HIGH G RADE COPPER AND GOLD INTERSECTIONS CONTINUE AT BLUEBIRD

Figure 1 - Phase II RC drilling operations, Bluebird Prospect, Tennant Creek

HIGHUGHIS

- Phase II RC drilling has returned more very high grade Tennant Creek style gold-bismuth-copper mineralisation
- New drill results include:
- BBRC0012: 31m at 2.48\% Cu, 0.21g/t Au and 0.03\% Bi from 116m Including 12 m at $4.41 \% \mathrm{Cu}, 0.23 \mathrm{~g} / \mathrm{t}$ Au and 0.02% Bi from 125 m And 1 m at $11.50 \% \mathrm{Cu}, 1.44 \mathrm{~g} / \mathrm{t}$ Au and 0.04% Bi from 142m
- BBRC0010: 11m at 0.98g/t Au, 0.68\% Cu and 0.03\% Bi from 77m Including 2 m at $3.54 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.25 \% \mathrm{Cu}$ and 0.06% Bi from 77m
- Diamond drilling of five holes underway to penetrate through to the high grade gold target position
- New footwall zone of mineralisation identified, increasing prospectivity
- Mineralisation still remains open along strike and down dip
- Width and grades continue to increase
- First signs of significant primary copper sulphide mineralisation observed in diamond core

PHASE II DRILLING RESULTS

The RC component of the phase II drilling program at Bluebird is complete and final assay results have been received. Four holes were completed and a further five holes were partially completed with the RC rig. The most significant intersections for phase II so far are:

- BBRC0012: 31m at 2.48\% Cu 0.21g/t, Au and 0.03\% Bi from 116m including 12 m at $4.41 \% \mathrm{Cu}, 0.23 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.02 \% \mathrm{Bi}$ from 125m); and
- BBRC0010: 11 m at $0.98 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.68 \% \mathrm{Cu}$ and $0.03 \% \mathrm{Bi}$ from 77m including 2 m at $3.54 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.25 \% \mathrm{Cu}$ and $0.06 \% \mathrm{Bi}$ from 77 m

These very impressive results were achieved from four mostly lower priority holes of the program. Five of the highest priority holes for phase II have not yet been completed and are yet to penetrate the high grade gold target position, which is located further downhole from the copper-gold zone. Only four of the nine phase II holes, mostly located around the margins of the mineralised system, penetrated through the high grade gold target position and reached final planned depth. The other five unfinished holes will be completed by diamond drilling from the RC pre-collars. The Company looks forward to reporting the remainder of the results as soon as possible after diamond drilling is completed. Diamond drilling is completed for BBDD0006 and BBDD0004, but logging and assay results are awaited. A summary of all intersections in this phase II program, irrespective of grade, is included in Appendix 2 of this report.

During the program, the diamond drill rig experienced a number of mechanical issues which has led to a delay in the completion of the program. These issues resulting in poor performance of the diamond rig have now been largely resolved. A change of crew and a double shift have been implemented, resulting in much improved production levels. Drilling conditions continue to be challenging due to broken ground, but the team are working hard to overcome this issue.

Figure 2 shows the status of the drilling so far at the Bluebird Prospect. The successfully completed phase II holes are BBDD0003, BBDD0004, BBDD0006, BBRC0009, BBRC0010, and BBRC0011 (results awaited for BBDD0004 and BBDD0006). The remaining holes will be diamond tailed to penetrate through the lower contact, which is the anticipated high grade gold position. Diamond drilling is in progress.

Figure 2 - Long section of Bluebird, looking north, showing recent and historic drilling. Note BBIDD0004 is completed, but marked as in progress as sampling and logging are yet to be completed

METAL ZONATION AND PROSPECTIVITY

The new results indicate that the metal zonation between copper and gold at Bluebird is more significant and complex than previously interpreted. The high grade copper intersected in BBRC0012 is located at a similar depth and close to the very high grade gold intersection in BBDD-2. However it should be noted that BBRC0012 is one of the holes yet to penetrate through the lower ironstone contact where the high grade gold is expected to be located (Figure 3).

BBDD0003 was originally planned as a RC pre-collar with a diamond tail, but was re-entered and completed by the RC rig due to the breakdown and delay with the diamond rig. The hole was extended well beyond designed depth as it intersected several zones of elevated copper and iron in the footwall hematite shale sequence. This significantly enhances prospectivity by demonstrating the potential for additional zones of footwall mineralisation not previously targeted or intersected by drilling at Bluebird (Figure 4). The remaining phase II holes will be pushed deeper to test for this potential footwall mineralisation.

IRONSTO NE GEOMETRY AND ALTERATION

The new results indicate that the ironstone host geometry and the chlorite-hematite breccia alteration patterns are more complex than previously interpreted. Drilling is identifying significant changes in the ironstone composition from magnetite dominant, to jasper-quartz dominant, to hematite-chlorite dominant as new areas are drilled at Bluebird. These observations and their relationships with metal zonation and structural architecture are greatly enhancing the Company's understanding of the geometry and controls on mineralisation. Prospectivity is significantly improved as areas of favourable alteration and structural complexity are identified by drilling.

