

ASX & Media Release 20 October 2020

ASX Symbol

GRL

Godolphin Resources Limited

3 Barrett Street Orange NSW 2800

PO Box 9497 Orange East NSW 2800 Australia

Telephone

+61 431 477145

Email

info@godolphinresources.com.au

Website

www.godolphinresources.com.au

Directors

Jeremy Read Non-Executive Chair

Ian Buchhorn Non-Executive Director

Doug Menzies Non-Executive Director

Management

David Greenwood Chief Executive Officer

Issued Capital

Fully Paid Ordinary Shares 67,975,299

Unlisted options exercisable at \$0.25 20,000,000

exercisable at \$0.20 29,260,213

ACN 633 779 950

NEW PORPHYRY SYSTEM DISCOVERED AT COPPER HILL EAST WITH HIGHLY ENCOURAGING INTERSECTION IN FIRST DRILL HOLE

- New discovery of a copper-gold porphyry system with intersection of 32m
 @ 0.29 g/t gold & 0.13% copper in drill hole CHERC012 including 12m @
 0.45 g/t gold & 0.22% copper.
- Drill holes CHERC011 & CHERC012, intersected multiple monzonites intruding volcaniclastic sediments and andesites, displaying potassic alteration, indicating the holes intersected the periphery of a porphyry-related copper-gold mineralisation.
- Follow up drilling will commence in early November 2020 in order to vector in to the core of the main mineralised porphyry.

Summary

Godolphin Resources Ltd ("Godolphin"- ASX: GRL) is pleased to report that recent RC drilling at the Copper Hill East (CHE) Project has intersected a newly discovered coppergold porphyry mineralised hydrothermal system.

The Phase 1 RC drill programme recently completed two drill holes (CHERC011 & CHERC012) targeting magnetic anomalies with coincident gold/copper in soils at the Turrawonga prospect in the north of the Copper Hill East exploration licence.

Results have now been received for drill holes CHERC011 and CHERC012 with a best intersection in CHERC012 which reported 32 metres @ 0.29g/t gold & 0.13% copper & including 12m @ 0.45g/t gold & 0.22% copper.

Both drill holes intersected volcaniclastic sediments, andesites and conglomerates with multiple monzonite intrusions. The holes display extensive areas of sulphidation containing abundant pyrite (up to 4%) over broad intervals. CHERC012 intersected zones of chalcopyrite which correlate with the monzonite intrusive rocks.

CHERC011 & CHERC012 have intersected a pyrite halo and localised areas of potassic alteration, characterised by K-feldspar and magnetite, which typically indicates close proximity to a porphyry-related copper-gold style mineralisation. The assay results are extremely encouraging and will be followed up by further drilling in early November 2020.

Godolphin's CEO – David Greenwood commented:

"The results from the first two holes at the Turrawonga prospect suggest we are on the margins of a copper-gold porphyry system and as such this is a new discovery within the Molong Volcanic Belt which also hosts the Boda discovery to the north. We are moving quickly to follow up these initial encouraging results with three deeper holes with the objective of vectoring into the core of the porphyry system."

Copper Hill East – EL8556 (GRL 100% ownership)

The highly prospective Copper Hill East (CHE) Project is located 35 km north of Orange in the Molong Volcanic Belt. The 2019 Boda porphyry gold-copper discovery by Alkane Resources Ltd, is located approximately 60 km to the north of CHE and highlights the potential of this area due to its similar geological setting. Newcrest's giant Cadia-Ridgeway operation is located approximately 55 km to the south.

Figure 1: Target areas-soil and magnetic anomalies Copper Hill East

Drill chips from CHERC011 also exhibit the presence of hematite altered monzonite, however, the number intrusions are not as great as that intersected in drill hole CHERC012.

Due to the significance of these initial results at the Turrawonga prospect, Godolphin has expedited follow up drilling with three further holes to be drilled with the objective of vectoring into the core of the porphyry system. This follow up drilling is scheduled to commence in early November.

Phase 1 drill programme

The Phase 1 RC drill program at CHE was completed in September 2020, testing the **gold-copper-in-soil and magnetic anomalies** in the north of CHE (Figure 1) for porphyry gold-copper style mineralisation (two drill holes).

Assay results have now been received for the two RC drill holes (CHERC011 and 12) in the northern copper-gold area, the Turrawonga prospect. The drill results include a very significant assay result of **32m @ 0.29g/t gold** and **0.13% copper from 210 metres in CHERC012 including 12m @ 0.45g/t gold** and **0.22% copper from 230m**. Results from drill holes CHERC011 and CHERC012 are detailed in Appendix 2 and critical results from CHERC012 highlighted in Table 1 and Figure 3 which shows a cross section through the drill hole.

Drill chips from CHERC012 exhibit multiple monzonites which have intruded volcaniclastic sandstone and andesite of the Fairbridge Volcanics. These intrusions exhibit a moderate to strong hematite dusted feldspathic matrix, and locally K-feldspar and magnetite alteration with moderate guartz vein development, indicative of а high temperature porphyry-proximal environment. Chalcopyrite occurs disseminated in the monzonite and on fractures. The occurrence of high temperature K-feldsparmagnetite alteration, along with disseminated and quartz vein hosted chalcopyrite ± bornite, indicates that CHERC012 has intersected a fertile porphyry-related hydrothermal system.

