

New Diversified Mineral Sands Company

Major Country-wide Exploration Play and World-Class Team to be added to existing Low Risk, Construction Ready Project

September 2014

'Gunson Resources Limited' to be renamed 'Strandline Resources Limited' subject to shareholder approval

- Issue 166.7 million Gunson shares to acquire 100% of unlisted Strandline Resources Pty Ltd
 - Strandline has 100% ownership of ~2,000 km² of highly prospective mineral sands (Ilmenite, Rutile, Zircon) exploration tenements in United Republic of Tanzania
 - Dominant mineral sands exploration position in world-class corridor
- Concurrent Placement of up to \$2.2 million and Share Purchase Plan of up to \$1 million
- New Board to comprise three Strandline Directors (ex-Iluka pedigree) with one Gunson Director. Gunson will employ current Strandline Management Team (ex-Rio Tinto mineral sands pedigree)
- Highly experienced, pedigreed and well connected mineral sands executives the right people to bring the Coburn Project into production
- Gunson Resources Limited to be renamed Strandline Resources Limited
- General Meeting to be convened in October to seek shareholder approval for the acquisition of Strandline Resources, the Placement, SPP and Corporate Name Change

Corporate Overview

GUNSON RESOURCES LIMITED

ASX Code: GUN	Current	Pro-forma ¹
Shares on issue	293.6M	673.5M ²
Unlisted Options	9.6M	19.6M
Market Cap (undiluted) @ \$0.024/share	\$7.0M	-
Market Cap (undiluted) @ \$0.015/share ³	-	\$10.1M
Cash (as at 31 July 2014)	\$0.5M	\$3.7M ⁴
Debt	Nil	Nil
Enterprise Value	\$6.5M	\$6.4M

1. Pro-forma post shareholder approval and completion of the Strandline Resources acquisition and \$3.2 million capital raising

 Includes 166.67 million shares issued for the acquisition of Strandline Resources (still subject to shareholder approval) and the issue of 213.3 million shares for the Placement and SPP (\$2.2m Placement still subject to shareholder approval and \$1.0m SPP yet to open)

- 3. Capital Raising issue price of 1.5 cents per share
- 4. Includes \$3.2 million raised (pre-fees) from the capital raising (\$2.2m Placement still subject to shareholder approval and \$1.0m SPP subject to shareholder approval)

Major Shareholders	Current
Sunzone Pty Ltd	6.9%
Grey Willow Pty Ltd	6.6%
Mr. John Bevan Tilbrook	4.0%
Top 20 Shareholders	43.6%
Board and Management	6.3%

- Creates Diversified Mineral Sands player positioning the company to become a major mineral sands mining house emerging from the bottom of the Mineral Sands price cycle:
 - Geographical spread (Australia/Tanzania)
 - Diversification of mineral sands products (Ilmenite, Rutile, Zircon)
 - Exposure to MAJOR EXPLORATION POTENTIAL in stable, business-friendly and under-explored Tanzania and CONSTRUCTION READY mineral sands project in WA
 - Experienced Management Team and Board with outstanding mineral sands pedigree across all aspects of the business
 - Other development/exploration assets (base metals in Australia) offer significant further value options
- Background of Strandline Resources Pty Ltd:
 - Privately funded company formed by high calibre team of In-Country and Mineral Sands specialists to be a first mover to delineate and develop economic mineral sands deposits within one of the world's most significant mineral sands region
 - Specialist team with direct access to the only country-wide geochemical database has led to the careful targeting of highly prospective project areas creating a dominant tenement position
 - First phase drilling has been successful

Board and Management*

GUNSON RESOURCES LIMITED

Mike Folwell – Non-Executive Chairman

- Extensive experience in a range of Mining and industrial companies at MD and CEO level
- Former Managing Director of Iluka Resources
- Managed a number of businesses on a global basis for companies including - Iluka Resources, Pivot Ltd., Pioneer International, BOC Gases and Shell

Richard Hill – Executive Director

- Qualified as a solicitor and geologist with over 19 years' ٠ experience in the Resource Industry
- Performed roles as legal counsel, geologist and commercial ٠ manager for several major and mid cap Australian mining companies and as founding director for a series of successful ASXlisted companies
- Practical geological experience as a mine based and exploration geologist in a range of commodities

Mark Alvin PhD - Consultant Geologist

- 20 years experience in mine and exploration geology (ex Rio Tinto)
- Successful in identifying and developing world-class mineral assets with a proven track record for discovery of Tier 1 Minerals Sands projects in south eastern Africa
- Hands on experience in exploring for Mineral Sands in Tanzania and fluent in Kiswahili

Asimwe Kabunga - In-Country Consultant

- Asimwe is a Tanzanian born Australian entrepreneur
- Holds a Bachelor of Science, Mathematics and Physics and has over 18 vears' technical and commercial experience in Tanzania, the United States and Australia
- Extensive experience in the mining industry, logistics, land access, tenure negotiation & acquisition
- Instrumental in establishing the Tanzania Community of Western Australia Inc. and served as it's first President. He was also a founding member of Rafiki Surgical Missions and Safina FoundationTanzania

Didier Murcia (AM) - Non-Executive Director

- Honorary Consul for Tanzania in Australia, with extensive ٠ Tanzanian experience and high level connections
- 25 years legal and corporate expertise in resources sector
- Awarded Order of Australia for services to the international community through support for the provision of medical and educational resources in Tanzania
- ٠ Currently Chairman of Centaurus Resources Limited and Alicanto Minerals Limited, and Non-Executive Director of Gryphon Minerals

Bill Bloking – Non-Executive Director

- Engineer with 39 years of experience in technical, commercial and leadership roles in the oil industry.
- 33 years with ExxonMobil and BHP Billiton in Australia, Asia, Europe, South America, and the USA.
- Former President, Australia Asia Gas, BHP Billiton Petroleum and Managing Director, Eureka Energy.
- Currently Non-Executive Chairman of Nido Petroleum, Non-Executive Director of Challenger Energy, MD of Gunson Resoures and Fellow of the Australian Institute of Company Directors

Brendan Cummins - Consultant Geologist

- 20 years experience in mine and exploration geology both within Australia, southern Africa. South America and China
- Specialist in identifying exploration assets and developing them from ٠ greenfields through to resource definition and feasibility study
- Has managed exploration teams on a number of projects in Tanzania over • the past 4 years

Tanzania – Major Opportunity

- SE Africa World's Major Source of Mineral Sands
- Geological Case
 - Tanzania the gap in Mineral Sands Discoveries
 - Equivalent source rocks, river systems, coastline & trap sites as significant mines to N, S & East
 - Historical & Phase 1 Exploration provides strong evidence of high unit value mineral assemblages
 - Technical and Strategic Edge Direct access to only major country-wide mineral sands database
 - Business Case
 - Rapid low cost resource delineation possible
 - Major operations in the region demonstrate simple, low risk development pathways, infrastructure solutions and established markets
 - Tanzania Politically Stable Democracy, Mining
 Friendly, English Speaking, Fast growing Economy

Projects and Infrastructure

- Dominant Land Position and growing ~ 2,000 km² ground position in application and granted tenure with 100% ownership
- 35 to 50km of coastline exposure at 5 of the projects (cumulatively ~ 200 km of coastline exposure)
- Scale Each of these projects have potential to host deposits of world-class scale
- Targeting scalable, high grade, high quality, high value mineral assemblages (Ilmenite, Rutile, Zircon)
- Close to Infrastructure All Projects within 20km of coastline with ready access to roads, rail and port
- Early Success Combination of exclusive database, reconnaissance and Phase 1 Auger drilling of initial priority targets has generated early success on the ground with delineation of significant zones of heavy mineral sands

HIGH GRADE – Historic Evidence

- Northern projects located 50km south of operating Kenyan Kwale Mine (262Mt @ 3.7% HM)
- Modern strandline accumulations indicate high grade HM with very high Zircon content (above)
- 1998-1999 country-wide exploration programme managed by Mark Alvin (Tanganyika Gold NL)
- Recent drilling by Syrah Resources has continued to uncover high grade mineralisation nearby – *Tanga* and *Fungoni* Projects (see intercepts adjacent image)

Note.: Syrah Resources ASX release in relation to drill results first released on 28th February, 2012.

Kitambula Project - Tanga

- Kwale Mine (262Mt @ 3.7% HM) 50km to the north in Kenya – footprint is less than 2km x 2km
- +35km of strike potential
- Broad Spaced testing to date (Phase 1):
 - Aircore drill results (historic)
 - TGAC006: 22m @ 2.43% HMS from surface (including 4m @ 5.2 % HMS from 6m)
 - TGAC011: 6m @ 6% HMS from 35m
 - TGAC012: 3m @ 5.7% HMS from 36m
 - TGAC013: 7m @ 4.15% HMS from 4m
 - TGAC014: 2m @ 4.8% HMS from 21m
 - Auger HMS sampling (<10m depths)
 - AR007: 3.85m @ 3.74% HMS from 0m until EOH (including 0.85m @ 13.21 % HMS)
 - AR024: 9m @ 2.36% HMS from 0m until EOH
 - AR032: 2.9m @ 3.38% HMS from 0m until EOH
 - AR053: 10.5m @ 1.95% HMS from 0m until EOH (including 4.5m @ 2.74% HMS)
- Additional tenure applied for to the SW, topographic high similar to Kwale
- 5 to 20 km from the port town of Tanga

Kitambula Project - Tanga

- Mineral Assemblage composite VHM data:
 - C004 74.4% VHM comprising 63.9% Ilmenite, 6.2%
 rutile and 4.1% Zircon
 - C003 63.0% VHM comprising 44.6% Ilmenite, 16.8%
 rutile and 1.3% Zircon
 - C005 44.1% VHM comprising 28.3% Ilmenite, 11.7% rutile and 2.7% zircon
 - C002 33.7% VHM comprising 23.7% Ilmenite, 6.7% rutile and 0.8% zircon
- Samples from surface to 6m depth
- Requires follow-up AC or RC drilling to determine continuity of grade and strandline morphology

