

SUBSTANTIAL PILBARA GOLD AND NICKEL PORTFOLIO ACQUISITION

HIGHLIGHTS

Raiden has entered into an exclusive option agreement to acquire a substantial portfolio of highly prospective gold and advanced nickel projects located within the Pilbara region of Western Australia. The Portfolio covers a land area of 823km².

Arrow Gold Project:

- Located adjacent and along strike to De Grey Mining's (ASX: DEG) Mallina Project - host to 2.2Moz Au and the Hemi Gold Discovery
- >10km of the highly prospective Berghaus Shear Zone extends through the property

Boodalyerrie Gold Project:

- Extensive outcropping quartz vein hosted gold targets, within a 25km² hydro fractured silica-sericite altered gold bearing tonalite
 - Historic Channel sampling reported up to 3m at 88.6 g/t Au
- Extensive gold bearing vein systems identified which are up to 10m thick

Mt Sholl Nickel-Copper-PGE-Gold Project:

- Located 8km north east of Radio Hill Nickel-Copper Mine and associated processing infrastructure
- Multiple significant Ni-Cu-PGE historic drilling intercepts
 *\$6M historically spent across project

Yandicoogina Gold Project:

- 4.7km mineralised strike defined by historical workings and geochemistry
- Historic Rock chip results of up to 199.7g/t Au

QUICK STATS

ASX Code: RDN DAX Code: YM4

Shares on Issue: 538.5 million **Market Cap:** \$11.3 million

BOARD & MANAGEMENT

Non- Executive Chairman Mr Michael Davy

Managing Director Mr Dusko Ljubojevic

Non-Executive Directors
Mr Martin Pawlitschek

Company SecretaryMs Kyla Garic

ASSET PORTFOLIO

Stara Planina - Serbia (JV – path to 100% - 46km²)

Donje Nevlje - Serbia (100% – 74km²)

Majdanpek West - Serbia (100% - 76km²)

Zupa - Serbia (100% Raiden – 85km²)

Vuzel - Bulgaria (JV - path to 100% ~26.5 km²)

Kalabak - Bulgaria (JV – path to 75% ~191 km²)

Zlatusha - Bulgaria (JV – path to 75% ~191 km²)

Raiden Resources Limited (ASX: RDN) ("Raiden" or "the Company") is pleased to announce that it has entered into an exclusive option agreement to acquire Pilbara Gold Corp Pty Ltd ("PGC"). In addition Raiden has received binding commitments from sophisticated investors to raise \$3M (before costs) at \$0.013 per share via a placement ("Placement"). The placement, subject to satisfactory completion of due diligence, will be completed to support ongoing exploration across the existing asset portfolio in Europe and to conduct due diligence activities across the PGC project portfolio. The Company will have until the 31st of January to complete the due diligence exercise.

Figure 1: Pilbara Gold Corp Project Portfolio

Mr Dusko Ljubojevic, Managing Director of Raiden commented:

"The compelling exploration potential and scale of the PGC portfolio has the potential to rapidly transform the Company. The acquisition presents the Company with multiple tier one exploration opportunities, within well mineralised districts. The significant body of work that has been completed across the portfolio has delineated multiple priority targets, including gold and advanced base metal targets. The proposed acquisition sets up the Company as a strategic landowner within the district and expands on the Company's existing portfolio of tier one exploration projects. Raiden now has the

opportunity to make a tier one discovery across two geological provinces. This is in line with our stated strategy, to secure significant land holdings within emerging and underexplored districts and conduct aggressive exploration programs to deliver value to shareholders via discovery of mineral deposits. We look forward to providing further market updates as we progress with the due diligence across the portfolio over the coming weeks, as well as, providing further news flow from our recent drilling program at Kalabak in Bulgaria."

Mr Dale Ginn, Executive Chairman of Pacton Gold Inc commented:

"We are excited to partner with Raiden in the advancement of the Pilbara Gold Portfolio and also gain exposure to Raiden's existing copper and gold asset base in the world class Western Tethyan belt. With our increasing focus towards the Red Lake District, we look forward to retaining a long term exposure through our respective equity interest in Raiden. The Pilbara district is evolving to become a globally significant metallogenic district in terms of gold mineralisation and we look forward to working with Raiden to achieve a mutually beneficial outcome."

Arrow Gold Project (Option to acquire 75%):

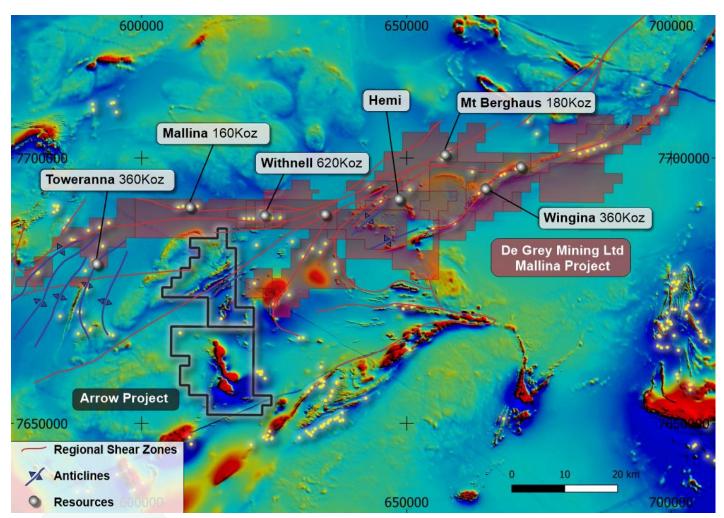


Figure 2: Arrow Project- DEG Tenure, Regional Shear Zones, Resources

The Arrow Project is located within the Mallina Gold Province, which is rapidly emerging as one of the most exciting, new gold provinces in Australia. The recent discovery of **the Hemi gold deposit by De Grey Mining Ltd (ASX:DEG)** has uncovered a new style of gold mineralisation in the region. Previous exploration primarily focused on targeting structurally controlled gold mineralisation. Exploration targeting commissioned by DGO Gold Ltd (ASX:DGO) and undertaken by the University of Tasmania Centre for Ore Deposit and Earth Science (CODES) concluded that "Gold occurrences in the region are commonly sediment or intrusion hosted and associated with anticlinal axes, particularly where they intersect major fault or shear structures" (ASX Release, ASX: DGO, 4th of June 2020). These areas have only recently been targeted in the region, and as a result a number of recent discoveries, including the Hemi deposit, have demonstrated the potential for much more significant deposits than was previously thought.

A key structure, the highly prospective Berghaus Shear Zone (BSZ), which is associated with a number of the recent discoveries in the district, trends in a south-south-westerly direction for ~10km of strike

within the Project. In addition, an anticlinal axis trends in a parallel orientation with multiple splays of the BSZ intersecting the anticlinal axis. This setting replicates the key structural ingredients which are present in a number of recent discoveries in the district and will be the focus of early exploration efforts by the Company.

On the basis of this new geological model, a geophysical targeting program, based on available open file magnetics and gravity data, will be undertaken during the due diligence period in order to define potential structural targets and intrusions that mare expected to be present within the Project area.

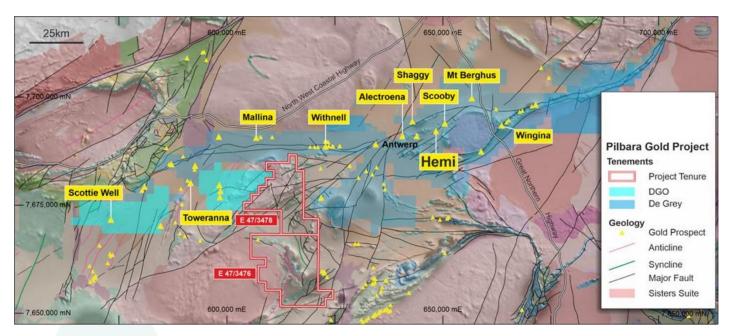
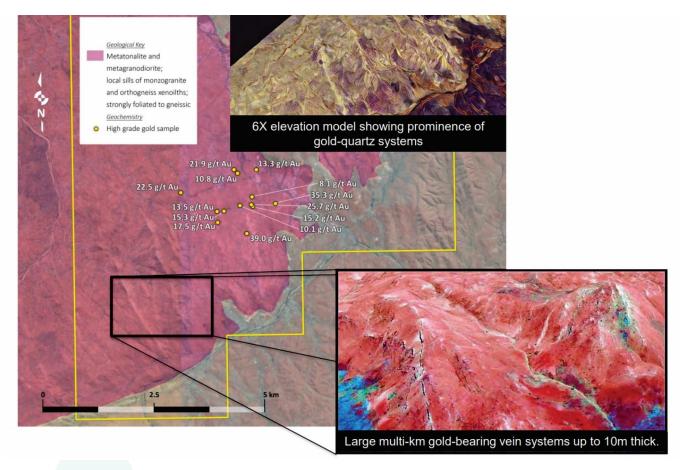



Figure 3 - Geology of the Arrow project

Boodalyerrie Gold Project (Option to acquire 75%):

Figure 4: Boodalyerrie Project- Rock Chip Samples

The Boodalyerrie Gold Project is located 78 km northeast of Nullagine and 113 km southeast of Marble Bar. Boodalyerrie represents a sheeted vein complex with veins constrained to tensional cracks within the Mt Elsie Tonalite. The Mt Elsie Tonalite covers an area of 25km² within the tenure and is extensively hydro fractured and heavily silica-sericite altered. Previous mapping has defined extensive vein systems, up to 10m wide and extending over considerable strike lengths.

Small scale historical alluvial and primary gold mining has been undertaken on the property. A total historical primary gold production of 588Oz Au from 122 tonnes of material, at an average grade of 150g/t Au was reported between 1901 to 1904 and 1909 to 1910. The high grade nature of mineralisation, in conjunction with the large alteration zones is highly encouraging and may host the potential for a significant discovery on the property.

Exploration undertaken to date includes soil geochemistry, rock chip sampling, prospecting, mapping, airborne magnetic surveys and satellite derived spectral mapping. Field verification of the delineated targets needs to be undertaken, along with detailed structural mapping in order to further refine the targets and advance them to drill ready status.

7687500 490500 490500 492000 7689000 7687500 Mt Sholl Project

Mt Sholl Nickel-Copper-PGE-Gold Project (Option to acquire 100%):

Figure 5: Mt Sholl Location & Drill Collar Plan

490500

Mt Sholl Project is located 22km south-east of Karratha and 10km north-east of Artemis Resources Ltd's (ASX:ARV) Radio Hill Ni-Cu Processing Plant. The Project is situated within the north-eastern margin of the Sholl layered mafic/ultramafic intrusive complex, which hosts a number of other Ni-Cu deposits.

The Sholl intrusion is interpreted as being lopolithic in shape and consists of an upper layered gabbroic zone overlying a basal ultramafic zone comprised of pyroxenite and peridotite.

Previous drilling has identified mineralisation plunging at approximately 15-20° to the north-east and occurs in a zone up to 20m wide. Mineralisation consists of both disseminated pyrrhotite-pentlandite-chalcopyrite occurring in aggregates of up to 5mm in size and as stringers (up to 20cm wide) of a similar mineralogy.

489000

A total of 259 drill holes for 23,846m of drilling has completed across the Project. Multiple significant drilling results include:

- B1RC102: 17m at 0.62% Ni, 0.95% Cu, 0.98 g/t Pd from 63m
- A1RC6: 16m at 0.55% Ni, 0.78% Cu, 0.98 g/t Pd from 151m
- 86SPD343: 13m at 1.18% Ni, 1.02% Cu from 72.2m
- B1RC163: 15m at 0.54% Ni, 0.69% Cu, 0.69 g/t Pd from 96m
- 06RZDD004: 10m at 0.77% Ni, 1.21% Cu, 0.9 g/t Pd from 104m
- B1RC165: 19m at 0.22% Ni, 0.93% Cu, 0.51 g/t Pd from 105m
- B1RC161: 13m at 0.44% Ni, 0.87% Cu, 0.81 g/t Pd from 49m
- 86SPD337: 9.8m at 0.86% Ni, 1.33% Cu from 121m
- B1RC102: 5m at 0.74% Ni, 1.8% Cu, 1.66 g/t Pd from 70m
- B1RC151: 12m at 0.43% Ni, 0.77% Cu, 0.43 g/t Pd from 0m
- 87 RP26: 6m at 3.56g/t Au from 13m
 - Inc. 1m at 15.9g/t Au

Trial mining was undertaken at Sholl B1 by Fox Resources where 25,000t of ore was processed using a pilot heap leach plant at Radio Hill. The distance by existing roads to the Radio Hill Processing plant is approximately 11km, which may provide a near term processing option for the project (The Company cautions investors that no discussions have been held with the owner of the plant)

Figure 6: Mt Sholl- B1 Trial Open Pit

During the due diligence period, the Company will conduct a thorough review of all the historical data sets, which include historical exploration drilling, trial mining data, results and multiple geophysical surveys which have been undertaken. The objective will be to determine the potential size of the target, as well as, evaluate all commercialisation options.

