28 October 2020

Final Assays Received for Infill Resource Drilling at Roswell

- Final assay results have been received from the infill drilling of the Roswell Inferred Resource. The infill resource drilling program comprised 92 holes for a total of 29,000 metres.
- The final assay results were received from 21 drill holes for a total of 6,250 metres. Latest significant intercepts for the Roswell deposit include:

RWD041 incl	34.3 metres grading 3.76g/t Au from 387 metres; 6.0 metres grading 9.63g/t Au from 403 metres.
RWD042 and and incl	21.0 metres grading 3.46g/t Au from 349 metres; 6.0 metres grading 2.22g/t Au from 382 metres; 20.7 metres grading 10.3g/t Au from 414 metres; 8.0 metres grading 23.9g/t Au from 420 metres.
RWRC352D and incl	73.0 metres grading 1.49g/t Au from 286 metres; 31.4 metres grading 2.88g/t Au from 382 metres; 1.6 metres grading 9.87g/t Au from 410 metres.
RWRC378D and incl	12.0 metres grading 1.11g/t Au from 332 metres; 31.0 metres grading 2.23g/t Au from 400 metres; 2.0 metres grading 10.3g/t Au from 409 metres.
RWRC379D incl	45.0 metres grading 6.14g/t Au from 380 metres; 1.0 metre grading 102g/t Au from 391 metres.
RWRC380D and and incl also	4.0 metres grading 4.76g/t Au from 258 metres; 2.0 metres grading 6.14g/t Au from 265 metres; 102.0 metres grading 2.26g/t Au from 280 metres; 3.0 metres grading 14.8g/t Au from 289 metres; 11.0 metres grading 4.43g/t Au from 350 metres.
RWRC391 incl	25.0 metres grading 3.05g/t Au from 351 metres to bottom of hole; 5.0 metres grading 6.85g/t Au from 353 metres.

- An updated resource estimation for Roswell is expected to be released in early November 2020.
- San Antonio infill resource drilling is continuing. The San Antonio updated resource estimate, with preliminary mine plans for Roswell and San Antonio, is scheduled for release late in Q4 2020.

CONTACT : NIC EARNER, MANAGING DIRECTOR, ALKANE RESOURCES LTD, TEL +61 8 9227 5677

INVESTORS : NATALIE CHAPMAN, CORPORATE COMMUNICATIONS MANAGER, TEL +61 418 642 556

MEDIA : JOHN GARDNER, CITADEL-MAGNUS, TEL +61 413 355 997

Tomingley Gold Project

Alkane Resources Ltd 100%

The Tomingley Gold Project (TGP) covers an area of approximately 440km² stretching 60km north-south along the Newell Highway from Tomingley in the north, through Peak Hill and almost to Parkes in the south. The TGP contains Alkane's currently operating Tomingley Gold Operations (TGO), an open pit mine and underground operation with a 1Mtpa processing facility.

Over the past two years Alkane has conducted an extensive regional exploration program which led to the definition Resources at the Roswell and San Antonio prospects. These are:

- Roswell Deposit: 7.02 Mt @ 1.97 g/t Au for 445 koz (Inferred Mineral Resource refer ASX Announcement 28 January 2020)
- San Antonio Deposit: 7.92 Mt @ 1.78 g/t Au for 453 koz (Inferred Mineral Resource refer ASX Announcement 20 April 2020)

Alkane has continued consultation with its key stakeholders, including landholders and regulators. The Company has approval to develop an exploration drive from the Wyoming One deposit to Roswell, and has prepared preliminary plans for both open-cut and underground mines beneath Roswell and San Antonio that it is using for consultation purposes as it seeks approval for mining development both underground and open cut (refer ASX Announcement 19 August 2020).

Detailed mine plans for Roswell and San Antonio, to enable an economic assessment, will be prepared once the Indicated Resources have been compiled and released in Q4 2020.