An important aspect of the ongoing changes in geological interpretation is demonstrated in Figure 5. BBRC0013 was designed to test the western edge of and possibly close off the mineralised system (also refer to Figure 2). The hole returned a much broader zone of strong copper mineralisation and thicker ironstone than anticipated. It was eventually terminated in strongly mineralised ironstone at least 20 m beyond the expected footwall contact of the ironstone, where the high grade gold zone is expected. This result may represent a blanket of supergene enriched mineralisation. BBRC0013 will be diamond tailed in the coming days. The supergene target will be further explored as part of the next drilling program.

Another observation from the recent drilling results is the spatial and geochemical relationship between mineralisation, alteration and a hematite rich shale unit (Hematite Shale). The Hematite Shale appears to be more common as deeper drilling tests the system. It is generally located below the footwall contact of the ironstone body, but is sometimes intermingled with the ironstone and the chlorite-hematite breccia. The Hematite Shale can be highly chloritehematite altered, and mineralised, assaying up to $25 \% \mathrm{Fe}$ and over $1 \% \mathrm{Cu}$ as observed in BBDD0003. Future drill programs will aim to penetrate through the hematite shale and fully explore its potential to host significant mineralisation.

An early interpretation was that the ironstone body was flattening in dip with depth has been proven not to be the case by further drilling on all cross sections other than 448420E. This apparent change in dip is still evident on the 448420E cross section, but it is possibly related to thrust fault offsets rather that changes in dip (Figure 6).

Figure 6 - Cross section at 448420 mE , looking west. Note the apparent change in dip, and BBRC0008 stopping in mineralised ironstone

DISC OVERY OF PRIMARY SULPHIDES

Although sulphide minerals have been observed in much of the drilling at Bluebird, they have only been in minor concentrations. The mineralisation has generally been strongly weathered, with malachite being the dominant visible copper mineral. Figure 7 shows a HQ3 core sample from approximately 150m downhole of BBDD0004. This is the first significant amount of primary sulphide mineralisation intersected at Bluebird. Based on these observations there is good potential for significant primary sulphide mineralisation at depth.

Figure 7 - Strong primary sulphide mineralisation intersected by BBDD000.4

DISC USSION AND FOLLO W-UP PLANS

Phase II diamond drilling is in progress and scheduled for completion by late October. Final assay results can be expected by the third week of November.

3D models will be re-interpreted and updated following the receipt of the final results. The aim of this work will be to generate an initial resource model, determine if a JORC 2012 mineral resource estimate can be published, and to initiate a high level scoping study for the project.

The diamond rig will remain in the Tennant Creek region to drill for other clients. If the results of Phase II are supportive, there are provisions for at least two deeper holes in the current Barkly Mine Management Plan. These holes have been pegged and prepared ready for drilling. The diamond rig will be able to return to drill these extra holes at very short notice.

HIGH GRADE CHECKS

Due to the very high grades and coarse grained nature of the mineralisation, the laboratory continues to experience challenges with the repeatability of the assay results. Extra QAQC and checks have been required to ensure that the results are correct and repeatable before they can be released. This has been a reason for the delay in reporting of assay results, but is necessary given the exceptionally high grades identified in the program so far.

BARKLY COPPER-GOLD PROJECT

Blaze International Limited is in a Farm-In Joint Venture Agreement with Meteoric Resources NL over the highly prospective Barkly Copper-Gold project. Blaze has the right to earn up to an 80% interest in the project. The project is located around 30 km east of the town of Tennant Creek in the Northern Territory (Figure 8).

The Bluebird copper-gold prospect at the Barkly Project comprises a 1.6 km -long gravity ridge open to the east where shallow geochemical drilling by Meteoric Resources identified a 600m-long copper anomaly, also open to the east. Previously reported follow-up drilling confirmed Tennant Creek-style copper-gold mineralisation associated with ironstone. The ironstones and mineralisation are often discordant to the host sediments and are considered to be a high-grade variant of the iron oxide-copper-gold (IOCG) deposits found in Proterozoic terranes in Australia.

Figure 8 - Location of the Barkly Cu-Au project

As part of the earn-in to the Barkly Project, Blaze has recently completed two RC and diamond drilling programs targeting copper-gold mineralisation at the Bluebird prospect. The Company has also completed a re interpretation of the geophysics and generated a series of magnetic and gravity targets within the Barkly JV area (Figure 9)

DRILL RESULTS SUMMARY TABLE

Table 1 below contains summary intersections using nominal $0.2 \% \mathrm{Cu}$ and $0.2 \mathrm{~g} / \mathrm{t}$ Au cut-off grade. These cut-off grades were selected as they best represent the overall mineralised envelope at the Bluebird Prospect. The full set of results contained in Appendix 2 of this report.