Yandicoogina Gold Project (Option to acquire 75%):

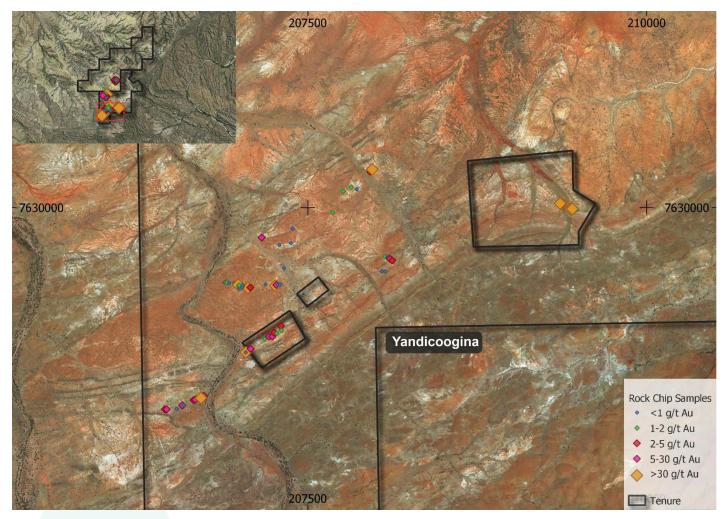


Figure 7: Yandicoogina Project Rock Chip Sampling

The Yandicoogina Project is located 52km to the south east of Marble Bar and consists of two granted exploration licences and two granted mining leases covering a land area of 89km². The Project is underlain by approximately 6km of strike of the Warrawoona Greenstone belt, which hosts Calidus Resources Ltd's (ASX: CAI) Warrawoona Gold Project. Previous exploration has predominantly focussed on the greenstone belt portions of the Project, while the Mt Edgar Mylonite Complex remains under explored.

Gold mineralised quartz vein structures are noted to generally occur within contact zones of dark green chlorite/mica schist and orange coloured felsic mica schist units. The mineralised structures occur as grey to clear coloured quartz veins and are up to 2m in width, often associated with sericite and carbonate alteration and occasionally displays boxwork textures.

The Mt Edgar Mylonite Complex, which is located parallel and to the north of the Warrawoona Greenstone Belt has received far less exploration attention. Exploration to date has identified significant outcropping gold mineralisation with greater widths than those within the Warrawoona Greenstone Belt. The Granite Mine Prospect for example, which is located within the project area, has been mapped over a strike length of 950m and is up to 10m wide. Rock chip sampling from workings on this prospect have reported grades of up to 20.61g/t Au.

A number of further projects are included in the proposed transaction, including the Pyramid, Keep it Dark, Surprise, North Shaw, Myrnas Hill and Miralga Creek projects. These project add a further and significant value to the entire portfolio. The Company will also provide further information on these assets in the near term.

Commercial Terms of the Acquisition:

Raiden Resources Ltd ("Raiden") has entered into an exclusive option agreement to acquire 100% of the issued capital of Pilbara Gold Corporation Pty Ltd ("PGC"). At Raiden's election, it can proceed with the acquisition of PGC under the following consideration terms:

- Issue shareholders of PGC 207,778,750 fully paid ordinary shares
- Assume obligations and rights of PGC under the Pacton Gold Inc (TSX-V: PAC) for the
 acquisition of a 75% equity interest in the Pacton Gold Tenements including paying
 CDN\$500,000 cash consideration, issue of 129,721,250 fully paid ordinary and a further
 CDN\$500,000 cash consideration on the first anniversary of completion of the transaction
 - Upon the delineation of a mineral resource in accordance with the JORC 2012 Guidelines (or other globally recognised Code) of at least 250,000oz Au at a minimum grade of 1g/t Au across any of the Pacton Gold Tenements, Pacton Gold Inc will be required to enter into a joint venture. Pacton Gold Inc can contribute proportional to their respective equity interest or dilute.
- All share-based consideration payable is subject to a six-month escrow
- A 1% net smelter royalty exists across the Pacton Gold Tenements.

Furthermore, Arrow Minerals Ltd, the original owner of the Arrow Project who sold the property to Pacton Gold Inc, retains the rights to explore mine and extract lithium, caesium and tantalum from the Arrow Project. In addition, Arrow is to receive a discovery bonus of CDN\$500,000 in cash consideration upon publishing a gold resource at the Arrow Project over 100,000oz Au in accordance with National Instrument 43-101 (or other globally recognised code.)

The completion of the acquisition will be subject to the conditions precedent including:

Raiden obtaining all necessary shareholder approvals;

- The Parties receiving all regulatory approvals or consents and/or complying with all requirements imposed by any regulatory body (including any governmental agency and ASX) and approvals; and
- Other conditions customary for the transaction of this nature.

In the event Raiden opts not to proceed with the proposed transaction, no option fees are payable to any of the parties.

Placement:

PGC has agreed to make a strategic investment into Raiden through a \$3 million share subscription, comprising of the issue of 230,769,230 shares at an issue price of \$0.013 per share ("Vendor Placement"). The \$0.013 placement price represents a 27.4% discount to the 15-day VWAP price and a 16.3% discount to the 30-day VWAP price. The completion of the Vendor Placement will be subject to the receipt of shareholder approval. A notice of meeting inclusive of further details with respect to the proposed acquisition and placement is in the process of being prepared and will be circulated in due course.

This ASX announcement has been authorised for release by the Board of Raiden Resources Limited.

FOR FURTHER INFORMATION PLEASE CONTACT

DUSKO LJUBOJEVIC

Managing Director

RAIDEN RESOURCES LIMITED

dusko@raidenresources.com.au

www.raidenresources.com.au

Competent Person's Statement

The information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation prepared by Mr Martin Pawlitschek, a competent person who is a member of the Australian Institute of Geoscientists (AIG). Mr Martin Pawlitschek employed by Raiden Resources Limited. Mr Martin Pawlitschek has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the JORC Code. Mr Martin Pawlitschek has provided his prior written consent as to the form and context in which the exploration results and the supporting information are presented in this announcement.

Disclaimer:

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)"and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Investors are cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and the Company does not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

About Raiden Resources

Raiden Resources Limited (ASX: RDN) is an ASX/DAX listed copper—gold focused exploration Company focused on the emerging prolific Tethyan metallogenic belt in Eastern Europe and has established a significant exploration footprint in Serbia and Bulgaria.

Over the last 2½ years, the Company has secured one of the largest project portfolios, considered prospective for porphyry and epithermal mineralisation in Eastern Europe. The Company has defined over 20 porphyry, epithermal and polymetallic prospects over the course of 2019, a number of which will be drill tested during the remainder of 2020 and during 2021.

The Directors believe that the Company is well positioned to unlock value from this exploration portfolio and deliver a significant mineral discovery.

Appendix 1: Tenement Schedule- PGC 100% Owned Tenure

Tenement	Project	Туре	Status	Beneficial Holder
E47/4307	Pyramid	EL	Pending	Pilbara Gold Corp.
E47/4300	Pyramid	EL	Pending	Pilbara Gold Corp.
E45/5713	Soansville	EL	Pending	Pilbara Gold Corp.
E46/1294	Eastern Creek	EL	Pending	Pilbara Gold Corp.
E47/4309	Mt Sholl	EL	Live	Pilbara Gold Corp.
E47/3468	Mt Sholl	EL	Live	Pilbara Gold Corp.
E45/4907	Myrnas Hill	EL	Live	Pilbara Gold Corp.
E45/4920	Miralga Creek	EL	Live	Pilbara Gold Corp.
E45/4803	Surprise	EL	Live	Pilbara Gold Corp.
E45/4988	North Shaw	EL	Live	Pilbara Gold Corp.

Appendix 2: Tenement Schedule- Pacton Gold Inc Tenure (Option to acquire 75%

Tenement	Project	Type	Status	Beneficial Holder
E45/3571	Yandicoogina	EL	Live	Pacton Gold Inc
E45/3474	Yandicoogina	EL	Live	Pacton Gold Inc
M45/115	Yandicoogina	ML	Live	Pacton Gold Inc
M45/987	Yandicoogina	ML	Live	Pacton Gold Inc
E45/3586	Boodalyerrie	EL	Live	Pacton Gold Inc
E47/3476	Arrow	EL	Live	Pacton Gold Inc
E47/3478	Arrow	EL	Live	Pacton Gold Inc

Appendix 3: Boodalyerrie Rock Chip Sampling

Sample	Easting	Northing	Date	Au ppm	Cu ppm	Zn ppm	As ppm	Ag ppm	Pb ppm	Sample Type
Y04	269875	7611977	1995	х	27	94	х	0.4	2	Grab
Y05	269875	7611977	1995	0.01	104	116	х	0.5	3	Grab
Y06	274352	7617214	1995	0.12	12	41	5	8.4	275	Grab
Y07	274352	7617214	1995	0.9	27	34	5	1.8	72	Grab
Y08	274352	7617214	1995	10.2	70	46	20	15	135	Grab
Y09	274451	7617234	1995	0.08	9	14	20	27	500	Chip 2.5 m
Y10	274454	7617234	1995	0.04	10	20	х	6.4	70	Chip 3.5m
Y11	274451	7617244	1995	13.5	39	52	350	1080	1950	Grab
Y12	274406	7617284	1995	3.1	32	17	35	33	300	Grab
Y13	274451	7617386	1995	0.44	48	23	10	5	130	Chip 3.0 m
Y14	274451	7617424	1995	0.06	22	6	5	2	46	Grab
Y15	274451	7617439	1995	68	98	48	25	230	830	Grab
Y16	274150	7617320	1995	0.95	108	250	20	6	155	Grab
Y17	274150	7617340	1995	0.31	102	13	35	9.2	23	Grab
Y18	274149	7617340	1995	0.31	180	12	50	11.8	62	Grab
Y19	274150	7617280	1995	0.03	660	190	55	0.6	175	Grab
Y20	274140	7617280	1995	0.02	18	33	5	0.6	13	Grab
Y21	274125	7617265	1995	0.02	9	1	5	1	4	Grab
Y22	274105	7617265	1995	0.04	21	9	х	0.4	5	Grab
Y23	274150	7617120	1995	0.06	440	108	75	0.4	240	Grab
Y24	273440	7617094	1995	0.23	17	13	10	0.3	24	Grab
Y25	273423	7617230	1995	195	27	64	30	110	820	Grab
Y26	273650	7616875	1995	1.4	16	3	х	1.9	54	Grab
Y27	273930	7618875	1995	0.64	12	9	х	0.8	11	Grab
Y28	274767	7616580	1995	0.24	225	37	10	60	880	Grab
Y29	275306	7617233	1995	0.11	70	16	х	30	265	Grab
Y30	275365	7617355	1995	0.06	14	3	5	4.1	24	Grab
Y31	273620	7619127	1995	0.01	15	10	15	0.4	5	Grab
Y32	273620	7619112	1995	0.04	25	13	х	0.5	8	Grab
Y33	273610	7619127	1995	0.23	3900	36	1	11.2	460	Grab
Y34	273530	7619998	1995	0.02	26	23	5	0.4	11	Grab
Y37	273150	7620650	1995	0.15	69000	3600	85	49	2260	Grab
Y38	273150	7620647	1995	0.03	78	30	х	0.7	10	Grab
Y39	273160	7620700	1995	1.4	3500	2200	40	2.9	130000	Grab
Y40	273665	7615820	1995	х	36	14	х	0.3	7	Grab
Y41	273665	7615700	1995	х	25	11	х	0.2	13	Grab
Y42	273157	7615275	1995	х	38	5	х	0.3	8	Grab
Y43	273157	7615195	1995	х	60	11	х	0.7	12	Grab
Y44	273457	7615195	1995	0.07	28	9	х	1.9	11	Grab
Y45	270790	7616470	1995	8.4	45	13	230	23.5	102	Grab