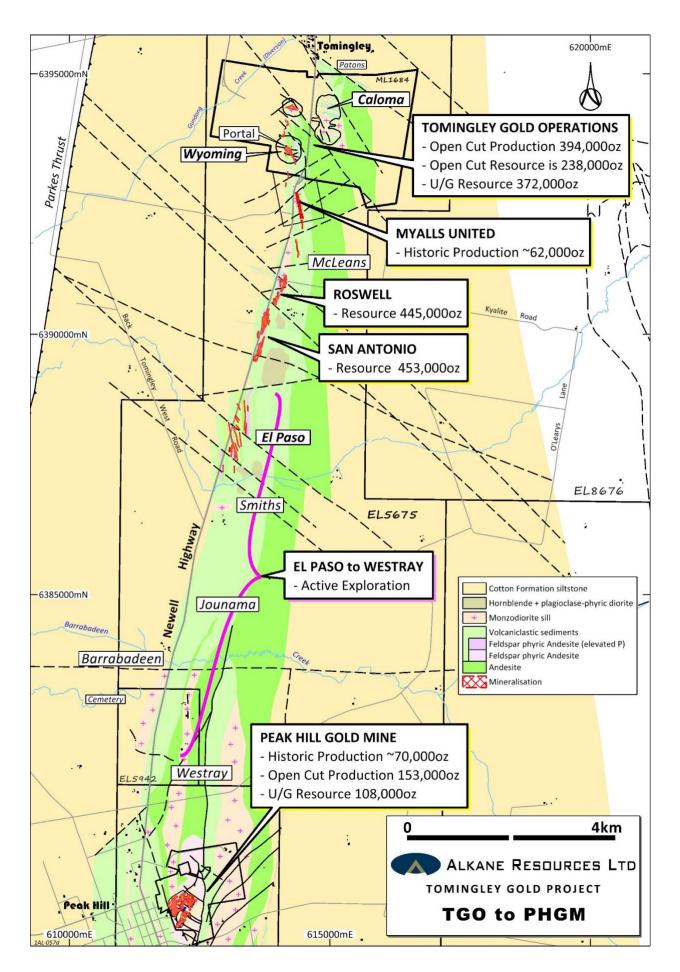
Geology

The Tomingley gold deposits are interpreted as orogenic gold systems positioned within a major structural zone. The mineralisation is primarily hosted by 'brittle' andesite units as per the structural setting observed at the Tomingley gold deposits. These volcanics host structural zones generated by a competency contrast between the 'brittle' volcanics and 'ductile' volcaniclastic meta-sediments. Mineralisation is characterised as shear hosted quartz-carbonate-pyrite-arsenopyrite veins primarily hosted within an andesite unit and/or along its brecciated margin and occasionally in coarse grained volcaniclastic meta-sediments.

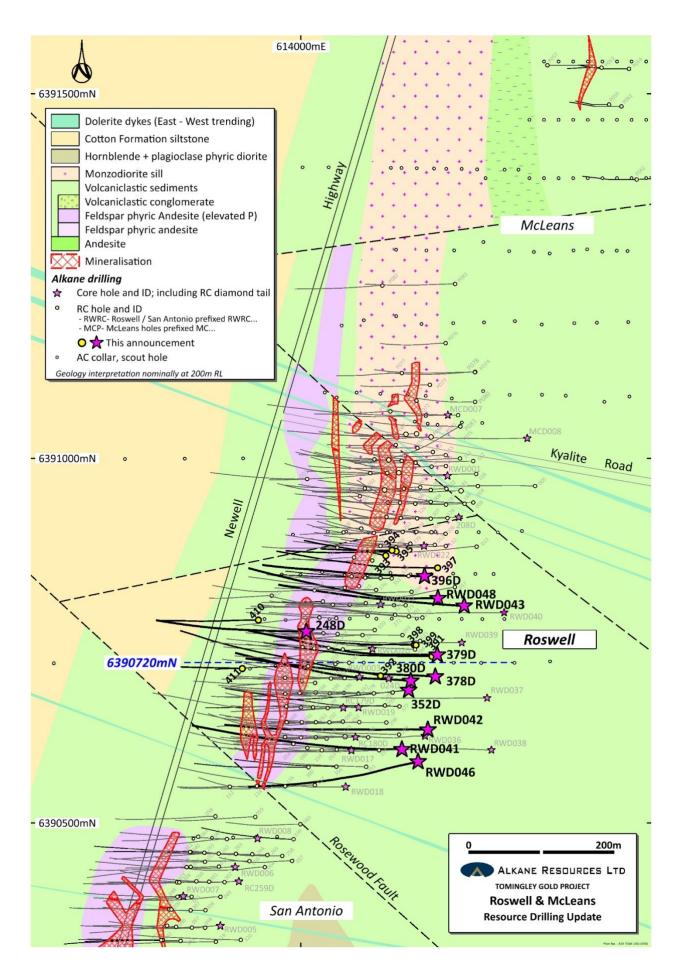
The recent drilling has been infilling the defined Inferred Resources at a nominal 20 metre line spacing to facilitate definition to Indicated and Measured Resources and assist with the development of mining operations. Several RC holes that had previously not completed to target depth were extended by diamond core drilling. These holes retained the original RWRC number designator but had 'D' added after the number. The results from the original sampling is designated in blue in the following tables.