Figure 2: Plan showing drill hole locations

Hole id From		То	Au nom	Ag nom	Ac nom	Cu nnm	Mo nom
Hole_lu	FIOIII	10	Au_ppin	Ag_ppin	As_ppin	cu_ppm	NO_ppin
CHERC012	210	212	0.48	0.33	8.2	<u>1</u> 880	12.7
CHERC012	212	214	0.21	0.14	9.8	694	4.7
CHERC012	214	216	0.29	0.25	8.8	1150	6.3
CHERC012	216	218	0.12	0.11	9.2	475	7.1
CHERC012	218	220	0.13	0.11	9.4	490	5.7
CHERC012	220	222	0.39	0.52	7.2	1 750	16.6
CHERC012	222	224	0.11	0.14	6.2	574	2.5
CHERC012	224	226	0.2	0.2	7.2	910	5.2
CHERC012	226	228	0.02	0.04	7.2	157	2.2
CHERC012	228	230	0.01	0.1	11	136	4.7
CHERC012	230	232	<mark>0</mark> .35	0.4	11.4	1 490	2
CHERC012	232	234	0.55	0.93	13.6	2930	1.5
CHERC012	234	236	0.84	1.09	12	4120	1.6
CHERC012	236	238	0.5 <mark>2</mark>	0.77	8	266 <mark>0</mark>	3.8
CHERC012	238	240	0.06	0.19	10.4	602	3.9
CHFRC012	240	242	0 36	0.26	9.8	1190	65

Table 1: Table of critical results in CHERC012

Figure 3: Cross section through CHERC012

About Godolphin Resources

Godolphin Resources ("Godolphin" – ASX: GRL) is an ASX listed resources company, with 100% controlled Australianbased projects in the Lachlan Fold Belt (LFB) of NSW, a world-class gold-copper province. Currently the Company's tenements cover 3,200km² of highly prospective ground focussed on the Lachlan Transverse Zone, one of the key structures which controlled the formation of gold and copper deposits within the LFB, the Godolphin Fault and the Molong Volcanic Belt. The Gundagai projects are associated with a splay off the Gilmore Suture, a major structure which has influenced the locations of gold-copper mines in NSW. The Orange-based Godolphin team is rapidly and rigorously exploring its tenement package with focussed, cost effective exploration leading to systematic drill programmes.

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit godolpinresources.com.au or contact:

David Greenwood CEO Godolphin Resources Limited Tel +61 438 948 643

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Johan Lambrechts, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Lambrechts is a full-time employee of Godolphin Resources Limited, a shareholder, and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Lambrechts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 All holes were sampled on a 2 meter down hole interval basis. Each 1m interval was split using a conical splitter resulting in a smaller 2-4kg and larger 20-25kg sample. When using 2m composites, the assay sample from each 1m interval were combined. A representation of the rock chips from each 1m interval was also collected and stored in RC chip trays for later use. Each interval was scanned with a Niton XRF scanner and the data recorded. <u>NOTE: The XRF scanner does not record gold values and the data collected was not used for reporting purposes</u>, but rather to inform the geologist of potential increase of trace element values, which in turn help prevent the potential of stopping the hole in unseen mineralization. The XRF data can also be useful in rock classification. All sampling lengths and other logging data was recorded in GRL's standard sampling record spreadsheets. Data includes from and to measurements, colour, lithology, magnetic susceptibility, structures etc. Visible sulphide content was logged as well as alteration and weathering. Industry standard practice was used in the processing of samples for assay, with 1-2m intervals of RC chips collected in green plastic and calico bags.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details. 	 In this program, reverse circulation (RC) drill holes were used. Hole dip was 60°. RC drilling was performed with a face sampling hammer (bit diameter between 4½ and 5 ¼ inches) and samples were collected by a cone splitter.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 RC chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was high. All samples (apart from the first interval) were dry as a result of appropriate air pressure and volume and the lack of major ground water. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, using water injection at times of reduced air circulation, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 The drill chips were geologically logged at 1m intervals with detailed recording of lithology, alteration, mineralisation and other observations such as colour, moisture and recovery. Drill chips were collected and sieved before being placed into reference chip trays for visual logging at 1m intervals. Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling practices. A small selection of representative chips were collected for every 1 meter interval and stored in chip-trays as well as a representative split of mineralised areas stored for potential future use.
Sub- sampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 2m composite samples were recovered using a rig mounted cone splitter and 50;50 riffle splitter during drilling into a calico sample bag. Sample target weight was between 2 and 3kg. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream at regular intervals and also at specific intervals based on the geologists discretion. Standards were quantified industry standards. Duplicate samples were taken using the same sample sub sample technique as the original sub sample and inserted at the geologists discretion. Sample sizes are appropriate for the nature of mineralisation.

Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All GRL samples were submitted to Bureau Veritas laboratories in Adelaide. The samples were sorted, wet weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been analysed by Firing a 50 g (approx) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. Au1, Pd, Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. GRL also inserted QAQC samples into the sample stream as mentioned above. All of the QAQC data has been statistically assessed and if required a batch or a portion of the batch may be re-assayed. (no re-assays required for the data in the release).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. GRL also inserted QAQC samples as mentioned above All of the QAQC data has been statistically assessed. GRL has undertaken its own further review of QAQC results of the BV routine standards through a database consultancy, 100% of which returned within acceptable QAQC limits. This fact combined with the fact that the data is demonstrably consistent has meant that the results are considered to be acceptable and suitable for reporting.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Collar Survey Collars were surveyed to within 10cm accuracy using a Trimble GPS. Down Hole Survey Down hole surveys were conducted using a Reflex down hole camera lowered within the rods and readings for azimuth and dip taken at 30m intervals. A stainless-steel rod was used in the drill string allowing for accurate recording.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The holes reported in this report are the first drilled in this prospect.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	These are the first drill holes in this prospect and thus their orientation w.r.t. the mineralization is not known.
Sample security	The measures taken to ensure sample security.	 All samples were collected and accounted for by GRL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Orange from logging site by GRL employees/ consultants and submitted directly to the lab.

		• The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.	
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No Audits have been conducted on the historic data to our knowledge.	

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 <u>Copper Hill East</u> The Copper Hill is comprised of tenement EL8556 located approximately 12 Km north-west of the town of Molong and 25 km north of Orange in central NSW. Access to the area is by sealed and gravel roads and a network of farm tracks from the towns of Cumnock, Molong and Orange and has an elevation of between 400m and 600m above sea-level. The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration license EL8556. Security of \$10,000 is held by the Department of Planning and Environment in relation to EL8556
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	See appendix 1
Geology	Deposit type, geological setting and style of mineralization.	Copper Hill East Geology The northern portion of the tenure straddles the Molong Volcanic Belt of the Ordovician Macquarie Arc and comprises of the Ordovician rocks of the Fairbridge Volcanics and Oakdale Formation. The units strike north-south and dip and young to the west. The Fairbridge Volcanics represent Phase 2 magmatism of the Macquarie Arc and, in the Molong region, show a well-defined upwards compositional change from medium and high-K calc-alkaline andesitic and basaltic volcaniclastics and lavas at the base, through pillowed high-K calc-alkaline to shoshonitic basalts and basaltic andesites. At the Copper Hill prospect, located just to the south west of Copper Hill East (EL8556), the Fairbridge Volcanics are intruded by the Phase 3 Copper Hill intrusive dacite complex. The southern portion of the tenement is made up of the Late Ordovician Oakdale Formation which occurs towards the west of the tenure. This unit consists of mafic to intermediate, cherty and volcaniclastic siltstones and sandstones, intercalated with lesser lavas, intrusives, volcaniclastic conglomerates of mass flow origin and minor chert and black shale. The sequence is interpreted as being deposited in a relatively deep basin environment. The youngest unit within the tenement is the Devonian Cunningham Formation (Dn) located to the east forming the final phase of infill of the Hill End Trough

