.0
Z20006	36	GYRO	14	.12	Hent		208.1
Z20006	40	GYRO	13	.85	Hent		207.9
Z20006	44	GYRO	13	.43	Hent		208.0
Z20006	48	GYRO	13	.41	Hent		208.1
Z20006	52	GYRO	12	.96	Hent		208.1
Z20006	56	GYRO	12	.85	Hent		208.2
Z20006	60	GYRO	12	.77	Hent		208.2
Z20006	64	GYRO	12	.46	Hent		208.2
Z20006	68	GYRO	12	.45	Hent		208.3
Z20006	72	GYRO	10	.03	Hent		208.2
Z20006	76	GYRO	12	.33	Hent		208.3
Z20006	80	GYRO	12	.53	Hent		208.3
Z20006	84	GYRO	12	.37	Hent		208.3
Z20006	88	GYRO	12	.43	Hent		208.4

Z20006	92	GYRO	12.49	Hent	208.43
Z20006	96	GYRO	12.37	Hent	208.54
Z20006	100	GYRO	12.47	Hent	208.63
Z20006	104	GYRO	12.34	Hent	208.57
Z20006	108	GYRO	12.48	Hent	208.65
Z20006	112	GYRO	12.53	Hent	208.55
Z20006	116	GYRO	12.28	Hent	208.62
Z20006	120	GYRO	12.14	Hent	208.7
Z20006	124	GYRO	12.15	Hent	208.61
Z20006	128	GYRO	11.94	Hent	208.65
Z20006	132	GYRO	11.84	Hent	208.77
Z20006	136	GYRO	11.8	Hent	208.88
Z20006	140	GYRO	11.78	Hent	208.83
Z20006	144	GYRO	11.51	Hent	208.9
Z20006	148	GYRO	11.24	Hent	208.96
Z20006	152	GYRO	11.25	Hent	209.07
Z20006	156	GYRO	11.34	Hent	208.99
Z20006	160	GYRO	11.15	Hent	208.97
Z20006	164	GYRO	11.15	Hent	209.09
Z20006	168	GYRO	10.92	Hent	209.04
Z20007	0	COLL	23.67	Hent	241.14
Z20007	0	GYRO	23.75	Hent	241.14
Z20007	4	GYRO	23.76	Hent	241.22
Z20007	8	GYRO	23.84	Hent	241.21
Z20007	12	GYRO	23.59	Hent	241.34
Z20007	16	GYRO	23.42	Hent	241.55
Z20007	20	GYRO	23.42	Hent	241.76
Z20007	24	GYRO	23.48	Hent	241.82
Z20007	28	GYRO	23.37	Hent	241.79
Z20007	32	GYRO	23.23	Hent	241.77

Z20007	36	GYRO	23.14	Hent	241.9
Z20007	40	GYRO	23.25	Hent	241.91
Z20007	44	GYRO	23.07	Hent	241.85
Z20007	48	GYRO	22.81	Hent	241.82
Z20007	52	GYRO	22.79	Hent	241.85
Z20007	56	GYRO	22.84	Hent	241.92
Z20007	60	GYRO	22.86	Hent	241.89
Z20007	64	GYRO	22.71	Hent	241.93
Z20007	68	GYRO	22.51	Hent	242
Z20007	72	GYRO	22.63	Hent	242.17
Z20007	76	GYRO	22.73	Hent	242.2
Z20007	80	GYRO	22.57	Hent	242.2
Z20007	84	GYRO	22.35	Hent	242.17
Z20007	88	GYRO	22.23	Hent	242.18
Z20007	92	GYRO	22.32	Hent	242.37
Z20007	96	GYRO	22.41	Hent	242.39
Z20007	100	GYRO	22.33	Hent	242.4
Z20007	104	GYRO	22.21	Hent	242.46
Z20007	108	GYRO	22.07	Hent	242.52
Z20007	112	GYRO	22.18	Hent	242.63
Z20007	116	GYRO	22.21	Hent	242.59
Z20007	120	GYRO	22.09	Hent	242.57
Z20007	124	GYRO	21.86	Hent	242.68
Z20007	128	GYRO	21.79	Hent	242.85
Z20007	132	GYRO	21.94	Hent	243.01
Z20007	136	GYRO	21.98	Hent	243.09
Z20007	140	GYRO	21.94	Hent	243.09
Z20007	144	GYRO	21.78	Hent	243.21
Z20007	148	GYRO	21.81	Hent	243.31
Z20007	152	GYRO	21.87	Hent	243.34