As part of the infill, a number of core holes were drilled at a nominal 60 metre spacing to test the down dip and down plunge potential of the defined mineralisation at Roswell. These widely spaced holes returned a number of significant intercepts such as:

RWRC379D	45.0 metres grading 6.14g/t Au from 380 metres;
incl	1.0 metre grading 102g/t Au from 391 metres
RWD041	34.3 metres grading 3.76g/t Au from 387 metres;
incl	6.0 metres grading 9.63g/t Au from 403 metres.
RWD042	21.0 metres grading 3.46g/t Au from 349 metres;
and	20.7 metres grading 10.3g/t Au from 414 metres;
incl	8.0 metres grading 23.9g/t Au from 420 metres.
RWD043	36.0 metres grading 1.63g/t Au from 443 metres;
incl	4.0 metres grading 4.98g/t Au from 446 metres.



RWRC352D 31.4 metres grading 2.88g/t Au from 382 metres; Incl 1.6 metres grading 9.87g/t Au from 410 metres. RWRC378D 31.0 metres grading 2.32g/t Au from 400 metres; Incl 2.0 metres grading 10.3g/t Au from 409 metres.


These intercepts are approximately up to 100 metres below the base of the previously defined Inferred Resource and confirm potential of the system to extend to depth.

The infill drilling is completed at Roswell. An updated resource estimation (Indicated and Inferred) for Roswell is anticipated to be released in early November 2020. Infill drilling continues at San Antonio with an updated resource estimate for San Antonio anticipated late Q4 2020 along with preliminary mine plans for Roswell and San Antonio.