Criteria	JORC Code explanation	Commentary										
Drill hole	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 		HoleID	Hole_ Type	Depth	LeaseID	OrigGridID	MGA_ East	MGA_ North	MGA RL	Dip	MGA Azi
mormation			CHERC012	RC	324	EL8556	MGA94_55	675698	6356804	517	-60	100
			CHERC011	RC	252	EL8556	MGA94_55	675660	6357064	544	-60	56
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	•	No grade aç	ggregation,	weighting,	or cut-off me	ethods were use	ed for this an	nouncement			
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Early stage exploration means that these relationships are unknown										
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	•	Maps incorp	porated into	the annou	ncement.						
Balanced	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of	Not applicable to this report.										
reporting	both low and high grades and/or widths should be practiced to avoid misleading reporting of Results.	All results are reported in the test or in the associated appendices.										
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	GRL have completed soil geochemical sampling as well as a ground magnetic study on this prospect.										
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	•	Currently ur	nder assess	sment. Follo	ow-up work i	s required, as n	nentioned in	body of the a	announce	ment.	

Appendix 2.7	Table of assay	data for the	northern	Cu/Au	area
--------------	----------------	--------------	----------	-------	------

Hole id	From	То	Au nnm	Ag nnm	As nnm	Cu nnm	Mo nnm	Zn nnm	Ph_nnm
CHERCO11	0	2	0.18	0.14	19.8	542	2.9	78	25
CHERCO11	2	4	0.15	0.13	19.6	394	2.6	40	2:5
CHERC011	4	6	0.04	0.08	14.8	181	2.6	58	2
CHERC011	6	8	0.05	0.09	16.8	241	4.2	304	3.5
CHERCO11	8	10	0.03	0.06	17.2	192	2	90	2
CHERCO11	10	12	0.03	0.06	18.6	154	33	60	2
CHERCO11	12	14	0.03	0.00	13.2	194	2.4	74	15
CHERCO11	1/	14	0.03	0.05	19.2	134	7 1	58	1.5
	14	10	0.07	0.10	20.2	202	2.2	16	2
	10	20	0.03	0.15	20.2	149	3.2	40 E4	2.5
	10	20	0.04	0.08	27	224	1.0	54	2.5
CHERCOI1	20	22	0.05	0.1	20.2	234	1.8	52	2.5
CHERCOIL	22	24	0.02	0.04	12.4	124	1.9	54	2
CHERCOIL	24	26	0.03	0.07	14	138	1.9	62	2
CHERCOIL	26	28	0.02	0.05	10.2	144	1.8	58	2
CHERC011	28	30	0.02	0.04	11.8	104	1.3	52	1.5
CHERC011	30	32	0.02	0.04	14	117	1.4	60	1.5
CHERC011	32	34	0.01	0.05	15.4	152	1.2	54	1.5
CHERC011	34	36	0.01	0.03	10.4	36.5	1.6	92	1.5
CHERC011	36	38	0.13	0.11	12.6	250	1.3	88	2
CHERC011	38	40	0.06	0.08	11.4	266	1.3	60	2
CHERC011	40	42	0.02	0.04	11.8	102	1.4	62	2
CHERC011	42	44	0.02	0.04	9.8	81	5.9	84	2
CHERC011	44	46	0.02	0.03	11.4	109	2.4	70	2
CHERC011	46	48	0.02	0.11	12.6	254	1.8	68	2
CHERC011	48	50	0.01	0.04	14.4	134	1.5	84	2.5
CHERC011	50	52	0.01	0.04	16.2	74.5	1.5	70	2
CHERC011	52	54	0.02	0.04	14	149	1.8	62	1.5
CHERC011	54	56	0.01	0.07	15.8	93	1.8	82	2
CHERC011	56	58	0.01	0.07	20.8	48	1.5	60	1.5
CHERC011	58	60	0.01	0.04	14	112	2.6	64	2
CHERC011	60	62	0.02	0.11	22.4	209	1.8	80	2.5
CHERC011	62	64	0.01	0.07	15	84.5	1.6	54	2
CHERC011	64	66	0.01	0.04	12.8	90.5	1.1	58	2
CHERC011	66	68	0.01	0.05	11.4	62	1.2	58	2
CHERC011	68	70	0.01	0.06	11.8	177	1.2	62	2.5
CHERC011	70	72	0.01	0.06	12.4	187	1.1	76	2.5
CHERC011	72	74	0.02	0.08	13.6	181	1.1	82	2.5
CHERC011	74	76	0.01	0.06	15	198	1.9	56	2.5
CHERC011	76	78	0.02	0.12	15.8	209	2.7	62	2.5
CHERCO11	78	80	0.01	0.09	14	170	3.8	92	2.5
CHERCO11	80	82	0.01	0.03	16.2	174	4.5	62	2.5
CHERCO11	82	84	0.02	0.07	17.2	154	63	60	3
CHERCO11	8/	86	0.02	0.07	9.8	136	1.9	96	5
CHERCO11	86	88	0.02	0.05	10 /	105	1.5	7/	
CHERCO11	88	90	0.01	0.00	10 /	15/	1.5	68	3.5
CHERCO11	۵0 ۵0	20	0.02	0.05	1/ 6	124	2.1	Q17	6
CHEPCO11	- 50 - 02	92	0.02	0.08	12.6	124	1 5	262	35
CHEPCO11	92	94	0.02	0.07	10.6	112	1.J 2	166	3.5
	94	00	0.01	0.00	15.0	106	17	172	3
	90	30	0.02	0.05	11.2	167	1./	7/2	3
	30	10	0.02	0.07	11.2	107	1.5	120	3
	100	10	0.01	0.07	20.8	132	3.3	120	3
CHERCUII	102	10	0.01	0.05	10.0	111	2.2	80	2.5
	104	10	0.02	0.05	26.6	116	2.1	/0	2.5
CHERCUII	106	10	0.01	0.05	23.8	139	2	/4	2.5
CHERCU11	108	11	0.01	0.06	19.4	138	1.2	80	3
CHERCO11	110	11	0.01	0.05	22.2	115	1.2	62	2.5
CHERC011	112	11	0.01	0.04	17	112	1	58	2.5
CHERC011	114	11	0.02	0.07	16.4	175	1.1	74	3
CHERC011	116	11	0.02	0.05	18.4	140	1.6	72	3
CHERC011	118	12	0.03	0.06	24	125	1.4	68	3
CHERC011	120	12	0.03	0.04	28.4	42.5	1.5	80	3
CHERC011	122	12	0.03	0.05	26.2	141	1.4	72	3
CHERC011	124	12	0.03	0.04	27.4	80.5	2	60	3.5