Z20007	156	GYRO	21.94	Hent	243.38
Z20007	160	GYRO	21.81	Hent	243.44
Z20007	164	GYRO	21.64	Hent	243.67
Z20007	168	GYRO	21.68	Hent	243.78
Z20007	172	GYRO	21.84	Hent	243.81
Z20007	176	GYRO	21.8	Hent	243.85
Z20007	180	GYRO	21.67	Hent	243.83
Z20007	184	GYRO	21.69	Hent	244
Z20007	188	GYRO	21.75	Hent	244.07
Z20007	192	GYRO	21.59	Hent	244.05
Z20007	196	GYRO	21.24	Hent	244.03
Z20007	200	GYRO	21.14	Hent	244.14
Z20007	204	GYRO	20.78	Hent	243.99

 Table 2. Survey data for Z20006 and Z20007.

mFrom	mTo	Au_ppm
118	119	0.005
119	120	0.005
120	121	0.06
121	122	0.07
122	123	0.15
123	124	0.13
124	125	1.57
125	126	2.24
126	127	0.05
127	128	0.02
128	128.5	0.04
128.5	129	0.02
129	130	0.01
130	131	0.02
131	132	0.01
132	133	0.05
133	134	0.01
134	135	0.04
135	136	0.12
136	137	0.02
137	138	0.005
138	139	0.005
From	To m	Au
m		g/t
139	140	0.005
140	141	0.005
141	141.8	0.005
141.8	143	3.33