Sample	Easting	Northing	Date	Au ppm	Cu ppm	Zn ppm	As ppm	Ag ppm	Pb ppm	Sample Type
Y46	270790	7616470	1995	0.48	17	7	х	0.2	7	Chip 1.0m
Y47	270402	7614995	1995	0.2	36	11	10	0.6	22	Grab
Y48	270402	7615015	1995	0.12	17	4	х	0.1	4	Grab
Y49	269172	7615037	1995	0.02	21	8	40	0.3	60	Grab
Y78	269443	7611900	1995	х	16	23	20	0.5	19	Grab
Y79	270911	7612545	1995	0.09	320	78	35	22.5	880	Grab
Y125	275622	7618142	1995	х	30	18	800	1.4	195	Grab
Y126	275722	7618142	1995	х	23	21	5	3	112	Grab
Y127	272681	7620021	1995	0.01	19	1000	15	0.8	1500	Grab
Y134	273423	7617230	1995	175	18	30	10	84	440	Grab
Y135	273425	7617226	1995	0.12	33	6	х	1	215	Grab
Y137	273295	7617151	1995	0.19	64	16	40	25	140	Grab
Y138	273465	7617094	1995	0.03	16	5	х	0.3	3	Grab
Y139	273653	7616890	1995	0.02	6	5	х	0.2	20	Grab
Y140	273630	7616875	1995	0.01	14	1	х	х	14	Grab
Y141	274286	7616814	1995	0.01	29	40	10	0.3	36	Grab
83445	273090	7620620	Jun-00	88	40,800	1980	47	33	4410	Chip
83446	273090	7620620	Jun-00	1	31	21	2.5	<0.5	13	Chip

Appendix 4: Mt Sholl- Drill Collars

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
A1RC1	492,589	7,687,156	130	0	-60	180	RC
A1RC2	492,589	7,687,226	150	0	-70	180	RC
A1RC3	492,539	7,687,106	87	0	-60	180	RC
A1RC4	492,489	7,687,156	132	0	-70	180	RC
A1RC5	492,439	7,687,106	110	0	-70	180	RC
A1RC6	492,439	7,687,231	180	0	-70	180	RC
A1RC7	492,389	7,687,106	110	0	-60	180	RC
A1RC8	492,439	7,687,081	78	0	-60	180	RC
B1RC136	489,614	7,687,795	50	0	-90	0	RC
B1RC137	489,622	7,687,790	50	0	-90	0	RC
B1RC138	489,630	7,687,785	50	0	-90	0	RC
B1RC139	489,625	7,687,777	50	0	-90	0	RC
B1RC140	489,603	7,687,779	45	0	-90	0	RC
B1RC141	489,611	7,687,774	45	0	-90	0	RC
B1RC142	489,619	7,687,769	45	0	-90	0	RC
B1RC143	489,590	7,687,776	40	0	-90	0	RC
B1RC144	489,598	7,687,771	40	0	-90	0	RC
B1RC145	489,606	7,687,766	40	0	-90	0	RC
B1RC146	489,593	7,687,763	40	0	-90	0	RC
B1RC147	489,601	7,687,758	40	0	-90	0	RC
B1RC148	489,572	7,687,766	30	0	-90	0	RC
B1RC149	489,580	7,687,760	30	0	-90	0	RC
B1RC150	489,588	7,687,755	30	0	-90	0	RC
B1RC151	489,567	7,687,758	30	0	-90	0	RC
B1RC152	489,575	7,687,752	30	0	-90	0	RC
B1RC153	489,583	7,687,747	30	0	-90	0	RC
B1RC154	489,591	7,687,742	30	0	-90	0	RC
B1RC155	489,599	7,687,737	30	0	-90	0	RC
B1RC156	489,609	7,687,753	40	0	-90	0	RC
B1RC157	489,566	7,687,792	40	0	-90	0	RC
B1RC158	489,582	7,687,781	40	0	-90	0	RC
B1RC159	489,593	7,687,797	50	0	-90	0	RC
B1RC160	489,598	7,687,805	52	0	-90	0	RC
RBRC001	490,339	7,687,556	170	0	-90	0	RC
RBRC0011	490,489	7,687,256	170	0	-90	0	RC
RBRC0012	490,439	7,687,256	170	0	-90	0	RC
RBRC0013	490,389	7,687,256	170	0	-90	0	RC
RBRC002	490,289	7,687,556	170	0	-90	0	RC
RBRC003	490,239	7,687,556	170	0	-90	0	RC
RBRC004	490,539	7,687,456	170	0	-90	0	RC

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
RBRC005	490,489	7,687,456	170	0	-90	0	RC
RBRC006	490,439	7,687,456	170	0	-90	0	RC
RBRC007	490,539	7,687,356	170	0	-90	0	RC
RBRC008	490,489	7,687,356	170	0	-90	0	RC
RBRC009	490,439	7,687,356	170	0	-90	0	RC
RBRC010	490,389	7,687,356	170	0	-90	0	RC
A1RC09	492,339	7,687,086	120	0	-60	180	RC
A1RC10	492,339	7,687,196	180	0	-60	180	RC
A1RC11	492,389	7,687,206	180	0	-60	180	RC
A1RC12	492,389	7,687,156	150	0	-60	180	RC
A1RC13	492,439	7,687,281	216	0	-70	180	RC
A1RC14	492,439	7,687,176	150	0	-70	180	RC
B1RC161	489,639	7,687,815	80	0	-60	180	RC
B1RC162	489,672	7,687,792	80	0	-60	180	RC
B1RC163	489,783	7,687,913	140	0	-60	180	RC
B1RC164	489,871	7,687,913	150	0	-60	180	RC
B1RC165	489,796	7,687,966	140	0	-60	180	RC
B1RC166	489,659	7,688,105	150	0	-60	180	RC
SRRC06	490,139	7,687,906	150	0	-60	180	RC
SRRC07	490,139	7,687,956	150	0	-60	180	RC
SRRC08	490,139	7,688,006	150	0	-60	180	RC
SRRC09	490,139	7,688,056	150	0	-60	180	RC
SRRC10	490,139	7,688,106	150	0	-60	180	RC
SRRC11	490,139	7,688,156	162	0	-60	180	RC
SRRC12	490,339	7,687,806	174	0	-60	180	RC
SRRC13	490,339	7,687,856	172	0	-60	180	RC
SRRC14	490,339	7,687,906	180	0	-60	180	RC
SRRC15	490,339	7,687,956	150	0	-60	180	RC
SRRC16	490,339	7,688,006	150	0	-60	180	RC
SRRC17	490,339	7,688,056	150	0	-60	180	RC
SRRC18	490,539	7,687,796	150	0	-60	180	RC
SRRC19	490,539	7,687,846	150	0	-60	180	RC
SRRC20	490,539	7,687,896	150	0	-60	180	RC
SRRC21	490,539	7,687,956	150	0	-60	180	RC
SRRC22	490,739	7,687,756	150	0	-60	180	RC
SRRC23	490,739	7,687,806	160	0	-60	180	RC
SRRC24	490,739	7,687,656	150	0	-60	180	RC
SRRC25	490,739	7,687,856	150	0	-60	180	RC
SRRC26	490,739	7,687,906	150	0	-60	180	RC
SRRC27	490,939	7,687,506	150	0	-60	180	RC
SRRC28	490,939	7,687,556	150	0	-60	180	RC

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
SRRC29	490,939	7,687,606	150	0	-60	180	RC
SRRC30	491,139	7,687,456	150	0	-60	180	RC
SRRC31	491,139	7,687,506	180	0	-60	180	RC
SRRC32	491,139	7,687,406	126	0	-60	180	RC
SRRC33	491,289	7,687,256	172	0	-60	180	RC
SRRC34	491,289	7,687,306	168	0	-60	180	RC
SRRC35	491,289	7,687,356	168	0	-60	180	RC
SRRC36	491,289	7,687,406	150	0	-60	180	RC
SRRC37	491,289	7,687,456	172	0	-60	180	RC
SRRC38	491,289	7,687,506	160	0	-60	180	RC
SRRC39	491,289	7,687,556	160	0	-60	180	RC
SRRC47	490,149	7,687,931	180	0	-60	180	RC
SRRC48	490,139	7,687,856	200	0	-60	180	RC
06RZDD001	492,390	7,687,164	147.3	0	-75	180	DD
06RZDD002	492,590	7,687,356	321.2	0	-75	180	DD
06RZDD003	492,440	7,687,211	174.6	0	-75	180	DD
06RZDD004	492,365	7,687,141	132.5	0	-75	180	DD
06RZDD005	492,415	7,687,188	159.2	0	-75	180	DD
07RZDD006	492,524	7,687,330	260.35	0	-70	180	DD
71SD8	489,714	7,687,714	65.24	0	-90	0	DD
72SD17	489,897	7,687,956	145.7	0	-90	0	DD
72SD18	489,913	7,687,979	154	0	-90	0	DD
72SD19	489,899	7,688,012	164.6	0	-90	0	DD
72SP20	489,488	7,687,515	21.95	0	-90	0	RC
72SP21	489,458	7,687,516	23.47	0	-90	0	RC
72SP22	489,427	7,687,517	18.29	0	-90	0	RC
72SP23	489,366	7,687,518	21.95	0	-90	0	RC
72SP24	489,304	7,687,520	21.95	0	-90	0	RC
72SP25	489,274	7,687,520	21.95	0	-90	0	RC
72SP26	489,243	7,687,521	25.61	0	-90	0	RC
72SP27	489,212	7,687,522	25.61	0	-90	0	RC
72SP28 72SP29	489,182	7,687,523	21.95	0	-90	0	RC
	489,834	7,687,814	14.63 14.63	0	-90 -90	0	RC RC
72SP30 72SP31	489,834 489,834	7,687,829 7,687,844	14.63	0	-90 -90	0	RC
72SP31 72SP32	489,834	7,687,844	36.59	0	-90	0	RC
72SP32 72SP33	489,772	7,687,800	29.27	0	-90	0	RC
72SP34	489,772	7,687,813	18.29	0	-90	0	RC
72SP35	489,773	7,687,831	21.95	0	-90	0	RC
72SP36	489,765	7,687,508	36.58	0	-90	0	RC
72SP37	489,703	7,687,508	25.6	0	-90	0	RC
, 23F 37	+05,703	7,007,310	23.0		-50	1 0	I.C

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
72SP38	489,646	7,687,695	18.29	0	-90	0	RC
72SP39	489,593	7,687,697	25.6	0	-90	0	RC
72SP40	489,577	7,687,697	14.63	0	-90	0	RC
72SP41	489,562	7,687,697	10.97	0	-90	0	RC
73SD1	490,008	7,688,060	227.4	0	-90	0	DD
73SD5	489,974	7,688,129	244.8	0	-90	0	DD
85SP332	489,769	7,687,925	114	0	-90	0	RC
85SPD335	489,813	7,688,010	159.4	0	-90	0	RC
86RP1	488,901	7,688,533	36	0	-60	200	RC
86RP10	489,167	7,688,657	48	0	-60	200	RC
86RP11	489,246	7,688,582	48	0	-60	200	RC
86RP12	489,251	7,688,595	48	0	-60	200	RC
86RP13	489,256	7,688,608	60	0	-60	200	RC
86RP14	489,453	7,688,558	36	0	-60	200	RC
86RP15	489,456	7,688,565	48	0	-60	200	RC
86RP16	489,545	7,688,519	48	0	-60	200	RC
86RP17	489,554	7,688,542	48	0	-60	200	RC
86RP18	489,564	7,688,566	48	0	-60	200	RC
86RP19	489,567	7,688,574	48	0	-60	200	RC
86RP2	488,908	7,688,549	36	0	-60	200	RC
86RP20	489,154	7,688,624	30	0	-60	20	RC
86RP3	488,964	7,688,689	36	0	-60	200	RC
86RP4	488,970	7,688,705	36	0	-60	200	RC
86RP5	488,976	7,688,720	36	0	-60	200	RC
86RP6	488,982	7,688,736	36	0	-60	200	RC
86RP7	488,989	7,688,752	36	0	-60	200	RC
86RP8	489,077	7,688,701	42	0	-60	200	RC
86RP9	489,163	7,688,645	12.5	0	-60	200	RC
86SP345	489,680	7,687,836	54	0	-90	0	RC
86SPD343	489,761	7,687,877	91	0	-90	0	RC
86SPD344	489,856	7,687,930	138.05	0	-90	0	RC
87RP21	489,117	7,688,667	36	0	-60	200	RC
87RP22	489,122	7,688,679	32	0	-60	200	RC
87RP23	489,171	7,688,666	66	0	-60	200	RC
87RP24	489,398	7,688,558	36	0	-60	200	RC
87RP25	489,404	7,688,571	42	0	-60	200	RC
87RP26	489,509	7,688,555	36	0	-60	200	RC
87RP27	489,512	7,688,565	48	0	-60	200	RC
87RP28	489,460	7,688,576	54	0	-60	200	RC
87RP29	489,463	7,688,585	48	0	-60	200	RC
87RP30	489,478	7,688,622	66	0	-60	200	RC