Hole_id	From	То	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Mo_ppm	Zn_ppm	Pb_ppm
CHERC011	126	12	0.03	0.05	25.2	62.5	1.7	68	3.5
CHERC011	128	13	0.04	0.11	21.8	134	1.6	74	3.5
CHERC011	130	13	0.03	0.1	21.6	115	1.7	70	3
CHERCO11	132	13	0.03	0.08	21.0	158	1.5	80	3
	124	10	0.03	0.08	11.4	141	1.5	80	25
CHERCOIL	134	13	0.01	0.04	11.4	141	1.2	80	2.5
CHERC011	136	13	0.01	0.06	12	113	0.9	64	2.5
CHERC011	138	14	0.01	0.1	14	123	1.2	90	3
CHERC011	140	14	0.01	0.05	23.6	106	1	68	2
CHERC011	142	14	0.01	0.04	16.6	84.5	0.8	56	1.5
CHERC011	144	14	0.01	0.05	15	125	1.1	82	2
CHERC011	146	14	0.03	0.11	19.2	145	14	68	3
CHERCO11	1/10	15	0.03	0.11	10.4	70	1	54	2
	150	15	0.01	0.03	10.4	102	0.7	54	1 Г
CHERCUII	150	15	0.01	0.04	9.4	103	0.7	50	1.5
CHERC011	152	15	0.01	0.06	11.2	119	1.1	62	2
CHERC011	154	15	0.02	0.05	11.8	118	1.1	60	2.5
CHERC011	156	15	0.01	0.07	11.8	109	0.9	68	2
CHERC011	158	16	0.01	0.06	11.2	106	1	78	2.5
CHERC011	160	16	0.01	0.08	13.2	191	1	78	3
CHERC011	162	16	0.01	0.08	10	149	0.9	94	2
CHERCO11	164	16	0.01	0.00	11.2	115	1	70	15
	104	10	0.01	0.2	11.2	211	1	70	1.5
CHERCO11	100	16	0.01	0.37	15.4	111	0.9	80	1.5
CHERC011	168	17	0.01	0.14	11.4	170	1	76	2
CHERC011	170	17	0.01	0.12	10.4	123	1.1	82	2
CHERC011	172	17	0.01	0.07	10.8	94	1	78	2.5
CHERC011	174	17	0.01	0.14	10.4	110	1.9	84	2.5
CHERC011	176	17	0.01	0.08	11.6	115	1.3	96	2.5
CHERCO11	178	18	0.01	0.08	9.8	122	13	110	2.5
	190	10	0.01	0.08	14	122	1.5	110	2.5
CHERCOII	100	10	0.01	0.08	14	138	1.1	102	3
CHERCUII	182	18	0.01	0.12	10.6	121	1.4	102	4
CHERC011	184	18	0.01	0.07	9.4	118	1.1	104	2.5
CHERC011	186	18	0.07	0.15	12.2	175	1.1	98	4
CHERC011	188	19	0.13	0.11	7	117	1	92	3
CHERC011	190	19	0.18	0.09	8	134	1.1	100	3.5
CHERC011	192	19	0.1	0.21	15.2	79	1.5	92	5
CHERC011	194	19	0.04	0.08	9.2	122	13	106	35
CHERCO11	196	10	0.01	0.03	7.2	118	1 1	108	2
	100	20	0.01	0.05	9.2	124	1.1	100	2
CHERCUII	198	20	0.01	0.09	8.2	124	1.2	120	3
CHERC011	200	20	0.01	0.05	6	126	0.8	102	3
CHERC011	202	20	0.01	0.04	10.4	118	0.7	94	2.5
CHERC011	204	20	0.01	0.06	15.6	108	0.7	88	2.5
CHERC011	206	20	0.01	0.05	12.8	75.5	0.7	94	3
CHERC011	208	21	0.01	0.04	16.8	50	0.9	90	3
CHERC011	210	21	0.01	0.03	13.8	63	1	92	2.5
CHERC011	212	21	0.01	0.03	12.8	55	0.9	96	25
CHERCO11	21/	21	0.01	0.05	0.2	121	0.5	02	2.5
	214	21	0.01	0.05	26.9	131	1.2	120	1 E
	210	21	0.01	0.45	20.0	125	1.5	120	1.5
	218	22	0.01	0.15	13.8	298	1	90	3.5
CHERC011	220	22	0.01	0.1	13.6	89	1	100	3
CHERC011	222	22	0.01	0.07	29.6	109	1.4	120	2
CHERC011	224	22	0.01	0.09	12.6	76.5	0.8	120	3
CHERC011	226	22	0.01	0.09	10.2	106	0.7	112	2.5
CHERC011	228	23	0.01	0.22	8.8	126	0.8	102	2.5
CHERC011	230	23	0.01	0.08	15.4	111	1.1	100	3
CHFRC011	232	22	0.01	0.17	13.4	97	1 1	86	2
CHERCO11	224	22	0.05	0.07	6	9/	0.5	04	2
	234	20	0.00	0.07	0 /	104	1.0	100	י ר בי
	230	23	0.01	0.07	8.4	104	1	100	2.5
CHERC011	238	24	0.01	0.09	7.6	/1	0.9	92	3
CHERC011	240	24	0.01	0.09	6.8	75	0.9	104	2.5
CHERC011	242	24	0.01	0.07	6.4	111	0.9	100	2.5
CHERC011	244	24	0.01	0.06	6	83	0.8	100	2
CHERC011	246	24	0.01	0.1	11.4	93.5	1	100	2.5
CHERC011	248	25	0.01	0.09	10.6	98	1.3	98	3
CHERCO11	250	25	0.01	0.07	10	80 5	0.9	82	2
CHERCO12		25	0.01	0.07	61	100	0.5	70	25
	2	~	0.03	0.03	0.4	195	0.5	10	2.5
	2	4	0.01	0.08	3.8	081	0.9	48	2
CHERC012	4	6	0.02	0.05	5.4	194	0.8	46	2

