

DATE: 9 OCTOBER 2014

ASX Code: CHK

TO:

D: COMPANY ANNOUNCEMENTS OFFICE ASX LIMITED

TECHNICAL REPORT RECEIVED ON LATIN URANIUM PROJECTS

The Board of Cohiba Minerals Limited (Cohiba) has received a "Technical Review Report" on the Latin Uranium projects in Argentina which are being considered by Cohiba for an initial investment. The report was prepared by Mr Ariel Testi a competent person in accordance to the JORC 2012 code on the major exploration ground under an option purchase agreement (vendor agreement) held by Latin Uranium SRL (Argentina).

Cohiba has agreed to now proceed with verification drilling and other detailed exploration and geological work to determine if it will proceed with the acquisition of on an initial interest in Latin or not.

It is expected that a work program proposal will be approved and commence before the end of October 2014.

The "Technical Review Report" is attached.

David Herszberg

Chairman

TECHNICAL REVIEW REPORT ON LATIN URANIUM SRL PROJECTS

HUACO & HOMERO PROJECT SAN JUAN, ARGENTINA

by

Ariel M. Testi, M.Sc., CPGeo.

for

Cohiba Minerals Limited

Suite 506 Level 5 1 Princess St Kew Victoria 3101 Melbourne, Australia

San Juan, Argentina

September 29th, 2014

TABLE OF CONTENTS

Pa	ag	e
	_	

1	SL	JMMARY
2	IN	TRODUCTION AND TERMS OF REFERENCE
2	2.1	Source of Information4
3	RE	LIANCE ON OTHER EXPERTS5
4	PF	OPERTY DESCRIPTION AND LOCATION
Z	4.1	Location5
2	1.2	Description7
Z	4.3	Permits & Environmental Considerations8
5 PH		CESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND OGRAPHY9
5	5.1	Access9
5	5.2	Climate9
5	5.3	Local Resources9
5	5.4	Physiography9
6	HI	STORY 10
6	5.1	Regional History10
7	GE	EOLOGICAL SETTING AND MINERALIZATION
7	7.1	Regional Geology10
7	7.2	Local Geology12
7	7.3	Mineralization
8	DE	POSIT TYPES
9	ΕX	PLORATION
ç	9.1	Exploration History
ç	9.2	Huaco Project15
ç	9.3	Homero Project
ç	9.4	Current Exploration
10	DF	RILLING
11	SA	MPLE PREPARATION, ANALYSES AND SECURITY

16	INTERPRETATION AND CONCLUSIONS	18
17	RECOMMENDATIONS	19
18	REFERENCES	20
APF	PENDIX I	21
19	JORC COMPETENT PERSON STATEMENT	25
	LIST OF FIGURES	
	LIST OF FIGURES	Daga
		<u>Page</u>
Figu	ure 1: Location Map	6

Figure 1: Location Map	6
Figure 2: Latin Uranium Tenements	8
Figure 3: Regional Geology Map	11
Figure 4: Huaco Project Detail Geologic Map	12
Figure 5: Mineralization Detail at Homero project	13
Figure 6: Mineralized Breccia	13

Figure 10: IF	Survey in Homero	project	

LIST OF TABLES

<u>Page</u>

Table 1: Latin Uranium Tenements	7
Table 2: Significant Assays	
Table 3: Section 1 Sampling Techniques and Data	

13

14

1 SUMMARY

The Latin Uranium projects are located in the San Juan Precordillera of Argentina within Jachal Department, approximately 100 kilometres north of San Juan city. The Huaco and Homero projects are the principal exploration targets within the 16 mineral claims, 56,097 hectares, operated by Latin Uranium SRL.

The rocks underlying the property have been mapped as Lower Paleozoic marine sequence, unconformably overlain by Upper Paleozoic marine and continental sedimentary rocks. The latter continental and minor volcanic sequences are Cenozoic.

Exploration work on the uranium mineralization dates back to 1958 when National Atomic Energy Commission ("CNEA") first recorded doing work on the property, concentrating on the Homero and Huaco projects. From 1975 to 1977, CNEA effort was followed by completion of airborne radiometric survey that defines 6 targets. The CNEA exploration team carried out small underground work and trenches. From 2007 to 2009, when S. Matellan & L. Ponce became involved in the Uranium projects, numerous companies have explored Homero project. Although encouraging high grade uranium from rock-chip-float sample results were obtained by earlier workers no mineralized zones of significant size and grade were defined.

In 2012, after having an option to purchase agreement ("Vendor Contract") of all the ground covering Huaco and Homero projects, Latin Uranium initiated, based on airborne radiometric & magnetometric surveys processed, a systematic exploration program including rock-chip surface geochemical sampling, geological mapping, ground scintillometer traverses, induced polarization geophysics ("I.P.") and ground magnetometer surveys.

Mineralization, at Homero project, is predominantly uraninite, with uranophane, metatorbenite, tyuyamunite and autunite. Primary sulphides such as pyrite, chalcopyrite and galena are abundant locally. Breccias at Huaco comprises of rounded clast of limestone with pervasive silicification and disseminated pyrite. Matrix is composed of fluorite, disseminated pyrite and microgranular uraninite.

In the Huaco Zone, exploration programs completed, have encourage a hidden uranium ore may related to Collapse Breccia Pipe model. The anomalous semi-circular background radiation area is 100m diameter limited by three structures that show barite-fluorite veins and breccias with pyrite and uranium content. Uranium mineralization, with associated base metals, occurs within altered breccias, accompanied by barite, fluorite, pyrite, hematite, gypsum and silica.

Homero project remains underexplore with high grade uranium assays up to 19.6% U3O8 in a block that may be supposed as proximal. Uranium occurrences can be observed as a stratiform trend mineralized of 30km long; however uranium is presented irregular distribution. The difficulty in exploring the project is associated with steep rock slopes that required climbing equipment and experienced climbing instructor.