Madimba Project – historic data

- Coherent 1 to 3% HMS zone based on surface sampling
- Located at the base of a topographic high – potential paleo-strandline adjacent to major Rovuma River
- Database shows previous regional samples at Mtwara contained 4.35% HMS, 8.4% slime and elevated rutile and zircon (8% combined)
- Average TiO₂ ilmenite microprobe analysis based on 19 samples from this region is 55.7% TiO₂
- Next Step infill sampling and drilling

Tanzania – The Coming 12 Months

- Q4 2014 H1 2015
 - Continue systematic Auger drill sampling programmes, reconnaissance sampling & assemblage testwork across Kitambula and southern extension as well as recently granted tenure in southern Tanzania
- Q1 Q3 2015
 - Undertake HM testwork to understand VM assemblage & rank and prioritise auger targets to be systematically drill tested
 - Drill Testing Series of Targets
- Q4 2015
 - Potential Resource Drilling on at least one Project
- Ongoing Project generation from database and other in-country opportunities

- Global Resource 979 MT @ 1.28% HM
- ~\$30M spent on Project to date
- DFS and FEED Completed, Fully Permitted High level of technical definition and low execution risk
- Low Technical Risks broad homogeneous ore body, free flowing sands, low levels of "trash" heavy minerals
- Low Jurisdiction Risk and Access to Infrastructure located in WA with access to Road, gas pipeline, Port of Geraldton
- Low unit costs shallow open pit mining with backfill of waste, negligible slimes
- **High quality final products** low impurities, standard grain sizes, endorsed by previous off-take arrangement with DuPont
- Long Mine Life 19 years with the potential to grow
- Competitive advantages
 - Construction Ready only quality zircon project world wide at this level of readiness
 - High-value zircon-rich assemblage
- Seriously Leveraged to rising mineral sands prices
- Major Strategic Partnership on track with major Korean steel producer POSCO in 2012 – however JV negotiations terminated in 2013 in the face of a weakening Zircon price

Coburn Mineral Sands Project, WA

GUNSON RESOURCES LIMITED

Item	\$Am (Real)
Annual Revenue	\$146.1
Annual Operating Costs	\$94.8
Annual Net Operating Margin	\$51.3
Capital Cost	\$202
Pre-tax IRR	19.5%
Pre-tax NPV (8%)	\$208

- Based on August 2012 Costs & Aug 2013 TZMI Price Forecasts
- Exchange rate assumptions for US\$ to A\$ in years to 30 June: US\$0.92 in 2014, gradually reducing to US\$0.79 in 2023 and beyond
- Contractor feedback now suggests CAPEX and OPEX maybe 10-20% less than costs in 2012

Copper - Mount Gunson Project (SA)

GUNSON RESOURCES LIMITED

- Located in centre of Australia's best endowed copper belt
 Olympic Dam Copper-Gold Province
- Mount Gunson Greater Project (100% Gunson)
- **Mount Gunson Excised Area** (MG-14 and Windabout resources) Torrens Mining Ltd earning 51%
- Collectively, resources account for 210,000 tonnes of contained copper (+significant cobalt & silver credits)
- Torrens earning 51% interest in excised area by:
 - Determining feasibility of a well established leach technology to economically separate metallic Cu, Co, and Ag from the ore;
 - Delivering a Bankable Feasibility Study and Decision to Mine within 18 months
 - Gunson free-carried through first \$2.5m of expenditure
- Recently announced breakthrough ("proof of concept ") in copper recoveries of 80-85% with upside to +90% (previously 54-68%) now progressing to process design, optimisation and determining CAPEX and OPEX

Nickel - Fowlers Bay Project (SA)

- 700km² Project (100% Gunson)
- 150km west of Ceduna
- Exploration suggests one magnetic belt comprised of mafic and ultramafic rocks that may contain nickel sulphides.

- Geological Setting is analogous to Fraser Range Belt of WA - host to Sirius resources (ASX:SIR) Nova-Bollinger Ni-Cu discovery
- A coincident gravity anomaly of 9km x 3.5km defined over a priority magnetic target
- Next Step in advanced farm-out negotiations

TANZANIAN MINERAL SANDS PROJECTS

Post Transaction - Asset Summary

- Tanzania Mineral Sands Projects (100% GUN*). Major Exploration Potential
- **Coburn Mineral Sands Project** Western Australia (100% GUN). Construction Ready
- Mount Gunson Copper Exploration Project
- 100% owned Greater Gunson project
- MG14/Windabout excised area with Torrens Mining (Earning 51% by spending \$2.5m)
- Fowlers Bay Nickel Exploration Project South Australia (100% GUN)
- Tennant Creek Gold-Copper Exploration Project – Northern Territory (100% GUN)

^{*} Subject to shareholder approval

www.gunson.com.au

'Gunson Resources Limited' to be renamed 'Strandline Resources Limited'

GUNSON RESOURCES LIMITED

Disclaimer & Forward Looking Statements

This presentation has been prepared by Gunson Resources and Strandline Resources (the "Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this presentation. This presentation contains forecasts and forward looking information. Such forecasts, projections and information are not a guarantee of future performance and involve unknown risks and uncertainties. Actual results and developments will almost certainly differ materially from those expressed or implied. The Company has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this presentation. Accordingly, to the maximum extent permitted by applicable laws Gunson makes no representation and can give no assurance, guarantee or warranty, express or implied, as to, and take no responsibility and assume no liability for, the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission, from any information, statement or opinion contained in this presentation.

You should not act or refrain from acting in reliance on this presentation material. This overview does not purport to be all inclusive or to contain all information which its recipients may require in order to make an informed assessment of the Company's prospects. You should conduct your own investigation and perform your own analysis in order to satisfy yourself as to the accuracy and completeness of the information, statements and opinions contained in this presentation before making any investment decisions.

Competent Persons Statement

The information in this report that relates to exploration results, mineral resources and ore reserves for the Coburn Project is based on and fairly represents information compiled by Mr D N Harley, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Harley, who is an employee of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Harley consents to the inclusion in the report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to exploration results, mineral resources and ore reserves for Strandline Resources is based on and fairly represents information compiled by Mr B J Cummins, who is a Member of the Australian Institute of Geoscientists. Mr Cummins, who is a consultant to Strandline Resources, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cummins consents to the inclusion in the report of the matters based on his information in the form and context in which they appear.

Compliance Statement – Mount Gunson Copper – MG 14/Windabout Excised Area

The information in this presentation relating to the Mount Gunson Copper – MG14/Windabout Excised Area is from the Company's ASX announcement of 11 June 2013 entitled "Amended 2012 JORC Report to Accompany 6 June 2013 Company Update" which is available to view on <u>www.gunson.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement, and in the case of estimates of Mineral Resources and Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Appendix 1: About Tanzania

- Politically stable multi-party democracy
- World's 5th fastest growing economy
- Endorsed by World Bank and IMF
- Government supportive of foreign investment with "Australian style" Mining Act updated in 2010
- English and Swahili speaking legal system based on English common law
- Globally competitive tax and regulatory framework for investors
- Mining service providers and contractors readily available

Appendix 2: Technical/Strategic Advantage

GUNSON RESOURCES LIMITED

- Projects targeted using detailed database >\$2M work completed by Mark Alvin's team at Tanganyika Gold in 1999 - 2000
- Geochemical database extends across the entire Tanzanian coastline from north to south – 2100 geochem samples, 115 drill holes
- Database shows several additional high priority project areas to be acquired – In Progress

Appendix 3: Coburn Production Metrics and Reserves & Resources

GUNSON RESOURCES LIMITED

Mining Details		Product	Key Specification	Average Annual Production (t)	LOM Production (Mt)	% Revenue
Annual Production	23.4Mt of ore					
Strip Ratio	0.5 : 1	Zircon *	66% ZrO2	49,500	0.94	65
Slimes (very attractive)	2.7%*	Ilmenite	62% TiO2	109,000	2.07	19
Oversize	3.3%			22 500	0.45	16
Life	19 years	1111.50	90% HOZ	23,300	0.45	10
Method	Open Pit, Backfill with Waste and Tailings	TOTALS		182,000	3.46	100

Reserve	Cut-off HM %	Tonnage	HM %	Contained HM (MT)	Zircon %	Ilmenite %	Rutile %	Leucoxene %
Proven	0.8%	53	1.3	0.7	24	46	5	6
Probable	0.8%	255	1.2	3.1	23	48	7	4
TOTALS		308	1.2	4.8				

Resources	Cut- off HM %	Tonnage	НМ %	Contained HM (MT)	Zircon %	llmenite %	Rutile %	Leucoxene%
Measured	0.8%	119	1.3	1.5	23.5	45.5	4.9	6.2
Indicated	0.8%	599	1.2	7.2	22.2	47.9	6.6	4.7
Inferred	0.8%	261	1.4	3.6				
TOTALS		979	1.28	12.3				

Appendix 4

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The samples were retrieved in 1.5m intervals for logging and sampling The samples were representative of what was logged
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Manual Auger drilling techniques were used obtain the samples The drill rods were 1.0m in length, with 50mm T-bar for a total of 1.5m The drill bit has a diameter of 50mm
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and 	 Drill recoveries were acceptable with no significant loss of auger sample noted during the program. The process is manually intensive so a significant portion or time is spent ensuring the auger spoil is recovered No sample bias was encountered
	geotechnically logged to a level of detail to support appropriate	content and slimes

Criteria	JORC Code explanation	Commentary
	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The 1.5m intervals were logged transcribing the logging onto paper field sheets prior to updating an excel spreadsheet. The auger samples were logged for lithology, colour, grainsize, rounding, sorting and any relevant comments - hardness
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The drill spoil were quarter coned onsite and then split with a single layer riffle splitter to reduce sample size A total of 200 to 400g was deposited into geochem bags and sent to the laboratory for analysis Field duplicates of the samples were completed at a rate of 5% The sample sizes were deemed suitable based on industry experience of the geologists involved
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The individual 1.5m auger samples were assayed by BUREAU VERITAS in Johannesburg, South Africa The auger samples were analysed for Total Heavy Mineral (-1mm to +45micron), Slimes (-45micron), oversize (+1mm), Float (-1mm to +45micron) and a mass balance check The laboratory used TBE – density range between 2.81 and 2.89 g/ml as the density medium This is an industry standard technique Field duplicates of the samples were completed at a rate of 5% BUREAU VERITAS completed its own internal QA/QC checks that included bulked standards and duplicates very 20 twentieth sample prior to the results being released The density medium was checked every morning and then after every 20 samples by volumetric flask The adopted QA/QC protocols are acceptable for this early stage exploratory testwork. No external laboratory testwork has been undertaken The 10 composite sample data was analysed by Diamantina Laboratories in Perth, Western Australia with the following procedure Weigh sample or the composite