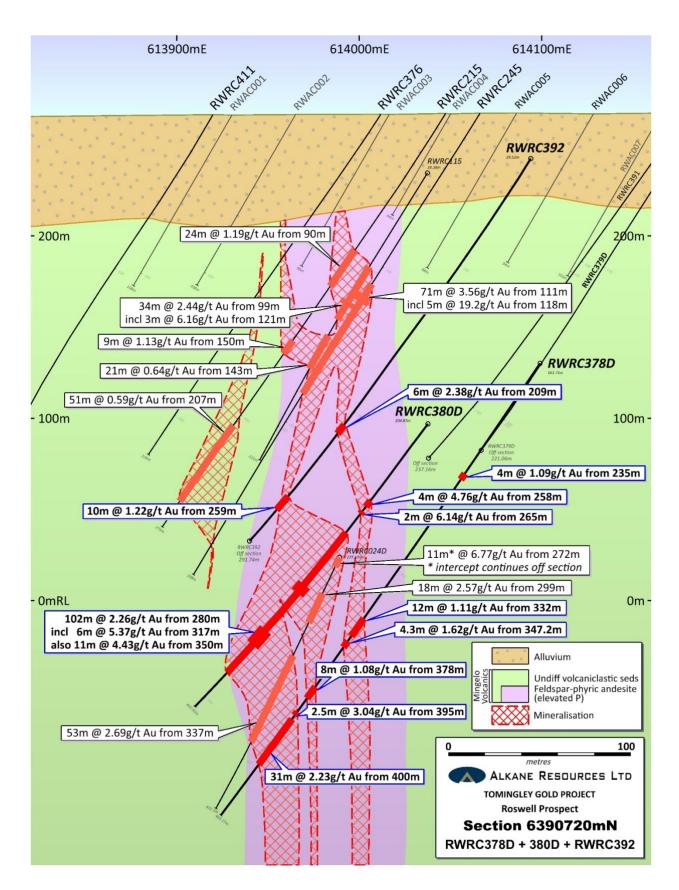


	Table 1	- TOMINGL	EY GO	LD PR	OJECT RC	AND DIA	MOND DR	ILLING – J	July 2020 (>	0.5g/t A	n)
Hole ID	Easting (MGA)	Northing (MGA)	RL (m)	Dip	Azimuth (Grid)	Total Depth	Interval From (m)	Interval To (m)	Intercept (m)	Au (g/t)	Prospect
RWRC248D	614007	6390762	267	-58	270	244	61**	75	14	0.90	
incl							62	64	2	3.32	
and							131	134	3	0.89	
and							149	221	72	1.27	
incl							191	193	2	14.5	
also							214	215	1	11.2	
and							229	234	5	2.38	
incl							230	231	1	9.37	
and							249.2	264	14.8	1.28	
incl							255.2	261	5.8	2.48	
and							272	277	5	0.50	
and							310	311	1	1.90	
and							314	325	11	0.60	
incl							314	315	1	1.92	
RWRC352D	614148	6390682	268	-60	270	397.1	272	274	2	1.79	
and							277	282	5	1.75	
incl							279	280	1	6.93	
and							286	359	73	1.49	
incl							325	332	7	2.94	Roswell
and							369	372	3	0.52	
and							382	413.4	31.4	2.88	
incl							410	411.6	1.6	9.87	
and							448.6	449.5	0.9	2.62	
and							462	463	1	1.36	
and							476.3	477.7	1.4	4.54	
and							488	489.2	1.2	0.66	
and							501	502	1	0.76	
RWRC378D	614184	6390701	268	-61	270	465.77	235	239	4	1.09	
and							332	344	12	1.11	
incl							342	344	2	2.56	
and							347.2	351.5	4.3	1.62	
and							378	386	8	1.08	
and							395	397.5	2.5	3.04	
and							400	431	31	2.23	
incl							409	411	2	10.3	
and							437	438.6	1.6	0.65	
and							442.8	443.8	1	2.54	
RWRC379D	614187	6390731	268	-60	270	463.5	315	316	1	0.55	
and							322	323	1	1.2	
and							327	329	2	1.34	
and							336	345	9	1.28	
and							349	350	1	3.61	
and							357	358	1	0.51	
and							361	374	13	0.52	
and							380	425	45	6.14	

	Easting	- TOMINGL Northing	RL		Azimuth	Total	Interval	Interval	Intercept	Au	_
Hole ID	(MGA)	(MGA)	(m)	Dip	(Grid)	Depth	From (m)	To (m)	(m)	(g/t)	Prospect
incl							391	392	1	102	
also							398	399	1	25.1	
also							404	405	1	18.2	
also							420	422	2	17.8	
RWRC380D	614150	6390695	267	-60	270	407.92	228	234	6	0.52	
and							258	262	4	4.76	
incl							259	260	1	14.8	
and							265	267	2	6.14	
and							280	382	102	2.26	
incl							289	292	3	14.8	
also							317	323	6	5.37	
also						1	350	361	11	4.43	
also							364	367	3	5.68	
RWRC391	614180	6390729	268	-56	282	376*	286	290	4	2.41	
incl							286	287	1	7.04	
and							293	308	15	0.83	
and							316	317	1	1.14	
and							326	334	8	1.11	
and							351	376*	25	3.05	Roswe
incl							353	358	5	6.85	
RWRC392	614109	6390702	268	-60	278	436	209	215	6	2.38	
and							224	225	1	1.51	
and							228	229	1	0.76	
and							231	232	1	0.67	
and							259	269	10	1.22	
incl							261	263	2	3.50	
and							279	280	1	0.79	
and							308	309	1	0.74	
and and							387 410	389 417	2 7	3.46 0.57	
						-		417			
and						-	423		6	1.54	
incl RWRC393	614116	6390867	268	-50	291	166*	425	427 144	2	3.14	
	014110	000007	200	50	231	100	142		2	0.51	
and RWRC394	614125	6390874	268	-60	282	172	161 78	163		0.51 1.08	
	017123	0000074	200	00	202	1,7		93	15		
and					1	 	97	103	6	0.68	
and					1	-	113	114	1	0.92	
and	61/121	6200972	260	6 F	270	224	161	162	1	1.07	
RWRC395	614131	6390873	268	-65	270	334	116	118	2	1.43	
and						-	131	134	3	0.52	
and					1		139	146	7	0.53	
and					1		278	286	8	2.66	
incl					1		280	282	2	6.67	
and						1	289	295	6	0.89	
and							298	299	1	0.67	