2 INTRODUCTION AND TERMS OF REFERENCE

This report was commissioned by Cohiba Minerals Limited with offices at Suite 506 Level 5, 1 Princess St, Kew Victoria 3101, Melbourne, Australia and was prepared by Ariel M. Testi, M.Sc., Certified Professional Geologist. As an independent consultant, the author was asked to review the Latin Uranium SRL projects data and all pertinent historical and recent exploration work, along with data regarding regional and property geology.

In the preparation of this report, the author used of his own geological report of the area including a variety of unpublished company geological reports, Argentina Mining and Geological Survey (SEGEMAR) reports, geological maps and government claim maps. Information was also obtained from the many mineral assessment work reports filed by various companies who have completed mineral exploration programs on the Central Precordillera over the past years. A list of reports, maps and other information examined is provided in the References section (18) of this report.

Mr. Ariel Testi is an independent Consulting Geologist (AIPG-CPG#11739) with office and residence at 1589 – Jose Maria Paz St, Vicente Lopez, Buenos Aires, Argentina (1602), Tel: +54(9)1145310308, Email: <u>11at22@queensu.ca</u>. He has practiced the profession continuously for 14 years. Since 2000, He has continually been involved in minerals projects for Uranium, precious and base metals in Argentina, and Chile. During his career he has taken advanced exploration, geological courses. He has worked specifically on mineral exploration in sedimentary environment for uranium, copper and silver, and additionally in intrusive-hydrothermal system for gold, nickel and copper. Mr. Ariel Testi holds a BSc in Geology from the University of La Plata, Argentina, 2000 and MSc in Mineral Exploration from Queen's University, Canada 2012. He made the personal inspection of the property that is the subject of this report in August 5 to 7, 2014 and also visited the office during August 2014. Mr. Ariel Testi was responsible for all sections of this report that was prepared for internal use of Cohiba Minerals Limited.

2.1 Source of Information

Site visit was carried out by the author from 5 to 7 August, 2014. Huaco and Homero project were visited.

3 RELIANCE ON OTHER EXPERTS

All the information in this report has been gathered by Latin Uranium SRL and previous companies. The projects comprising work in the past and it is not always easy to verify initial results. The author can attest to the fact that work carried out during the Geopehuen scouting exploration program was conducted to best industry standards of the time. Based on personal knowledge of the persons involved, I have made the assumption that a comparable situation achieved to other companies. Some confirmation sampling will, however, be required as the project advances.

For the 2013 Huaco & Homero projects, analytical work was done by Alex Stewards (Assayers) Argentina S.A., an ISO 9001: 2008 registered analytical firm. The rest of assay results were taken from SGS Argentina and ACME all certificates laboratories. Geophysical surveys were completed by J. H. Herrera Consulting, a San Juan-based geophysical contracting firm with experience in Induced Polarization and Exploration. Surface mapping and sampling was done under the supervision of J. Bastias, Exploration Manager.

For the purpose of this report, the author has relied on ownership information provided by Latin Uranium SRL. The author has not researched property title or mineral rights for the Projects and expresses no opinion as to the ownership status of the property.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Huaco & Homero Projects are situated in the San Juan Precordillera of Argentina within Jachal Department. They are located approximately 100 kms north of San Juan city, with the closest populated center being Jachal village (Fig. N° 1). The center of Huaco project is at approximate Gauss Krueger¹ (C. Inchauspe) coordinates 2545000 East and 6664000 North. The Homero project showing is centered at 2425000 East and 6601000 North.

¹.Gauss Krueger Transverse Mercator Grid metric coordinates are Campo Inchauspe, Zone 2.

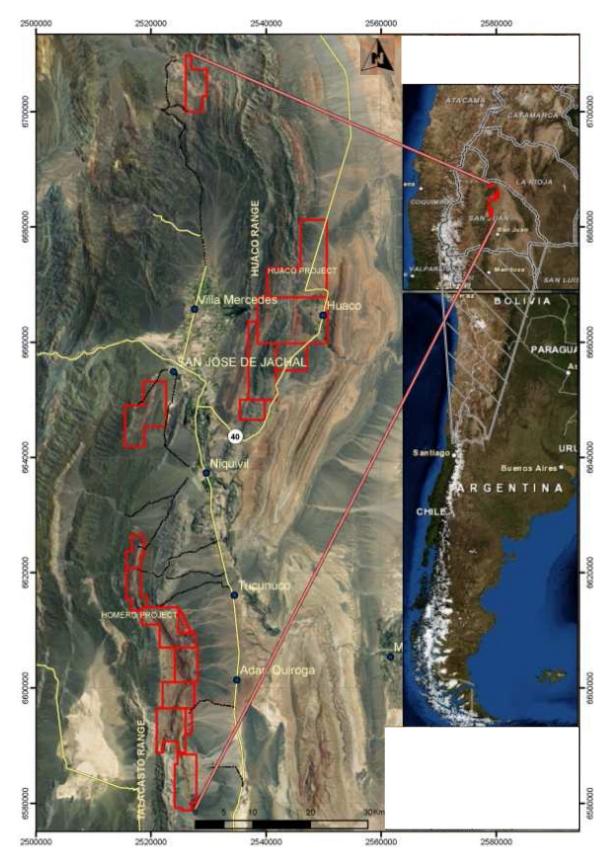


Figure 1: Location Map (Geopehuen, 2013)

4.2 Description

The Latin Uranium SRL (LU) Properties consists of sixteen (16) mineral claims covering about 56,097 hectares on the Central-Eastern Precordillera. The claims make up four blocks. The properties list is provided in Table 1 and the concession map is shown in Figures 2.

Latin Uranium has indicated to the author that the subject concessions are currently in good standing and that all required payments to the Argentinean government have been made.