Criteria	JORC Code explanation	Commentary
		 The THM concentrate samples were split it had more than 100 grams, weighing both fractions and magnetically separating the composite into four 4-fractions, HS magnetite, magnetic1or Mag1, magnetic 2 or Mag2, nom magnetic or NM. Plus T.B.E separation of the non-magnetic to remove any quartz present. Preparation of the polished section for the Mag1, Mag2 and NM Point counting of the three fractions Calculations of the weight percentage of each mineral in each fraction to give the head
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The data has been manually updated into a master spreadsheet which is appropriate for this early stage in the exploration program
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A handheld GPS was used to identify the positions of the auger drill holes in the field The handheld GPS has an accuracy of +/- 5m The datum is used is WGS84 zone 37 The accuracy of the locations is sufficient for this early stage exploration
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Various grid spacing was used the Auger program ranging from 100 x 1000m regular grids for the closer space drill testing and up to 2500 x 5000m triangular grids for the more regional spaced sampling programs These data has not been used for resource estimation
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Due to the early stage nature and broad scale sampling of the exploration program the relationship to any geologic structures or lithological controls is not know
Sample security	The measures taken to ensure sample security.	 The samples remained in the custody of Company representatives until they were transported to Dar Es Salaam for final packaging and securing. The samples were then sent using DHL to Johannesburg and

Criteria	JORC Code explanation	Commentary
		 delivered directly to the Laboratory The laboratory inspected the packages and did not report tampering of the samples. The THM concentrates were sent by DHL to Perth Australia and were received by Company representatives and no tampering was evident in the packaging apart from inspections carried out by Quarantine
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The exploration work was completed on tenements that are 100%owned by the Company in Tanzania The tenements include: PL7588/2012, PL9332/2013, PL9427/2013, PL8134/2012, PL8196/2012 and PL8185/2012 The tenements were all granted in 2012 or 2013 and have a four year term Traditional landowners and Chiefs of the affected villages were supportive of the completed sampling program.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historic exploration work was completed by Tanganyika Gold in 1998 and 1999 The Company has obtained the hardcopy reports and maps in relation to this information The historic data comprises surface sampling, limited AC drilling and mapping The historic results are not reportable under JORC 2012
Geology	• Deposit type, geological setting and style of mineralisation.	 Two types of heavy mineral sand style are possible in Tanzania Thin but high grade strandlines related to paleao shorelines Large but lower grade dunal deposits related to windblown sands The coastline of Tanzania is not well known for massive dunal systems such as those developed in Mozambique however some

Criteria	JORC Code explanation	Commentary
		dunes are known to occur and cannot be discounted as an exploration model. Palaeo strandlines are more likely and will be related to ancient shorelines or terraces. In Tanzania three terraces have been documented and include the Mtoni terrace (1-5m ASL), Tanga (20-40m ASL) and Sakura Terrace (40 to 60m ASL). Strandline mineral sand accumulations related to massives storm events are thought to be preserved at these terraces above the current sea level.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Tabulated in Appendix 3 - drill collar location
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregation methods have been applied out on the auger sampling data.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Due to the early stage nature, shallow drilling and broad scale sampling of the exploration program the relationship to any mineralization widths and intercepts is not known. More detailed drilling is required to understand mineralization widths

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Figures are displayed in the main text
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All auger drill holes and results have been reported in Appendix 4.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The concentrate THM samples have undergone full Modal analysis to gain an understanding of the valuable heavy mineral (VHM) 10 Composite samples were identified for the VHM analysis using a range of grades and geographic spread The results are tabulated in Appendix 5
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will include additional auger sampling, infill aguer sampling Should sufficient targets be generated an AC drill program is planned Additional modal analysis will also be undertaken on suitable composite HM samples to determine VHM As the project advances TiO2 and contaminant test work will also be undertaken Satellite image acquisition and LIDAR radar imaging is also being considered

Appendix 5 Auger drill locations

Hole	East	North	FOH	Azimuth	Din	Мар
ID	WGS84	WGS84	2011	7.2.1110.011	Dip	Zone
AR001	518856	9473051	1.50	0	-90	Zone 37
AR002	517931	9473395	4.50	0	-90	Zone 37
AR003	517016	9473721	1.50	0	-90	Zone 37
AR004	517375	9471338	6.00	0	-90	Zone 37
AR005	516413	9471875	7.37	0	-90	Zone 37
AR006	516994	9469844	4.80	0	-90	Zone 37
AR007	515760	9472299	3.85	0	-90	Zone 37
AR008	517202	9469705	3.50	0	-90	Zone 37
AR009	515949	9467215	4.30	0	-90	Zone 37
AR010	517089	9466763	0.90	0	-90	Zone 37
AR011	520406	9464084	0.40	0	-90	Zone 37
AR012	518170	9466311	1.50	0	-90	Zone 37
AR013	521949	9462820	0.20	0	-90	Zone 37
AR014	519208	9465899	0.20	0	-90	Zone 37
AR015	513797	9463622	4.65	0	-90	Zone 37
AR016	519868	9464914	0.50	0	-90	Zone 37
AR017	514815	9462625	4.22	0	-90	Zone 37
AR018	521122	9469409	0.50	0	-90	Zone 37
AR019	515248	9462369	2.70	0	-90	Zone 37
AR020	514426	9462923	13.54	0	-90	Zone 37
AR021	515650	9462049	4.50	0	-90	Zone 37
AR022	512664	9460947	15.00	0	-90	Zone 37
AR023	516063	9461763	4.67	0	-90	Zone 37
AR024	513889	9460020	9.00	0	-90	Zone 37
AR025	512154	9461787	4.64	0	-90	Zone 37
AR026	514512	9458510	10.50	0	-90	Zone 37
AR027	512962	9460534	10.15	0	-90	Zone 37
AR028	511083	9454730	9.00	0	-90	Zone 37
AR029	513425	9460313	7.50	0	-90	Zone 37
AR030	511583	9454702	4.20	0	-90	Zone 37
AR031	514857	9459068	6.50	0	-90	Zone 37
AR032	511841	9454684	9.00	0	-90	Zone 37
AR033	514099	9458246	1.50	0	-90	Zone 37
AR034	512658	9454668	8.60	0	-90	Zone 37
AR035	513233	9457680	1.25	0	-90	Zone 37
AR036	511117	9453723	6.50	0	-90	Zone 37
AR037	513166	9457240	7.30	0	-90	Zone 37
AR038	511359	9453712	5.00	0	-90	Zone 37
AR039	511383	9454660	5.04	0	-90	Zone 37
AR040	511841	9453699	6.00	0	-90	Zone 37
AR041	512091	9454669	6.25	0	-90	Zone 37
AR042	512352	9453692	2.90	0	-90	Zone 37
AR043	512346	9454700	6.38	0	-90	Zone 37
AR044	512845	9453700	2.40	0	-90	Zone 37
AR045	511746	9455557	7.72	0	-90	Zone 37
AR046	513094	9453697	2.00	0	-90	Zone 37
AR047	511386	9455197	4.00	0	-90	Zone 37
AR048	513337	9453707	5.30	0	-90	Zone 37

AR049	511597	9453706	3.00	0	-90	Zone 37
AR050	512831	9452687	2.30	0	-90	Zone 37
AR051	512148	9453701	6.70	0	-90	Zone 37
AR052	511094	9452703	11.00	0	-90	Zone 37
AR053	512587	9453758	10.50	0	-90	Zone 37
AR054	511598	9451690	4.20	0	-90	Zone 37
AR055	512343	9452697	1.50	0	-90	Zone 37
AR056	512096	9452699	2.00	0	-90	Zone 37
AR057	512602	9452692	1.50	0	-90	Zone 37
AR058	514610	9452687	4.50	0	-90	Zone 37
AR059	513101	9452688	3.60	0	-90	Zone 37
AR060	514850	9452700	3.80	0	-90	Zone 37
AR061	513349	9452694	2.70	0	-90	Zone 37
AR062	512612	9451700	2.90	0	-90	Zone 37
AR063	513633	9452678	3.40	0	-90	Zone 37
AR064	513099	9451690	4.00	0	-90	Zone 37
AR065	513845	9452709	3.00	0	-90	Zone 37
AR066	513347	9451694	3.00	0	-90	Zone 37
AR067	514101	9452712	1.60	0	-90	Zone 37
AR068	513830	9451699	11.20	0	-90	Zone 37
AR069	514378	9452707	3.00	0	-90	Zone 37
AR070	514103	9451698	3.00	0	-90	Zone 37
AR071	511371	9452729	3.00	0	-90	Zone 37
AR072	515093	9451700	2 90	0	-90	Zone 37
AR073	511608	9452712	3.00	0	-90	Zone 37
AR074	465083	9284699	4 30	0	-90	Zone 37
AR075	511855	9452698	1.50	0	-90	Zone 37
AR076	466096	9284710	5 40	0	-90	Zone 37
AR077	511101	9451715	6 40	0	-90	Zone 37
AR078	467089	9284699	7 50	0	-90	Zone 37
AR079	511362	9451717	5.00	0	-90	Zone 37
AR080	468982	9284633	2.00	0	-90	Zone 37
AR081	511841	9451718	6.00	0	-90	Zone 37
AR082	470097	9284669	8.00	0	-90	Zone 37
AR083	512071	9451681	2.00	0	-90	Zone 37
AR084	472095	9284701	4.30	0	-90	Zone 37
AR085	512100	9451699	1.70	0	-90	Zone 37
AR086	471153	9284747	3.60	0	-90	Zone 37
AR087	512345	9451689	3.00	0	-90	Zone 37
AR088	473123	9284712	1.50	0	-90	Zone 37
AR089	512868	9451672	4.20	0	-90	Zone 37
AR090	474097	9284702	10.50	0	-90	Zone 37
AR091	513594	9451705	7.00	0	-90	Zone 37
AR092	475132	9284709	7.50	0	-90	Zone 37
AR093	514330	9451700	4.00	0	-90	Zone 37
AR094	476107	9284689	11.60	0	-90	Zone 37
AR095	514608	9451699	2.00	0	-90	Zone 37
AR096	477036	9284643	5.00	0	-90	Zone 37
AR097	514840	9451682	1.00	0	-90	Zone 37
AR098	478110	9284698	12.80	0	-90	Zone 37
AR099	464592	9284665	4.60	0	-90	Zone 37
AR100	479065	9284707	12.00	0	-90	Zone 37