	Table 1	- I O IVIII INGL	LI GO	LD I IN	OJECT INC			ILLIIVO J	- LOTO (>	0.3 <u>6/</u> t At	4 <i>)</i>
Hole ID	Easting (MGA)	Northing (MGA)	RL (m)	Dip	Azimuth (Grid)	Total Depth	Interval From (m)	Interval To (m)	Intercept (m)	Au (g/t)	Prospect
and	,	,					317	320	3	0.81	
RWRC396D	614169	6390838	268	-58	270	405.36	261	268	7	2.51	
and							296	297	1	3.03	
and							299	306	6	0.53	
and							320	323	3	0.50	
and							326	328	2	4.06	
and							348	349	1	1.42	
and							358	363.3	5.3	2.26	
and							365.7	367	1.3	0.91	
and							375	382	7	1.76	
incl							379	381	2	4.31	
RWRC397	614187	6390850	268	-58	270	382	247	249	2	0.63	
and						<u> </u>	291	317	26	0.81	
incl						<u> </u>	309	311	2	2.76	
and							309	325	4	1.40	
and							348	349	1	1.46	
and							354	360	6	0.96	
RWRC398	614155	6390744	268	-56	282	124*	334		doned early	0.90	
RWRC399	614158	6390744	268	-58	282	328	249	263	1	0.72	
	014130	0330744	200	30	202	320	272	282	14 10	0.72 1.73	Roswel
and											Roswei
incl							279	280	1	4.85	
and							291	294	3	0.77	
and							313	314	1	0.54	
and							318	325	7	0.85	
incl	610010				0-0	07.0	321	322	1	2.88	
RWRC410	613942	6390778	267	-60	270	256	No	significant	mineralisatio	n	
RWRC411	613920	6390712	267	-60	270	214			mineralisatio	n	
RWD041	614138	6390601	268	-60	270	540.41	328	331	3	1.65	
incl							330	331	1	4.16	
and							342.4	351	8.6	1.17	
and							387	421.3	34.3	3.76	
incl							403	409	6	9.63	
also							414	415.8	1.8	11.0	
and							499.9	505	5.1	1.47	
RWD042	614174	6390628	268	-60	270	478.72	349	370	21	3.46	
incl							350	353	3	9.05	
also							355	357	2	11.3	
and							375	376	2	0.58	
and							382	388	6	2.22	
incl							386	388	2	4.93	
and							400	401	1	1.30	
and						1	406	407	1	2.30	
and							414	434.7	20.7	10.3	
incl							420	428	8	23.9	
RWD043	614224	6390798	268	-60	270	496.92	402	402.7	0.7	1.00	

	Table 1	- TOMINGL	EY GO	LD PR	OJECT RC	AND DIA	MOND DR	ILLING – J	luly 2020 (>	0.5g/t A	u)
Hole ID	Easting (MGA)	Northing (MGA)	RL (m)	Dip	Azimuth (Grid)	Total Depth	Interval From (m)	Interval To (m)	Intercept (m)	Au (g/t)	Prospect
and							413	415	2	1.22	
and							428	431	3	0.95	
and							443	479	36	1.63	
incl							446	450	4	4.98	
RWD046	614160	6390584	268	-58	269	396.7		Hole aban	doned early		
RWD048	614188	6390808	268	-60	270	455.68	288.3	297	8.7	3.63	
and							305.5	318.5	13	1.18	Roswell
incl							314	316	2	3.93	
and							325	327	2	0.57	
and							330	331	1	1.27	
and							337	339.2	2.2	0.63	
and							344.8	345.9	1.1	0.59	
and							363	364.2	1.2	1.65	
and							367	373	6	1.72	
incl							369	371	2	3.53	
and							376	377.8	1.8	1.53	
and							382	383	1	3.58	
and							386	390	4	0.66	
and							395	396.7	1.7	0.77	

^{*} hole abandoned early. Intercepts in blue previously announced. Gold intercepts calculated using a lower cut of 0.25g/t. True widths are approximately 60%.