Project	National Concession	Claiming Date	Area (Ha)
	1124.083-M-07	March 7, 2007	9760
	1124.085-R-07	March 7, 2007	2483.4
	1124.086-R-07	March 7, 2007	5355.1
HUACO	1124.087-R-07	June 29, 1905	1480.3
PROJECT	1124.088-R-07	March 7, 2007	2736
	1124084-R-07	March 7, 2007	8969.7
	1124089-R-07	May 27, 2008	5415.9
	Total (Ha)		36200.4
	1124.00014-M-07	January 15, 2007	1377
	1124.00015-M-07	January 15, 2007	1919.4
	1124.0002-M-07	January 9, 2007	3960
	1124.0003-M-07	June 29, 1905	2400
HOMERO	1124.0435-M-06	June 28, 1905	3353.9
PROJECT	1124.121-M-11	July 3, 1905	2475
	1124.246-R-08	May 26, 2008	489.7
	1124.247-R-08	May 26, 2008	463.5
	1124.248-R-08	May 26, 2008	3458.7
	Total (Ha)		19897.2
		Total (Ha)	56097.6

Table 4	1	Line a lores	T
	Latin	Uranium	Tenements

A Cateo is an exploration concession and has to reduce periodically for a fixed period of time (based on the extension of the area) at a maximum period of three years.

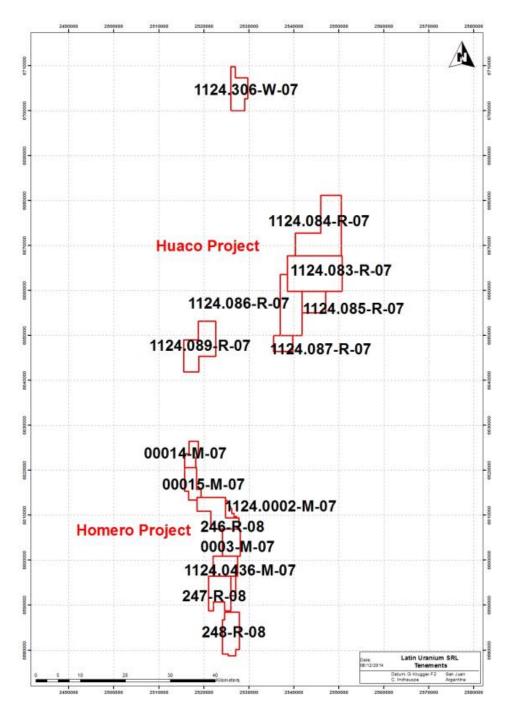


Figure 1: Latin Uranium Tenements

4.3 Permits & Environmental Considerations

At the achievement of each stage of exploration an environmental impact study is mandatory to be submitted to the Environmental Provincial Management Unit of the San Juan Department of Mines. There are no known environmental liabilities at this time.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Access

Access to the area is gained via National Route 40, commonly referred to as RN40, and through different mining-seismic tracks that reach the projects. Homero properties accesses are provided by 4x4 creeks-seismic tracks from 8-10 km west of RN40. Huaco project is crosscut by Provincial Route 49 and the sector with greater sampling and mapping is surrounding the highway.

5.2 Climate

The climate in the area is continental semi-desert Cuyo region temperate with moderately warm summers and cold dry winters. Typical daytime temperature ranges are from the mid to upper 25°'s Celsius in summer and 5° to -10° Celsius in winter. Precipitation averages about 100 mm. per year. Fieldwork is normally carried out throughout the year.

5.3 Local Resources

Accommodation, meals, telephone and Wifi are available at San Jose de Jachal city, approximately 25 kms west of the Huaco project. At the locality there are gas stations, covered storage and local supplies services. A Regional Hospital, grocery store and school are located in San Jose de Jachal.

Both unskilled labourers and skilled personnel trained at the Gualcamayo Mine are available at nearby San Jose de Jachal Village.

5.4 Physiography

The projects lie in the eastern side of Central Precordillera, at elevations that range from approximately 900 m to 1,700 m. The topography varies from extreme rugged topography to steep mountain valleys.

6 HISTORY

This section is largely reference from Videla, 2010.

6.1 Regional History

The first recorded exploration work carried out in the area was in 1958, when the Geological Commission N° 5 carried out a regional evaluation of the Homero project and identified several radioactive anomalies. After two years, National Atomic Energy Commission (CNEA) carried out follow-up exploration programs which included detail mapping and prospecting outcrop exposures. Further effort was followed in 1975 by completion of airborne radiometric survey. CNEA define 6 large anomalies at that time.

In 1977, CNEA carried out underground works and trenches. From 2007 to 2009 the projects were claimed by S. Matellan & L. Ponce and different companies had interest in the area. In 2012, Latin Uranium SRL signed an agreement with an option to purchase 100% of an extensive exploration concession at San Juan Precordillera and conducted several exploration programs in the area, concentrating its efforts on the most promising targets Huaco & Homero projects.

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

The Precordillera is a fold and thrust belt that makes up the foothills of the high elevation Andes. Three morpho-structural units are recognized in the Precordillera:

- The Eastern Precordillera (only in the San Juan Province) shows thickskinned deformation with westward vergence.
- The Central Precordillera extends from the La Rioja, through San Juan, up to the Mendoza Province and shows thin-skinned deformation with eastward vergence.
- The Western Precordillera shows a general eastward vergence.

The western and central Precordillera are a series of mainly Paleozoic ranges and linear valleys bounded by N–S east verging reverse faults. In contrast, the eastern Precordillera is made up of Paleozoic, Triassic and Cenozoic rocks with both thin-skinned and thick-skinned structures and west verging thrust faults.

The regional geology includes Lower to Middle Paleozoic marine folded sequences unconformably overlain by Upper Paleozoic to Lower Mesozoic rocks that are marine to continental sedimentary sequences. Overlaying the units largely to the eastern are Cenozoic continental sedimentary sequences (Fig. N°3).

Intrusive rocks in the San Juan Precordillera area are typically gabbros and basalts dykes, sills and plutons of Late Ordovician age. A younger intrusive suite includes dacitic to andesitic dykes that are interpreted as Cretaceous-Tertiary sequences with correlative pyroclastic units.



Figure 2: Regional Geology Map (Perez, 2012)

7.2 Local Geology

The eastern Huaco project, which is the focus of Latin Uranium SRL, is underlain by Lower Paleozoic limited to the carbonatic sequence overlain by Upper Paleozoic rocks and covered by Triassic and thin Cretaceous sequences. The Tertiary sequence is composed of 6000 m of eolian deposits, andesitic agglomerates, tuffaceous sandstone and andesitic basaltic flows. Cutting Tertiary rocks are uncommon andesitic dykes and irregular plugs.