AR101	464091	9284692	2.20	0	-90	Zone 37
AR102	480088	9284702	5.10	0	-90	Zone 37
AR103	468099	9284700	3.80	0	-90	Zone 37
AR104	481109	9284715	3.00	0	-90	Zone 37
AR105	465130	9287170	2.50	0	-90	Zone 37
AR106	482339	9284720	0.00	0	-90	Zone 37
AR107	467103	9287211	1.00	0	-90	Zone 37
AR108	483125	9284691	3.00	0	-90	Zone 37
AR109	469148	9287222	6.50	0	-90	Zone 37
AR110	484107	9284702	2.90	0	-90	Zone 37
AR111	471085	9287199	5.20	0	-90	Zone 37
AR112	485083	9284700	7.30	0	-90	Zone 37
AR113	473047	9287226	7.00	0	-90	Zone 37
AR114	486186	9284710	7.10	0	-90	Zone 37
AR115	475060	9287197	1.00	0	-90	Zone 37
AR116	487106	9284730	5.00	0	-90	Zone 37
AR117	477110	9287202	2.00	0	-90	Zone 37
AR118	488093	9284699	4.00	0	-90	Zone 37
AR119	479085	9287192	6.90	0	-90	Zone 37
AR121	478139	9289909	12.00	0	-90	Zone 37
AR123	479080	9292175	5 50	0	-90	Zone 37
AR124	465078	9279692	7 55	0	-90	Zone 37
ΔR125	479628	9297206	6.00	0	-90	Zone 37
ΔR125	467110	9279691	7 20	0	-90	Zone 37
AR120	407110	9289631	6 50	0	-90	Zone 37
AR127	4/0255	9279707	6.00	0	-90	Zone 37
AR120	405055	9289739	6 50	0	-90	Zone 37
AR120	474275	9279708	5.80	0	-90	Zone 37
AR130	471057	0202268	7.00	0	-90	Zone 37
AR131 AP122	474330	9292208	10.10	0	-90	Zone 37
AR132 AP122	473103	9279707	0.10	0	-90	Zone 37
AR133 AD124	477011	9293010	9.80	0	-90	Zono 27
AR134	473094	92/9/02	0.30 4 50	0	-90	Zone 37
AR135 AR136	400213	9307211	4.30 8.20	0	-90	Zone 37
AR130	477037	9279700	2.00	0	-90	Zono 27
AR137 AD120	477974	9300482	3.00	0	-90	Zono 27
AR130	470302	9279703	4.30	0	-90	Zone 27
AR139	470000	9307203	0.00	0	-90	Zono 27
AR141 AP142	4/4131	9307101	5.00	0	-90	Zono 27
AR142	406092	9274703	0.50	0	-90	Zone 27
AR145	472107	9507280	9.50	0	-90	Zone 27
AR144	4/0112	9274050	1.40	0	-90	Zone 37
AR145	406157	9507155	9.60	0	-90	Zone 37
AR140	400127	92/4/49	1.80	0	-90	Zone 37
AK147	404110	929/123	0.00	0	-90	Zone 37
AK148	404101	92/4/02	3.70	0	-90	Zone 37
AR149	404928	9302157	3.00	0	-90	Zone 37
AR150	4/2052	92/4/04	4.30	0	-90	Zone 37
AR151	46/116	9302154	3.00	0	-90	20ne 37
AR152	4/40/5	92/4693	3.50	0	-90	Zone 37
AR153	469090	9302202	2.50	0	-90	Zone 37
AR155	466027	9297286	4.00	U	-90	Zone 37
AR156	467090	9269985	5.90	0	-90	Zone 37

AR157	468097	9297229	4.50	0	-90	Zone 37
AR158	465102	9269698	12.00	0	-90	Zone 37
AR159	470997	9301924	4.50	0	-90	Zone 37
AR160	470046	9307200	9.50	0	-90	Zone 37
AR161	470096	9297187	3.10	0	-90	Zone 37
AR162	466099	9307203	6.50	0	-90	Zone 37
AR163	465068	9292129	4.50	0	-90	Zone 37
AR164	464094	9307204	8.40	0	-90	Zone 37
AR165	464129	9289645	1.60	0	-90	Zone 37
AR166	479094	9302228	2.10	0	-90	Zone 37
AR167	466087	9289692	3.80	0	-90	Zone 37
AR168	477098	9302200	6.20	0	-90	Zone 37
AR169	468107	9289656	2.60	0	-90	Zone 37
AR170	475106	9302300	7.00	0	-90	Zone 37
AR171	466991	9292660	1.50	0	-90	Zone 37
AR172	473099	9302199	10.50	0	-90	Zone 37
AR173	469094	9291924	3.00	0	-90	Zone 37
AR174	478074	9297196	3.40	0	-90	Zone 37
AR175	470224	9289690	3.50	0	-90	Zone 37
AR176	476104	9297206	15.00	0	-90	Zone 37
AR177	471006	9292164	6.00	0	-90	Zone 37
AR178	474128	9297219	11.00	0	-90	Zone 37
AR179	472010	9289731	1.50	0	-90	Zone 37
AR180	471994	9297215	9.00	0	-90	Zone 37
AR181	472862	9292191	5.00	0	-90	Zone 37
AR182	463106	9269687	6.60	0	-90	Zone 37
AR183	457069	9268733	4.50	0	-90	Zone 37
AR184	461089	9269731	4.00	0	-90	Zone 37
AR185	459118	9269700	1.50	0	-90	Zone 37
AR186	469075	9269786	5.20	0	-90	Zone 37
AR187	481474	9279720	4.50	0	-90	Zone 37
AR189	471227	9269793	1.50	0	-90	Zone 37
AR191	455070	9268824	1.50	0	-90	Zone 37

Appendix 6. Auger assay results

			Oversize	Slimes	Float (-	THM (Sink) (-
Hole ID	From	То	+1mm	(-45µm)	1mm+45µm)	1mm+45µm)
			(%)	%	%	%
AR001	0	1.5	2.78	16.29	79.41	0.83
AR002	0	1.5	29.66	17.47	52.02	0.68
AR002	1.5	3	4.15	43.17	51.67	0.95
AR002	3	4.5	2.68	43.24	53.05	0.52
AR003	0	1.5	1.23	65.49	32.56	0.40
AR004	0	1.5	2.74	15.95	80.37	0.52
AR004	1.5	3	3.92	25.22	70.02	0.56
AR004	3	4.5	8.80	24.47	65.90	0.46
AR004	4.5	6	5.58	31.19	62.22	1.07
AR005	0	1.5	2.60	24.20	72.00	0.68
AR005	1.5	3	4.29	25.45	69.45	0.87
AR005	3	4.5	4.06	25.52	68.99	0.86
AR005	4.5	6	4.94	27.83	66.18	0.94
AR005	6	7.37	24.43	19.42	53.95	2.10
AR006	0	1.5	6.77	10.55	82.16	0.23
AR006	1.5	3	5.54	14.16	80.03	0.26
AR006	3	4.5	5.45	13.80	80.40	0.38
AR006	4.5	4.8	6.91	14.07	78.58	0.40
AR007	0	1.5	3.83	30.34	64.75	1.04
AR007	1.5	3	8.34	38.69	52.07	1.09
AR007	3	3.85	5.83	34.89	45.89	13.21
AR008	0	1.5	3.49	19.41	76.38	0.48
AR008	1.5	3	5.50	36.66	57.38	0.45
AR008	3	3.5	11.89	23.57	63.90	0.31
AR009	0	1.5	7.62	7.80	84.13	0.24
AR009	1.5	3	4.46	14.89	80.05	0.22
AR009	3	4.3	13.82	16.01	69.82	0.17
AR010	0	0.9	0.59	33.96	64.79	0.76
AR011	0	0.4	6.17	87.10	6.32	0.34
AR012	0	1.5	1.47	84.89	13.40	0.19
AR013	0	0.2	0.82	90.18	8.23	0.79
AR015	0	1.5	3.62	9.96	85.09	1.24
AR015	1.5	3	4.03	13.54	81.13	1.16
AR015	3	4.5	2.35	17.87	77.95	1.82
AR015	4.5	5.65	6.55	15.63	76.65	1.08
AR016	0	0.5	0.46	90.28	9.13	0.16
AR017	0	1.5	1.53	9.76	87.85	0.74
AR017	1.5	3	1.69	18.66	78.73	0.89
AR017	3	4.22	3.29	27.50	67.82	1.28
AR018	0	0.5	2.88	92.53	4.42	0.12
AR019	0	1.5	2.11	14.61	82.22	0.97
AR019	1.5	2.7	1.95	27.51	69.61	0.94
AR020	0	1.5	4.60	10.77	83.24	0.54
AR020	1.5	3	0.77	26.99	71.33	0.45
AR020	3	4.5	0.85	59.41	39.10	0.50
AR020	4.5	6	0.66	35.50	63.01	0.78
AR020	6	7.5	1.37	26.71	71.21	0.30