Competent Person

Unless otherwise advised above, the information in this report that relates to exploration results and mineral resources being reported for the first time is based on information compiled by Mr David Meates MAIG, (Alkane Exploration Manager NSW) who has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Meates has provided his prior written consent to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Meates is a shareholder in Alkane Resources Limited.

The information in this report that relates to previously reported exploration results and exploration targets is extracted from the Company's ASX announcements noted in the text of the announcement and are available to view on the Company's website. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcements and that the form and context in which the Competent Person's findings are presented have not been materially altered.

Disclaimer

This report contains certain forward looking statements and forecasts, including possible or assumed reserves and resources, production levels and rates, costs, prices, future performance or potential growth of Alkane Resources Ltd, industry growth or other trend projections. Such statements are not a guarantee of future performance and involve unknown risks and uncertainties, as well as other factors which are beyond the control of Alkane Resources Ltd. Actual results and developments may differ materially from those expressed or implied by these forward looking statements depending on a variety of factors. Nothing in this report should be construed as either an offer to sell or a solicitation of an offer to buy or sell securities.

This document has been prepared in accordance with the requirements of Australian securities laws, which may differ from the requirements of United States and other country securities laws. Unless otherwise indicated, all ore reserve and mineral resource estimates included or incorporated by reference in this document have been, and will be, prepared in accordance with the JORC classification system of the Australasian Institute of Mining, and Metallurgy and Australian Institute of Geoscientists.

This document has been authorised for release to the market by Nic Earner, Managing Director.

ABOUT ALKANE - www.alkane.com.au - ASX: ALK and OTCQX: ANLKY

Alkane Resources is poised to become Australia's next multi-mine gold producer.

The Company's current gold production is from the Tomingley Gold Operations in Central West New South Wales, where it has been operating since 2014 and is currently expediting a development pathway to extend the mine's underground and open pit potential.

Alkane has an enviable exploration track record and controls several highly prospective gold and copper tenements. Its most advanced exploration projects are in the tenement area between Tomingley and Peak Hill, which have the potential to provide additional ore for Tomingley's operations.

Alkane's exploration success includes the landmark porphyry gold-copper mineralisation discovery at Boda in 2019. With a major drill program ongoing at Boda throughout 2020, Alkane is confident of further consolidating Central West New South Wales' reputation as a significant gold production region.

Alkane's gold interests extend throughout Australia, with strategic investments in other gold exploration and aspiring mining companies, including ~19.9% of Genesis Minerals (ASX: GMD) and ~12.7% of Calidus Resources (ASX: CAI).

The following tables are provided to ensure compliance with the JORC Code (2012) edition requirements for the reporting of exploration results.

APPENDIX 1

JORC Code, 2012 Edition – Table 1 report – Roswell and San Antonio

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary				
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	RC samples are collected at one metre intervals via a cyclone on the rig. The cyclone is cleaned regularly to minimise any contamination. Half core samples are collected at generally one metre intervals.				
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Drilling, sampling and QAQC procedures are carried out to industry standards.				
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	RC Drilling – the total sample (~20-30kg) is delivered via cyclone into a large plastic bag which is retained for future use if required. A sub-sample of approximately 1kg is spear sampled from each plastic bag and composited to make a 3 metres sample interval. If strong mineralisation is observed by the site geologist this is sampled as a final 1m interval instead. The 1m intervals forming composite samples assaying ≥0.20 g/t Au or with high As are resplit using a cone splitter on the rig into a separate calico at the time of drilling and re-submitted to the laboratory for re-assay. Core is cut in half using a Corewise automatic diamond cutting saw. All samples sent to laboratory are crushed and/or pulverised to produce a ~100g pulp for the assay process. Gold was determined by fire assay fusion of a 50g charge with an AAS analytical finish.				
		A multi-element suite was determined using an aqua regia or multi-acid digest with an AES, MS analytical finish.				
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse circulation (RC) drilling using 110mm rods 144mm face sampling hammer. Core drilling completed as an HQ tail on RC precollar. Core orientated using a Reflex tool.				
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC - sample recovery is visually estimated and generally very good (>90%) aided by the use of oversized shrouds through oxide material. Samples are even sized. Samples are occasionally damp or wet in RC holes drilled below 250 metres. Sample quality is assessed by the sampler by visual approximation of sample recovery and if the sample is dry, damp or wet. Riffle and cone splitters were used to ensure a representative sample was achieved on all 1 metre samples.				