Within the core project area, San Juan Formation rocks show thickly bedded Ordovician carbonate platform interbedded with minor black shales. Unconformably overlying the Carbonatic units are lacustrine sequence of the Guandacol Formation. These rocks comprise black shales, laminated siltstone and interstratified sandstones and mudstones. Finally, cutting limestone and lower part of Guandacol formation are Barite veins and hydrothermal structure-fluids-Breccia (Ba-F-Fe SO₄-S⁻²+ U, Pb, Zn) inferred as Tertiary age (Fig. N° 4).

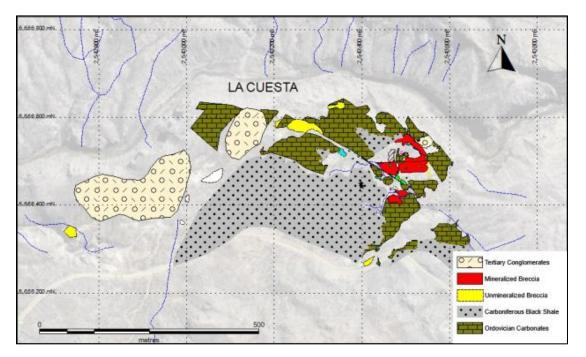


Figure 3: Huaco Project Detail Geologic Map

The southwestern Homero project is underline by a continental red bed sequence of Carboniferous-Permian Quebrada del Volcán Group. The central portion of the project (Medano Rico sector) comprises only the upper section of Quebrada del Volcán Group, Panacán and Ojo de Agua Formations. The underlain exposed formation is composed of pebbly sandstone, coal horizon and interbedded sandstone and mudstone. Overlaying, Ojo de agua Formation comprises fine red sandstone, siltstone and mudstone.

7.3 Mineralization

Mineralization, at Homero project, is predominantly uraninite, with uranophane, metatorbenite, tyuyamunite and autunite. Primary sulphides such as pyrite, chalcopyrite and galena are abundant locally (Fig. N° 5).

Figure 4: Mineralization Detail at Homero project

In breccia pipe deposits, uranium occurs largely as blebs, bands, small veins, and fine disseminations of uraninite. Mineralization is confined to matrix material, but may spread out into clasts. Breccias at Huaco comprises of rounded clast of limestone with pervasive silicification and disseminated pyrite. Matrix is composed of fluorite, disseminated pyrite and microgranular uraninite (Maidana, 2014).

Figure 5: Mineralized Breccia with 11796 CPS and disseminated pyrite+sulphides.

8 DEPOSIT TYPES

The principal deposit type on the Homero.project-Central Precordillera is sandstonehosted Uranium Deposit. Uranium deposits are tabular in shape, and are hosted by coarse clastics of fluvial origin overlain by shales.

Sandstone hosted uranium consist of microcrystalline uranium oxides and silicates deposited during diagenesis in localized reduced environments within fine- to mediumgrained sandstone beds. Some uranium oxides are also deposited during redistribution by ground water at interface between oxidized and reduced ground. These deposits prerequisite is permeability, provided by the medium to coarse grained sandstone that are highly permeable at time of mineralization (Bleaching alteration) and subsequently restricted by cementation. Replacement of wood and other carbonaceous material is common. Roll front deposits form bow-shape lenses that cuts across bedding, at the interface between oxidized and reduced ground (Maynard, 2005).

The primary minerals are uraninite and coffinite with pyrite common in organic-rich horizons. Chlorite is common. Primary uraninite or coffinite are often oxidized to a variety of minerals, notably yellow carnotite in V-rich ores.

The sandstone hosted uranium deposits are anomalous in U, V, Mo and Se, and locally Cu and, Ag. Anomalous radioactivity from daughter products of uranium can be located with scintillometers. Geophysically, sandstone hosted uranium deposits typically display low magnetic susceptibility in and near tabular ore bodies.

Tectonic-lithologic controlled uranium deposits take place in sandstones close to a permeable fault zone which cuts the sandstone/mudstone sequence. Mineralization defines finger-shaped ore zones along the permeable sandstone horizon.

A secondary deposit type with potential to occur in Huaco project is Solution-Collapse Breccia Pipe Deposit.

The description indicates that these deposits consist of pipe-shaped breccia bodies formed by solution collapse and contain uraninite and associated sulfide and oxide minerals of Cu, Fe, V, Zn, Pb, Ag, As, Mo, Ni, Co, and Se.

Breccia pipes are comprised of three features:

- Structurally shallow depression at surface (designated by some as a collapse cone);
- Breccia pipe which underlies the structural depression,
- Annular fracture rings which occur outside, but at the margin of the pipes.

Annular fracture rings are commonly, but not always, mineralized. The structural depression may range in diameter up to 700m. or more, whereas breccia pipe diameters range up to about 200 m.; the normal range is 50 m. to 100 m.

9 EXPLORATION

9.1 Exploration History

Mineral exploration activities have been carried out in the uranium occurrences since early 1958. Activities were originally conducted by National Atomic Energy Commission (CNEA) and since 2011 by the Latin Uranium SRL. They have included as a first step reconnaissance mapping, airborne radiometric & magnetometric surveys acquired and processed, ground radiometric traverses and chip sampling of most promising outcrops. Selected targets have been the subject of detailed geological mapping, channel sampling of outcrops, thin and polished section studies, ICP studies, and geophysical surveys (grid scintillometer; ground dipole-dipole IP / resistivity, ground magnetometry).

9.2 Huaco Project

Regional exploration by Latin Uranium comprised previous airborne magnetometer and radiometric anomalies. Exploration on the main Huaco project included geological reconnaissance.

The Latin Uranium program for Huaco project is identification of prospective pipe targets, followed by shallow drilling to define pipe geometry, and deep drilling to test favorable stratigraphy in the pipes for uranium mineralization.