1431440.081441453.681451460.091461470.031471480.09148148.70.12148.7149.31.33149.31500.041501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91.640.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25180.7181.30.11181.31820.918218328.31831840.48184184.90.09184.91860.041861870.0051871880.17188.18			
1451460.091461470.031471480.09148148.70.12148.7149.31.33149.31500.041501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.8178179180180180.71.25180.71.81.30.11181.31840.041861870.0051871880.04188.188.0.17188189.3 <th></th> <th></th> <th></th>			
1461470.031471480.09148148.70.12148.7149.31.33149.31500.041501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.861661660.014166.90.14166.90.14166.91.14166.91.15170170.50.12170170.50.12170170.50.12171.51720.391721730.091731740.091741751.25175176.20.12176.21.770.3817717870.81781791804180180.71.25180.71.81.30.11181.31840.09184184.90.091851881871881880.17188.1880.17189.31			
1471480.09148148.70.12148.7149.31.33149.31500.041501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.3184184184184.90.091851871880.17188188.0.171.88189.30.27 <tr< th=""><th></th><th></th><th></th></tr<>			
148148.70.12148.7149.31.33149.31500.041501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.31820.99182183184184184.90.091851871880.17188188.80.17188.188.80.27 <t< th=""><th></th><th>147</th><th>0.03</th></t<>		147	0.03
148.7 149.3 1.33 149.3 150 0.04 150 151 0.01 151 152 0.05 152 153 0.01 153 154 0.01 153 154 0.01 155 155.8 0.03 155.8 157 1.56 157 158 8.59 158 159 0.03 159 160 0.04 160 161 0.22 161 161.7 0.02 162 163 0.29 163 164 0.25 164 165 2.28 165 166 5.86 166 166.9 0.14 166.9 0.14 166.9 168 168.5 0.69 168 168.5 0.69 168.5 169.2 0.13 169.2 170 0.05 170 170.5 0.12 170.5 171.5 0.15 <th></th> <th>148</th> <th>0.09</th>		148	0.09
149.31500.041501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170170.50.12171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.251831831840.04184184.90.09184.9880.17188.188.80.17188.188.80.17188.188.189.30.27189.31900.02	148	148.7	0.12
1501510.011511520.0051521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91.44166.91.680.69168.5169.20.13169.21700.05170170.50.12170170.50.12171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.81781791804.19180181.3180180.71.25180.71.81.30.17181.31840.09182183184184184.90.09185.31871.0051861870.005187188188.8188189.30.27189.31900.02	148.7	149.3	1.33
1511520.0051521530.011531540.011541550.19155155.80.031551571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.90.14166.90.14166.90.14166.90.14165.5169.20.13168168.50.69168.5169.20.13170170.50.12170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.8178179180180180.71.25180.71.81.30.11181.31840.0918218328.31831840.18184184.90.09184.91860.041861870.005187188188.8188.11.17188.3<	149.3	150	0.04
1521530.011531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.8178179180180180.71.25180.71.81.30.11181.31840.18184184.90.091851860.041861870.005187188188.8188189.30.27189.31900.02	150	151	0.01
1531540.011541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.021621630.291631640.251641652.281651665.86166166.90.14166.91.680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.31820.9184184.90.09184184.90.09184.91860.441861870.005187188188.80.17188.8189.30.27189.31900.02	151	152	0.005
1541550.19155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180.71.25180.71.81.30.11181.31820.918218328.3184184.90.09184.91860.041861870.005187188187188.8189.30.27189.31900.02	152	153	0.01
155155.80.03155.81571.561571588.591581590.031591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.81781791804.19180180.7180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09185187188187188187188.189.30.27189.31900.02	153	154	0.01
155.81571.561571588.591581590.031591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.81781791804.19180180.7180.71.25180.71.81.30.11181.31820.918218328.31831840.18184184.90.09185.118710051871880.17188.1189.30.27189.31900.02	154	155	0.19
1571588.591581590.031591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.31820.918218328.31831840.18184184.90.09184.91860.04185187188188.189.30.27189.31900.02	155	155.8	0.03
1571588.591581590.031591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.31820.918218328.31831840.18184184.90.09184.91860.04185187188188.189.30.27189.31900.02	155.8	157	1.56
1581590.031591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09185.118710.051861870.005187188188.8188.1189.30.27189.31900.02	157	158	
1591600.041601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02	158	159	
1601610.22161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.81781791804.19180180.7180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09185.11860.041861870.005187188187.7188.3189.30.27189.31900.02			
161161.70.02161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.81781791804.19180180.7180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09185187188188.180.17188.181870.27189.31900.02			
161.71620.0051621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.08184184.90.091851871881881870.005187188187.3188189.30.27189.31900.02			
1621630.291631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.005187188188.8188.1189.30.27189.31900.02			
1631640.251641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.005187188187.3188.8189.30.27189.31900.02			
1641652.281651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184184.90.0051871880.17188.8189.30.27189.31900.02			
1651665.86166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
166166.90.14166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.005187188187.8188.18.80.17188.8189.30.27189.31900.02			
166.91680.25168168.50.69168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.005187188188.8188.1189.30.27189.31900.02			
168 168.5 0.69 168.5 169.2 0.13 169.2 170 0.05 170 170.5 0.12 170 170.5 0.12 170.5 171.5 0.15 171.5 171.5 0.09 172 173 0.09 173 174 0.09 174 175 1.25 175 176.2 0.12 176.2 177 0.38 177 178 70.8 177 178 70.8 177 178 70.8 177 180 4.19 180 180.7 1.25 180 180.7 1.25 180 180.7 1.25 180.7 181.3 0.11 181.3 182 0.9 182 183 28.3 183 184 0.18 184 184.9 0.09 184.184.9 0.005 187 188 0.17 <tr< th=""><th></th><th></th><th></th></tr<>			
168.5169.20.13169.21700.05170170.50.12170.5171.50.15171.5171.50.191721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
169.21700.05170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.71.81.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
170170.50.12170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
170.5171.50.15171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.189.30.27189.31900.02			
171.51720.391721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
1721730.091731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
1731740.091741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
1741751.25175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
175176.20.12176.21770.3817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
176.21770.3817717870.817717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184184.90.0051871880.17188.8189.30.27189.31900.02			
17717870.817817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
17817911.151791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188.8189.30.27189.31900.02			
1791804.19180180.71.25180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188188.80.17188.8189.30.27189.31900.02			
180 180.7 1.25 180.7 181.3 0.11 181.3 182 0.9 182 183 28.3 183 184 0.18 184 184.9 0.09 184.9 186 0.04 186 187 0.005 187 188 0.17 188.8 189.3 0.27 189.3 190 0.02			
180.7181.30.11181.31820.918218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188188.80.17188.8189.30.27189.31900.02			
181.3 182 0.9 182 183 28.3 183 184 0.18 184 184.9 0.09 184.9 186 0.04 186 187 0.005 187 188 0.17 188 188.8 0.17 188.8 189.3 0.27 189.3 190 0.02			
18218328.31831840.18184184.90.09184.91860.041861870.0051871880.17188188.80.17188.8189.30.27189.31900.02			
1831840.18184184.90.09184.91860.041861870.0051871880.17188188.80.17188.8189.30.27189.31900.02			
184184.90.09184.91860.041861870.0051871880.17188188.80.17188.8189.30.27189.31900.02			
184.9 186 0.04 186 187 0.005 187 188 0.17 188 188.8 0.17 188.8 189.3 0.27 189.3 190 0.02			
1861870.0051871880.17188188.80.17188.8189.30.27189.31900.02			
1871880.17188188.80.17188.8189.30.27189.31900.02			
188188.80.17188.8189.30.27189.31900.02			
188.8189.30.27189.31900.02			
189.3 190 0.02			
190 191 0.06			
	190	191	0.06