Criteria	JORC Code explanation	Commentary				
		DD - core loss is identified by drillers and calculated by geologists when logging. Generally ≥99% was recovered.				
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC drilling completed using oversized shrouds to maintain sample return in oxide zone and all samples are split using riffle or cone splitters. Use of RC rigs with high air capacity assists in keeping samples dry.				
		Triple tube coring is used at all times to maximise core recovery.				
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.				
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	RC - each one metre interval is geologically logged for characteristics such as lithology, weathering, alteration (type, character and intensity), veining (type, character and intensity) and mineralisation (type, character and volume percentage).				
		DD - all core is laid out in core trays and geologically logged for characteristics such as lithology, weathering, alteration (type, character and intensity), veining (type, character and intensity) and mineralisation (type, character and volume percentage). A detailed geotechnical log is also undertaken collecting parameters such as core recovery, RQD, fracture count, and fracture type and orientation.				
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative with visual estimates of the various characteristics. RC - A representative sample of each one metre interval is retained in chip trays for future reference.				
		DD - Core is photographed and all unsampled core is retained for reference purposes.				
	The total length and percentage of the relevant intersections logged.	All DD core and RC chip samples have been geologically and geotechnically logged by qualified geologists.				
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	DD - zones of visual mineralisation and/or alteration are marked up by the geologist and cut in half using a Corewise automatic core cutting saw. The right half is sampled to sampling intervals that are generally based on geology but do not exceed 1.3 metres in length. The left half is archived. All mineralised zones are sampled, plus >5m of visibly barren wall rock.				
proparation		Laboratory Preparation – drill core is oven dried prior to crushing to <6mm using a jaw crusher, split to 3kg if required then pulverised in an LM5 (or equivalent) to ≥85% passing 75µm. Bulk rejects for all samples are discarded. A pulp packet (±100g) is stored for future reference.				
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC - for each one metre interval with visual mineralisation and/or alteration the calico sample bag is numbered and submitted to the laboratory for analysis. Intervals without visual mineralisation and/or alteration are spear sampled and composited over three metres. Damp or wet samples are recorded by the sampler. For composited intervals returning grades >0.2g/t Au the calico bags are retrieved for assay.				
		Laboratory Preparation – the entire RC sample (3kg) is dried and pulverised in an LM5 (or equivalent) to ≥85% passing 75μm. Bulk rejects for all samples are discarded. A pulp packet (±100g) is stored for future reference.				
	For all sample types, the nature, quality and appropriateness of the sample preparation	ALK sampling techniques are of industry standard and considered adequate.				

Criteria	JORC Code explanation	Commentary			
	technique.				
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC - field duplicate samples collected at every stage of sampling to control procedures. DD - external laboratory duplicates used.			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	RC - Duplicate samples are riffle split from the riffle/conical split calico from the drill rig. Duplicates show generally excellent repeatability, indicating a negligible "nugget" effect.			
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are assumed to be within industry standard and considered appropriate.			
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Gold is determined using a 50g charge fused at approximately 1100°C with alkaline fluxes, including lead oxide. The resultant prill is dissolved in aqua regia and gold determined by flame AAS.			
laboratory tests		For other geochemical elements samples are digested in either aqua regia or a multi-acid digest with each element concentration determined by ICP Atomic Emission Spectrometry or ICP Mass Spectrometry. These additional elements are generally only used for geological interpretation purposes, are not of economic significance and are not routinely reported.			
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	Not applicable to this report or deposit.			
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Commercially prepared Certified Reference Materials (CRM) are inserted at 1 in 20 samples. CRM's are not identifiable to the laboratory. Field duplicate samples are inserted at 1 in 20 samples (alternate to CRM's).			
		Laboratory QAQC sampling includes insertion of CRM samples, internal duplicates and screen tests. This data is reported for each sample submission.			
		Failed standards result in re-assaying of portions of the affected sample batches.			
Verification of sampling and	 The verification of significant intersections by either independent or alternative company personnel. 	Drill data is compiled and collated, and reviewed by senior exploration staff. Tomingley Gold Mine staff review resource estimation procedures.			
assaying	The use of twinned holes.	Twinned holes have not been drilled.			
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All drill hole logging and sampling data is hard keyed into excel spreadsheet for transfer and storage in an access database with verification protocols in place.			
		All primary assay data is received from the laboratory as electronic data files which are imported into sampling database with verification procedures in place. QAQC analysis is undertaken for each laboratory report.			
		Digital copies of Certificates of Analysis (COA) are stored in a central database with regular (daily) backup.			
		Data is also verified on import into mining related software.			
	Discuss any adjustment to assay data.	No assay data was adjusted. In the case of assay checks the original assay is utilised as there was no statistical variability.			