9.3 Homero Project

Work undertaken by LU at Homero project included geological reconnaissance, dipoledipole IP surveys, prospect geological mapping, geochemical samples and scintillometer traverses.

Geochemical Survey

LU and previous companies collected 156 rockchip-float-talus samples from creeks in red bed sedimentary rocks. Twenty samples carried uranium values between 1000-8000ppm while another eight samples carried uranium values greater than 10,000ppm with a maximum value of 16,6% from bleached medium sandstone.

Geological Mapping

LU completed geological mapping at 1:10,000 scale over the main project area.

Geophysical Survey

IP Survey

Approximately 1400 line metres of IP dipole-dipole were surveyed using a line spacing of 200 metres and station spacing of 50 metres. The **P** work identified two target areas.

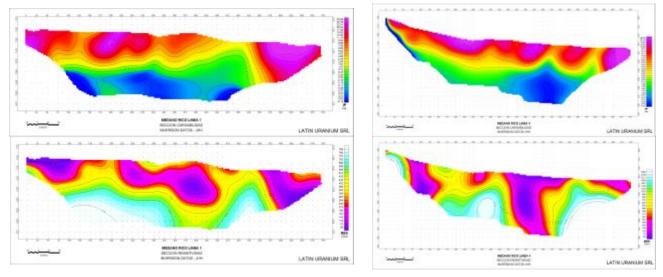


Figure7: a) Line 1 Chargeability and Resisitivity. b) Line 4 Chargeability and Resistivity

Scintillometer Traverses

The traverses were documented with two scintilometers-gamma spectrometric equipment (RS125) and Bluetooth GPS due to have the geographic radiometric data. Traverses define an area of 2×1 km with several radiometric anomalies.

The central part of the Homero Project yielded high grade selective uranium samples, up to 19.6% U_3O_8 in a block that may be supposed as proximal. "The uranium mineralization observed is partially restricted to ENE-WSW and minor N-S fracture systems within Panacán (Cb) and Ojo de Agua (Pm) Formations. Uranium mineralization appears to be forming envelopes of mineralization along fractures when it cut permeable units. These preliminary results encourage discovering a low tonnage / high grade uranium deposit" (Geopehuen, 2013).

9.4 Current Exploration

Exploration is advancing to identify uranium deposits and to test several targets. This program includes ground geophysics, detailed geological mapping and surface

sampling, followed by drilling. Drilling targets are defined as complement by Satellite imagery, geophysics and geochemical surveys.

10 DRILLING

No drilling has carried out on Huaco and Homero projects.

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

Samples collected by previous companies were prepared and analyzed by different laboratories using many different analytical techniques and sample preparation protocols. Furthermore, details in some reports on sample preparation and analysis are only partially summarized. Quality control measures (inserted reference materials, blanks and duplicates) are only rarely mentioned and in occasionally reports there is no indication that replicate analyses were carried out. Sample results must be used with caution, although generally the preparation and analytical techniques conformed to the industry standards of the time.

12 DATA VERIFICATION

Data verification has been accomplished by the following:

Visual inspection of alteration, rock types, and structure in outcrop and at projects on properties;

Observation in the field of more than seven times anomalous background radiation areas and spots (up to 10,000CPS), as shown by a hand-held scintillometer;

Pending reports with external lab test results that also would be confirm uranium mineralization in select samples.

Visual inspection in the field confirms the geology as typical of uranium mineralization. Boxwork iron oxides (limonite and hematite), fresh pyrite and carbonaceous material are visible in some outcrops. Identification of uranium mineralization was directly confirmed visually or by sampling by the authors in the field.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing has been done for the projects, as the properties are still in the preliminary exploration phase, without defined uranium resources.

14 MINERAL RESOURCE ESTIMATION

There are currently no Mineral Reserves estimated for Huaco and Homero projects.

15 OTHER RELEVANT DATA AND INFORMATION

There is no additional relevant data or information.

16 INTERPRETATION AND CONCLUSIONS

The Huaco and Homero projects have strong history of uranium exploration.

Exploration work carried out on the Huaco project since 1958 has identified uranium ocurrences in breccias on the Huaco properties hosted by the unconformity contact of Carboniferous black shale-Ordovician carbonates. The geologic mapping and geochemistry have improved the understanding of the geologic controls to mineralization and grade continuity. At this exploration stage, Huaco project is presented exploration programs with detail mapping, that encourage a hidden uranium ore may related to Collapse Breccia Pipe model. The anomalous semi-circular radiometric area is 100m diameter limited by three structures that show barite-fluorite veins and breccias with pyrite and uranium content. The geological characteristics of the project, including tenor and style of mineralization, host rock lithology and alteration assemblages and distribution, may be also similar to Arizona Collapse Breccia Pipe. Uranium mineralization, with associated base metals, occurs within altered breccias, accompanied by barite, fluorite, pyrite, hematite, gypsum and silica.

Homero project remains unexplored with high grade uranium anomalies up to 19.6% U_3O_8 in a block that may be supposed as proximal. Uranium occurrences can be

observed as a stratiform trend mineralized of 30km long; however uranium is presented irregular distribution. The difficulty in exploring the project is associated with steep rock slopes that required climbing equipment and experienced climbing instructor.

17 RECOMMENDATIONS

Huaco Project

A program of preliminary exploration in advance of drilling is recommended. This program should consist of preparing stratigraphic detail column of Ordovician sedimentary rocks in order to establish the collar prognosis and set the depth needed to reach the favourable sandstone-shale target. This should include grid geochemical sampling at the anomalous semi-circular radiometric area which it will be focus on pathfinder elements (Zn-Pb-Cd-Cu-V-Ag-Mo-Co-Se). This should be followed by field verification in advance of diamond drilling. Following the completion of first shallow drilling program that defined-verified pipe geometry. A deep drilling program should be design to test favorable stratigraphy in the pipe for uranium mineralization. Drillholes would be able to complete downhole geophysical surveys to define the uranium intercepts. Therefore, drillholes would maintain structural integrity.