191	192	0.04
192	193	1.94
193	193.6	0.6
193.6	194	0.37
194	195	0.09
195	196	0.005
196	197	0.005
197	198	0.005

Table 3. Gold results for all assayed intervals in Z20007 (including intervals shown in figures but not in the significant intersections table).

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Samples consist of sawn half core. LTK60 or NQ2 size. Nominal sample length is 1m, with a maximum of 1.2 m and a minimum ore is sampled to of 0.2m. The core is sampled on geological boundaries.
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Underground mobile diamond drill rigs produce core of either conventional LTK 60 (43.9mm core) or wireline NQ2 (50.8mm core).
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Where core loss occurs in drill core the interval is recorded as a zero percent recovered interval and therefore no sampling is conducted or assigned to the interval. Sampled intervals are therefore not affected with core loss.
_	<i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i>	Recovery of drill core is maximised through effective drill hole conditioning with mud programs.
-	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Mineralisation is predominant in the more competent quartz-rich rock therefore core loss does not bias the sampling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill core is brought from underground to the Surface Core Shed facility by the drilling contractor. UML technical staff place core trays on roller racks for the recovery stage where core is placed together and metre depths are marked on the core.
_	<i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i>	Drill hole data is loaded into the Database via the Datashed "front end". Site specific rock codes for rock types are used.
-	The total length and percentage of the relevant intersections logged.	All holes are logged in entirety. Drill logs are exported from into Datashed (Geological Database) and validated as part of the export process.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All drill core that contains quartz, sericitic or pyritic alteration is sampled for assay, including at least 5 metres either side. Core is cut in half utilising the Almonte automatic core saw.
	<i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i>	A QAQC regime involves the submission of one blank sample (rock containing no gold) for every batch or one blank sample for every 25 samples. A low, medium and high range certified gold standard is also submitted for every batch. QAQC standards are also used in-house by the laboratory and reported monthly. UML completes QAQC reports monthly using the QAQCR software from Maxwell.