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
87RP31	489,614	7,688,556	36	0	-60	200	RC
87RP32	489,618	7,688,565	42	0	-60	200	RC
87RP33	489,622	7,688,575	48	0	-60	200	RC
87RP34	489,663	7,688,542	36	0	-60	200	RC
87RP35	489,666	7,688,551	36	0	-60	200	RC
89RP36	488,081	7,688,892	20	0	-60	21.86	RAB
89RP37	488,077	7,688,882	22	0	-60	21.86	RAB
89RP38	488,074	7,688,874	20	0	-60	21.86	RAB
89RP39	488,069	7,688,865	20	0	-60	21.86	RAB
89RP40	488,064	7,688,857	20	0	-60	21.86	RAB
89RP41	488,060	7,688,848	30	0	-60	21.86	RAB
89RP42	488,296	7,688,722	20	0	-60	21.86	RAB
89RP43	488,291	7,688,713	20	0	-60	21.86	RAB
89RP44	488,286	7,688,703	23	0	-60	21.86	RAB
89RP45	488,281	7,688,694	30	0	-60	21.86	RAB
89RP46	488,235	7,688,752	30	0	-60	21.86	RC
89RP47	488,231	7,688,741	30	0	-60	21.86	RC
89RP48	488,227	7,688,733	30	0	-60	21.86	RC
89RP49	488,222	7,688,723	30	0	-60	21.86	RC
89RP50	488,218	7,688,714	40	0	-60	21.86	RC
89RP51	488,213	7,688,706	30	0	-60	21.86	RC
89RP52	489,503	7,688,548	30	0	-60	200	RC
89RP53	489,526	7,688,607	66	0	-60	200	RC
89RP54	489,471	7,688,604	54	0	-60	200	RC
89RP55	489,413	7,688,593	60	0	-60	200	RC
89XDRC1	489,233	7,687,307	60	0	-60	50	RC
89XDRC2A	489,278	7,687,320	72	0	-60	235	RC
89XDRC3	489,289	7,687,284	78	0	-60	235	RC
90RP56	489,308	7,688,603	48	0	-90	0	RC
90RP57	489,359	7,688,593	80	0	-90	0	RC
90RP58	489,420	7,688,612	80	0	-90	0	RC
90RP59	489,480	7,688,626	98	0	-90	0	RC
90RP60	489,666	7,688,551	60	0	-90	0	RC
90RP61	489,299	7,688,580	54	0	-90	0	RC
90RP63	489,512	7,688,570	60	0	-90	0	RC
B1MET1	489,611	7,687,784	45.5	0	-90	0	DD
B1RC101	489,724	7,687,830	78	0	-90	0	RC
B1RC102	489,707	7,687,842	88	0	-90	0	RC
B1RC103	489,657	7,687,753	67	0	-90	0	RC
B1RC104	489,641	7,687,764	87	0	-90	0	RC
B1RC105	489,623	7,687,652	17	0	-90	0	RC

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
B1RC106	489,664	7,687,622	22	0	-90	0	RC
B1RC107	489,747	7,687,563	29	0	-90	0	RC
B1RC108	489,788	7,687,534	19	0	-90	0	RC
B1RC109	489,688	7,687,481	16	0	-90	0	RC
B1RC110	489,727	7,687,450	9	0	-90	0	RC
B1RC111	489,744	7,687,385	12	0	-90	0	RC
B1RC112	489,690	7,687,729	54	0	-90	0	RC
B1RC113	489,674	7,687,740	55	0	-90	0	RC
B1RC114	489,729	7,687,889	96	0	-90	0	RC
B1RC115	489,611	7,687,785	45	0	-90	0	RC
B1RC116	489,703	7,687,782	69	0	-90	0	RC
B1RC117	489,770	7,687,859	87	0	-90	0	RC
B1RC118	489,800	7,687,901	117	0	-90	0	RC
B1RC119	489,720	7,687,771	80	0	-90	0	RC
B1RC121	489,582	7,687,764	50	0	-90	0	RC
B1RC122	489,607	7,687,794	60	0	-90	0	RC
B1RC123	489,630	7,687,835	80	0	-90	0	RC
B1RC124	489,653	7,687,810	80	0	-90	0	RC
B1RC125	489,657	7,687,875	100	0	-90	0	RC
B1RC126	489,679	7,687,862	100	0	-90	0	RC
B1RC127	489,740	7,687,820	100	0	-90	0	RC
B1RC128	489,764	7,687,802	100	0	-90	0	RC
B1RC129	489,681	7,687,931	130	0	-90	0	RC
B1RC130	489,788	7,687,843	110	0	-90	0	RC
B1RC131	489,741	7,687,938	130	0	-90	0	RC
B1RC132	489,816	7,687,884	130	0	-90	0	RC
B1RC133	489,777	7,687,976	150	0	-90	0	RC
B1RC134	489,872	7,687,965	150	0	-90	0	RC
B1RC135	489,797	7,687,773	100	0	-90	0	RC
B1RCD120	489,818	7,687,926	129	0	-90	0	DD
RBRC011	490,489	7,687,256	170	0	-90	0	RC
RBRC012	490,439	7,687,256	170	0	-90	0	RC
RBRC013	490,389	7,687,256	170	0	-90	0	RC
SRRC6	490,139	7,687,906	150	0	-60	181.4	RC
SRRC7	490,139	7,687,956	150	0	-60	181.4	RC
SRRC8	490,139	7,688,006	150	0	-60	181.4	RC
SRRC9	490,139	7,688,056	150	0	-60	181.4	RC
SRRCD62	490,940	7,687,360	295.1	0	-90	0	DD
70SD1	492,682	7,687,136	122	0	-90	0	DD
71SD17	492,311	7,687,087	96.3	0	-90	0	DD
71SD18	492,301	7,687,173	123.8	0	-90	0	DD

Hole	East	North	Maximum Depth	Depth	Dip	Azimuth	Туре
71SP14	492,635	7,687,086	43.9	0	-90	0	RC
72RWP13	491,759	7,687,410	32.92	0	-90	0	RC
72RWP14	491,781	7,687,455	25.6	0	-90	0	RC
72RWP15	491,802	7,687,500	32.92	0	-90	0	RC
72SD10	492,309	7,687,120	119.2	0	-50	180.8	DD
73SD4	492,467	7,687,124	111.6	0	-75	180.8	DD
85SP333	492,369	7,687,139	150	0	-90	0	RC
85SP334	492,435	7,687,214	188	0	-90	0	RC
86SPD336	492,337	7,687,092	112.3	0	-90	0	RC
86SPD337	492,426	7,687,140	130.8	0	-90	0	RC
86SPD338	492,518	7,687,203	174.25	0	-90	0	RC
86SPD339	492,558	7,687,266	220.65	0	-90	0	RC
86SPD340	492,612	7,687,251	210.25	0	-90	0	RC
A1RC9	492,339	7,687,086	120	0	-60	181.4	RC

Appendix 5: Mt Sholl- Drill Results

Hole	From	То	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
	87	88	1	0.32	0.25	6380	142	0.07	0.62	0.05
A1RC1	111	113	2	0.23	0.21	4285	145	0.03	0.54	0.11
A1RC2	145	146	1	0.28	0.29	6600	131	0.06	0.56	0.06
A4DC2	63	64	1	0.30	0.20	7760	145	0.05	0.51	0.02
A1RC3	80	81	1	0.28	0.34	11710	160	0.03	0.53	0.07
A1DC4	90	93	3	0.39	0.59	22673	218	0.04	0.63	0.02
A1RC4	105	107	2	0.34	0.75	17255	211	0.06	0.78	0.04
A1RC5	81	82	1	0.74	0.70	38510	400	0.09	0.36	0.04
AIRCS	83	85	2	0.74	0.68	41900	385	0.15	0.97	0.12
A1RC6	151	167	16	0.55	0.78	19351	222	0.12	0.98	0.04
A1RC7	73	74	1	0.13	0.26	5650	123	0.04	0.52	0.19
A1RC8	67	68	1	0.45	0.84	23510	216	0.06	0.64	0.02
B1RC136	20	38	18	0.53	1.12	26278	243	0.18	0.83	0.07
B1RC137	23	28	5	0.70	0.82	32460	276	0.15	0.70	0.06
BIRC157	30	37	7	0.46	0.89	20786	204	0.15	0.75	0.11
B1RC138	32	33	1	0.87	1.76	39100	274	0.13	0.55	0.05
B1RC139	27	30	3	0.55	1.16	28800	219	0.13	0.64	0.05
B1RC140	12	19	7	0.35	0.79	19014	168	0.13	0.60	0.46
	21	30	9	0.87	1.15	35978	316	0.17	0.97	0.07
B1RC141	16	26	10	0.62	0.93	27320	220	0.14	0.68	0.07
DIRC141	32	33	1	0.25	0.68	9430	297	0.12	0.58	0.16
B1RC142	No Signi	ficant Inte	rcepts*							
B1RC143	12	26	14	0.40	0.87	18151	183	0.12	0.59	0.08
B1RC144	8	26	18	0.74	1.07	33767	305	0.18	0.87	0.09
B1RC145	18	23	5	0.40	0.68	24400	213	0.13	0.67	0.07
B1RC146	12	21	9	0.59	0.92	37678	265	0.13	0.67	0.05
DINCIAO	26	27	1	0.56	0.50	33600	325	0.03	0.62	0.05
	0	4	4	0.14	0.26	-10	111	0.05	2.14	0.03
B1RC147	22	23	1	2.76	0.41	108900	877	0.09	0.35	0.03
	26	27	1	0.13	0.33	9110	311	0.02	1.00	0.22
B1RC148	11	13	2	0.43	0.66		210	0.12	1.67	0.11
D21102-10	16	19	3	0.33	1.04	18467	213	0.14	0.52	0.09
B1RC149	11	23	12	1.13	1.31	52683	422	0.19	0.99	0.10
B1RC150	2	3	1	0.24	1.87		141	0.95	1.44	3.82
DINCISO	12	16	4	0.57	0.75	30525	255	0.14	0.51	0.06
B1RC150	22	24	2	0.23	0.55	11850	132	0.08	0.42	0.07
B1RC151	0	12	12	0.43	0.77		251	0.12	0.43	0.13
B1RC152	0	4	4	0.46	0.57		248	0.13	0.55	0.04
	7	14	7	0.68	0.86	4387	313	0.18	0.73	0.06
B1RC153	10	15	5	0.41	0.65	13821	203	0.12	0.50	