Homero Project

Additional grids scintillometer survey, detailed geological mapping scale 1:5000 and rock chip sampling would help further define drill targets within an area of 3 x 3km around the higher uranium results.

General Procesures

LU would be established a QA/QC program and should be implemented by the exploration personnel. This involves the insertion of certified reference materials, blanks, and duplicates as a check on the accuracy and precision of the sample results.

All data compilation and information gathered by LU should be Integrated-validated in a single database which supports future interpretations and evaluations.

18 REFERENCES

Cuney, M., 2009, The extreme diversity of Uranium Deposits, Mineralium Deposita, Vol. 44, p. 3-9

Erice, M, 2011, Indicios Uraníferos en la Provincia de San Juan que correspondería al modelo de Breccia de Chimenea de Disolución-Colapso, XVIII Congreso Geológico Argentino, Mayo 2011, Neuquén

Geopehuen SGI, 2013, Exploration Advance Report: Scouting Exploration of Previously Selected Targets, San Juan, Argentina, internal report

Geopehuen SGI, 2013, Huaco and Homero Projects Exploration Advance Report: Selection of Follow up Targets, San Juan, Argentina, Latin Uranium Pty Ltd, confidential report

Herrera, J., 2013, IP Dipole-Dipole Survey at Homero project, San Juan, Argentina, confidential report

Herrera, J., 2013, IP Dipole-Dipole Survey at Huaco (La Cuesta) project, San Juan, Argentina, confidential report

Maidana, J., 2013, Summary of Uranium Exploration in Huaco-Chepical report, San Juan, Argentina, internal report

Maynard, J. B., 2005, Uranium: Syngenetic to Diagenetic Deposits in Foreland Basin, Chapter 15, Maynard, J. B., 2005, Sedimentary and Diagenetic Mineral Deposits: A Basin Analysis Approach to Exploration: Reviews in economic geology, v. 5, p. 187-198

Perez, M., Delpiano, V., Graneros, D., Breier, K., Lauria; M., 2012. Cuenca Precordillera, claves exploratorias para el Paleozoico. Áreas Jáchal y Niquivil, San Juan. 1º Simposio de Cuencas del VIII Congreso de Exploración y Desarrollo de Hidrocarburos. Mar del Plata, Argentina

Videla, E., 2010. Information Memorandum on the Geology & Current Status of the Homero & Huaco Uranium Projects, San Juan, Argentina, Latin Uranium Pty Ltd, confidential report

Wenrich, K., Titley, S., 2008, Uranium Exploration for Northern Arizona (USA) Breccia Pipes in the 21st Century and Consideration of Genetic Models, Arizona Geological Society Digest 22, p. 297-309

APPENDIX I

 Table 2: Significant Assays

Sample	X_GK_CI	Y_GK_CI	S. Type	Wide (m)	Target	U (ppm)	Cu (ppm)	Pb (ppm)	Th (ppm)
25004	2527169	6600395	Float	0.20	Homero	166,240	202	45,044	1,824
11525	2527060	6600550	Float			95,707	432	30,889	3
25008	2527140	6600700	Float	0.20	Homero	59,496	72	2,143	341
11524	2527062	6600557			Homero	57,836		43,021	3
11526			Float			16,550	145	11,812	3
25051	2527090	6600673	Talus	0.15	Homero	15,228	52	556	51
25055	2525862	6600113	Float	select	Homero	13,302	284	296	50
25003	2525702	6598866	Float	0.30	Homero	12,702	307	2,057	50
8526	2527388	6600753	Canal	0.40	Homero	9 ,30 8	71	174	16
25007	2527148	6600703	Chip	0.20	Homero	7,725	47	461	24
14515	2527360	6600726		1.4x0.2	Homero	7,466		453	<10
25053	2525861	6600084	Chip	select	Homero	5,109	327	432	20
25074	2526695	6600278	Chip	select	Homero	5,104	48	622	15
PH-005-MR	2526636	6600333		0.70	Homero	4,244		1,080	<10
22307	2527063	6600561			Homero	4,000		>10000	3
25052	2527088	6600689	Talus	0.15	Homero	3,352	24	362	11
14503	2527156	6600711		0.50	Homero	3,321		173	<10
PH-011-C	2526659	6607517		0.20	Homero	2,696		777	<10
25030	2525838	6598817	Float	0.20	Huaco	2,647	59	4,678	5
14508	2526584	6600303		1.00	Homero	2,533		427	<10
22336	2526602.57	6600301.6	chips			2,181	24	755	3
25006	2527186	6600680	Chip	0.60	Homero	2,050	38	200	5
14516	2527398	6600741		0.50	Homero	1,931		1,017	10
22311	2527056.23	6600708.8	chips			1,839	30	7,557	9
22337	2526424	6600386			Homero	1,357		1,264	3
PH-006-MR	2526629	6600304		0.70	Homero	1,284		265	<10
14517	2527340	6600683		1.00	Homero	911		1,117	<10
25016	2528211	6705796	Chip	0.25	Chepical	850	2,060	62	13
8529	2527375	6600928	Canal	1.60	Homero	746	55	2,005	<10
22325	2526801	6607466			Homero	706		1,356	3
22335	2526597	6600270			Homero	670		837	3
25026	2543479	6666494	Chip	0.50	Huaco	664	28	1,010	5
25009	2526602	6600232	Float	0.40	Homero	570	77	512	5
14501	2527110	6600712		0.60	Homero	557		1,923	<10
25054	2525547	6599988	Chip	select	Homero	527	53	53	5
22315	2526968	6600631	<i>c</i> .		Homero	452		1,267	7
22315	2526967.67	6600626.5	float			452	10	1,267	7
8533	2527292	6600660	Canal	0.20	Homero	417	232	257	15
22305	2526703	6600288			Homero	354		265	6
22324	2526788	6607461	acarreo	2 - 2		327	76	965	4
14514	2527360	6600722	Caral	2.50	Homero	317	70	170	<10
8550	2526932	6600166	Canal	1.00	Homero	304	79	343	12
8543	2527077	6600702	Canal	0.60	Homero	283	15	855	<10
14502	2527159	6600718	£1 1	1.20	Homero	224	10	42	<10
22326	2526841	6607448	float	0.50	11	198	10	17	2
PH-004-MR	2526605	6600308		0.50	Homero	197		144	<10
14512	2527368	6600709		3.50	Homero	177	_	339	<10
25010	2543830	6665315	Chip	1.40	Huaco	171	7	24	5
25027	2543571	6666466	Chip	0.40	Huaco	156	39	162	5