Criteria	JORC Code explanation	Commentary
ocation of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	Drill holes are laid out using hand held GPS (accuracy \pm 2m) then surveyed accurately (\pm 0.1m) by Tomingley Gold Operations trained surveyors on completion.
•	estimation.	RC drill holes are surveyed using a single shot electronic camera at a nominal 30m down hole interval.
		DD are surveyed at nominal 30m down hole during drilling to maintain drilling direction and then at 6m intervals on retrieval of rod string using a multi shot electronic camera.
	Specification of the grid system used.	MGA94 grid system was used.
	Quality and adequacy of topographic control.	A site based digital terrain model was developed from accurate (\pm 0.1m) survey control by licenced surveyors.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Nominal drill hole spacing is 20m x 20m for Roswell and San Antonio deposits.
		For regional exploration drilling the drill hole spacing is variable as the focus is on geological mapping and identifying new zones of mineralisation.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill hole spacing has been shown to be appropriate to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.
	Whether sample compositing has been applied.	RC – samples with no visible mineralisation or alteration are composited to 3m with 1m resamples assayed if the composite returned a gold value of >0.2g/t gold. One metre samples override 3m composites in the database.
		DD – core is sampled to geology
Orientation of data in relation	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Much care is given to attempt to intersect structure at an optimal angle but in complex ore bodies this can be difficult.
to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not thought that drilling direction will bias assay data significantly.
Sample security	The measures taken to ensure sample security.	All samples are bagged in tied numbered calico bags, grouped into larger tied polyweave bags and transported 5 minutes away to Tomingley Gold Mine. The samples are placed in large sample cages with a sample submission sheet and couriered to ALS in Orange via freight truck. All sample submissions are documented via ALS tracking system and all assays are reported via email.
		Sample pulps are returned to site and stored for an appropriate length of time (minimum 3 years).
		The Company has in place protocols to ensure data security.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Company does not routinely have external consultants verify exploration data until resource estimation procedures are deemed necessary.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary			
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	EL5675 wholly owned by Alkane Resources Ltd (ALK).			
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	EL5675 is due to expire 17 January 2023.			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	All reported drilling completed by ALK.			
Geology	Deposit type, geological setting and style of mineralisation.	Mineralisation is similar to the well documented Tomingley Gold Deposits. Tomingley is associated with quartz veining and alteration focused within andesite volcanics and adjacent volcaniclastic sediments. The deposits appear to have formed as the result of a competency contrast between the volcanics and the surrounding volcaniclastic sediments, with the volcanics showing brittle fracture and the sediments ductile deformation, and have many similarities to well documented orogenic - lode-style gold deposits.			
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See body of announcement and figures.			
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All drilling reported for the San Antonio and Roswell deposits.			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Exploration results reported – for uncut gold grades; grades are calculated by length weighted average.			
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated.	Reported intercepts are calculated using a lower cut of 0.25g/t Au. No top cut has been used.			

Criteria	JORC Code explanation	Commentary
	and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Previously reported exploration results include an estimate of true width. The mineralisation is structurally complex and true widths are variable depending on the ore zone intersected however average 60% of the drill intersection.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plans and sections are included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All completed drill holes are listed at the San Antonio and Roswell drilling with samples assaying significant gold of ≥0.5g/t Au have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No additional or new drilling results are being reported at this time.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Additional drilling is underway to infill the drilling to 20m x 20m spacing to convert the inferred resources to indicated and measured. Deep core drilling is also being planned to test the continuation high grade mineralised structures at depth. Additional regional exploration is being planned to test the El Paso prospect.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See figures included in the announcement.