Hole	From	То	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
B1RC154	3	4	1	0.41	0.55		245	0.07	0.32	0.04
B1RC155	No Signi	ficant Inte	rcepts*							
B1RC156	16	18	2	0.32	0.84	17105	171	0.07	0.37	0.06
B1RC157	No Signi	ficant Inte	rcepts*							
B1RC158	16	32	16	0.54	1.08	21649	231	0.09	0.69	0.10
B1RC159	23	29	6	0.17	0.71	9968	106	0.13	0.47	0.08
	32	39	7	0.31	1.11	19719	192	0.09	0.53	
B1RC160	24	29	5	0.26	1.00	13894	139	0.06	0.49	0.08
BIRCIOU	37	44	7	0.30	1.09	20460	195	0.14	0.48	0.14
RBRC001	No Signi	ficant Inte	rcepts*							
RBRC002	No Signi	ficant Inte	rcepts*							
RBRC003	No Signi	ficant Inte	rcepts*							
RBRC004	No Signi	ficant Inte	rcepts*							
RBRC005	No Signi	ficant Inte	rcepts*							
RBRC006	No Signi	ficant Inte	rcepts*							
RBRC007	No Signi	ficant Inte	rcepts*							
RBRC008	No Signi	ficant Inte	rcepts*							
RBRC009	_	No Significant Intercepts*								
RBRC010	No Signi	ficant Inte	rcepts*							
	62	64	2	Not Assa	iyed		134	0.11	0.52	0.05
A1RC09	68	69	1	Not Assa	•		141	0.64	0.35	0.04
	74	80	6	Not Assa	iyed		290	0.15	0.74	0.05
A1RC10	_	ficant Inte		ı		ı		ı	ı	
A1RC11	137	150	13	Not Assa	iyed	49934	396	0.19	0.72	0.06
A1RC12	_	ficant Inte	•							
A1RC13	_	ficant Inte	<u> </u>							
A1RC14		ficant Inte	· · · · · · · · · · · · · · · · · · ·	ı	ı	I		ı	ı	
B1RC161	49	62	13	0.44	0.87		192	0.14	0.81	0.07
B1RC162	56	62	6	0.55	0.73		213	0.12	0.60	0.07
B1RC163	88	89	1	1.57	2.88		487	0.09	0.58	0.13
B1RC163	96	111	15	0.54	0.69		217	0.12	0.69	0.06
B1RC164	77	79	2	0.89	0.84		384	0.10	0.55	0.02
B1RC164	117	118	1	0.53	0.72		215	0.03	0.58	0.06
B1RC164	124	129	5	0.38	0.68		167	0.07	0.48	0.14
B1RC165		105 124 19 0.22 0.93 116 0.09 0.51 0.05								0.05
B1RC166		Not assayed								
SRRC06	No Significant Intercepts*									
SRRC07	No Significant Intercepts* No Significant Intercepts*									
SRRC08	_		•							
SRRC09		ficant Inte	<u> </u>							
SRRC10	No Signi	No Significant Intercepts*								

Hole	From	То	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm	
SRRC11		ficant Inte		rui pec	ca per	э ррш	со ррш	т с ррпп	та ррш	да ррш	
SRRC12		ficant Inte									
SRRC13		ficant Inte	· · · · · · · · · · · · · · · · · · ·								
SRRC14		ficant Inte	<u> </u>								
SRRC15			•								
SRRC16		No Significant Intercepts* No Significant Intercepts*									
SRRC17		ficant Inte	· · · · · · · · · · · · · · · · · · ·								
SRRC18		ficant Inte	<u> </u>								
SRRC19		ficant Inte	· · · · · · · · · · · · · · · · · · ·								
SRRC20	_	ficant Inte	·								
SRRC21		ficant Inte	<u> </u>								
SRRC22		ficant Inte	<u> </u>								
SRRC23	_	ficant Inte	•								
SRRC24	_	ficant Inte	·								
SRRC25		ficant Inte	•								
SRRC26	_	ficant Inte	•								
SRRC27	_	ficant Inte									
SRRC28		ficant Inte	<u> </u>								
SRRC29		ficant Inte	•								
SRRC30	No Signif	ficant Inte	rcepts*								
SRRC31	No Signif	ficant Inte	rcepts*								
SRRC32	No Signif	ficant Inte	rcepts*								
SRRC33	No Signif	ficant Inte	rcepts*								
SRRC34	No Signit	ficant Inte	rcepts*								
SRRC35	No Signif	ficant Inte	rcepts*								
SRRC36	No Signif	ficant Inte	rcepts*								
SRRC37	No Signif	ficant Inte	rcepts*								
SRRC38	No Signit	ficant Inte	rcepts*								
SRRC39	No Signif	ficant Inte	rcepts*								
SRRC47	No Signit	ficant Inte	rcepts*								
SRRC48	132	136	4	0.22	0.61	9020	127	0.06	0.69	0.07	
06RZDD001	132	133	1	0.97	2.50		150	1.49	0.08	9.69	
06RZDD002	238	239	1	1.23	2.66		60	0.14	0.05	11.55	
06RZDD003	150	164.6	14.6	0.47	0.60		0	0.10	0.27	0.06	
06RZDD004	104	114	10	0.77	1.21		0	0.17	0.90	0.06	
06RZDD005	143.5										
07RZDD006	216 220 4 0.45 0.60 240 Not Assayed										
70SD1	67.07 68.6 1.529999 0.40 0.55 120 Not Assayed										
71SD17	80.8 86.9 6.099998 0.57 Not Assayed										
71SD18		ficant Inte	•								
71SP14	No Signif	No Significant Intercepts*									

Hole	From	То	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
72RWP13	1	ficant Inte								
72RWP14	_	ficant Inte	•							
72RWP15	_	ficant Inte								
72SD10	No Signif	ficant Inte	rcepts*							
71SD8	No Signif	ficant Inte	rcepts*							
72SD17	89.9	91.4	1.5	1.09	0.19	Not Assay	ed			
72SD17	120.4	121.9	1.5	0.57	0.67	Not Assay	ed			
72SD17	123.4	125	1.599999	0.66	0.55	Not Assay	ed			
72SD18	121.6	123.1	1.5	1.20	0.74	Not Assay	ed			
72SD19	143	146	3	0.71	0.80	Not Assay	ed			
72SD19	149	150.6	1.600006	0.80	0.17	Not Assay	ed			
72SP20	No Signif	ficant Inte	rcepts*							
72SP21	No Signif	ficant Inte	rcepts*							
72SP22	No Signif	ficant Inte	rcepts*							
72SP23	No Signif	ficant Inte	rcepts*							
72SP24	No Signif	ficant Inte	rcepts*							
72SP25	No Signif	ficant Inte	rcepts*							
72SP26	No Signif	ficant Inte	rcepts*							
72SP27	No Signif	ficant Inte	rcepts*							
72SP28	No Signif	No Significant Intercepts*								
72SP29	_	ficant Inte	•							
72SP30	_	ficant Inte	·							
72SP31	_	ficant Inte	•							
72SP32	_	ficant Inte	<u> </u>							
72SP33	-	ficant Inte								
72SP34	_	ficant Inte	<u> </u>							
72SP35		ficant Inte	· · · · · · · · · · · · · · · · · · ·							
72SP36		ficant Inte	<u> </u>							
72SP37	_	ficant Inte	•							
72SP38	_	ficant Inte			I					
72SP39	9.14	10.97	1.83	0.55	0.07	Not Assay	ed			
72SP40		ficant Inte	<u> </u>							
72SP41		No Significant Intercepts*								
73SD1		No Significant Intercepts*								
73SD4	80.79	82.32	1.53	0.38	0.62	Not Assay				
73SD5	215.2	218.2	3	0.45	0.75	Not Assay				
85SP332	90	104	14	0.50	0.92	Not Assay				
85SP333	120	132	12	0.57	0.76	Not Assay				
85SP334		166 174 8 0.58 0.80 Not Assayed								
85SPD335		No Significant Intercepts* No Significant Intercepts*								
86RP1	No Signif	ricant Inte	rcepts*							

Hole	From	То	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
86RP10		ficant Inte		•	•	• •	•••	•••	• • •	• •
86RP11		ficant Inte	<u> </u>							
86RP12	_	ficant Inte	•							
86RP13	No Signi	ficant Inte	rcepts*							
86RP14	8	10	2		Not Assa	yed				1.52
86RP15	15	18	3		Not Assa	yed				2.76
86RP16	No Signi	ficant Inte	rcepts*							
86RP17	No Signi	Significant Intercepts*								
86RP18	No Signi	Significant Intercepts*								
86RP19	No Signi	Significant Intercepts*								
86RP2	No Signi	Significant Intercepts*								
86RP20	No Signi	ficant Inte	rcepts*							
86RP3	No Signi	ficant Inte	rcepts*							
86RP4	No Signi	Significant Intercepts*								
86RP5	No Signit	ficant Inte	rcepts*							
86RP6	No Signi	ficant Inte	rcepts*							
86RP7	No Signi	Significant Intercepts*								
86RP8	No Signi	Significant Intercepts*								
86RP9	No Signi	o Significant Intercepts*								
86SP345	Not assa	yed								
86SPD336	90	98	8	0.49	0.76	Not Assay	red			
86SPD337	119	120	1	2.03	0.30	Not Assay	red			
86SPD337	121	130.8	9.800003	0.86	1.33	Not Assay	red			
86SPD338	168.65	169.65	1	0.48	0.64	Not Assay	red			
86SPD339	_	ficant Inte	<u> </u>							
86SPD340		ficant Inte								
86SPD343	72.2	85.2	13	1.18	1.02	Not Assay				
86SPD344	130		3.100006	0.74		Not Assay	red			
87RP21	14	15	1	Not Assa	<u> </u>					5.74
87RP22	27	28	1	Not Assa	iyed					0.77
87RP24	_	ficant Inte								
87RP25	19	20	1	Not Assa	•					0.54
87RP26	13	19	6	Not Assa	<u> </u>					3.56
87RP26 Inc.	16	17	1	Not Assa	•					15.90
87RP27	21	22	1	,						
87RP28	25	26	,							
87RP29	35	37	2	Not Assa	·					1.48
87RP31	61	62	1	Not Assa	iyed					12.00
87RP32	No Significant Intercepts*									
87RP33		No Significant Intercepts*								
87RP34	23	24	1	Not Assa	iyed					0.59

Hole	From	To	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
87RP35	30	33	3	Not Assa		о рр	о ррш			0.98
89RP36		ficant Inte	-	110071000	, cu					0.50
89RP37		ficant Inte	<u> </u>							
89RP38		ficant Inte	•							
89RP39		ficant Inte	•							
89RP40	_	ficant Inte								
89RP41		ficant Inte	<u> </u>							
89RP42	_	ficant Inte	<u> </u>							
89RP43	16	17	1	Not Assa	yed					0.71
89RP44	8	9	1	Not Assa	yed					0.81
89RP45	No Signi	o Significant Intercepts*								
89RP46	No Signi	o Significant Intercepts*								
89RP47	No Signi	ficant Inte	rcepts*							
89RP48	No Signi	ficant Inte	rcepts*							
89RP49	No Signi	ficant Inte	rcepts*							
89RP50	No Signi	ficant Inte	rcepts*							
89RP51	No Signi	ficant Inte	rcepts*							
89RP52	26								1.90	
89RP53	No Signi	No Significant Intercepts*								
89RP54	No Signi	ficant Inte	rcepts*							
89RP55	38	39	1	Not Assa	yed					1.10
89XDRC1	No Signi	ficant Inte	rcepts*							
89XDRC2A	No Signi	ficant Inte	rcepts*							
89XDRC3	No Signi	ficant Inte	rcepts*							
90RP56	No Signi	ficant Inte	rcepts*							
90RP57	50	51	1	Not Assa	yed					0.79
90RP58	73	74	1	Not Assa	<u> </u>					2.50
90RP59	91	92	1	Not Assa	yed					0.72
90RP60	No Signi	ficant Inte	rcepts*							
90RP61	12	13	1	Not Assa	·					0.65
90RP61	24	25	1	Not Assa	•					1.80
90RP62	24	25	1	Not Assa	·					0.99
90RP62	27	28	1	Not Assa	•					0.73
90RP63	39	40	1	Not Assa	·					4.00
B1MET1	16	37	21	0.75	1.13			0.13	0.68	
B1RC101	52	55	3	0.41	0.54		160	0.12	0.82	0.05
B1RC101	59	60	1	0.16	0.17		95	0.03	0.58	0.02
B1RC101	62	64	2	0.65	1.07		243	0.10	0.52	0.03
B1RC101	68	69	1	0.30	0.51		60	0.10	0.52	0.05
B1RC101	70	75	5	0.50	0.68		151	0.11	0.54	0.05
B1RC102	70	75	5	0.74	1.80		218	0.14	1.66	0.04