Sample	X GK CI	Y_GK_CI	S. Type	Wide (m)	Target	U (ppm)	Cu (ppm)	Pb (ppm)	Th (ppm)
8530	2527294	6600453	Canal	0.30	Homero	140	19	48	23
PH-003-MI	2526611	6600322	Carla	1.80	Homero	139	15	96	<10
8538	2526941	6600627	Canal	1.20	Homero	135	29	43	<10
8527	2527413	6600892	Canal	0.90	Homero	115	60	134	<10
14519	2527342	6600681	Carra	3.00	Homero	90	00	169	<10
25018	2528211	6705798	Chip	0.30	Chepical	88	327	262	13
22301	2527326	6599720	SS	0.50	Chepical	78	14	30	5
14518	2527341	6600682		1.00	Homero	74		46	11
8535	2526962	6600635	Canal	0.70	Homero	72	36	17	<10
25013	2541274	6666304	Chip	1.20	Huaco	64	8	5	5
8542	2527086	6600693	Canal	1.50	Homero	64	12	66	<10
14504	2526951	6600665	Carra	1.40	Homero	62		41	<10
25032	2527049	6600399	Float	0.30	Homero	60	35	51	5
8528	2527383	6600922	Canal	1.00	Homero	59	79	23	11
8531	2527273	6600522	Canal	0.50	Homero	55	36	27	<10
8541	2527084	6600692	Canal	0.30	Homero	51	23	27	<10
22314	2526972	6600626	acarreo	5.00		49	17	647	6
8532	2527273	6600522	Canal	0.60	Homero	48	17	25	12
25014	2540997	6666034	Chip	1.00	Huaco	45	8	18	15
14506	2526584	6600304	emp	1.20	Homero	44		97	12
25011	2543660	6665149	Chip	1.00	Huaco	43	14	14	12
PH-002-MI	2526614	6600312	e p	0.85	Homero	41		99	15
14513	2527363	6600715		3.50	Homero	38		20	<10
8544	2527072	6600700	Canal	1.40	Homero	37	13	8	11
25017	2528211	6705797	Chip	0.60	Chepical	34	198	136	5
14509	2526584	6600303	0p	0.60	Homero	28	100	409	10
PH-007-MI	2526615	6600307		1.00	Homero	27		176	<10
25071	2543521	6666546	Chip	0.15	Huaco	26	21	580	5
14505	2526943	6600638		2.20	Homero	26		17	10
22306	2527100	6600556	acarreo			24	10	18	7
22312	2527060	6600713			Homero	22		12	6
22312	2527060	6600708	chips			22	14	12	6
25070	2543522	6666546	Chip	0.15	Huaco	22	4	54	5
25015	2526306	6705880	Chip	0.30	Chepical	21	5	5	5
PH-008-MI	2527098	6600703		5.00	Homero	21		8	10
PH-009-MI	2527105	6600678		1.80	Homero	21		17	13
25057	2543101	6664337	Chip	select	Huaco	20	8	8	5
8539	2526947	6600632	Canal	1.50	Homero	19	8	8	<10
8545	2527067	6600695	Canal	1.65	Homero	19	14	4	<10
8546	2527406	6600536	Sedimento	0.15	Homero	18	16	24	<10
8534	2526955	6600641	Canal	0.80	Homero	17	16	10	<10
8547	2527405	6600537	edimente	0.15	Homero	17	17	25	<10
14510	2527343	6600691		1.10	Homero	15		34	15
PH-010-C	2526776	6607429		1.20	Homero	15		32	11
8549	2527350	6600692	Canal	0.20	Homero	15	16	9	<10
14507	2526584	6600304		0.50	Homero	13		90	<10
14511	2527373	6600667		1.50	Homero	13		18	14
25056	2543306	6664666	Chip	select	Huaco	11	12	12	11
8537	2569938	6600625	Canal	1.60	Homero	11	17	13	<10
25029	2541320	6671619	Chip	0.50	Huaco	10	86	4	5