Hole id	From	То	Au ppm	Ag ppm	As ppm	mag uD	mag oM	Zn ppm	Pb ppm
CHERC012	6	8	0.02	0.06	6.8	147	1	38	2
CHERCO12	8	10	0.02	0.06	10.6	155	1 3	48	2.5
	10	10	0.02	0.00	£ 0	155	1.5	40	2:5
CHERCO12	10	12	0.05	0.04	0.0	105	0.9	44	2
CHERC012	12	14	0.22	0.1	7.2	284	0.9	46	2
CHERC012	14	16	0.05	0.05	5.4	176	0.9	46	2
CHERC012	16	18	0.01	0.03	9	95	0.8	50	2
CHERC012	18	20	0.03	0.05	5.6	139	1.5	38	2
CHERC012	20	22	0.03	0.04	5.4	174	0.9	48	2
CHERC012	22	24	0.02	0.09	7.8	144	1.3	38	2.5
CHERCO12	24	26	0.01	0.19	9.8	56	15	56	5
	26	20	0.01	0.13	5.0	95.5	2.4	44	25
	20	20	0.01	0.11	11.2	65.5	2.4	20	2.5
CHERCUIZ	28	30	0.01	0.09	11.2	00	2.0	38	2.5
CHERC012	30	32	0.01	0.13	5.4	67	2.2	40	2.5
CHERC012	32	34	0.01	0.14	8.2	48	1.9	44	3
CHERC012	34	36	0.01	0.15	5	43	1.3	36	2
CHERC012	36	38	0.02	0.07	5	104	1.5	66	2
CHERC012	38	40	0.02	0.08	4.8	169	0.7	70	2.5
CHERC012	40	42	0.02	0.06	4.6	101	1.1	46	1.5
CHERC012	42	44	0.01	0.08	5.6	189	14	70	2
	14	46	0.01	0.08	5.0	167	1.1	10	2
CHERCO12	44	40	0.01	0.08	5.4	107	1.5	44	2
CHERCUIZ	46	48	0.01	0.07	5.4	128	1	48	2
CHERC012	48	50	0.02	0.08	8.8	218	1.3	68	2
CHERC012	50	52	0.02	0.08	5.6	119	1.6	44	1.5
CHERC012	52	54	0.03	0.09	5.4	185	1.4	34	1.5
CHERC012	54	56	0.02	0.11	7.4	99	1.6	42	3
CHERC012	56	58	0.02	0.08	5	174	1.4	46	2
CHERC012	58	60	0.01	0.1	5.6	113	3.8	36	2
CHERC012	60	62	0.02	0.12	5.2	93.5	3.3	36	2.5
CHERC012	62	64	0.01	0.1	54	145	16	40	25
CHERCO12	64	66	0.01	0.08	6.8	1/1	1.0	18	2.5
	66	60	0.01	0.08	0.8 C 0	140	1.2	-+0 E 0	2.5
CHERCO12	00	00	0.01	0.04	0.8	140	1.0	58	2
CHERC012	68	70	0.01	0.06	9.4	8/	1.6	42	2.5
CHERC012	70	72	0.02	0.34	10.8	78	1.6	34	2.5
CHERC012	72	74	0.01	0.1	9.8	77	2	50	2
CHERC012	74	76	0.01	0.14	9.4	185	2	32	2
CHERC012	76	78	0.02	0.08	6	197	2.1	36	2
CHERC012	78	80	0.04	0.07	3.8	417	1.6	28	1.5
CHERC012	80	82	0.21	0.17	4.2	1210	3	26	2.5
CHERC012	82	84	0.09	0.14	4.4	661	2.3	30	3
CHERC012	84	86	0.04	0.2	44	534	74	32	35
CHERCO12	86	88	0.01	0.1/	3.8	401	2.4	36	2
	00	00	0.05	0.14	5.0	401	2.4	20	2
CHERCO12	00	90	0.1	0.22	5.0	697	0.9	32	2
CHERC012	90	92	0.03	0.33	9	350	b.2	30	3
CHERC012	92	94	0.03	0.27	8	309	4	32	3.5
CHERC012	94	96	0.01	0.04	8.4	61	1.1	32	2
CHERC012	96	98	0.05	0.07	6.8	628	1.5	70	2.5
CHERC012	98	10	0.06	0.18	6.8	918	1.2	30	3.5
CHERC012	100	10	0.02	0.12	7.6	546	1.9	28	3
CHERC012	102	10	0.01	0.13	5.8	214	1	32	2.5
CHERC012	104	10	0.01	0.21	5.8	322	1.6	30	3
CHERCO12	106	10	0.01	0.12	5.6	280	1.6	50	25
CHEPCO12	100	11	0.01	0.13	7	10/	1.0	16	2.5
	110	11	0.01	0.11	/	134 F74	1.0	40	2.3
CHERCU12	110	11	0.02	0.27	11.8	5/4	14.4	44	2.5
CHERC012	112	11	0.01	0.22	9	339	8./	44	2.5
CHERC012	114	11	0.01	0.08	7.8	222	5.1	118	2
CHERC012	116	11	0.3	0.17	7.4	586	60.1	50	2
CHERC012	118	12	0.04	0.12	7	446	10.8	44	2
CHERC012	120	12	0.04	0.16	7.8	433	3.2	52	2.5
CHERC012	122	12	0.05	0.08	6.4	408	2.4	30	2
CHERC012	124	12	0.01	0.11	6.6	234	6.7	46	2
CHFRC012	126	12	0.01	0.08	9	134	3.4	56	25
CHEPCO12	120	12	0.01	0.03	81	207	5.4	44	2.5
	120	13	0.02	0.13	0.4 F	227	5.1	44	3
CHERCU12	130	13	0.17	0.14	5	8/2	9.1	44	2.5
CHERC012	132	13	0.07	0.14	/.8	457	5.2	56	2
CHERC012	134	13	0.01	0.08	7.6	211	3.9	46	2
CHERC012	136	13	0.05	0.28	5.6	764	10.2	34	2.5