Hole	From	To	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
	63	80	17	0.62	0.95	o pp	233	0.16	0.98	0.10
B1RC103		ficant Inte		3.32	0.00			0.20	0.00	0.120
B1RC104	_	ficant Inte	•							
B1RC105		ficant Inte	<u> </u>							
B1RC106	13	14	1	0.10	0.16		60	0.11	1.20	0.07
B1RC107	13	14	1	0.40	0.42		140	0.08	0.62	0.11
B1RC108	No Signif	ficant Inte	rcepts*							
B1RC109	No Signif	ficant Inte	rcepts*							
B1RC110	No Signif	ficant Inte	rcepts*							
B1RC111	No Signif	ficant Inte	rcepts*							
B1RC112	18	19	1	0.35	0.53		175	0.06	0.36	0.04
	21	23	2	0.64	0.71		230	0.06	0.36	0.09
	26	27	1	0.78	0.37		290	0.05	0.45	0.02
	31	32	1	0.31	0.29		160	0.04	1.00	0.04
	49	50	1	0.50	0.46		180	0.05	0.52	0.07
B1RC113	19	20	1	0.86	0.12		280	0.07	0.35	0.00
	24	25	1	0.44	0.52		215	0.03	0.15	0.01
	32	35	3	0.31	0.52		163	0.07	0.44	0.04
	48	50	2	0.33	0.52		118	0.08	0.57	0.29
B1RC114	95	96	1	0.27	0.65					0.08
B1RC115	15	38	23	0.61	0.87		278	0.16	0.90	0.07
B1RC116	44	45	1	0.43	0.78		250	0.08	1.00	0.05
B1RC117	59	60	1	0.16	0.72		100	0.07	1.10	0.15
	63	64	1	2.10	0.18		130	0.04	0.20	0.02
	77	78	1	0.34	0.38		280	0.05	0.58	0.09
B1RC118	63	64	1	1.10	1.00		340	0.09	0.79	0.00
	78	79	1	5.70	0.73		270	0.14	2.30	0.17
	82	83	1	0.40	0.28		210	0.35	0.92	0.04
	92	98	6	0.27	0.51		112	0.40	0.40	0.40
	103	104	1	0.31	0.65		1500	0.10	0.56	0.15
B1RC119	23	24	1	0.50	0.70		240	0.05	0.31	0.03
	27	29	2	0.38	0.58		185	0.06	0.30	0.05
	32	34	2	0.25	0.57		150	0.05	0.28	0.05
	32	34	2	0.97	0.53		540	0.06	0.39	0.01
	42	43	1	0.55	2.00		340	0.10	0.37	0.14
D4D0424	53	54	1	0.33	0.94		160	0.09	1.90	0.07
B1RC121	3	26	23	0.61	0.97		240	0.15	0.80	0.09
B1RC122	23	38	15	0.58	1.07		216	0.14	0.78	0.09
B1RC123	55	58	3	0.66	1.10		230	0.12	0.66	0.05
B1RC124	54	55	1	0.77	0.80		317	0.09	0.60	0.05
B1RC125	74	82	8	0.59	1.07		217	0.14	0.71	0.08

Hole	From	То	Interval	Ni pct	Cu pct	S ppm	Co ppm	Pt ppm	Pd ppm	Au ppm
B1RC126	77	79	2	0.45	0.78		191	0.09	0.54	0.04
B1RC127	54	55	1	1.07	0.59		473	0.05	0.37	0.01
	58	59	1	1.21	0.82		477	0.06	0.30	0.03
	66	67	1	1.52	0.77		393	0.05	0.44	0.02
B1RC128	38	39	1	0.31	0.79		190	0.03	0.52	0.01
	59	60	1	0.20	0.26		89	0.05	0.97	0.08
B1RC129	No Signi	ficant Inte	rcepts*							
B1RC130	40	41	1	0.29	1.37		195	0.03	0.17	0.04
B1RC132	81	82	1	1.36	0.63		670	0.04	0.51	0.05
	91	94	3	0.35	0.61		132	0.11	0.70	0.06
B1RC133	132	134	2	0.39	0.88		267	0.07	0.74	0.07
B1RC135	61	65	4	0.26	0.60		134	0.07	0.44	0.18

^{*} Significant intercepts are considered any with an intercept width greater than 1 meter and with either +0.5% Cu, or +0.5%Ni or than 0.5g/t Pd were encountered in the interval.

Appendix 6: Yandicoogina Rock Chip Sampling

Easting	Northing	Sample	Rock Type	Sample Width	Structure	Au ppm
207,960	7,630,264	DWM001	Qtz	0.2m	Gum Tree	4.7
209,366	7,630,029	DWM002	Qtz	0.25m	Black and White- Edith	9.57
209,364	7,630,029	DWM003	Qtz	0.10m	Black and White- Edith	34.86
209,365	7,630,029	DWM004	Qtz	0.08m	Black and White- Edith	42.92
209,368	7,630,028	DWM005	Qtz	0.30m	Black and White- Edith	56.84
209,367	7,630,028	DWM006	Qtz	0.20m	Black and White- Edith	46.83
209,348	7,630,030	DWM007	Qtz	0.30m	Black and White- Edith	14.17
209,363	7,630,029	DWM008	Qtz	0.15m	Black and White- Edith	30.71
209,362	7,630,030	DWM009	Qtz	0.15m	Black and White- Edith	53.62
207,302	7,629,126	DWM014	Qtz	0.2m	Cyclone	2.23
207,042	7,628,934	DWM016	Qtz	0.15m	Uncle Tom West	38.38
207,041	7,628,933	DWM017	Fault Gouge/Calcrete some Qtz	0.4m	Uncle Tom West	0.76
207,077	7,628,959	DWM018	Qtz	1.5m (w) x 5m (l)	Uncle Tom West	9.07
207,181	7,629,032	DWM019	Qtz	0.2m	Uncle Tom	1.38
207,232	7,629,044	DWM020	Qtz	0.2m	Uncle Tom	0.27
207,213	7,629,049	DWM021	Qtz	0.15m	Uncle Tom	7.34
207,238	7,629,050	DWM022	Silicified Felsic Schist and Qtz Stringers	13m	Uncle Tom	5.98
207,248	7,629,072	DWM023	Qtz and Fault Gouge/Felsic Schist	1.5m	Uncle Tom	1.5
207,251	7,629,079	DWM024	Qtz	0.1m	Uncle Tom	2.9
207,272	7,629,073	DWM025	Qtz	0.15m	Uncle Tom	1.48
207,304	7,629,095	DWM026	Qtz	1m	Uncle Tom	1.04
207,974	7,630,280	DWM027	Qtz	0.2m	GumTree	4.02
207,975	7,630,281	DWM028	Qtz	0.2m	GumTree	61.28
207,353	7,631,864	DWM029	Qtz	1m	Death Adder	15.26
207,447	7,632,282	DWM030	Qtz	N/A	Jupiter	31.37
209,361	7,630,030	DWM032	Qtz	0.20m	Black and White- Edith	41.95
209,439	7,629,989	DWM033	Qtz (Visible Au)	N/A	Black and White	223.1
209,443	7,629,992	DWM034	Qtz	0.1m	Shannon	15.99
209,480	7,629,984	DWM035	Qtz and metadolerite	0.3m	Shannon	1.72
209,452	7,629,990	DWM038	Qtz	0.2m	Shannon	39.78
206,965	7,629,442	DWM039	Qtz	0.5m	Aunt Sally	1.29
206,957	7,629,444	DWM040	Qtz	0.4m	Aunt Sally	0.43
206,983	7,629,441	DWM041	Qtz	1m	Aunt Sally	1.46
207,058	7,629,409	DWM043	Qtz	0.5m	Aunt Sally	49.18
207,004	7,629,415	DWM044	Qtz	0.5m	Aunt Sally	10
206,993	7,629,424	DWM045	Qtz	0.5m	Aunt Sally	53.75

Easting	Northing	Sample	Rock Type	Sample Width	Structure	Au ppm
206,986	7,629,431	DWM046	Qtz	0.8m	Aunt Sally	30.39
206,885	7,629,450	AS 1	Qtz		Aunt Sally	0.84
207,259	7,629,425	AS 10	Qtz		Aunt Sally	158.8
207,267	7,629,430	AS 11	Qtz		Aunt Sally	23.13
207,279	7,629,430	AS 12	Qtz		Aunt Sally	0.73
207,296	7,629,434	AS 13	Qtz		Aunt Sally	0.39
207,015	7,629,410	AS 14	Qtz		Aunt Sally	0.21
206,992	7,629,406	AS 17	Qtz		Aunt Sally	0.62
206,901	7,629,447	AS 2	Qtz		Aunt Sally	1.32
206,988	7,629,418	AS 20	Qtz		Aunt Sally	0.77
206,993	7,629,428	AS 21	Qtz		Aunt Sally	1.91
207,019	7,629,430	AS 26	Qtz		Aunt Sally	0.84
206,919	7,629,444	AS 3	Qtz		Aunt Sally	0.39
207,290	7,629,724	AS 33	Qtz		Aunt Sally	0.93
207,375	7,629,739	AS 35	Qtz		Aunt Sally	0.25
207,387	7,629,843	AS 38	Qtz		Aunt Sally	0.46
207,159	7,629,779	AS 39	Qtz		Aunt Sally	18.58
207,075	7,629,411	AS 8	Qtz		Aunt Sally	2.92
207,188	7,629,433	AS 9	Qtz		Aunt Sally	0.27
207,323	7,629,553	ASN 1	Qtz		Aunt Sally North	0.23
208,069	7,629,638	B 1	Qtz		Blairs	1.04
208,086	7,629,633	B2	Qtz		Blairs	0.92
208,090	7,629,631	В3	Qtz		Blairs	0.78
208,106	7,629,622	B 5	Qtz		Blairs	7.06
208,122	7,629,611	B6	Qtz		Blairs	2.01
207,345	7,631,840	DA 10	Qtz		Death Adder	5.42
207,355	7,631,861	DA 12	Qtz		Death Adder	16.88
207,370	7,631,914	DA 18	Qtz		Death Adder	0.98
207,273	7,631,723	DA 2 A	Qtz		Death Adder	2.18
207,390	7,631,951	DA 22	Qtz		Death Adder	2.59
207,019	7,629,430	DA 26	Qtz		Death Adder	0.61
207,284	7,631,737	DA 6	Qtz		Death Adder	3.64
207,289	7,631,744	DA 7	Qtz		Death Adder	0.84
207,217	7,632,337	DAW 1	Qtz		Death Adder West	1.72
207,156	7,632,336	DA 2	Qtz		Death Adder West	1.03
206,884	7,632,150	DAW 3	Qtz		Death Adder West	1.17
206,847	7,632,134	DAW 4	Qtz		Death Adder West	1.36
206,821	7,632,120	DAW 5	Qtz		Death Adder West	0.58
206,807	7,632,076	DAW 6	Qtz		Death Adder West	9.43
208,071	7,629,528	EL 1	Qtz		East Lens	0.93
208,045	7,629,530	EL 2	Qtz		East Lens	0.82
208,760	7,634,474	GR 1	Qtz		Granite	8.64
208,633	7,634,767	GR 10	Qtz		Granite	2.19
208,609	7,634,784	GR 11	Qtz		Granite	1.34
208,602	7,634,784	GR 12	Qtz		Granite	2.86
208,975	7,634,621	GR2	Qtz		Granite	7.46
209,064	7,634,712	GR3	Qtz		Granite	15.97
209,027	7,634,715	GR4	Qtz		Granite	3.12
208,943	7,634,740	GR5	Qtz		Granite	0.45

Easting	Northing	Sample	Rock Type	Sample Width	Structure	Au ppm
208,933	7,634,742	GR6	Qtz		Granite	4.07
208,917	7,634,726	GR7	Qtz		Granite	20.61
208,929	7,634,752	GR8	Qtz		Granite	1
208,851	7,634,717	GR9	Qtz		Granite	0.31
207,860	7,630,134	GT 3	Qtz		Gum Tree	0.21
207,818	7,630,148	GT 5	Qtz		Gum Tree	1.85
207,761	7,630,120	GT 6	Qtz		Gum Tree	1.72
207,682	7,629,963	GT 7	Qtz		Gum Tree	1.58
207,605	7,629,351	LAE 1	Qtz		Lady Adelaide East	0.44
207,638	7,629,340	LAE 3	Qtz		Lady Adelaide East	1.8
207,649	7,629,335	LAE 4	Qtz		Lady Adelaide East	2.62

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	This public release reports on the results of a rock sampling program and depicting 60 rock samples. The CP assumes that the samples were collected on a random pattern and in relation to outcrop availability and guided by outcropping mineralisation, but cannot confirm this.
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The samples were collected with the objective of defining the presence or absence of mineralisation only. The objective of the program was not to gather representative samples within the entire project area. The results from the program are not being used in any mineral resource statement and are only used by the Company as a guide to direct further exploration efforts.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The CP is not aware of the exact procedures which were undertaken during the rock sampling program

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

Section 1: Sampling Techniques and Data

Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	· · · · · · · · · · · · · · · · · · ·
	Method of recording and assessing core and chip sample recoveries and results assessed.	As per the above.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	As per the above.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	As per the above.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	As per the above
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	As per the above.