Hole ID	Length	Collar Location GDA94			Dip	Azimuth	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Cu Grade } \\ \% \end{array}$	Au Grade g/t	$\begin{array}{\|c} \hline \text { Bi Grade } \\ \% \end{array}$	Width m	Intersection Description
		East	North	RL									
BBDD-1	129.2	448400	7827075	328	-60	0	89	92.8	1.26	0.08	0.01	3.8	3.8m @ 1.26\% Cu, 0.08g/t Au, 0.01\% Bi
							107.2	114	0.45	0.08	0.01	6.8	$6.8 \mathrm{~m} @ 0.45 \% \mathrm{Cu}, 0.08 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.01 \% \mathrm{Bi}$
BBDD-2	198	448400	7827025	324	-60	0	135.5	140	1.35	0.22	0.03	4.5	$4.5 \mathrm{~m} @ 1.35 \% \mathrm{Cu}, 0.22 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.03 \% \mathrm{Bi}$
							157	177	0.61	8.17	0.22	20	$20 \mathrm{~m} @ 8.17 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.61 \% \mathrm{Cu}, 0.22 \% \mathrm{Bi}$
						includes	169	173	0.66	37.90	0.80	4	$4 \mathrm{~m} @ 37.90 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.66 \% \mathrm{Cu}, 0.80 \% \mathrm{Bi}$
						and	171	172	0.94	62.30	1.11	1	1 m @ $62.30 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.94 \% \mathrm{Cu}, 1.11 \% \mathrm{Bi}$
BBDD0003	251	448400	7826997	328	-60	0	163	179	0.44	0.06	0.00	16	$16 \mathrm{~m} @ 0.44 \% \mathrm{Cu}, 0.06 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
							188	195	0.64	0.07	0.02	7	$7 \mathrm{~m} @ 0.64 \% \mathrm{Cu}, 0.07 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.02 \% \mathrm{Bi}$
							228	235	0.34	0.02	0.00	7	$7 \mathrm{~m} @ 0.34 \% \mathrm{Cu}, 0.02 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BBDD0004	240.7	448420	7827013	329	-60	0							In Progress
BBDD0005	50*	448420	7827085	329	-60	0							In Progress
BBDD0006	113.2	448380	7827104	330	-60	0							In Progress
BBRC-1	100	448329	7827204	326	-60	90							Meteroric Resources Hole NSI
BBRC-2	137	448400	7827050	323	-60	0	115	119	4.69			4	Meteroric Resources Hole 4m @ $4.69 \% \mathrm{Cu}, 0.38 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 170 \mathrm{~g} / \mathrm{t} \mathrm{Bi}$
BBRC-3	155	448519	7827033	323	-60	0							Meteroric Resources Hole NSI
BBRC-4	77	448400	7827120	331	-60	0							Anomalous Zone 37-55m @ 213ppm Cu
BBRC-5	113	448400	7827097	328	-60	0	62	87	1.89	0.27	0.03	25	$25 \mathrm{~m} @ 1.89 \% \mathrm{Cu}, 0.27 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.03 \% \mathrm{Bi}$
						includes	66	68	2.98	0.42	0.12	2	$2 \mathrm{~m} @ 2.98 \% \mathrm{Cu}, 0.42 \mathrm{~g} / \mathrm{t}$, 0.12\% Bi
						and	74	78	8.93	1.05	0.01	4	$4 \mathrm{~m} @ 8.93 \% \mathrm{Cu}, 1.05 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.01 \% \mathrm{Bi}$
						includes	75	77	16.50	0.15	0.01	2	$2 \mathrm{~m} @ 16.50 \% \mathrm{Cu}, 0.15 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.01 \% \mathrm{Bi}$
						and	75	76	24.20	0.21	0.01	1	$1 \mathrm{~m} @ 24.2 \% \mathrm{Cu}, 0.21 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.01 \% \mathrm{Bi}$
						and	76	77	1.20	3.81	0.01	1	$1 \mathrm{~m} @ 3.81 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.20 \% \mathrm{Cu}, 0.01 \% \mathrm{Bi}$
BBRC-6	203	448440	7827030	328	-60		126	135	0.89	0.36	0.04	9	$9 \mathrm{~m} @ 0.89 \% \mathrm{Cu}, 0.36 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.04 \% \mathrm{Bi}$
						includes	126	128	0.09	1.21	0.01	2	$2 \mathrm{~m} @ 1.21 \mathrm{~g} / \mathrm{t}$ Au, $0.09 \% \mathrm{Cu}, 0.01 \% \mathrm{Bi}$
						and	128	130	2.50	0.13	0.06	2	$2 \mathrm{~m} @ 2.50 \% \mathrm{Cu}, 0.13 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.06 \% \mathrm{Bi}$
							146	149	0.80	1.57	0.02	3	$3 \mathrm{~m} @ 1.57 \mathrm{~g} / \mathrm{t}$ Au, $0.80 \% \mathrm{Cu}, 0.02 \% \mathrm{Bi}$
							154	160	0.05	0.56	0.03	6	$6 \mathrm{~m} @ 0.56 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.05 \% \mathrm{Cu}, 0.03 \% \mathrm{Bi}$
BBRC-7	137	448360	7827081	328	-60	0	87	90	0.38	0.69	0	3	$3 \mathrm{~m} @ 0.69 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.38 \% \mathrm{Cu}$
							100	105	0.29	0.06	0	5	$5 \mathrm{~m} @ 0.29 \% \mathrm{Cu}, 0.06 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BBRC0008	140*	448420	7827052	329	-60	0	110	134	0.73	0.31	0.05	24	24m @ 0.73\% Cu, 0.31g/t Au, $0.05 \% \mathrm{Bi}$
						includes	111	113	1.85	1.29	0.16	2	$2 \mathrm{~m} @ 1.29 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.85 \% \mathrm{Cu}, 0.16 \% \mathrm{Bi}$
						and	121	123	2.72	0.04	0.01	2	$2 \mathrm{~m} @ 2.72 \% \mathrm{Cu}, 0.04 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.01 \% \mathrm{Bi}$
BBRC0009	100	448420	7827106	330	-60	0	73	76	0.43	0.04	0	3	$3 \mathrm{~m} @ 0.43 \% \mathrm{Cu}, 0.04 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BBRC0010	120	448380	7827082	329	-60	0	77	88	0.68	0.98	0.03	11	$11 \mathrm{~m} @ 0.98 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.68 \% \mathrm{Cu}, 0.03 \% \mathrm{Bi}$
						Includes	77	79	0.25	3.54	0.06	2	$2 \mathrm{~m} @ 3.54 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.25 \% \mathrm{Cu}, 0.06 \% \mathrm{Bi}$
BBRC0011	245	448380	7827009	329	-60	0	167	169	1.2	0.07	0.05	2	2m@ 1.20\% Cu, $0.07 \mathrm{~g} / \mathrm{t}$ Au
							206	209	0.35	0.08	0	3	$3 \mathrm{~m} @ 0.35 \% \mathrm{Cu}, 0.08 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BBRC0012	149*	448380	7827049	329	-60	0	116	147	2.48	0.21	0.03	31	31m @ 2.48\% Cu, 0.21g/t Au, $0.03 \% \mathrm{Bi}$
						includes	125	137	4.41	0.23	0.02	12	12 m @ 4.41\% Cu, 0.23g/t Au, 0.02\% Bi
						and	142	143	11.5	1.44	0.04	1	$1 \mathrm{~m} @ 11.50 \% \mathrm{Cu}, 1.44 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.04 \% \mathrm{Bi}$
BBRC0013	179*	448360	7827040	329	-60	0	124	130	1.44	0.05	0.01	6	$6 \mathrm{~m} @ 1.44 \% \mathrm{Cu}, 1.05 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
							161	179	1.09	0.43	0.02	18	$18 \mathrm{~m} @ 1.09 \% \mathrm{Cu}, 0.43 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.02 \% \mathrm{Bi}$
						includes	166	167	3.91	0.78	0.02	1	1 m @ 3.91\% Cu, 0.78g/t Au, 0.02\% Bi