Hole id	From	То	Au ppm	Ag nom	As nom	Cu ppm	Mo ppm	7n ppm	Pb ppm
CHERCO12	138	14	0.06	0.38	7.2	907	9.2	42	3
CUEDC012	140	14	0.00	0.50	7.2	402	7.2	72	2
CHERCUIZ	140	14	0.05	0.16	0.8	402	7.3	34	2
CHERC012	142	14	0.04	0.09	7.8	211	10.6	34	2
CHERC012	144	14	0.03	0.07	6.4	169	6.7	52	2
CHERC012	146	14	0.04	0.08	4.8	268	9.3	42	2.5
CHERC012	148	15	0.08	0.08	3.4	469	17	44	2
CHERC012	150	15	0.04	0.06	5.2	259	6.8	60	2
	150	10	0.01	0.00	6.0	235	4	20	1 5
CHERCO12	152	15	0.08	0.07	0.8	275	4	30	1.5
CHERCUIZ	154	15	0.05	0.08	7.4	377	7.3	42	2
CHERC012	156	15	0.1	0.07	4.8	378	11.6	52	2
CHERC012	158	16	0.06	0.06	4.8	331	8.7	44	2
CHERC012	160	16	0.02	0.04	3.4	85.5	2.4	36	1.5
CHERC012	162	16	0.06	0.06	2.6	240	1.5	54	2
CHERCO12	164	16	0.07	0.1	4.2	357	3.4	46	3
	166	16	0.07	0.1		252	3.4	40	2 5
CHERCUIZ	100	10	0.15	0.1	5.2	555	5	42	2.5
CHERC012	168	1/	0.09	0.09	3.4	432	4.8	34	2
CHERC012	170	17	0.04	0.09	4.4	307	3.4	42	2.5
CHERC012	172	17	0.04	0.05	6.2	204	3.4	40	2
CHERC012	174	17	0.04	0.06	5.4	268	3.4	42	2
CHERC012	176	17	0.1	0.09	6.4	343	5.4	32	1.5
CHERC012	178	18	0.02	0.04	6	197	3 3	32	2
	100	10	0.02	0.04	6.6	200	4.2	32	2
	180	10	0.04	0.08	0.0	309	4.3	34	2.5
CHERC012	182	18	0.03	0.06	6.2	243	5.6	32	2.5
CHERC012	184	18	0.03	0.06	6	249	4.2	28	2
CHERC012	186	18	0.05	0.12	7.6	421	6	34	2
CHERC012	188	19	0.07	0.13	8.8	500	11.2	32	1.5
CHERC012	190	19	0.12	0.13	8.8	732	7.1	30	2
CHERCO12	102	10	0.06	0.11	6	3/8	1.1	32	1 5
	104	10	0.00	0.11	2.6	227		32	2
CHERCUIZ	194	19	0.1	0.08	3.0	327	2.7	38	3
CHERC012	196	19	0.08	0.04	4	493	3.1	40	2
CHERC012	198	20	0.06	0.08	3.4	305	2.8	34	2
CHERC012	200	20	0.03	0.04	4.8	168	2.9	26	1.5
CHERC012	202	20	0.02	0.04	4.8	73.5	2.5	24	1
CHFRC012	204	20	0.02	0.04	9.2	151	3.8	40	2
CHERCO12	206	20	0.04	0.07	9.6	202	4.4	32	15
	200	20	0.04	0.07	5.0	472		32	1.5
CHERCUIZ	208	21	0.11	0.1	7.2	4/3	3.5	28	2
CHERC012	210	21	0.48	0.33	8.2	1880	12.7	56	2
CHERC012	212	21	0.21	0.14	9.8	694	4.7	36	1.5
CHERC012	214	21	0.29	0.25	8.8	1150	6.3	32	1.5
CHERC012	216	21	0.12	0.11	9.2	475	7.1	44	2
CHERC012	218	22	0.13	0.11	9.4	490	5.7	30	2
CHERCO12	220	22	0.39	0.52	7.2	1750	16.6	28	2
	220	22	0.35	0.32	,. <u>c</u>	E7/	20.0	20	2
	222	22	0.11	0.14	0.2	5/4	2.5	00	2
CHERC012	224	22	0.2	0.2	7.2	910	5.2	30	2
CHERC012	226	22	0.02	0.04	7.2	157	2.2	28	1.5
CHERC012	228	23	0.01	0.1	11	136	4.7	74	5
CHERC012	230	23	0.35	0.4	11.4	1490	2	26	2
CHERC012	232	23	0.55	0.93	13.6	2930	1.5	36	2
CHERC012	234	23	0.84	1.09	12	4120	1.6	48	2.5
CHERCO12	236	22	0.52	0.77	2	2660	2.0	28	2.0
	230	2.5	0.52	0.77	10.4	2000	3.0	30	2
	238	24	0.06	0.19	10.4	602	3.9	30	2
CHERC012	240	24	0.36	0.26	9.8	1190	6.5	38	2.5
CHERC012	242	24	0.08	0.11	8.4	407	6.9	26	3
CHERC012	244	24	0.05	0.06	4.2	241	9.6	38	1.5
CHERC012	246	24	0.02	0.02	4.6	120	4.1	44	2.5
CHERC012	248	25	0.04	0.08	5.2	319	1.5	24	2.5
CHERCO12	250	25	0.03	0.07	5.2	324	4 4	26	2.5
	250	25	0.05	0.07	J.2 A A	527 E1E	 0 7	20	2.5
	252	20	0.08	0.09	4.4	212	0./	20	2
CHERC012	254	25	0.05	0.11	4.4	349	b.4	36	2
CHERC012	256	25	0.03	0.06	4	235	2.3	30	1.5
CHERC012	258	26	0.06	0.05	4	249	3.1	40	2
CHERC012	260	26	0.01	0.05	5.8	169	1.2	48	2
CHERC012	262	26	0.01	0.04	7.2	68.5	3.2	48	1.5
CHERC012	264	26	0.01	0.03	6	65	1	58	1.5
CHERCO12	266	26	0.01	0.11	5.6	216	26	2/	1 5
	200	20	0.01	0.11	5.0	210	2.0	34	1.5
CHERC012	268	27	0.01	0.08	3.8	286	3.7	36	2