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

	The total length and percentage of the relevant intersections logged.	As per the above.
	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as this public report does not refer to the results of drilling activity.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	As per the above.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The CP believes that the sample preparation technique used was appropriate for the early stage of exploration of the project.
Sub-sampling techniques and sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The CP is not aware of the QAQC procedures applied, but assumes that industry standard protocols were followed in preparation of rock samples.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	The CP is not aware of the exact procedures undertaken, but rock sampling exercises in general are meant to determine the presence or the absence of the mineralisation only. The CP cannot determine the QAQC protocols which were employed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The CP is not aware of the details of the grain size and cannot comment on the grain size vs the material being sampled.

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were submitted to Ultra Trace PTY LTD, where the samples were sorted and dried. Entire sample was crushed and pulverised. A 40g portion of the sample was analysed by Fire Assay process for gold, Platinum and Palladium. Au Pt and Pd was determined by Inductively Coupled Plasma (ICP), Optical Emission Spectrometry. The samples have been digested by a mixture of acids which reflect a total digest of the sample methodology.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	There was no reliance on such tools.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The CP is not aware of the QAQC procedures employed or adopted by the sampling teams, nor of the internal procedures employed by the laboratory.

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

	The verification of significant intersections by either independent or alternative company personnel.	The Company has not conducted any independent verifications of the samples reported in this release, nor is it aware of any other independent verifications.
Verification of sampling and assaying	The use of twinned holes.	Not applicable.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	The CP is not aware of the primary data sampling protocols. The data presented in the release was derived from historical reports submitted to government agencies.
	Discuss any adjustment to assay data.	There was no adjustment of assay data.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Not applicable as this release does not report on the estimation of a mineral resource.
Location of data points	Specification of the grid system used.	Positions were noted in the. GDA94 / MGA zone 51 EPSG:28351
	Quality and adequacy of topographic control.	Not considered relevant, as the release does not refer to any resources statement.

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

	Data spacing for reporting of Exploration Results.	Not considered relevant, as the release does not refer to any resources statement.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as this release does not report on the estimation of a mineral resource.
	Whether sample compositing has been applied.	Not applicable.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Not applicable as the surface sampling referred to herein is point data and therefore does not have an orientation.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As per the above.
Sample security	The measures taken to ensure sample security.	The CP is not aware of procedures which, if any, may have been employed to ensure sample security.

JORC Code, 2012 Edition Table 1. This table applies to the Boodalyerrie permit in Australia.

Section 1: Sampling Techniques and Data

Audits or reviews

The results of any audits or reviews of sampling techniques and data.

To date no audits have been undertaken.

JORC Code, 2012 Edition Table 1. This table applies to Boodalyerrie permit in Australia Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Boodalyerrie Project is owned by Pacton Gold (TSX-V: PAC), whom in turn have optioned 75% of the project area to Pilbara Gold Corporation Pty Ltd. Pilbara Gold Corporation have optioned 100% of their interests under their agreement with Pacton to Raiden Resources
		The project is held under an exploration license # E45/3586.
		The property is subject to a 1% net smelter royalty on gold to the original vendors.
Mineral tenement and land tenure status		Upon the delineation of a mineral resource in accordance with the JORC 2012 Guidelines (or other globally recognised Code) of at least 250,000oz Au at a minimum grade of 1g/t Au, Pacton Gold Inc will be required to enter into a joint venture. Pacton Gold Inc can contribute proportional to their respective equity interest or dilute to a 1% net smelter royalty.
		The Company has not completed a detailed review of native title interests, historical sites, wilderness, national park, or environmental settings. The company will undertake these reviews in the future.

JORC Code, 2012 Edition Table 1. This table applies to Boodalyerrie permit in Australia Section 2 Reporting of Exploration Results

The security of the tenure held at the time of reporting along with The CP believes that the permits are currently in any known impediments to obtaining a licence to operate in the good standing and the Company is not aware of any impediments which may impact its ability to operate area. within the area. The Company plans to undertake a further detailed due diligence exercise to evaluate the validity of the permits. Acknowledgment and appraisal of exploration by other parties. Early prospecting and small scale mining on the project area is recorded in the periods between 1901-1904 and 1909-1910. Later in 1954 small scale prospecting is noted on the Golden Granite mine. In 1988 some prospecting has been noted in the historical records, while in the southern part of the permit, Homestake Australia LTD conducted a rock chip sampling program. Exploration done by other parties Exploration by the Plenty River Mining Company in 1995 resulted ina further rock sampling program and a stream sediment sampling program. Further work by Plenty River corporation LTD and later work by Murilla Exploration PTY LTD included further stream sediment sampling, rock sampling, aerial photography, Landsat ETM, RADARSAT, Aeromagnetic survey, Radiometric Survey interpretations as well as Geological mapping.

JORC Code, 2012 Edition Table 1. This table applies to Boodalyerrie permit in Australia Section 2 Reporting of Exploration Results

Geology	Deposit type, geological setting and style of mineralisation.	The Boodalyerrie tenement hosts over 20 km of strike length along the contact of Fortescue Group rocks that unconformably overlie the tonalite pluton. The Fortescue Group Mount Roe formation and the directly overlying Kylena basalt are present. The Company believes the project is hosted in an orogenic type gold environment.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Assay results and sample locations referred to in this public release are presented in Figures 4 and Appendix 3.
Drill hole Information	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and 	Any grade information reported in this release is considered useful, qualitative information by the CP. The data is suitable for planning of additional work that will assist to evaluate further drill decision. The data available is insufficient to be included in a mineral resource. No metal equivalent formulas

procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown

JORC Code, 2012 Edition Table 1. This table applies to Boodalyerrie permit in Australia

Section 2 Reporting of Exploration Results

	in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	were used in reporting of any historical intercepts, or results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Not applicable as this public release does not report on the results of drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	No significant discovery is being reported in this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting in this public release refers to only the results of the rock sampling program. The historical production figures and the release cannot be verified and should not be relied upon to act as a guide of any potential resource grades. The CP is of the opinion that further analysis of the data and field verifications are required to determine the full

JORC Code, 2012 Edition Table 1. This table applies to Boodalyerrie permit in Australia Section 2 Reporting of Exploration Results

		potential of the project. Further data analysis and interpretation may result in the definition of new target areas, or relegation of the current ones.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Further information presented is on the basis of a remote sensing study which was conducted over the project area. The CP considers this data to be of an indicative nature only and not in any way indicative of the potential or the absence of mineralisation.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Company shall determine the follow up program on the project area on completion of the due diligence period as defined under the terms of the agreement with the vendors.

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

Criteria	JORC Code Explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	The nature of the samples being reported are diamond core samples, RC drilling chips and RAB chips.
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	From drill hole A1RC1-A1RC8 and B1RC136-160 O ne metre samples were collected from the drillholes via a cyclone and split using a 75- 25 riffle splitter, drill spoils were placed on the ground in one metre piles, assay samples were placed in calico bags and submitted to ALS laboratories in Perth. Individual sample weight was approximately 4kg. For the remainder of the quoted drilling, the CP is not aware of any measures which may or may not have been taken. The CP recommends that a detailed review of all historical data is undertaken during the due diligence period.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	From drill hole A1RC1-A1RC8 and B1RC136 160 one metre samples were collected from the drillholes via a cyclone and split using a 75- 25 riffle splitter, assay samples were placed in calico bags and submitted to ALS laboratories in Perth. Individual sample weight was approximately 4kg. Each sample was assayed for Ni, Cu, Ag, Co, S and Fe via method IC587 (ppm) any Ni or Cu assay greater than 10000 ppm was re-assayed by method AL 102. In

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

		addition Pt, Pd and Au were assayed via method PM223 (<0.001 ppm det limit). Internal laboratory quality control checks were within acceptable limits, no field duplicate samples were collected. For the remainder of the quoted drilling, the CP is not aware of any measures which may or may not have been taken At this time the CP does not have information in relation to the procedures used for RAB or DD drilling.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	From the historical records, it appears that a combination of RC drilling, Diamond drilling, auger drilling and RAB drilling was used. The exact diameters are not known at this time.
	Method of recording and assessing core and chip sample recoveries and results assessed.	The CP is not aware of the procedures which were used for recording and assessing sample recoveries.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The CP is not aware of measures taken to maximise sample recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The CP is not aware of any relationships which may or may not have existed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	Not relevant as this release does not refer to any mineral resource statements.

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

	Mineral Resource estimation, mining studies and metallurgical studies.	
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	The CP is not aware of logging procedures at this time.
	The total length and percentage of the relevant intersections logged.	The CP assumes that the entire intercept was logged, however he does not have this information at this time.
	If core, whether cut or sawn and whether quarter, half or all core taken.	At this time the CP does not know the procedures which was used on the core.
Sub-sampling techniques and sample	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	RC drill cuttings were laid out 'book fashion' in 1m intervals and rows of 20m. All holes were sieved into chip trays for logging. All chip trays are stored in the Radio Hill core yard
preparation		
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The CP does not have access to all the sample preparation techniques which were employed during the various drilling campaigns, however one of the reported campaigns quoted the following procedure; Drill cuttings / samples were collected in metre intervals via a cyclone and split using a 75:25 riffle splitter. 3 – 5 kg samples, either single metre or composited over a 4m interval, were submitted to Australian Laboratory

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

	Services (ALS) for analysis and the remainder laid out book fashion as 1m intervals in rows of 20. Analysis was undertaken at ALS, Perth. The entire sample was prepared. Analytical schemes and detection limits as follow ME-ICP61 (formerly IC587) four acid digestion, HF-HNO3-HCLO4 acid digestion, HCl leach and ICP - AES, detection limits in brackets. Cu (5ppm), Ag (1ppm), Co (5ppm), Ni (5ppm), S(10ppm) and Fe (0.01%). Copper and nickel values in excess of 1% were re assayed via analytical schemes AA46 (formerly A101) and AA62 (formerly A102) with detection ranges of 1- 10,000ppm and 100ppm-30% respectively. 22 PGM-MS27 (formerly PM223). Nominal sample weight 30g – fire assay. Pt, Pd and Au (0.01ppm).
Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The CP is not aware of the QAQC procedures applied.
Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	The CP is not aware of the exact procedures undertaken, and the CP is not aware of the QAQC protocols which were employed.
Whether sample sizes are appropriate to the grain size of the material being sampled.	The CP is not aware of the details of the grain size and cannot comment on the grain size vs the material being sampled.

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Complete information was not available to the CP for all the campaigns which were undertaken. It should be noted that this information is only being used to infer the prospectivity of the project area and not report on any mineral resource statements at this time.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	There was no reliance on such tools on any of the elements in this reported on in this public release.
Quality of assay data and laboratory tests		
	Nature of quality central procedures adopted (e.g. standards	
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The CP is not aware of the QAQC procedures employed or adopted by the sampling teams, nor of the internal procedures employed by the executing laboratory.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	The Company has not conducted any independent verifications of the samples reported in this release, nor is the CP aware of any other independent verifications.