Table 1 - Drill hole intersection summary results, Bluebird prospect. Copper cut-off grade 0.2%. Gold cut-off grade $0.2 \mathrm{~g} / \mathrm{t}$.

Reverse circulation ($R C$) drilling samples are collected as 1 m composite samples through a cyclone which are cone split for analysis. Each 1 m split sample is analysed with a handheld XRF analyser. Anomalous 1 m split samples are submitted to Bureau Veritas Laboratory in Perth for more precise analysis. All other samples are sampled as 4 m composites by sampling with a spear and submitted to the laboratory. Diamond drill core is cut in half with an Almonte core saw and sampled on nominal 1m intervals for analysis.

All drill samples submitted to the laboratory are crushed and pulverised followed by a four acid total digest and multielement analysis by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Gold and precious metal analysis are completed by a 40 g fire assay collection and inductively coupled plasma optical emission spectrometry (ICP-OES). Sample preparation and analysis are undertaken at Bureau Veritas Laboratory in Darwin, NT and Perth, WA.

Figure 9 - Regional prospectivity map of the Barkly Cu-Au project. Blue lines show ironstone trends throughout the licence. Ironstones are prospective for other high-grade Tennant Creek style deposits. The white stars show the high priority exploration targets based on magnetic and gravity data interpretation

Competent Person Declaration

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Luke Marshall, who is a Full time employee of Golden Deeps Limited, consulting to Blaze International Limited, and a member of The Australasian Institute of Geoscientists. Mr Marshall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr Marshall consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Blaze International Limited"s planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Blaze International Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

APPENDIX 1 - JORC 2012

JORC TABLE 1, Section 1 Sampling Techniques and Data
\(\left.$$
\begin{array}{|l|l|}\hline \text { Criteria } & \text { Explanation } \\
\hline \begin{array}{l}\text { Sampling } \\
\text { techniques }\end{array} & \begin{array}{l}\text { Exploration results are based on industry best practices, including sampling, assay methods, } \\
\text { and appropriate quality assurance quality control (QAQC) measures. } \\
\text { Reverse circulation (RC) drilling samples are collected as 1m composite samples through a } \\
\text { cyclone which are cone split for analysis. Each 1m bulk sample is analysed with a handheld } \\
\text { XRF analyser. Anomalous 1m split samples are submitted to Bureau Veritas Laboratory in } \\
\text { Perth for more precise analysis. } \\
\text { Core samples are taken as half NQ core and sampled on nominal 1m intervals, with sampling } \\
\text { breaks adjusted to geological boundaries where appropriate. }\end{array} \\
\hline \begin{array}{l}\text { All drill samples submitted to the laboratory are crushed and pulverised followed by a four } \\
\text { acid total digest and multi-element analysis by inductively coupled plasma optical emission } \\
\text { spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Gold } \\
\text { and precious metal analysis are completed by a 40g fire assay collection with inductively } \\
\text { coupled plasma optical emission spectrometry (ICP-OES) finish. Sample preparation and } \\
\text { analysis are undertaken at Bureau Veritas Laboratory in Darwin, NT and Perth, WA. }\end{array} \\
\hline \text { Drilling } \\
\text { techniques } & \begin{array}{l}\text { RC drilling is completed by a 5 1/4 inch diameter hole drilled with a face sampling hammer. } \\
\text { Diamond drillholes are collared using RC and switch to NQ2 approximately 30m before the } \\
\text { target position is intersected. All coordinates are quoted in GDA94 datum unless otherwise } \\
\text { stated. }\end{array} \\
\hline \text { Drill Sample } \\
\text { Recovery } & \begin{array}{l}\text { The quality of RC drilling samples is optimised by the use of cone splitters and the logging of } \\
\text { various criteria designed to record sample size, recovery and contamination, and use of field } \\
\text { duplicates to measure sample precision. }\end{array}
$$