Criteria	JORC Code explanation	Commentary
	<i>is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i>	of the logging process, to ensure that samples are representative.
-	Whether sample sizes are appropriate to the grain size of the material being sampled.	Samples are taken to geological boundaries to ensure that the sample size is appropriate for the mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples were assayed using fire assay technique with atomic absorption finish (AU-AA25). Upper limit samples (>100 grams per tonne gold) are re-analysed using the ALS dilution method (Au-DIL). Multi element analysis is done by Aqua Regia Digestion (ICP41) and an AAS finish (OG46) is used if upper limits are reached.
-	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Geophysical tools were not used to determine gold (or other element) grades.
-	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	One blank is submitted for every 25 samples with at least one in every batch submitted to the laboratory. Blanks are also added to the sample set at the end of a suspected ore interval.
		One standard is to be submitted for every 20 samples with at least three in every batch, representing below cut-off, average grade and high grade. Standard samples to be used at Henty are sourced from Rocklabs and come as 50g sachets of powder.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections are not checked by an independent company or personnel however a review of each Diamond Drill Proposal (programs of up to 20 holes) is completed and this includes review of significant intersections.
-	The use of twinned holes.	The twinning of holes in not considered a worthwhile exercise in general due to the variable nature of the ore system and the fact that all the drilling is underground diamond drilling and it can be a difficult exercise to "land" two holes on the same spot. Therefore it is not a standard practice at Henty. Mining reconciliation process have, for the last 5 years, served to validate the drill hole intersections.
-	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Drill hole data goes through a series of validation steps including logging, core photography, assay data processing including QAQC checks. All drill hole data is stored in DataShed (SQL database) which is maintained on the site server. Regular database audits are undertaken.
-	Discuss any adjustment to assay data.	Assay data is not adjusted in any way.
<i>Location of data points</i>	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All drill hole collars are surveyed (including dip and azimuth by a qualified surveyor). Down hole surveying has historically been conducted using a single-shot or multi-shot camera. Holes drilled between May 2013 and June 2015 were surveyed with a Reflex Gyro. In the most recent program a Deviflex instrument was used. The Gyro and the Deviflex have allowed more precise drill hole path predictions due to the removal of any magnetic interference as caused by magnetic minerals or steel used in ground support.
_		All mine workings are surveyed by a qualified

Criteria	JORC Code explanation	Commentary
		surveyor. Where drill holes are intersected by mine workings, the positions are surveyed to determine the accuracy of drill hole predictions. If these drill holes are shown to be inaccurate in positioning they are corrected in the database.
	Specification of the grid system used.	A local mine grid is utilised which is 20°58'53" west of True North.
-	Quality and adequacy of topographic control.	The topography was generated using LIDAR data.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Exploration results mostly occur within 100 m of the deposit margins and usually within 50m of the nearest drill hole.
_	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and the distribution is sufficient to determine geological and grade continuity as determined by the JORC code 2012.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill orientation is highly variable within the deposit but most intersections are at high angles tending towards perpendicular to the dip and strike of the mineralisation.
-	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	There are no known biases caused by the orientation of the drill holes.
Sample security	<i>The measures taken to ensure sample security.</i>	Drill core was kept on site and sampling and dispatch of samples were conducted as per on-site procedures. Transport of samples from site to the laboratory was by an employee of ALS Burnie. Pulps used for multi- element analysis were air freighted to Townsville.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques</i>	The sampling method was changed from Leachwell to Fire assay in February 2012 when ALS took on the analytical contract. An in-house review indicated that fire assay would have the advantage of being a total gold estimation method rather than partial such as Leachwell.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Henty deposit is located wholly within 7M/1991 and 5M/2002. These licences are 100% owned by Unity Mining, however Diversified Minerals Pty Ltd is funding the current drilling (commenced in June 2015) as part of a staged Farm-In agreement, in which it can earn up to 50% of the Henty asset. Mineral Resources Tasmania receives 1.9% of Nett sales plus a profit component. Barrick receives \$10 per ounce gold for ore mined below 1700 m. Franco- Nevada receives 1% on all gold ounces produced plus 10% of gold ounces north of Newton including part thereof.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Other companies to have held the project include Barrick Ltd, Placer Dome Asia Pacific, Aurion Gold, Goldfields Exploration Pty Ltd (Tasmania), Delta Gold N.L. and RGC (ex Mt. Lyell Mining and Railway Company.
Geology	Deposit type, geological setting and	Stratigraphy
	style of mineralisation.	The Henty mine lease covers rocks of the Central Volcanic Sequences, the Henty Fault Sequences, and Tyndall Group rocks of the Mount Read Volcanics and the overlying Owen Conglomerate. Near the mine, the Henty Fault splays into the North and South Henty Faults, dividing the geology into segments to the east and west of the faults, and a package between the splays. Gold mineralisation is hosted in Tyndall Group rocks to the east of the Henty Fault.
		The Henty Fault Sequences lie between the North and South Henty Faults and comprise carbonaceous black shales, mafic to ultramafic volcanics, and quartz phyri volcaniclastics. Rocks to the east of the Henty Fault comprise quartz phyric volcanics of the Tyndall Group and siliciclastics of the Newton Creek Sandstone of the Owen Conglomerate. Dacitic volcaniclastics and lavas that may be part of the Central Volcanic Sequences also occur east of the Henty Fault in the southern area of the lease.
		In the mine area, the Lynchford Member comprises green to red, massive coarse grained crystal-rich feldspar phyric volcaniclastic sandstone with lesser siltstones and matrix supported lithic breccias and minor interbedded cherts and cream, pink, or purple carbonates. Original textures are still discernible despite subsequent hydrothermal alteration and deformation.
		Structure The Henty orebodies are hosted east of the Henty Fault on the steeply west dipping overturned western limb of a shallowly south plunging asymmetric syncline trending into the Henty Fault. The orebodies plunge at 45° to the south between the Sill Zone and Zone 96, and shallow at depth towards Mt. Julia. The structure of the Henty Gold Mine is dominated by the Henty Fault Zone which dips at 70/290. The orebodies are disrupted by numerous north-south trending, steeply west dipping brittle-ductile faults with displacements of up to a few metres.
		Alteration
		Nearly all of the stratigraphic units of the Tyndall Group present at the Henty Gold Mine have undergone hydrothermal alteration. The most intense quartz- sericite-sulphide alteration and gold mineralisation has affected the Lynchford Member of the Comstock Formation, adjacent to the Henty Fault, and is referred to as "A-Zone" type alteration. A Zone alteration types include MA, MZ, MV, MQ, MP, and CB. The main mineralised zone comprises MQ, MV, and MZ.
		From west to east, the alteration types are as follows:
		<i>MZ</i> (quartz-sericite-sulphide schist)- is a black, fine grained, sheared and brecciated rock containing quartz, sericite, pyrite, local carbonate, and minor chlorite, feldspar, chalcopyrite, sphalerite, and galena. MZ is volumetrically the most abundant alteration type in the mineralised zone and is present stratigraphically