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

	The use of twinned holes.	The CP is not aware of use of twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	The CP is not aware of the primary data collection protocols. The data presented in the release was derived from historical reports submitted to government agencies.
	Discuss any adjustment to assay data.	There was no adjustment of assay data.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Handheld GPS devices were used to site drill collars.
Location of data points		
	Specification of the grid system used.	Positions were noted in the. GDA94 / MGA zone 51
	Quality and adequacy of topographic control.	Not considered relevant, as the release does not refer to any resources statement.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Not considered relevant, as the release does not refer to any resources statement.

JORC Code, 2012 Edition Table 1. This table applies to the Mt Sholl permit in Australia.

	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as this release does not report on the estimation of a mineral resource.
	Whether sample compositing has been applied.	Yes, some of the RC drilling intervals were composited over 4m intervals, while others were sampled on 1m intervals. The CP does not have consistent data for all the drilling campaigns.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	At this time the CP is not aware of these details. Further reviews will be need to be undertaken to evaluate individual intercepts.
Orientation of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As per the above.
Sample security	The measures taken to ensure sample security.	The CP is not aware of procedures which may have been employed to ensure sample security.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The CP is not aware of any audits which may have been undertaken at this time.

JORC Code, 2012 Edition Table 1. This table applies to Mt Sholl permit in Australia Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mt Sholl Project is owned by Pilbara Gold Corporation Pty Ltd. who has optioned the property to Raiden Resources Limited. The terms of the agreement are defined in the body of this press release. The project area comprises of 2 exploration licenses which are in good standing. The 2 EL #'s are E47/4309 and E47/3468 The Company has not completed a detailed review of native title interests, historical sites, wilderness, national park, or environmental settings. The company will undertake these reviews in the future.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The CP believes that the permits are currently in good standing and the Company is not aware of any impediments which may impact its ability to operate within the area. The Company plans to undertake a further detailed due diligence exercise to evaluate the validity of the permits during the proposed due diligence period

JORC Code, 2012 Edition Table 1. This table applies to Mt Sholl permit in Australia

Section 2 Reporting of Exploration Results

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	On the M47/345 license, between 1994 and 2016 Fox Resources LTD executed the following works on the project area; During the period of tenure the project was explored using surface geochemistry (soils, auger soils, rock chip samples, MMI), airborne geophysics (AEM, TMI, RAD, DEM) and drilling (RAB, RC, Percussion, and Diamond Drilling) which resulted in the mining of a small resource which was processed as part of the mill feed at the Fox Radio Hill processing plant. On the M47/348 license over the same reporting period
Geology	Deposit type, geological setting and style of mineralisation.	The project covers part of the Western and Central Pilbara Craton immediately south of Karratha. Typical geology involves ocean-floor extrusives and volcanic rocks and sediments in the north to back-arc basin sediments, tuffs and basalts to the south. Layered mafic intrusions, such as that at Radio Hill, intrude the sequence.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth hole length.	Assay results and sample locations referred to in this public release are presented in Figures 5 and Appendix 4 and 5.

JORC Code, 2012 Edition Table 1. This table applies to Mt Sholl permit in Australia

Section 2 Reporting of Exploration Results

If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. • In reporting Exploration Results, weighting averaging The CP is not aware of the cut off grades, weighting techniques, maximum and/or minimum grade truncations (e.g. average techniques, max/min grade truncations cutting of high grades) and cut-off grades are usually Material which were used to generate the historical drill and should be stated. intercepts. This will be the focus of future and • Where aggregate intercepts incorporate short lengths of highmore detailed evaluations during the due diligence grade results and longer lengths of low grade results, the process. procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown Any grade information reported in this release is Data aggregation methods in detail. considered useful, qualitative information by the The assumptions used for any reporting of metal equivalent values CP. At this time, the CP considers that the data is should be clearly stated. suitable for planning of additional work that will lead to a drill decision. The data available is insufficient to be included in a mineral resource at this time. No metal equivalent formulas were used in reporting of any historical intercepts, or results. • These relationships are particularly important in the reporting At this time the CP is not certain whether the of Exploration Results. intercepts being presented are true widths, • If the geometry of the mineralisation with respect to the drill therefore for the purposes of this release, it is Relationship between mineralisation widths and hole angle is known, its nature should be reported. assumed that these are downhole widths and true intercept lengths If it is not known and only the down hole lengths are reported, width is not known. there should be a clear statement to this effect (e.g. 'down hole

length, true width not known').

JORC Code, 2012 Edition Table 1. This table applies to Mt Sholl permit in Australia Section 2 Reporting of Exploration Results

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Assay results and sample locations referred to in this public release are presented in Figures 3 5 and Appendix 4 and 53.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting in this public release refers to only the results of the drilling programs program and highlights the higher grade drill intercepts in the main body of the public release, the full set of intercepts is reported on in Appendix 4.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Further information and data will be reported on once the Company has had an opportunity to conduct a more detailed review of the property, including a field visit to the project. A bulk sampling / trial mining exercise was conducted on the lease. The results of this exercise will be reported on at a later date, once the Company has had the opportunity to review the project area in more detail.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Company shall determine the follow up program on the project area on completion of the due diligence period as defined under the terms of the agreement with the vendors.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

Criteria	JORC Code Explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	This public release reports on the results of a rock sampling program and 97 rock samples. The CP assumes that the samples were collected on a random pattern and in relation to outcrop availability but cannot confirm this.
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The samples were collected with the objective of defining the presence or absence of mineralisation only. The objective of the program was not to gather representative samples within the entire project area. The results from the program are not being used in any mineral resource statement and are only used by the Company as a guide to direct further exploration efforts.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The CP is not aware of the procedures which were undertaken during the rock sampling program.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Not applicable as this public report does not refer to the results of drilling activity.
	Method of recording and assessing core and chip sample recoveries and results assessed.	As per the above.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	As per the above.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	As per the above.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	As per the above
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	As per the above.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

	The total length and percentage of the relevant intersections logged.	As per the above.
	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as this public report does not refer to the results of drilling activity.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	As per the above.
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The CP is not aware of the nature, quality or the appropriateness of the sample preparation technique in relation to the reported results. The results are not being used regarding reporting on any mineral resources statements, but only as an indication on prospectivity of the project area.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The CP is not aware of the QAQC procedures applied.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	The CP is not aware of the exact procedures undertaken, but rock sampling exercises in general are meant to determine the presence or the absence of the mineralisation only. The

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

		CP is not aware of the QAQC protocols which were employed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The CP is not aware of the details of the grain size and cannot comment on the grain size vs the material being sampled.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The information was not available to the CP. It should be noted that this information is only being used to infer the prospectivity of the project area and not report on any mineral resource statements.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	There was no reliance on such tools.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The CP is not aware of the QAQC procedures employed or adopted by the sampling teams, nor of the internal procedures employed by the executing laboratory.
	The verification of significant intersections by either independent or alternative company personnel.	The Company has not conducted any independent verifications of the samples reported in this release, nor is it aware of any other independent verifications.
	The use of twinned holes.	Not applicable.
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	The CP is not aware of the primary data sampling protocols. The data presented in the release was derived from historical reports submitted to government agencies.
	Discuss any adjustment to assay data.	There was no adjustment of assay data.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Not applicable as this release does not report on the estimation of a mineral resource.
Location of data points	Consideration of the social material and	Daritica a variant and in the CDAOA / NACA = 54
	Specification of the grid system used.	Positions were noted in the. GDA94 / MGA zone 51
	Quality and adequacy of topographic control.	Not considered relevant, as the release does not refer to any resources statement.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

	Data spacing for reporting of Exploration Results.	Not considered relevant, as the release does not refer to any resources statement.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as this release does not report on the estimation of a mineral resource.
	Whether sample compositing has been applied.	Not applicable.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Not applicable as the surface sampling referred to herein is point data and therefore does not have an orientation.
Orientation of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As per the above.
Sample security	The measures taken to ensure sample security.	The CP is not aware of procedures which may have been
		employed to ensure sample security.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	To date no audits have been undertaken.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

Criteria	JORC Code Explanation	Commentary
	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Yandicoogina Project is owned by Pacton Gold (TSX-V: PAC), whom in turn have optioned 75% of the project area to Pilbara Gold Corporation Pty Ltd. Pilbara Gold Corporation have optioned 100% of their interests under their agreement with Pacton to Raiden Resources .
		The project area comprises of 164km2 exploration leases and 63ha of granted mining leases that cover the whole of the Yandicoogina Mining Center including the Uncle Tom and Black Shepherd Mine Sites.
Mineral tenement and land tenure status		The property is subject to a 1% net smelter royalty on gold to the original vendors.
		Upon the delineation of a mineral resource in accordance with the JORC 2012 Guidelines (or other globally recognised Code) of at least 250,000oz Au at a minimum grade of 1g/t Au, Pacton Gold Inc will be required to enter into a joint venture. Pacton Gold Inc can contribute proportional to their respective equity interest or dilute to a 1% net smelter royalty.
		The Company has not completed a detailed review of native title interests, historical sites, wilderness, national park, or environmental settings. The company will undertake these reviews in the future.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

Section 2: Sampling Techniques and Data

The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

The CP believes that the permits are currently in good standing and the Company is not aware of any impediments which may impact its ability to operate within the area. The Company plans to undertake a further detailed due diligence exercise to evaluate the validity of the permits during the proposed due diligence period.

Acknowledgment and appraisal of exploration by other parties.

Exploration done by other parties

Gold mining operations were first recorded from the YMC in 1897 (Ostlund, 1898) and Maitland (1905a) also briefly described the YMC. However the first detailed description of the YMC is given in Finucane who systematically sampled all accessible underground workings of the Uncle Tom and Black Shepherd gold mines. This work was confirmed with the Most gold at YMC 1939 report (Cooper et al., 2002), In 1981 Vince Roberts and Associates Pty Ltd undertook a surface sampling and geological mapping program for General Corporation of Australia collected from the Uncle Tom, Uncle Tom West, and Cyclone. 61 samples were taken approximately 2.5km East of the Uncle Tom workings at the Black Shepherd. 1:2000 scale geological mapping was also carried out during this period of time. In 1986 Growth Resources N.L. completed 7 reverse circulation percussion drill holes to a total of 322m. In 1988 Callina N.L. completed five reverse circulation drill holes (YRC-1 to YRC-5). In 1994 Compass Resources carried out a regional sampling program. A total of 66 BLEG

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

Section 2: Sampling Techniques and Data

samples were taken along with 12 rock grab samples and 33 rock chip samples. An analysis of 1:40,000 scale aerial photos were also carried out (Boots, 1994). In 1995 Compass Resources N.L. drilled 2 reverse circulation drill holes (YA 95-2 and YA 95). In 2007 and 2008, Pegasus Metal Limited conducted brief field visits to the YMC area and conducted preliminary rock chip and grab samples. In November 2009 and in January 2010, Wedge undertook field mapping and rock chip sampling in the YMC area. This work targeted the historical mine locations and old workings concentrating on the exposed quartz reefs. The rock chip samples were sourced mainly from in situ quartz reefs where possible by clearing and digging down in old trenches and shafts. The CP considers the project area prospective for Deposit type, geological setting and style of mineralisation. Geology VMS style mineralisation, as well as lode gold and hydrothermal style mineralisation. A summary of all information material to the understanding of Assay results and sample locations referred to in this the exploration results including a tabulation of the following public release are presented in Figures 3 and information for all Material drill holes: Appendix 3. o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level **Drill hole Information** in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth hole length.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Any grade information reported in this release is considered useful, qualitative information by the CP. The data is suitable for planning of additional work that will help to evaluate further drill decisions. The data available is insufficient to be included in a mineral resource. No metal equivalent formulas were used in reporting of any historical intercepts, or results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Not applicable as this public release does not report on the results of drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	No significant discovery is being reported in this release.

JORC Code, 2012 Edition Table 1. This table applies to the Yandicoogina permit in Australia.

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting in this public release refers to only the results of the rock sampling program. The QP is of the opinion that further analysis of the data and field verifications are required to determine the full potential of the project. Further data analysis and interpretation may result in the definition of new target areas, or relegation of the current ones.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Further information and data will be reported on once the Company has had an opportunity to conduct a more detailed review.
Further work		
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Company shall determine the follow up program on the project area on completion of the due diligence period as defined under the terms of the agreement with the vendors.