ASX Announcement

Monday 14 July 2014

Sirius Resources NL

ASX code: SIR

ABN: 46 009 150 038

Head office:

253 Balcatta Road Balcatta, Western Australia 6021

Postal address:

PO Box 1011 Balcatta, Western Australia 6914

Tel: +61 8 6214 4200

Fax: +61 8 6241 4299

Email: admin@siriusresources.com.au

www.siriusresources.com.au

Projects:

Fraser Range nickel-copper, gold

Polar Bear gold, nickel

Minor correction to Definitive Feasibility Study ASX announcement

The nickel percentage grades disclosed for the updated Nova-Bollinger Mineral Resource estimate in the Definitive Feasibility Study announcement on 14 July 2014 were not the appropriate grades for the estimate.

This correction has no impact on the tonnes or contained metal in the Mineral Resource estimate and has no impact on the Ore Reserve estimate, the life of mine plan, or any production or financial forecasts based on these.

All other information required in relation to JORC 2012 is accurate as per the disclosure in the ASX announcement lodged on 14 July 2014.

This only impacts on Table 1 and Table 9 and replacement tables for Table 1 and Table 9 are contained in Appendix A.

Mark Bennett, Managing Director and CEO

For further information, please contact:

Anna Neuling Director – Corporate & Commercial +61 8 6241 4200

Media:

Warrick Hazeldine / Michael Vaughan Cannings Purple +61 417 944 616 / +61 422 602 720

Competent Persons statement

The information in this report that relates to Mineral Resource Estimation is based on information compiled by Mr Mark Drabble, Principal Consultant Geologist — Optiro Pty Ltd, Mr Andrew Thompson, a full time employee and General Manager Resources and Geology of Sirius Resources NL and Mr Jeffrey Foster, a full time employee and Technical Director of Sirius Resources NL. Mr Drabble, Mr Thompson and Mr Foster are members of the Australasian Institute of Mining and Metallurgy and have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Drabble, Mr Thompson and Mr Foster consent to the inclusion in this report of the matters based on their information in the form and context in which they appear.

ASX Announcement

Monday 14 July 2014

Appendix A

		Nova-Bollinger Mineral Resource - May 2014										
DEPOSIT	Resource	Tonnes (Mt)		Gra	de	Contained Metal						
	Category		NiEQ%	Ni %	Cu %	Co %	Nickel	Copper	Cobalt			
Nova	Indicated	9.1	2.7	2.5	1.0	0.08	230	94	7.3			
	Inferred	1.0	1.6	1.4	0.6	0.05	14	6	0.5			
	Total	10.1	2.6	2.4	1.0	0.08	244	100	7.7			
Bollinger	Indicated	2.4	2.9	2.7	1.1	0.11	64	26	2.6			
	Inferred	1.8	1.0	1.0	0.4	0.04	17	8	0.7			
	Total	4.2	2.1	2.0	0.8	0.08	82	34	3.3			
Total	Indicated	11.5	2.7	2.6	1.0	0.09	294	120	9.8			
	Inferred	2.8	1.2	1.1	0.5	0.04	31	14	1.2			
	Total	14.3	2.4	2.3	0.9	0.08	325	134	11.0			

Table 1 Mineral Resource estimate at 0.6 Ni Eq cut-off grade

NiEq% cut-off	Category	Tonnes (Mt)	Grade				Contained metal			
			NiEq%	Ni%	Cu%	Co%	Nickel (kt)	Copper (kt)	Cobalt (kt)	
0.4	Indicated	13.5	2.4	2.2	0.9	0.08	303	125	10.2	
	Inferred	4.6	0.9	0.8	0.4	0.03	39	18	1.6	
	Total	18.1	2.0	1.9	0.8	0.06	341	143	11.7	
0.5	Indicated	12.4	2.6	2.4	1.0	0.08	299	123	10.0	
	Inferred	3.4	1.1	1.0	0.5	0.04	34	15	1.3	
	Total	15.8	2.3	2.1	0.9	0.07	332	138	11.3	
0.6	Indicated	11.5	2.7	2.6	1.0	0.09	294	120	9.8	
	Inferred	2.8	1.2	1.1	0.5	0.04	31	14	1.2	
	Total	14.3	2.4	2.3	0.9	0.08	325	134	11.0	
0.7	Indicated	10.6	2.9	2.7	1.1	0.09	290	117	9.6	
	Inferred	2.2	1.4	1.3	0.5	0.05	28	12	1.1	
	Total	12.8	2.6	2.5	1.0	0.08	317	129	10.7	
0.8	Indicated	9.8	3.1	2.9	1.2	0.10	284	114	9.4	
	Inferred	1.8	1.5	1.4	0.6	0.05	25	11	0.9	
	Total	11.6	2.8	2.7	1.1	0.09	309	124	10.4	
0.9	Indicated	9.1	3.3	3.1	1.2	0.10	279	110	9.2	
	Inferred	1.5	1.6	1.5	0.6	0.06	23	10	0.9	
	Total	10.6	3.0	2.8	1.1	0.10	302	120	10.1	
1.0	Indicated	8.5	3.4	3.2	1.3	0.11	274	108	9.1	
	Inferred	1.3	1.7	1.6	0.7	0.06	21	8	0.8	
	Total	9.8	3.2	3.0	1.2	0.10	295	116	9.9	

Table 9 Consolidated tonnage-grade results for Nova-Bollinger, May 2014