AR020	7.5	9	7.57	22.26	68.76	1.16
AR020	9	10.5	1.11	21.41	76.86	0.46
AR020	10.5	12	1.29	14.53	83.75	0.42
AR020	12	13.5	4.46	17.28	77.77	0.48
AR021	0	1.5	4.37	24.03	70.26	1.19
AR021	1.5	3	7.95	31.16	59.18	1.52
AR021	3	4.5	5.63	31.19	59.14	3.94
AR022	0	1.5	1.45	13.65	83.68	1.08
AR022	1.5	3	2.36	22.78	73.81	1.33
AR022	3	4.5	1.58	28.19	69.47	0.55
AR022	4.5	6	4.19	11.96	83.21	0.57
AR022	6	7.5	26.39	10.18	62.48	0.81
AR022	7.5	9	6.17	16.64	75.81	0.74
AR022	9	10.5	14.35	15.89	68.77	1.02
AR022	10.5	12	1.08	36.14	61.52	1.24
AR022	12	13.5	5.46	14.53	78.38	1.64
AR022	13.5	15	4.77	26.10	67.40	1.74
AR023	0	1.5	1.89	21.81	75.41	0.73
AR023	1.5	3	1.72	29.85	67.50	0.84
AR023	3	4.67	2.53	39.00	57.19	1.08
AR024	0	1.5	3.06	20.01	75.49	1.45
AR024	1.5	3	4.90	28.55	64.74	1.61
AR024	3	4.5	7.77	28.07	59.99	4.05
AR024	4.5	6	11.35	12.10	72.67	3.57
AR024	6	7.5	32.48	6.71	58.74	1.91
AR024	7.5	9	24.49	7.03	66.81	1.58
AR025	0	1.5	2.63	30.52	66.42	0.46
AR025	1.5	3	3.36	34.05	61.88	0.44
AR025	3	4.64	4.89	38.87	55.61	0.51
AR026	0	1.5	4.43	23.34	70.02	2.29
AR026	1.5	3	11.70	32.13	53.73	2.10
AR026	3	4.5	21.18	26.06	50.54	2.22
AR026	4.5	6	23.67	17.77	57.45	0.98
AR026	6	7.5	7.76	18.90	72.17	1.27
AR026	7.5	9	9.39	15.63	73.65	1.28
AR026	9	10.5	25.42	17.59	55.84	1.09
AR027	0	1.5	1.93	32.30	64.50	1.12
AR027	1.5	3	1.58	34.46	62.53	1.16
AR027	3	4.5	1.55	28.05	69.17	1.33
AR027	4.5	6	3.32	16.56	77.78	2.21
AR027	6	7.5	3.62	25.37	69.17	1.72
AR027	7.5	9	1.95	29.30	66.97	1.82
AR027	9	10.5	1.90	53.35	42.23	2.20
AR028	0	1.5	2.36	8.41	87.12	1.84
AR028	1.5	3	3.24	11.30	83.78	1.62
AR028	3	4.5	2.81	9.93	85.47	1.76
AR028	4.5	6	3.71	15.76	78.94	1.29
AR028	6	7.5	5.52	25.22	67.92	1.08
AR028	7.5	9	0.34	20.92	77.09	1.57
AR029	0	1.5	3.04	31.54	64.16	1.21
AR029	1.5	3	2.99	39.14	55.45	2.12
AR029	3	4.5	0.57	71.84	26.52	0.26

AR029	4.5	6	10.66	35.39	52.92	0.92
AR029	6	7.5	32.81	8.98	57.39	0.89
AR030	0	1.5	1.45	22.95	74.25	1.17
AR030	1.5	3	1.81	23.43	73.35	1.24
AR030	3	4.2	3.42	28.33	66.56	1.63
AR031	0	1.5	2.80	15.09	80.90	1.18
AR031	1.5	3	4.23	33.95	60.23	1.60
AR031	3	4.5	4.80	31.77	61.40	1.80
AR031	4.5	6	4.62	32.48	61.38	1.28
AR031	6	7.5	5.20	30.86	62.88	0.91
AR032	0	1.5	1.53	20.23	76.33	1.70
AR032	1.5	3	1.91	35.31	61.93	0.73
AR032	3	4.5	1.24	37.17	59.91	1.50
AR032	4.5	6	7.13	26.01	65.07	1.81
AR032	6	7.5	1.72	29.45	67.03	1.76
AR032	7.5	9	0.28	55.30	42.76	1.62
AR033	0	1.5	4.65	45.71	47.33	2.28
AR034	0	1.5	3.67	15.14	79.02	2.07
AR034	1.5	3	14.03	34.16	50.04	1.78
AR034	3	4.5	4.48	32.65	61.76	1.07
AR034	4.5	6	15.28	20.50	63.29	0.65
AR034	6	7.5	18.11	16.48	64.70	0.49
AR034	7.5	8.6	16.64	20.73	61.59	0.87
AR035	0	1.25	1.53	49.84	46.64	1.84
AR036	0	1.5	2.33	16.74	79.33	1.37
AR036	1.5	3	2.32	18.87	77.50	1.39
AR036	3	4.5	2.15	17.46	78.75	1.42
AR036	4.5	6	3.27	18.91	76.94	1.37
AR036	6	6.5	9.11	21.28	68.13	1.29
AR037	0	1.5	7.48	27.10	63.66	1.67
AR037	1.5	3	9.63	25.65	63.21	1.42
AR037	3	4.5	33.01	24.06	41.90	0.87
AR037	4.5	6	18.39	41.34	38.70	1.49
AR037	6	7.3	3.47	46.01	47.47	2.98
AR038	0	1.5	2.31	17.91	78.11	1.66
AR038	1.5	3	2.32	28.76	67.39	1.57
AR038	3	4.5	2.12	52.66	43.32	1.84
AR038	4.5	5	2.04	47.50	49.31	1.02
AR039	0	1.5	6.36	18.88	72.97	1.80
AR039	1.5	3	8.10	20.23	69.74	1.80
AR039	3	4.5	19.40	26.64	52.46	1.55
AR039	4.5	5.04	21.37	22.86	54.37	1.40
AR040	0	1.5	2.26	13.85	81.52	1.53
AR040	1.5	3	2.31	21.87	74.37	1.48
AR040	3	4.5	4.11	33.18	60.98	1.67
AR040	4.5	6	9.11	28.56	60.51	1.73
AR041	0	1.5	2.58	17.58	78.67	1.06
AR041	1.5	3	4.69	17.89	76.96	1.22
AR041	3	4.5	5.79	33.26	59.71	1.36
AR041	4.5	6	4.15	62.03	31.53	2.24
AR042	0	1.5	3.01	36.87	56.40	3.32
AR042	1.5	2.9	3.48	37.12	55.95	3.44

10042	0	1 -	2 50	0 2 0	07.24	1 77
AR045	15	1.5	2.30	20.39	64.07	1.77
AR045	1.5		4.55	20.44	66.62	1.55
AR045		4.5	6.21	23.12	70.02	1.20
AR045	4.5	6 20	0.31 E 02	22.31	F0.07	1.11
AR045	0	0.50	5.05	34.37	59.15 79.72	1.50
AR043	0	1 5	4.00	27.41	70.75	2.11
AR044	15	1.5	1.50	57.41	58.77	2.11
AR044	1.5	2.4	2.19	50.07	45.33	2.18
AR045	0	1.5	3.30	21.89	73.95	0.71
AR045	1.5	3	3.43	25.04	70.60	0.75
AR045	3	4.5	2.16	25.85	/1.13	0.73
AR045	4.5	6	1.67	43.83	54.17	0.44
AR045	6	1.72	3.49	61.//	33.94	0.70
AR046	0	1.5	3.86	37.14	57.23	1.93
AR046	1.5	2	5.09	44.01	48.73	1.96
AR047	0	1.5	4.76	24.42	69.48	1.17
AR047	1.5	3	5.47	24.91	68.29	1.16
AR047	3	4	32.61	22.04	43.59	1.38
AR048	0	1.5	5.41	15.64	77.48	1.36
AR048	1.5	3	6.97	34.56	57.41	1.02
AR048	3	4.5	12.92	49.73	35.84	1.26
AR048	4.5	5.3	18.48	26.15	53.13	1.97
AR049	0	1.5	1.93	36.51	60.45	0.91
AR049	1.5	3	1.34	49.44	48.38	0.66
AR050	0	1.5	2.15	43.75	52.92	0.88
AR050	1.5	2.3	13.82	44.59	40.45	1.08
AR051	0	1.5	2.34	20.68	74.13	2.62
AR051	1.5	3	4.63	28.80	64.47	1.98
AR051	3	4.5	3.02	29.83	65.46	1.52
AR051	4.5	6	5.80	22.36	70.40	1.36
AR051	6	6.7	15.67	18.49	64.04	1.80
AR052	0	1.5	2.64	15.63	79.45	1.61
AR052	1.5	3	2.64	19.72	76.21	1.34
AR052	3	4.5	4.66	31.93	62.17	1.10
AR052	4.5	6	8.76	28.88	61.07	1.21
AR052	6	7.5	10.61	23.61	65.02	0.51
AR052	7.5	9	14.27	27.40	56.93	1.13
AR052	9	10.5	12.48	23.74	62.84	0.83
AR052	10.5	12	5.32	25.67	68.30	0.78
AR053	0	1.5	3.03	24.32	69.52	3.02
AR053	1.5	3	13.20	27.58	56.76	2.51
AR053	3	4.5	3.93	37.27	56.00	2.69
AR053	4.5	6	0.87	35.82	61.86	1.44
AR053	6	7.5	0.20	32.28	65.49	1.55
AR053	7.5	9	2.05	35.26	61.43	1.39
AR053	9	10.5	0.05	24.01	74.76	1.03
AR054	0	1.5	3.37	29.46	65.95	1.12
AR054	1.5	3	3.26	31.93	63.47	1.05
AR054	3	4.2	3.46	41.91	53.87	0.93
AR055	0	1.5	2.57	39.48	56.48	1.45
AR056	0	1.5	6.17	30.51	62.65	0.65
AR056	1.5	2	6.02	43.53	49.89	0.45
i						<u>i</u>