The quality of diamond core samples is monitored by the logging of various geotechnical

parameters, and logging of core recovery and competency.\end{array}\right\}\)| Sue quality of analytical results is monitored by the use of internal laboratory procedures |
| :--- |
| tegether with certified standards, duplicates and blanks and statistical analysis on a monthly |
| basis to ensure that results are representative and within acceptable ranges of accuracy and |
| precision. |

	standards and duplicates, and laboratory accuracy and precision. Sample sizes are appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	The samples have been sorted, dried, crushed and pulverised. Primary preparation has been by crushing the whole sample. The samples have been split with a riffle splitter, if required, to obtain a 3 kg sub-fraction which has then been pulverised in a vibrating pulveriser. The sample(s) have been digested with a mixture of four Acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids for a total digest. Ag, As, Cd, Co, Bi, In, Mo, Sn, W have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. $\mathrm{Al}, \mathrm{Ca}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{Pb}, \mathrm{S}, \mathrm{V}, \mathrm{Zn}$ have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Au and PGEs are determined by a 40 g fire assay collection with Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish. Field Standards and Blanks are inserted every 20 samples, Laboratory inserts its own standards and blanks at random intervals, but several are inserted per batch regardless of the size of the batch.
Verification of sampling and assaying	All significant intercepts are reviewed and confirmed by at least three senior personnel before release to the market. No adjustments are made to the raw assay data. Data is imported directly to Datashed in raw original format. All data are validated using the QAQCr reporter validation tool with Datashed. Visual validations are then carried out by senior staff members.
Location of data points	Holes are set out using a sub 20 mm RTDGPS. Collars are picked up by a licenced surveyor by RTDGPS on completion of the hole.
Data spacing and distribution	Data spacing and distribution used to determine geological continuity is dependent on the deposit type and style under consideration. Where a mineral resource is estimated, the appropriate data spacing and density is decided and reported by the competent person. For mineral resource estimations, grades are estimated on composited assay data. The composite length is chosen based on the statistical average, usually 1m. Sample compositing is never applied to interval calculations reported to market. A sample length weighted interval is calculated as per industry best practice.
Orientation of data in relation to geological structure	Orientation of sampling is as unbiased as possible based on the dominating mineralised structures and interpretation of the deposit geometry. If structure and geometry is not well understood, sampling is orientated to be perpendicular to the general strike of stratigraphy and/or regional structure. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this would be assessed and reported if considered material. Drilling is at an angle to surface and drilled to maximise perpendicular intersection with the known interpretation of the strike of previously intersected mineralisation.

Sample security	All samples remain in the custody of company geologists, and are fully supervised from point of field collection to transport depot drop-off.
Audits and reviews	None yet undertaken for this dataset.

Section 2 Reporting of Exploration Results

Criteria	Explanation
Mineral tenement and land tenure status	The Company controls one Exploration Licences, EL28620 in the Tennant Creek area. All tenure was in good standing at the time of reporting. There are no known impediments with respect to obtaining a licence to operate in the area. The Company is earning an 80% interest in the EL28620. There are no known native title interests, historical sites, and wilderness or national park areas of environmental impediments.
Exploration done by other parties	Several other parties have undertaken exploration in the area between the 1930's through to 2007. These parties include Posgold and Meteoric Resources.
Geology	At Bluebird, copper-gold-bismuth mineralisation is concentrated in an east west striking ironstone host unit. The host unit cross cuts stratigraphy which is mostly made up of siltstone and greywacke sediments.
Drill hole Information	All relevant drillhole information is supplied in appendix 1 of the announcement.
Data aggregation methods	All exploration results are reported by a length weighted average. This ensures that short lengths of high grade material receive less weighting than longer lengths of low grade material. No high grade cut-offs are applied. A nominal low grade cut-off of $0.2 \% \mathrm{Cu}$ and $0.2 \mathrm{~g} / \mathrm{t}$ Au are used with a maximum internal dilution of 5 m for reporting of results. These cut-off grades give the best representation of the overall mineralised envelope at Bluebird.
Relationship between mineralisation widths and intercept lengths	Mineralisation at Bluebird is interpreted to be striking at east west with a dip of -70 to -80 degrees towards the south. All holes are drilled to be as perpendicular as practicable to the above orientation.
Diagrams	A comprehensive set of relevant diagrams are included in the body of the announcement.
Balanced reporting	All background available information is discussed in the body of the announcement. No data is excluded. Full drilling results for copper and gold assay information are shown in Appendix 2 of the report.
Further work	Plans for further work are outined in the body of the announcement.