Sample	X GK CI	Y_GK_CI	S. Type	Wide (m)	Target	U (ppm)	Cu (ppm)	Pb (ppm)	Th (ppm)
PH-001-MR		6600313	/.	0.90	Homero	10		22	<10
22304	2526691	6600280	chips	0.50	Homero	6	16	5	6
22313	2527073	6600688	cinps		Homero	6	10	22	5
22302	2526669	6600280	chips			6	10	5	5
22303	2526679	6600298			Homero	6		4	6
8536	2526927	6600629	Chip	3.00	Homero	5	8	9	<10
8548	2527351	6600692	Canal	0.30	Homero	5	12	9	<10
25001	2525575	6598969	Chip	0.30	Homero	5	44	19	5
25002	2525580	6598969	Chip	0.30	Homero	5	37	28	11
25019	2528488	6705817	Chip	0.40	Chepical	5	67	12	5
25021	2526011	6702895	Chip	0.40	Chepical	5	8	8	5
25022	2526348	6704699	Chip	0.50	Chepical	5	6	17	5
25023	2526792	6704327	Chip	0.40	Chepical	5	4	3	5
25024	2526198	6704433	Chip	0.40	Chepical	5	8	10	5
25025	2524671	6594563	Chip	0.40	Homero	5	64	13	13
25028	2541975	6671576	Chip	3.00	Huaco	5	26	5	5
25059	2542965	6664386	Chip	0.30	Huaco	5	17	8	5
25060	2543027	6664609	Chip	0.15	Huaco	5	23	11	12
25061	2543971	6659534	Chip	select	Homero	5	4	1	5
25062	2543762	6660243	Chip	0.30	Homero	5	4	1	5
25063	2544886	6660968	Chip	0.30	Homero	5	6	4	5
25065	2522708	6590132	Chip	0.40	Homero	5	19	4	5
25066	2522983	6590094	Chip	select	Homero	5	9	3	5
25067	2523035	6590196	Chip	select	Homero	5	13	12	5
25068	2523003	6590501	Chip	select	Homero	5	15	16	5
25069	2523203	6591243	Chip	0.40	Homero	5	14	1	5
25073	2541724	6671211	Chip	0.30	Huaco	5	3	3	5
25075	2526735	6600210	Chip	0.30	Homero	5	7	5	5
25076	2526215	6599742	Chip	0.40	Homero	5	8	27	5
25078	2526285	6599660	Chip	0.30	Homero	5	32	4	5
25079	2541324	6670702	Chip	0.30	Huaco	5	9	4	5
22308	2527048	6600479			Homero	4		15	6
22309	2527237	6600371	SS			3	7	15	6
22329	2520906	6613122	chips			3	20	15	5
22310	2527443	6600351			Homero	2		9	5
22316	2527142	6606136			Homero	2		7	5
22327	2520927	6613128			Homero	1		39	15
22318	2526693	6605719			Homero	1		4	2
22331	2520781	6612768			Homero	1		15	4
22328	2520905	6613117			Homero	1		11	3
22333	2521080	6613270			Homero	1		14	9
22317	2526843	6605889	chips			1	3	1	2
22320	2527057	6606523			Homero	1		6	2
22320	2527057	6606518	chips			1	2	6	2
22322	2527130	6606589	chips			1	2	4	1
22332	2521087	6613275	chips			1	35	18	7
22334			chips			0	10	7	3
22319	2526585	6605781	chips			0	5	2	1
22321	2526953	6606579			Homero	0		2	1
22323	2527045	6607368			Homero	0		2	1
8540	2526953	6600633	Canal	3.00	Homero				

19 JORC COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Results is based on, information and supporting documentation compiled by Mr Ariel Testi who is a Certified Professional Geologist (AIPG-CPG#11739) with the American Institute of Professional Geologists. Mr Testi is a consulting Geologist appointed by Cohiba Minerals Limited to conduct exploration on the exploration licences held by Latin Uranium Pty Ltd. Mr Testi has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Testi consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cu channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation such as down hole gamma sondes, o handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherem sampling problems. Unusual commodities of mineralisation types (eg submarine nodules may warrant disclosure of detailed information. 	 outcrops, float and proximal blocks which show favourable geology, alteration and radiometric anomalies at project scale. In general, samples were partially weathered Representative samples at each sample site weigh between 0.8 and 2.5 kg. No details of previous companies' samples are known of their QAQC processes. Rock samples were sent to Alex Stewards (Assayers) Argentina S.A. (sample taken in 2013-2014), SGS Argentina and ACME (rest of the samples) all certificates laboratories where they were crushed, dried and pulverized. The analytical process comprises Aqua Regia digest with ICP-AR-42 (U&Th).
Drilling techniques	 Drill type (eg core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc) 	, ; ;
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gair of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Minera Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative ir nature. Core (or costean, channel, etc, photography. The total length and percentage of the relevan intersections logged. 	a al d)

Table 3: Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No core drilling reported. Surface samples were not split during any part of the process. The sample preparation of rock chips by Latin Uranium follows industry best practice in sample preparation involving oven drying, coarse crushing down to #10 followed by pulverisation of 1Kg sample to a grind size of 95% passing 106 micron. QAQC practices by previous companies are unknown, but samples repeated by Latin Uranium SRL indicate that the original previous companies sampling results was reliable. No complete recorded of field duplicates were carried out. Although, some duplicates were taken. Laboratory QC procedures for rock sample assays involve the use of internal certified reference material as assay standards, along with blanks, duplicates and replicates. Uranium mineralization is filling pore space in fine conglomerate-pebbly sandstone to siltstone and bands, small veins, and fine disseminations. The samples sizes of 0.8 to 2.5kg at latin Uranium projects are considered appropriate.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The quality of previous companies sample assays is unknown, although generally the preparation and analytical techniques conformed to the industry standards of the time. Handheld spectrometric- scintillometer was utilized to detect possible surface anomalies. While this data is recorded, only independent laboratory assay results are reported here. No external (third party) laboratory checks have been completed to date. Quality control measures (inserted reference materials, blanks and duplicates) are mentioned and in occasionally reports there is no indication that replicate analyses were carried out.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Pending reports with external lab test results of significant assay values would be verified uranium mineralization by Ariel Testi. However, this is not required at this stage of exploration. No twinned holes were drilled. Primary assay data for rock chips has been entered into standard Excel templates for plotting on Mapinfo-ArcMap. All previous data has been entered digitally by previous explorers and verified internally by Latin Uranium. All data was compiled into Excel spreadsheets. There has been no adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Surface rock chip sample locations were surveyed by using a standard hand-held GPS. Expected accuracy is +/- 5m for easting and northing and +/- 15m for elevation coordinates. No drilling results are included. The grid system for Latin Uranium projects are Argentina Gauss Krueger Campo Inchauspe, Zone 2. Standard government topographic maps have been used for topographic validation.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Surface samples are targeting radiometric anomalies at various spacing. Current reconnaissance programs are not appropriate for any sort of comment on potential geological and grade continuity. There has been insufficient exploration completed to define this material as a Mineral Resource. No sample compositing has been done.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Surface samples were collected perpendicular to vein- breccia walls and mineralized horizon, or across zones of alteration, and are representative of the mineralization controls. No drilling is reported.
Sample security	 The measures taken to ensure sample security 	For rock samples, chain of custody is managed by Latin Uranium SRL. Samples are delivered by Latin Uranium SRL personnel to Alex Steward Argentina for preparation and assay. Tracking sheets have been set up to track the progress of batches of samples. Security of previous companies samples is unknown however is considered unimportant.
Audits or reviews	The results of any audits or reviews of • sampling techniques and data	Numerous repeat sampling exercises validate the sampling of previous workers.