Hole_id	From	То	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Mo_ppm	Zn_ppm	Pb_ppm
CHERC012	270	27	0.02	0.04	5.8	187	4.5	40	2
CHERC012	272	27	0.03	0.1	4.2	368	3.7	28	2
CHERC012	274	27	0.02	0.12	5.8	391	6.6	34	2.5
CHERC012	276	27	0.04	0.1	5	309	6.9	44	2
CHERC012	278	28	0.02	0.07	6	210	4.8	38	1.5
CHERC012	280	28	0.02	0.1	8.2	238	8.8	42	2
CHERC012	282	28	0.04	0.11	7.4	343	3.5	62	2
CHERC012	284	28	0.03	0.06	6.2	157	1.8	34	2.5
CHERC012	286	28	0.03	0.04	5.4	87	2.2	22	2.5
CHERC012	288	29	0.02	0.04	4.4	102	2.2	26	2
CHERC012	290	29	0.03	0.13	5.6	312	1.9	30	2.5
CHERC012	292	29	0.04	0.06	5.8	194	1.2	30	2.5
CHERC012	294	29	0.07	0.07	6.8	280	1.4	40	2.5
CHERC012	296	29	0.01	0.03	4.4	162	2.6	26	2
CHERC012	298	30	0.01	0.02	4.2	48.5	1.4	38	3
CHERC012	300	30	0.01	0.02	4.4	74	1	48	3
CHERC012	302	30	0.01	0.03	3.8	109	4.5	48	3
CHERC012	304	30	0.02	0.03	4.4	73	1.5	38	2.5
CHERC012	306	30	0.01	0.04	2.8	102	2.9	140	4
CHERC012	308	31	0.01	0.13	2.4	79	2	104	3.5
CHERC012	310	31	0.02	0.09	7.2	140	2.4	82	3
CHERC012	312	31	0.02	0.06	4.6	139	3.6	158	3
CHERC012	314	31	0.01	0.04	6	42	2.6	60	2.5
CHERC012	316	31	0.01	0.02	6.2	27.5	1.8	58	3
CHERC012	318	32	0.01	0.03	5.2	110	1.8	86	3.5
CHERC012	320	32	0.01	0.03	6	58.5	1.1	48	2.5
CHERC012	322	32	0.01	0.04	6.6	116	0.7	56	2.5

Appendix 3. Table of previous explorers

Title_Ref	Company	Start Date	End Date	Elements
EL0047	AFI HOLDINGS LIMITED	1-Sep-66	1-Sep-67	P Cu Pb Zn
EL0027	ANACONDA AUSTRALIA INC	1-Oct-66	1-Oct-68	Au Ag Cu Mo Pb Zn
EL0099	QUARRIES PTY LIMITED	1-May-67	1-May-68	Phosphate Cu
EL0259	AQUITAINE AUSTRALIA MINERALS PTY LIMITED	1-Mar-70	1-Sep-74	Cu Pb Zn Ni
EL0316	AMAX IRON ORE CORPORATION	7-Aug-70	7-Feb-73	Cu Pb Zn
EL0317	AMAX IRON ORE CORPORATION	7-Aug-70	7-Feb-73	Cu Pb Zn
EL0331	COMMAND MINERALS NL	1-Oct-70	1-Oct-71	Cu Pb Zn
EL0541	WOODSREEF ASBESTOS MINES LIMITED	1-Oct-72	1-Oct-73	Cu Pb Zn
EL0631	UNION CORPORATION (AUSTRALIA) PTY LIMITED	1-Sep-73	1-Sep-74	Cu Zn Au
EL0661	GEOPEKO LIMITED	1-Dec-73	1-Aug-74	Pb Zn Cu
EL0720	GEOPEKO LIMITED	1-Dec-74	1-May-75	Cu Pb Zn
EL0749	AQUITAINE AUSTRALIA MINERALS PTY LIMITED	1-Feb-75	1-Feb-77	Cu Pb Zn
EL0845	LE NICKEL (AUSTRALIA) PTY LIMITED	1-Dec-75	1-Dec-76	Cu Pb Zn
EL1075	AMOCO MINERALS AUSTRALIA COMPANY	1-Jan-77	1-Dec-81	Cu Pb Zn Ag Au
EL1675	TECK EXPLORATIONS LIMITED	1-Jul-81	1-Jul-83	Cu Pb Zn
EL1916	SHELL COMPANY OF AUSTRALIA LIMITED	1-Mar-82	1-Mar-85	Cu Pb Zn Au Ag
EL1912	NORANDA AUSTRALIA LIMITED	1-Jul-82	1-Jul-83	Cu Pb Zn
EL2243	MOUNT ISA MINES LIMITED	1-Jun-84	1-Jun-85	Au
EL2301	PLACER PACIFIC PTY LIMITED	1-Nov-84	1-May-86	Au
EL2302	PLACER PACIFIC PTY LIMITED	1-Nov-84	1-May-86	Au
EL2759	INTERNATIONAL MINING CORPORATION N L	1-Nov-86	1-Jul-89	Au
EL2777	BHP GOLD MINES LIMITED	1-Nov-86	1-Sep-89	Au
EL2731	BATHURST BRICK COMPANY LIMITED	1-Dec-86	1-Dec-87	Dimension Stone Marble
EL2636	ELECTROLYTIC ZINC COMPANY OF AUSTRALASIA LIMITED	1-Dec-86	1-Aug-88	Au
EL2906	NORGOLD LIMITED	1-Aug-87	1-Jan-90	Au Ag
EL2908	NORGOLD LIMITED	1-Aug-87	1-Jan-90	Au Ag
EL2930	BHP MINERALS LIMITED	1-Oct-87	1-Oct-89	Au
EL3149	CYPRUS AMAX AUSTRALIA CORPORATION, NEWCREST MINING LIMITED	18-Aug-88	17-Aug-95	Au Cu
EL3549	HOMESTAKE AUSTRALIA LIMITED	1-Jun-90	1-Aug-90	Au Cu
EL3683	NEWCREST MINING LIMITED	1-Nov-90	1-Nov-91	Cu Au
EL3676	HOMESTAKE AUSTRALIA LIMITED	1-Nov-90	1-May-91	Au
EL3675	HOMESTAKE AUSTRALIA LIMITED	13-Nov-90	22-Nov-91	Ag As Au Bi Cu Mo Pb W Zn