APPENDIX 2 - Detailed Drilling Laboratory Assay Results. BDL - Indicates results below assay detection limit

Hole ID	Easting	Northing	RL	mFrom	mTo	Au ppm	Cu \%	Bi ppm
BBDD0003	448400	7826997	325	160	161	BDL	0.002	2.6
BBDD0003				161	162	BDL	0.0012	1.4
BBDD0003				162	163	BDL	0.0254	3.3
BBDD0003				163	164	0.045	0.499	21.1
BBDD0003				164	165	0.035	0.164	206
BBDD0003				165	166	0.023	0.0146	13.6
BBDD0003				166	167	0.06	0.0054	11
BBDD0003				167	168	0.167	0.0736	139
BBDD0003				168	169	0.343	1.08	188
BBDD0003				169	170	0.189	0.287	127
BBDD0003				170	171	0.012	0.095	23.5
BBDD0003				171	172	0.005	0.478	38
BBDD0003				172	173	0.005	0.302	27.1
BBDD0003				173	174	0.012	0.906	27.3
BBDD0003				174	175	0.026	1.19	30.4
BBDD0003				175	176	0.001	0.252	7
BBDD0003				176	177	0.026	0.411	21.4
BBDD0003				177	178	0.016	1.15	156
BBDD0003				178	179	0.033	0.206	37.8
BBDD0003				179	180	0.001	0.0322	11.1
BBDD0003				180	181	BDL	0.016	4.9
BBDD0003				181	182	BDL	0.0052	2.5
BBDD0003				182	183	BDL	0.005	2
BBDD0003				183	184	0.001	0.0062	2.7
BBDD0003				184	185	0.002	0.003	2.8
BBDD0003				185	186	0.002	0.013	4.5
BBDD0003				186	187	BDL	0.0066	6.6
BBDD0003				187	188	BDL	0.0072	3.2
BBDD0003				188	189	0.201	0.774	1160
BBDD0003				189	190	0.057	0.886	100
BBDD0003				190	191	0.017	0.308	55.2
BBDD0003				191	192	0.065	1.01	91.3
BBDD0003				192	193	0.068	0.551	17.6
BBDD0003				193	194	0.01	0.21	9.1
BBDD0003				194	195	0.056	0.726	65.6
BBDD0003				195	196	0.027	0.126	64.3
BBDD0003				196	197	0.004	0.048	19.7
BBDD0003				197	198	0.016	0.0782	75.4
BBDD0003				198	199	0.005	0.0706	13.2
BBDD0003				199	200	0.123	0.753	53.8

BBDD0003				200	201	0.048	0.323	110
BBDD0003				201	202	0.002	0.0062	29.2
BBDD0003				202	203	0.143	0.0374	204
BBDD0003				203	204	0.774	0.396	1830
BBDD0003				204	205	0.065	0.0704	130
BBDD0003				205	206	0.024	0.0366	202
BBDD0003				206	207	0.015	0.0326	89.5
BBDD0003				207	208	0.009	0.02	37.5
BBDD0003				208	209	0.03	0.138	111
BBDD0003				209	210	0.249	0.099	1810
BBDD0003				210	211	0.054	0.0998	210
BBDD0003				211	212	0.049	0.118	54.5
BBDD0003				212	213	0.005	0.0114	10.5
BBDD0003				213	214	0.018	0.108	39.2
BBDD0003				214	215	BDL	0.008	21.1
BBDD0003				215	216	0.004	0.182	72
BBDD0003				216	217	0.006	0.147	29.5
BBDD0003				217	218	0.006	0.0848	13.5
BBDD0003				218	219	0.015	0.135	10.9
BBDD0003				219	220	BDL	0.022	14.7
BBDD0003				220	221	0.002	0.0032	2.9
BBDD0003				221	222	BDL	0.0024	7
BBDD0003				222	223	BDL	0.0016	9.3
BBDD0003				223	224	BDL	0.0012	16.1
BBDD0003				224	225	BDL	0.0014	2.9
BBDD0003				225	226	BDL	0.0022	6.8
BBDD0003				226	227	BDL	0.0016	4.3
BBDD0003				227	228	0.002	0.0284	10.5
BBDD0003				228	229	0.007	1.05	66.2
BBDD0003				229	230	0.038	0.334	51.1
BBDD0003				230	231	0.004	0.119	56.6
BBDD0003				231	232	0.001	0.0444	30.4
BBDD0003				232	233	0.004	0.15	61.1
BBDD0003				233	234	0.017	0.445	109
BBDD0003				234	235	0.066	0.244	114
BBDD0003				235	236	0.008	0.127	54.7
BBDD0003				236	237	0.003	0.132	11.6
BBDD0003				237	238	0.006	0.0878	8.5
BBDD0003				238	239	0.002	0.0464	6.8
BBDD0003				239	240	0.001	0.0078	3.2
BBRC0008	448420	7827052	325	99	100	0.023	0.0384	14.9
BBRC0008				100	101	0.108	0.0764	40.6
BBRC0008				101	102	0.062	0.096	53.4
BBRC0008				102	103	0.105	0.0834	38.4