AR057	0	1.5	9.39	35.52	53.66	1.41
AR058	0	1.5	2.69	24.44	71.71	0.79
AR058	1.5	3	4.31	34.52	59.87	1.28
AR058	3	4.5	2.94	42.00	54.04	1.00
AR059	0	1.5	3.29	40.35	55.06	1.16
AR059	1.5	3	4.16	46.11	48.75	0.94
AR060	0	1.5	2.99	12.81	83.15	1.05
AR060	1.5	3	4.46	19.32	74.75	0.88
AR060	3	3.8	4.51	35.49	59.27	0.79
AR061	0	1.5	1.39	40.41	56.58	1.57
AR061	1.5	3	2.64	47.07	48.97	1.44
AR062	0	1.5	2.90	31.79	64.27	0.76
AR062	1.5	2.9	3.14	49.06	46.80	0.78
AR063	0	1.5	1.21	41.45	56.36	0.76
AR063	1.5	3.4	2.44	46.19	50.14	1.13
AR064	0	1.5	2.74	22.07	73.70	1.45
AR064	1.5	3	3.65	24.50	70.35	1.32
AR064	3	4	8.29	27.75	62.28	1.31
AR065	0	1.5	0.88	46.17	52.14	0.66
AR065	1.5	3	1.21	43.88	54.19	0.58
AR066	0	1.5	2.33	37.60	58.96	0.95
AR066	1.5	3	6.07	48.42	44.71	0.85
AR067	0	1.6	3.48	48.30	47.26	0.86
AR068	0	1.5	2.77	23.21	73.01	1.33
AR068	1.5	3	3.57	30.85	64.42	1.18
AR068	3	4.5	2.75	39.35	56.00	1.33
AR068	4.5	6	12.45	27.45	58.66	1.28
AR068	6	7.5	9.75	33.73	54.38	1.86
AR068	7.5	9	3.46	40.56	54.38	1.80
AR068	9	10.5	7.14	24.86	65.79	1.99
AR068	10.5	11.2	3.42	36.19	58.61	1.97
AR069	0	1.5	1.20	39.24	58.62	0.83
AR069	1.5	3	1.20	48.83	49.17	0.78
AR070	0	1.5	0.84	46.19	52.40	0.52
AR070	1.5	3	1.56	40.10	57.37	0.94
AR071	0	1.5	1.21	37.81	59.72	1.19
AR071	1.5	3	0.64	60.40	38.40	0.41
AR072	0	1.5	1.25	48.95	48.53	1.06
AR072	1.5	2.9	1.68	49.52	47.97	1.00
AR073	0	1.5	2.32	32.06	64.49	1.09
AR073	1.5	3	1.56	52.02	45.33	0.91
AR074	0	1.5	1.27	27.71	70.49	0.48
AR074	1.5	3	1.27	39.52	58.38	0.57
AR074	3	4.3	4.53	25.44	68.80	0.94
AR075	0	1.5	2.98	28.18	67.61	0.89
AR076	0	1.5	2.80	49.05	47.31	0.36
AR076	1.5	3	1.18	98.82	47.02	0.41
AR076	3	4.5	1.95	52.12	45.43	0.32
AR076	4.5	5.4	1.76	48.77	48.84	0.53
AR077	0	1.5	0.62	22.92	76.46	0.66
AR077	1.5	3	0.53	24.19	74.29	0.98
AR077	3	4.5	0.47	28.51	70.16	0.74
	÷	1				

AR077	4.5	6	0.51	31.44	67.28	0.66
AR077	6	6.4	0.45	28.14	70.44	0.76
AR078	0	1.5	4.11	52.35	42.99	0.52
AR078	1.5	3	1.31	66.05	32.44	0.16
AR078	3	4.5	1.04	70.12	28.58	0.27
AR078	4.5	6	1.79	58.71	39.00	0.30
AR078	6	7.5	0.44	63.13	35.86	0.30
AR079	0	1.5	0.64	26.83	71.85	0.47
AR079	1.5	3	0.52	26.56	72.12	0.40
AR079	3	4.5	0.93	33.81	64.45	0.57
AR079	4.5	5	1.13	35.85	61.90	0.59
AR080	0	1.5	3.22	46.10	49.91	0.69
AR080	1.5	2	5.61	51.04	42.90	0.45
AR081	0	1.5	1.91	20.96	76.09	0.95
AR081	1.5	3	2.08	24.90	71.92	0.95
AR081	3	4.5	1.93	29.60	67.69	0.90
AR081	4.5	5	1.96	30.99	66.08	0.77
AR081	5	6	2.13	31.47	65.58	0.89
AR082	0	1.5	2.93	40.57	55.94	0.52
AR082	1.5	3	3.00	34.06	62.53	0.43
AR082	3	45	8.42	30.81	60.08	0.56
AR082	45	6	2.08	33.05	63.99	0.41
AR082	6	75	2.61	33.47	63.50	0.43
AR082	75	8	28.27	13.05	58.38	0.38
AR083	0	15	1.40	56.58	41.37	0.66
AR083	15	2.0	2 31	60.96	36.05	0.66
AR084	0	15	4.51	35.00	59.94	0.34
AR084	15	3	5 51	58.65	35.36	0.26
AR084	-1.5	43	0.20	92 43	6.81	0.50
AR085	0	1.3	1.33	63.18	34.62	0.77
AR086	0	1.5	2.97	39.00	56.98	0.79
AR086	15		3.88	37.69	57.65	0.54
AR086	3	3.6	16.48	20.17	62.66	0.49
AR087	0	1.5	1.56	46.44	50.34	1.62
AR087	1.5	3	2.15	52.58	43.70	1.49
AR088	0	1.5	2.21	64.40	32.86	0.34
AR089	0	1.5	4.06	20.20	74.25	0.89
AR089	1.5	3	3.90	28.63	66.59	0.68
AR089	3	4.2	8.41	30.71	59.84	0.67
AR090	0	1.5	1.07	24.16	74.36	0.25
AR090	1.5	3	1.18	40.66	57.84	0.11
AR090	3	4.5	1.37	35.77	62.45	0.25
AR090	4.5	6	1.36	50.53	47.39	0.54
AR090	6	7.5	2.55	36.89	59.75	0.69
AR090	7.5	9	3.94	32.94	62.41	0.85
AR090	9	10.5	1.86	55.14	42.14	0.60
AR091	0	1.5	4.97	22.34	71.03	1.65
AR091	1.5	3	4.86	23.50	70.25	1.52
AR091	3	4.5	7.07	25.16	66.40	1.40
AR091	4.5	6	21.01	23.71	54.15	1.13
AR091	6	7	7.15	25.67	65.56	1.69
AR092	0	1.5	2.14	40.18	56.86	0.34

AR092	1.5	3	1.72	45.65	52.13	0.41
AR092	3	4.5	1.72	46.42	51.31	0.41
AR092	4.5	6	0.41	72.72	26.57	0.29
AR092	6	7.5	7.56	69.81	22.12	0.46
AR093	0	1.5	1.91	26.55	69.95	1.37
AR093	1.5	3	0.65	37.30	61.13	1.05
AR093	3	4	3.29	51.73	44.21	0.94
AR094	0	1.5	2.47	13.37	83.60	0.45
AR094	1.5	3	2.53	18.96	78.05	0.43
AR094	3	4.5	6.07	22.89	70.72	0.34
AR094	4.5	6	2.59	26.09	70.89	0.34
AR094	6	7.5	4.57	24.96	69.68	0.66
AR094	7.5	9	1.06	24.14	73.50	1.13
AR094	9	10.5	5.15	10.73	82.12	1.95
AR094	10.5	11.6	6.91	17.35	74.03	1.55
AR095	0	2	1.37	36.77	60.74	0.89
AR096	0	1.5	3.55	36.64	58.46	1.33
AR096	1.5	3	3.13	29.42	66.01	1.06
AR096	3	4.5	6.72	26.90	65.45	0.73
AR096	4.5	5	0.37	85.66	13.63	0.21
AR097	0	1	0.85	43.47	53.95	1.54
AR098	0	1.5	1.73	61.73	35.97	0.38
AR098	1.5	3	0.39	64.55	34.61	0.38
AR098	3	4.5	0.23	70.07	29.42	0.19
AR098	4.5	6	0.10	87.15	12.58	0.19
AR098	6	7.5	0.21	65.92	33.13	0.74
AR098	7.5	9	1.62	19.72	75.25	3.51
AR098	9	10.5	5.96	15.86	76.74	1.32
AR098	10.5	12	8.77	22.14	68.43	0.43
AR098	12	12.8	8.37	17.35	73.57	0.46
AR099	0	1.5	3.12	43.74	52.62	0.44
AR099	1.5	3	2.73	29.24	67.12	0.61
AR099	3	4.6	26.54	28.86	44.17	0.34
AR100	0	1.5	0.57	60.90	38.02	0.41
AR100	1.5	3	0.19	72.44	26.91	0.29
AR100	3	4.5	0.11	77.10	22.48	0.26
AR100	4.5	6	0.10	89.37	10.21	0.23
AR100	6	7.5	0.19	76.66	22.95	0.16
AR100	7.5	9	0.17	87.31	12.23	0.28
AR100	9	10.5	0.57	95.22	4.14	0.05
AR100	10.5	12	0.08	96.43	3.35	0.12
AR101	0	1.5	2.19	41.44	55.61	0.77
AR101	1.5	2.2	2.42	53.94	43.09	0.51
AR102	0	1.5	0.48	85.58	13.35	0.57
AR102	1.5	3	0.09	81.94	16.92	1.00
AR102	3	4.5	0.32	64.78	33.04	1.91
AR102	4.5	6	0.28	73.35	24.93	1.33
AR103	0	1.5	3.25	39.03	57.36	0.85
AR103	1.5	3	0.05	57.72	41.64	0.17
AR103	3	3.8	0.45	56.43	42.73	0.37
AR104	0	1.5	0.08	98.67	1.16	0.11
AR104	1.5	3	0.07	97.96	1.56	0.39