Title_Ref	Company	Start Date	End Date	Elements
EL3728	CYPRUS AMAX AUSTRALIA CORPORATION, NEWCREST MINING LIMITED	3-Jan-91	2-Jan-95	Ag Au Cu Pb Zn
EL4043	CRA EXPLORATION PTY LIMITED	3-Sep-91	2-Sep-95	Au Cu Pb Zn
EL4226	CRA EXPLORATION PTY LIMITED	11-Mar-92	10-Mar-94	Ag Au Cu Pb Zn
EL4271	RIO TINTO EXPLORATION PTY LIMITED	18-May-92	16-Feb-94	Au Cu
EL4588	CRA EXPLORATION PTY LIMITED	14-Sep-93	13-Sep-95	Au Cu Zn
EL4746	CRA EXPLORATION PTY LIMITED	9-Dec-94	8-Dec-96	Au Cu
EL5008	NEWCREST MINING LIMITED	14-May-96	13-May-98	Au Cu
EL5009	NEWCREST MINING LIMITED	14-May-96	13-May-98	Ag Au Cu Pb Zn
EL5030	DELTA GOLD EXPLORATION PTY LTD, TRI ORIGIN AUSTRALIA NL	31-May-96	30-May-98	Ag Au Cu Pb Zn
EL5174	LFB RESOURCES NL	23-Dec-96	22-Dec-98	Au Cu
EL5208	MICHELAGO RESOURCES NL	5-Feb-97	4-Feb-99	
EL5249	LFB RESOURCES NL	5-Mar-97	4-Mar-99	Au Cu
EL4234	LFB RESOURCES NL	31-Mar-98	8-Mar-99	Au Cu
EL5531	NORTH MINING LIMITED	20-Oct-98	19-Oct-00	
EL5658	ALKANE EXPLORATION LTD	15-Dec-99	28-Feb-01	Au Cu
EL5722	GOLDEN CROSS OPERATIONS PTY. LTD.	5-May-00	10-Mar-05	Au Cu
EL6053	FALCON MINERALS LIMITED	14-Feb-03	13-Feb-05	Au Cu
EL6078	HERRESHOFF HOLDINGS PTY LTD	8-May-03	27-Jun-06	Limestone Marble
EL6181	CLANCY EXPLORATION LIMITED	19-Jan-04	18-Jan-16	Au Cu Zn
EL6180	CLANCY EXPLORATION PTY LTD	19-Jan-04	18-Jan-08	Au Cu
EL6240	COMET RESOURCES LIMITED	17-May-04	16-May-12	Au Ag Cu Pb Zn
EL6425	LADY BURBETT MINING PTY LIMITED	27-May-05	19-Nov-12	Cu Au Pb Zn Mo Ag
EL6460	AUSTRALIAN DOLOMITE COMPANY PTY LIMITED	22-Aug-05	7-Dec-10	Marble
EL6520	AUSTRALIAN DOLOMITE COMPANY PTY LIMITED	21-Feb-06	20-Feb-10	Marble
EL6567	MERIDIAN ACQUISITIONS PTY LTD	25-May-06	1-Nov-13	Cu Au
EL6615	GOLDEN CROSS OPERATIONS PTY. LTD.	23-Aug-06	22-Aug-08	Au Cu
EL6674	GUM RIDGE MINING PTY LIMITED	5-Dec-06	19-Nov-12	Au Cu
EL6968	COMMISSIONERS GOLD LIMITED	26-Nov-07	20-Sep-10	Cu Au Ag Base Metals
EL7060	NEWMONT EXPLORATION PTY LTD	4-Feb-08	25-Sep-12	Au Cu
EL7231	IMPERIAL GOLD 1 PTY LTD	31-Oct-08	19-Nov-12	Cu Au
EL7235	ALKANE RESOURCES LTD	7-Nov-08	14-Aug-13	Au
EL7284	NEWMONT EXPLORATION PTY LTD	5-Feb-09	25-Jan-11	Au
EL7359	NEWMONT EXPLORATION PTY LTD	7-Jul-09	7-Jul-11	Au
EL7383	ALKANE RESOURCES LTD	11-Aug-09	11-Aug-13	Au
EL7399	CLANCY EXPLORATION LIMITED	28-Sep-09	28-Sep-17	Au Cu
EL7466	NEWMONT EXPLORATION PTY LTD	5-Mar-10	14-Dec-10	
EL7713	OAKLAND RESOURCES LIMITED	23-Feb-11	21-Jan-13	
EL7755	OAKLAND RESOURCES LIMITED	31-May-11	4-Sep-12	
EL7788	NEWMONT EXPLORATION PTY LTD	16-Jun-11	4-Jun-14	Au Cu
EL7925	NEWMONT EXPLORATION PTY LTD	2-May-12	2-May-14	Au Cu
EL7971	ALKANE RESOURCES LTD	4-Oct-12	9-Dec-14	Cu Au Base Metals
EL8253	SANDFIRE RESOURCES NL	3-Apr-14	4-Jul-15	
EL8350	SANDFIRE RESOURCES NL	12-Mar-15	4-Jul-15	Au
EL6417	AUSMON RESOURCES LTD	17-May-15	16-May-15	Au Cu Ag Sn