BBRC0008				103	104	0.012	0.183	120
BBRC0008				104	105	0.028	0.0744	34.5
BBRC0008				105	106	0.01	0.064	12.9
BBRC0008				106	107	0.012	0.062	13.2
BBRC0008				107	108	0.05	0.201	54.4
BBRC0008				108	109	0.143	0.155	33.4
BBRC0008				109	110	0.193	0.148	126
BBRC0008				110	111	0.485	0.156	737
BBRC0008				111	112	0.358	2.52	1690
BBRC0008				112	113	2.22	1.18	1580
BBRC0008				113	114	0.201	0.252	921
BBRC0008				114	115	1.5	0.247	2260
BBRC0008				115	116	0.662	0.225	1450
BBRC0008				116	117	0.653	0.165	1310
BBRC0008				117	118	0.602	0.114	561
BBRC0008				118	119	0.378	0.158	456
BBRC0008				119	120	0.126	0.137	131
BBRC0008				120	121	0.068	0.841	138
BBRC0008				121	122	0.044	2.44	152
BBRC0008				122	123	0.036	3	150
BBRC0008				123	124	0.059	0.63	182
BBRC0008				124	125	0.022	1.09	130
BBRC0008				125	126	0.022	0.486	59.3
BBRC0008				126	127	0.024	0.603	97.1
BBRC0008				127	128	0.02	0.386	111
BBRC0008				128	129	0.012	0.203	83.9
BBRC0008				129	130	0.007	0.242	50
BBRC0008				130	131	0.013	0.251	56.1
BBRC0008				131	132	0.009	0.675	88
BBRC0008				132	133	0.018	0.752	112
BBRC0008				133	134	0.01	0.837	175
BBRC0008				134	135	0.004	0.174	78
BBRC0008				135	136	0.002	0.143	109
BBRC0008				136	137	0.004	0.11	66.2
BBRC0008				137	138	0.002	0.0612	48.1
BBRC0008				138	139	BDL	0.0868	83.6
BBRC0008				139	140	BDL	0.078	30.5
BBRC0008				96	97	0.001	0.003	2.4
BBRC0008				97	98	BDL	0.0022	2
BBRC0008				98	99	0.002	0.0232	7.3
BBRC0009	448420	7827106	325	44	45	BDL	0.0022	4.3
BBRC0009				45	46	0.001	0.0048	14.2
BBRC0009				46	47	0.012	0.0288	112
BBRC0009				47	48	0.007	0.023	114

BBRC0009				48	49	0.009	0.0286	66.2
BBRC0009				49	50	0.01	0.0236	47.4
BBRC0009				50	51	0.009	0.055	21.9
BBRC0009				51	52	0.005	0.128	12.5
BBRC0009				52	53	0.002	0.12	24.8
BBRC0009				53	54	0.01	0.124	26.3
BBRC0009				54	55	0.007	0.0608	27.1
BBRC0009				55	56	0.009	0.04	22.6
BBRC0009				56	57	0.003	0.0574	18
BBRC0009				57	58	0.063	0.0494	43.5
BBRC0009				58	59	0.041	0.0288	31.1
BBRC0009				59	60	0.037	0.0182	33.4
BBRC0009				60	61	0.195	0.0096	20.7
BBRC0009				61	62	0.027	0.0078	40.1
BBRC0009				62	63	0.011	0.0076	129
BBRC0009				63	64	0.026	0.0104	547
BBRC0009				64	65	0.016	0.0184	1950
BBRC0009				65	66	0.005	0.0208	103
BBRC0009				66	67	0.013	0.0216	106
BBRC0009				67	68	0.018	0.0078	41
BBRC0009				68	69	0.03	0.0046	88.7
BBRC0009				69	70	0.018	0.0078	68.1
BBRC0009				70	71	0.016	0.0176	558
BBRC0009				71	72	0.008	0.0552	374
BBRC0009				72	73	0.156	0.115	60.8
BBRC0009				73	74	0.051	0.458	37.6
BBRC0009				74	75	0.03	0.484	60.3
BBRC0009				75	76	0.045	0.337	25.1
BBRC0009				76	77	0.012	0.0906	24.6
BBRC0009				77	78	0.039	0.0946	13.5
BBRC0009				78	79	0.036	0.0438	7.8
BBRC0009				79	80	0.001	0.0256	6.2
BBRC0010	448380	7827082	325	76	77	0.001	0.0166	2.5
BBRC0010				77	78	3.56	0.218	761
BBRC0010				78	79	3.52	0.286	462
BBRC0010				79	80	0.571	0.753	278
BBRC0010				80	81	0.502	0.465	158
BBRC0010				81	82	0.982	0.451	204
BBRC0010				82	83	0.319	0.332	93.9
BBRC0010				83	84	0.337	0.333	58.6
BBRC0010				84	85	0.224	0.679	61.5
BBRC0010				85	86	0.313	1.2	145
BBRC0010				86	87	0.056	0.136	279
BBRC0010				87	88	0.427	2.67	648