AR105	0	1.5	1.03	70.90	27.48	0.36
AR105	1.5	2.5	2.11	67.66	29.88	0.36
AR107	0	1	3.18	32.29	64.24	0.30
AR108	0	1.5	0.03	99.08	0.71	0.18
AR108	1.5	3	0.00	97.31	2.08	0.21
AR109	0	1.5	2.82	32.01	64.37	0.28
AR109	1.5	3	5.23	45.29	49.11	0.27
AR109	3	4.5	5.24	50.04	44.34	0.31
AR109	4.5	6	8.33	35.55	55.31	0.72
AR109	6	6.5	25.24	24.04	50.41	0.29
AR110	0	1.5	0.07	98.55	1.02	0.36
AR110	1.5	2.9	0.04	99.04	0.65	0.11
AR111	0	1.5	2.88	25.31	70.99	0.54
AR111	1.5	3	4.22	39.43	55.54	0.40
AR111	3	4.5	5.13	53.82	40.54	0.32
AR111	4.5	5.2	17.68	30.58	50.80	0.81
AR112	0	1.5	3.33	40.29	55.50	0.75
AR112	1.5	3	5.55	54.39	39.41	0.60
AR112	3	4.5	2.35	61.41	35.46	0.45
AR112	4.5	6	2.59	32.73	63.79	0.65
AR112	6	7.3	3.30	27.60	67.98	1.01
AR113	0	1.5	1.92	38.38	58.88	0.75
AR113	1.5	3	3.35	45.62	50.12	0.66
AR113	3	4.5	1.52	33.05	64.35	0.96
AR113	4.5	6	2.92	51.13	44.87	0.88
AR113	6	7	2.33	49.99	46.56	0.83
AR114	0	1.5	4.58	13.31	81.35	0.78
AR114	1.5	3	5.76	24.08	69.44	0.64
AR114	3	4.5	8.74	24.83	65.64	0.66
AR114	4.5	6	9.38	22.89	67.28	0.40
AR114	6	7.1	9.86	18.16	71.55	0.40
AR115	0	1	2.17	32.42	64.97	0.41
AR116	0	1.5	5.74	5.56	87.97	0.31
AR116	1.5	3	4.21	23.05	72.17	0.75
AR116	3	4.5	9.83	18.57	70.92	0.46
AR116	4.5	5	6.76	19.37	73.54	0.49
AR117	0	1.5	3.19	39.63	56.42	0.47
AR117	1.5	3	3.00	54.10	42.40	0.41
AR118	0	1.5	5.59	44.47	49.34	0.62
AR118	1.5	3	26.22	25.55	47.58	0.57
AR118	3	4	2.42	47.52	48.31	1.59
AR119	0	1.5	0.82	50.42	47.89	0.80
AR119	1.5	3	3.96	62.32	32.96	0.62
AR119	3	4.5	0.34	56.53	42.22	0.92
AR119	4.5	6	0.21	29.54	66.63	3.81
AR119	6	6.9	1.76	11.06	81.57	6.02
AR121	0	1.5	0.97	46.53	51.70	0.66
AR121	1.5	3	0.97	54.73	43.36	0.82
AR121	3	4.5	0.86	46.62	50.95	1.51
AR121	4.5	6	1.91	23.95	72.21	1.62
AR121	6	7.5	3.80	24.34	70.02	1.71
AR121	7.5	9	4.11	18.14	76.81	0.84

1	1	1		1	1	1
AR121	9	10.5	7.92	11.67	79.72	0.65
AR121	10.5	12	2.10	50.31	47.09	0.47
AR123	0	1.5	2.51	51.55	45.04	1.14
AR123	1.5	3	1.95	62.27	35.08	0.77
AR123	3	4.5	1.95	65.42	32.05	0.67
AR123	4.5	5.5	4.04	76.02	19.65	0.36
AR124	0	1.5	3.32	63.65	32.25	0.65
AR124	1.5	3	1.16	65.23	33.00	0.46
AR124	3	4.5	0.27	47.19	51.75	0.58
AR124	4.5	6	0.34	43.65	55.83	0.53
AR124	6	7.55	4.75	27.16	66.52	1.50
AR125	0	1.5	2.17	49.66	47.22	0.96
AR125	1.5	3	1.43	51.32	45.17	2.14
AR125	3	4.5	0.08	92.74	7.09	0.09
AR125	4.5	6	1.98	63.25	33.80	0.91
AR126	0	1.5	3.14	52.89	43.47	0.49
AR126	1.5	3	2.36	64.77	32.42	0.14
AR126	3	4.5	0.54	54.38	44.64	0.56
AR127	0	1.5	1.85	59.89	37.49	0.55
AR127	1.5	3	4.59	56.01	38.85	0.47
AR127	3	4.5	4.23	57.40	37.72	0.61
AR127	4.5	6	0.14	90.92	8.63	0.24
AR127	6	6.5	0.27	85.88	13.38	0.34
AR128	0	1.5	2.44	45.19	51.62	0.56
AR128	1.5	3	2.88	59.37	37.15	0.48
AR128	3	4.5	4.08	44.90	50.36	0.48
AR128	4.5	6	5.89	32.24	60.86	0.67
AR129	0	1.5	1.17	23.60	74.49	0.37
AR129	1.5	3	1.06	39.74	58.44	0.37
AR129	3	4.5	4.00	24.69	70.46	0.77
AR129	4.5	6	0.34	65.72	33.19	0.42
AR129	6	6.5	0.37	65.27	33.65	0.39
AR130	0	1.5	4.75	59.53	35.13	0.44
AR130	1.5	3	3.18	69.34	27.17	0.36
AR130	3	4.5	2.16	48.88	48.38	0.46
AR130	4.5	5.8	0.87	77.31	21.22	0.48
AR131	0	1.5	2.92	38.76	57.34	0.76
AR131	1.5	3	2.51	51.07	45.02	1.31
AR131	3	4.5	0.95	65.09	33.02	0.81
AR131	4.5	6	0.34	69.97	28.80	0.85
AR131	6	7	0.04	75.32	24.37	0.14
AR132	0	1.5	24.46	15.69	58.91	0.73
AR132	1.5	3	18.59	28.30	52.52	0.40
AR132	3	4.5	13.85	30.50	54.85	0.65
AR132	4.5	6	2.84	46.58	49.70	0.57
AR132	6	7.5	4.59	31.45	63.07	0.84
AR132	7.5	9	6.36	21.32	70.38	1.68
AR132	9	10.1	6.25	28.34	63.84	1.11
AR133	0	1.5	1.80	50.05	47.50	0.46
AR133	1.5	3	1.54	51.86	46.06	0.61
AR133	3	4.5	2.61	44.51	52.38	0.33
AR133	4.5	6	3.36	41.43	54.47	0.77

AR133	6	7.5	5.75	37.28	55.52	0.97
AR133	7.5	9	0.66	60.05	38.92	0.42
AR133	9	9.8	1.13	70.93	27.18	0.50
AR134	0	1.5	0.64	71.69	27.30	0.11
AR134	1.5	3	0.12	85.01	14.66	0.15
AR134	3	4.5	0.10	75.33	23.99	0.35
AR134	4.5	6	0.71	40.69	57.93	0.76
AR134	6	7.5	0.55	57.82	41.09	0.60
AR134	7.5	8.3	0.29	90.96	8.16	0.59
AR135	0	1.5	5.44	26.84	67.12	1.00
AR135	1.5	3	8.06	31.15	59.63	0.99
AR135	3	4.5	4.84	28.09	65.19	1.78
AR136	0	1.5	0.84	72.10	26.23	0.92
AR136	1.5	3	2.46	68.99	27.99	0.53
AR136	3	4.5	0.67	88.47	10.61	0.20
AR136	4.5	6	0.51	86.94	11.97	0.45
AR136	6	7.5	0.13	75.13	24.00	0.71
AR136	7.5	8.2	0.63	81.54	17.42	0.33
AR137	0	1.5	3.84	45.28	50.13	0.59
AR137	1.5	3	2.41	33.28	63.46	1.09
AR138	0	1.5	0.02	99.30	0.49	0.20
AR138	1.5	3	0.28	91.09	8.06	0.60
AR138	3	4.5	1.29	68.43	28.89	1.65
AR139	0	1.5	3.82	34.88	59.40	1.30
AR139	1.5	3	2.95	50.41	44.53	1.67
AR139	3	4.5	10.23	19.56	66.70	3.51
AR139	4.5	6	22.05	7.33	67.80	2.90
AR139	6	7.5	17.08	9.30	71.69	2.15
AR139	7.5	9	16.62	8.64	72.92	1.78
AR139	9	10.5	5.93	15.81	76.72	1.61
AR139	10.5	11	5.10	13.65	80.00	1.73
AR141	0	1.5	2.74	49.81	45.05	2.09
AR141	1.5	3	5.68	48.10	44.12	2.13
AR141	3	4.5	9.38	12.97	73.08	4.63
AR141	4.5	6	14.21	9.33	69.89	5.93
AR141	6	7.5	14.09	19.56	62.72	3.71
AR141	7.5	9	3.12	45.42	48.28	2.89
AR142	0	1.5	2.03	38.03	58.91	1.00
AR142			2.02	40.59	56.60	0.84
AR142	1.5	3	3.40	58.06	37.71	0.84
AR142	3	4.5	2.90	38.81	57.90	0.71
AR142	4.5	5.6	1.95	27.96	69.30	0.65
AR143	0	1.5	0.24	52.35	43.05	4.35
AR143	1.5	3	0.13	71.96	25.35	2.55
AR143	3	4.5	0.85	78.35	19.77	0.90
AR143	4.5	6	0.89	71.39	26.63	1.00
AR143	6	7.5	0.70	54.92	41.88	2.51
AR143	7.5	9.5	1.29	50.19	47.14	1.44
AR144	0	1.4	11.68	28.76	58.82	0.67
AR145	0	1.5	2.60	59.93	32.83	4.59
AR145	1.5	3	3.82	63.15	30.84	2.18
1	2	4 5	0.23	69.95	27.80	2 1 2