Criteria	JORC Code explanation	Commentary
		above and below the MQ and MV alteration types.
		<i>MV</i> (quartz-sericite-carbonate-sulphide schist)- is a yellow-green, fine grained, highly foliated rock containing quartz, sericite, pyrite, and local carbonate and minor chlorite, feldspar, chalcopyrite, sphalerite, and galena and rare purple fluorite. MV is the second most volumetrically abundant alteration type in the mineralised zone, followed by MQ and MP.
		<i>MQ</i> (<i>massive quartz-sulphide-gold</i>) - is a grey, cream, or pink massive to recrystallised brecciated quartz rock with minor muscovite, sericite, pyrite, carbonate, and chalcopyrite, with lesser galena and sphalerite, and rare gold and bismuth metal.
		<i>MP (massive pyrite-carbonate-quartz±gold)</i> - is a bronze-black massive pyritic rock containing 40 to 80% pyrite with interstitial carbonate and quartz.
		<i>CB (massive carbonate)</i> - The CB alteration type forms the hangingwall of A Zone type alteration and occurs as white to pink laterally discontinuous lenses.
		AS (albite-silica alteration) - occurs to the east of the A Zone alteration and overprints volcaniclastics. The alteration occurs as an irregular pervasive flood of massive white or orange fine grained silica and albite, completely destroying original textures of the volcaniclastics.
		Mineralisation Gold at the Henty Mine is present as both free gold and gold-rich electrum associated with chalcopyrite and galena in the main mineralised zone (MQ, MV, MZ).
Drill hole	A summary of all information material	Drill hole information is listed in Table 3.
Information	 to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain 	
Data aggregation	why this is the case.	All intercection grades have been length weighted
methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	All intersection grades have been length weighted.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Small high grade results within a broader mineralised zone have been reported as included intervals.
-	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been used in estimations or reporting.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The Henty deposit is predominantly steeply west- dipping. The stratigraphy is overturned. Drill holes are predominantly drilled from the mining footwall (eastern side) of the mineralisation from underground development. Drill holes are drilled to intercept mineralisation perpendicularly where possible.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Diagram.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The results of all holes drilled in this program have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	An in-situ bulk density of 2.8 based on 102 samples collected from ROM pad and underground development was used in the estimation.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Ongoing drilling programs will test extensions of known mineralisation and within mineralised portions considered to be insufficiently drilled.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See diagram.