BBRC0010				88	89	0.046	0.129	14.1
BBRC0010				89	90	0.042	0.14	14.6
BBRC0010				90	91	0.04	0.117	17
BBRC0010				91	92	0.011	0.0926	3.6
BBRC0010				92	93	0.01	0.0232	3.6
BBRC0010				93	94	0.022	0.0148	8
BBRC0010				94	95	0.017	0.0034	4.8
BBRC0010				95	96	0.116	0.018	27.6
BBRC0011	448380	7827009	325	163	164	0.002	0.004	3.2
BBRC0011				164	165	BDL	0.0058	4.1
BBRC0011				165	166	BDL	0.006	4.7
BBRC0011				166	167	0.011	0.0086	7
BBRC0011				167	168	0.087	2.09	528
BBRC0011				168	169	0.05	0.316	492
BBRC0011				169	170	0.035	0.0544	21.9
BBRC0011				170	171	0.008	0.0262	16.1
BBRC0011				171	172	0.033	0.0174	16.9
BBRC0011				192	193	0.004	0.052	40.9
BBRC0011				193	194	0.004	0.099	15.1
BBRC0011				194	195	0.004	0.063	19.8
BBRC0011				195	196	BDL	0.0274	12.5
BBRC0011				196	197	0.001	0.012	7.1
BBRC0011				197	198	0.007	0.0254	5.5
BBRC0011				198	199	0.014	0.07	12.4
BBRC0011				199	200	0.011	0.126	26.3
BBRC0011				200	201	0.051	0.186	42.1
BBRC0011				201	202	0.117	0.117	255
BBRC0011				202	203	0.089	0.21	338
BBRC0011				203	204	0.024	0.0334	179
BBRC0011				204	205	0.006	0.161	100
BBRC0011				205	206	0.014	0.118	81.6
BBRC0011				206	207	0.073	0.449	104
BBRC0011				207	208	0.051	0.121	61.9
BBRC0011				208	209	0.118	0.491	40
BBRC0011				209	210	0.021	0.113	14.4
BBRC0011				210	211	0.01	0.115	24.4
BBRC0011				211	212	0.007	0.0584	18.2
BBRC0012	448380	7827082	325	107	108	BDL	0.0056	1.4
BBRC0012				108	109	BDL	0.0026	1.7
BBRC0012				109	110	BDL	0.004	2.5
BBRC0012				110	111	0.001	0.0172	3.5
BBRC0012				111	112	BDL	0.0176	7.6
BBRC0012				112	113	0.003	0.029	8
BBRC0012				113	114	0.001	0.0188	9.8

BBRC0012				114	115	0.002	0.0178	14.2
BBRC0012				115	116	0.002	0.0588	11.7
BBRC0012				116	117	0.159	0.401	959
BBRC0012				117	118	0.149	1.69	218
BBRC0012				118	119	0.096	0.856	167
BBRC0012				119	120	0.007	0.104	14.2
BBRC0012				120	121	0.055	0.362	781
BBRC0012				121	122	0.096	0.663	912
BBRC0012				122	123	0.229	1.52	1350
BBRC0012				123	124	0.147	1.09	1010
BBRC0012				124	125	0.049	0.62	130
BBRC0012				125	126	0.224	5.84	381
BBRC0012				126	127	0.054	3.11	62.3
BBRC0012				127	128	0.091	6.2	182
BBRC0012				128	129	0.649	11.1	515
BBRC0012				129	130	0.381	3.7	246
BBRC0012				130	131	0.341	3.19	261
BBRC0012				131	132	0.216	2.01	181
BBRC0012				132	133	0.086	0.919	75.9
BBRC0012				133	134	0.215	2.36	49.3
BBRC0012				134	135	0.241	7.92	123
BBRC0012				135	136	0.073	1.79	87.2
BBRC0012				136	137	0.193	4.77	302
BBRC0012				137	138	0.03	1.05	82.4
BBRC0012				138	139	0.005	0.169	46.3
BBRC0012				139	140	0.005	0.114	37.1
BBRC0012				140	141	0.058	0.743	31.7
BBRC0012				141	142	0.025	0.201	43.5
BBRC0012				142	143	1.44	11.5	383
BBRC0012				143	144	0.669	1.51	230
BBRC0012				144	145	0.405	0.867	168
BBRC0012				145	146	0.085	0.38	113
BBRC0012				146	147	0.037	0.226	104
BBRC0012				147	148	0.037	0.199	81.8
BBRC0012				148	149	0.011	0.063	46.3
BBRC0013	448360	7827040	325	124	125	0.13	2.38	348
BBRC0013				125	126	0.047	2.7	178
BBRC0013				126	127	0.021	0.958	52.6
BBRC0013				127	128	0.023	0.473	27.6
BBRC0013				128	129	0.033	1.07	23
BBRC0013				129	130	0.044	1.08	18.5
BBRC0013				130	131	0.006	0.111	3.7
BBRC0013				131	132	0.008	0.175	3.4
BBRC0013				132	133	0.018	0.273	9

BBRC0013				177	178	0.039	0.397	41.4
BBRC0013				178	179	0.038	0.283	