1					1	1
AR145	4.5	6	3.30	15.90	75.41	5.58
AR145	6	7.5	2.21	15.13	77.17	5.37
AR145	7.5	9	3.46	11.25	80.05	5.45
AR145	9	9.8	3.99	11.40	81.58	3.15
AR146	0	1.5	0.68	61.25	37.27	0.56
AR146	1.5	1.8	0.43	55.85	43.07	0.61
AR147	0	1.5	4.82	26.24	68.33	0.43
AR147	3	4.5	0.91	83.92	14.86	0.17
AR147	4.5	6	2.42	60.77	35.98	0.49
AR148	0	1.5	3.42	29.65	66.21	0.69
AR148	1.5	3	5.07	41.56	52.04	1.01
AR148	3	3.7	13.50	31.87	53.70	0.76
AR149	0	1.5	7.65	29.64	61.91	0.67
AR149	1.5	3	36.01	12.59	50.85	0.56
AR150	0	1.5	4.94	32.47	61.13	1.27
AR150	1.5	3	10.05	20.00	68.18	1.59
AR150	3	4.3	26.33	6.49	64.82	2.09
AR151	0	1.5	5.00	25.50	68.68	0.74
AR151	1.5	3	5.28	31.31	62.85	0.54
AR152	0	1.5	10.27	36.77	52.27	0.54
AR152	1.5	3	3.15	36.92	59.23	0.67
AR152	3	3.5	34.49	15.40	49.47	0.68
AR153	0	1.5	8.03	43.39	47.86	0.89
AR153	1.5	2.5	31.41	20.73	47.14	0.66
AR155	0	1.5	4.23	25.53	69.43	0.60
AR155	1.5	3	4.16	42.99	52.52	0.43
AR155	3	4	5.57	37.44	56.18	0.58
AR156	0	1.5	2.10	48.71	48.59	0.47
AR156	1.5	3	0.75	70.34	28.59	0.23
AR156	3	4.5	0.92	41.15	57.23	0.66
AR156	4.5	5.9	2.34	20.05	75.99	1.36
AR157	0	1.5	3.31	25.04	70.79	0.59
AR157	1.5	3	3.53	38.00	57.68	0.42
AR157	3	4.5	1.90	49.31	48.28	0.32
AR158	0	1.5	2.66	31.85	64.54	0.55
AR158	1.5	3	2.69	37.28	59.13	0.54
AR158	3	4.5	6.97	19.34	72.91	0.70
AR158	4.5	6	5.92	21.44	71.93	0.35
AR158	6	7.5	2.94	27.66	68.37	0.43
AR158	7.5	9	4.99	24.17	69.97	0.55
AR158	9	10.5	1.38	62.66	35.44	0.48
AR158	10.5	12	0.92	75.47	23.06	0.50
AR159	0	1.5	4.84	17.60	76.92	0.54
AR159	1.5	3	7.25	42.66	49.51	0.61
AR159	3	4.5	5.52	44.17	49.03	1.13
AR160	0	1.5	0.19	63.07	34.41	2.13
AR160	1.5		0.12	46.72	48.66	4.54
AR160	3	4.5	0.10	92.31	7.15	0.40
AR160	4.5	6	0.95	55.38	41.78	1.54
AR160	6	7.5	3.84	13.56	79.02	3.75
AR160	7.5	9	5.30	15.69	75.27	3.72
AR160	9	9.5	4.47	16.60	74.40	4.47

AR161	0	1.5	3.91	22.40	73.05	0.49
AR161	1.5	3.1	9.00	27.10	63.66	0.35
AR162	0	1.5	0.38	93.19	6.10	0.30
AR162	1.5	3	17.48	13.97	63.52	4.93
AR162	3	4.5	11.10	7.06	73.38	8.37
AR162	4.5	6	13.02	6.87	72.69	7.28
AR162	6	6.5	20.44	22.55	52.72	4.21
AR163	0	1.5	2.41	39.98	56.85	0.50
AR163	1.5	3	3.19	23.45	72.40	0.67
AR163	3	4.5	3.92	20.09	75.26	0.68
AR164	0	1.5	0.27	82.42	16.60	0.66
AR164	1.5	3	0.21	72.30	26.32	1.41
AR164	3	4.5	0.13	42.76	52.02	3.59
AR164	4.5	6	6.41	13.61	71.53	8.75
AR164	6	7.5	13.39	11.32	70.82	4.29
AR164	7.5	8.4	16.06	4.90	73.45	5.68
AR165	0	1.5	3.57	22.27	73.52	0.48
AR166	0	1.5	2.56	26.86	69.97	0.59
AR166	1.5	2.1	2.59	44.84	51.71	0.64
AR167	0	1.5	4.06	22.57	72.58	0.38
AR167	1.5	3	11.83	32.39	55.10	0.41
AR167	3	3.8	7.82	34.24	57.53	0.29
AR168	0	1.5	1.76	36.49	60.61	1.03
AR168	1.5	3	9.01	27.10	62.34	1.47
AR168	3	4.5	2.21	64.74	32.35	0.55
AR168	4.5	6.2	3.61	58.77	36.40	1.24
AR169	0	1.5	2.04	20.90	76.68	0.21
AR169	1.5	2.6	3.64	34.84	61.07	0.27
AR170	0	1.5	3.65	45.50	49.66	1.10
AR170	1.5	3	2.14	47.14	49.32	1.34
AR170	3	4.5	6.18	21.09	69.62	2.91
AR170	4.5	6	7.18	24.09	66.22	2.53
AR170	6	7	0.97	72.85	24.99	0.99
AR171	0	1.5	2.66	27.59	69.07	0.37
AR172	0	1.5	6.10	47.44	44.94	1.14
AR172	1.5	3	9.59	39.65	48.94	1.63
AR172	3	4.5	11.49	11.25	74.84	2.50
AR172	4.5	6	17.74	8.44	70.05	3.05
AR172	6	7.5	20.88	7.96	67.73	3.24
AR172	7.5	9	18.63	21.54	57.25	2.26
AR172	9	10.5	7.16	37.58	52.31	2.67
AR173	0	1.5	2.57	22.29	74.75	0.41
AR173	1.5	3	4.79	37.04	57.59	0.47
AR174	0	1.5	3.88	37.39	57.56	1.08
AR174	1.5	3	3.72	41.15	53.22	1.74
AR174	3	3.9	0.88	43.23	54.03	1.93
AR175	0	1.5	4.81	14.33	80.12	0.60
AR175	1.5	3	5.51	12.68	80.97	0.68
AR175	3	3.5	15.78	16.03	67.31	0.59
AR176	0	1.5	2.00	32.11	65.01	0.75
AR176	1.5	3	1.37	34.04	63.06	1.43
AR176	3	4.5	1.19	28.99	67.97	1.94

AR176	4.5	6	4.57	27.50	66.88	1.14
AR176	6	7.5	2.35	44.63	51.26	1.56
AR176	7.5	9	0.73	71.16	27.22	0.84
AR176	9	10.5	5.39	37.35	55.91	1.64
AR176	10.5	12	7.20	22.49	68.17	2.32
AR176	12	13.5	3.59	24.43	69.98	1.93
AR176	13.5	15	3.37	47.05	48.49	1.03
AR177	0	1.5	1.85	32.26	64.93	0.74
AR177	1.5	3	3.04	47.36	48.78	0.82
AR177	3	4.5	1.98	46.13	50.70	1.01
AR177	4.5	6	1.56	49.74	47.62	0.84
AR178	0	1.5	1.07	63.50	34.66	0.43
AR178	1.5	3	1.33	43.93	54.38	0.51
AR178	3	4.5	2.14	33.94	63.23	0.50
AR178	4.5	6	3.70	15.39	80.04	0.57
AR178	6	7.5	6.28	15.08	78.01	0.56
AR178	7.5	9	3.78	28.92	66.33	1.04
AR178	9	10.5	1.21	44.36	53.33	0.76
AR178	10.5	11	0.60	43.60	55.04	0.64
AR179	0	1.5	2.36	40.67	56.53	0.35
AR180	0	1.5	3.38	54.60	40.62	1.25
AR180	1.5	3	1.98	71.94	25.15	0.72
AR180	3	4.5	15.37	31.59	51.33	1.48
AR180	4.5	6	3.82	34.06	58.36	3.59
AR180	6	7.5	8.73	22.87	64.84	3.73
AR180	7.5	9	16.12	13.42	67.47	2.93
AR181	0	1.5	3.07	35.01	61.30	0.55
AR181	1.5	3	1.80	46.50	51.27	0.35
AR181	3	4.5	1.98	46.33	50.50	0.97
AR181	4.5	5	1.50	65.06	32.81	0.68
AR182	0	1.5	0.72	72.66	25.77	0.77
AR182	1.5	3	1.27	60.75	36.81	1.05
AR182	3	4.5	5.29	18.70	73.48	2.50
AR182	4.5	6	2.28	36.24	59.80	1.75
AR182	6	6.6	6.08	37.17	54.76	1.93
AR183	0	1.5	0.63	56.20	41.77	1.34
AR183	1.5	3	1.06	44.89	52.42	1.51
AR183	3	4.5	1.56	37.11	58.91	2.17
AR184	0	1.5	1.51	19.69	77.47	1.30
AR184	1.5	3	3.75	27.03	68.42	0.29
AR184	3	4	7.96	32.84	57.09	2.18
AR185	0	1.5	9.02	35.85	54.39	0.80
AR186	0	1.5	1.45	58.28	39.51	0.76
AR186	1.5	3	0.48	70.60	28.27	0.77
AR186	3	4.5	1.31	59.92	38.14	0.39
AR186	4.5	5.2	0.27	64.80	34.56	0.26
AR187	1.5	3	0.17	94.99	4.32	0.40
AR189	0	1.5	2.00	41.23	54.47	2.14
AR191	0	1.5	0.39	65.19	33.31	0.97

Bulk Number	C001	C002	C003	C004	C005	C006	C007	C008	C009	C010
Easting (WGS84)	515760	513889	511383	512352	513830	479085	468157	466099	473099	461089
Northing	947229	946002	945466	945369	945169	928719	930713	930720	930219	926973
(WGS84)	9	0	0	2	9	2	5	3	9	1
Map Zone	37	37	37	37	37	37	37	37	37	37
Ilmenite	7.0	23.7	44.6	63.9	28.3	8.4	4.8	8.6	8.4	21.5
Zircon	0.3	0.8	1.3	4.1	2.7	0.5	0.6	1.4	1.1	3.2
Rutile	2.9	6.7	16.8	6.2	11.7	0.4	0.4	0.7	1.0	2.6
Leucoxene	0.1	2.5	0.3	0.2	1.4	0.0	0.4	0.1	0.8	0.6
Total VHM	10.3	33.7	63.0	74.4	44.1	9.3	6.2	10.8	11.3	27.9

Appendix 7. Composite VHM results from the Auger program