ASX \& Media Release
29 October 2020

ASX Symbol
ARL

Ardea Resources Limited
Suite 2 / 45 Ord St
West Perth WA 6005
PO Box 1433
West Perth WA 6872

Telephone
+61 862445136

Email
ardea@ardearesources.com.au

Website
www.ardearesources.com.au

Directors
Mat Longworth
Non-Executive Chair
Andrew Penkethman
Managing Director \& CEO
Ian Buchhorn
Technical Executive Director

Executive Management
Sam Middlemas
Company Secretary \& CFO
Matt Painter
General Manager Exploration

Issued Capital
Fully Paid Ordinary Shares 127,670,582

Directors/Employee
Performance Rights
3,711,000
ABN 30614289342

"Lily Albany" gold discovery confirmed by RC drilling at Aphrodite North

- The "Lily Albany" gold discovery at Aphrodite North represents the first virgin greenfields gold discovery in the Bardoc Tectonic Zone on Ardea's GNCP tenure. WA mines department (DMIRS) notified of discovery.
- Second round of RC drilling confirms shallow to deep mineralisation, indicating vertical extent of an orogenic gold system over all depths drilled, including:
- AANR0008: 10 m at $3.55 \mathrm{~g} / \mathrm{t}$ Au from 40 m including 2 m at $15.50 \mathrm{~g} / \mathrm{t}$ Au from 44 m
- AANR0009: 18 m at $1.07 \mathrm{~g} / \mathrm{t}$ Au from 216 m including 2 m at $2.45 \mathrm{~g} / \mathrm{t}$ Au from 218 m
- AANR0010: 10 m at $1.30 \mathrm{~g} / \mathrm{t}$ Au from 136 m including 2 m at $3.06 \mathrm{~g} / \mathrm{t}$ Au from 136 m
- AANR0014: 6 m at $1.68 \mathrm{~g} / \mathrm{t}$ Au from 246 m
- Results supplement earlier reported results from the first round of RC drilling:
- AANR0001: 6 m at $3.60 \mathrm{~g} / \mathrm{t}$ Au from 44 m
including 2 m at $9.99 \mathrm{~g} / \mathrm{t}$ Au from 44 m
and $\quad 8 \mathrm{~m}$ at $4.94 \mathrm{~g} / \mathrm{t}$ Au from 172 m to 180 m EOH including 4 m at $9.42 \mathrm{~g} / \mathrm{t}$ Au from 172 m
- AANR0002: 10 m at $1.52 \mathrm{~g} / \mathrm{t}$ Au from 76 m
- Results represent the first hits in a much larger orogenic gold system.
- Continuity of gold mineralisation confirmed between 80 m -spaced sections. Sub-surface anomalism extends over more than 2 km .
- Mineralisation open to north, south, and west, with intercepts broadening to the south.
- Mineralisation spatially corresponds with Ardea's detailed orogenic gold targeting polygons. Other adjacent and contiguous polygons are yet to be tested.
- This discovery is consistent with Ardea's concept of a broad, buried gold camp comprising numerous deposits comparable to the outcropping Menzies and Paddington mining centres.
- More work to be done to find a high-grade centre. Next steps involve:
- Diamond drilling, to fully define mineralisation orientations and controls
- Close-spaced, widespread RC pattern drilling, to define subtransported gold distributions and focus deeper drilling.
- First-pass metallurgical test work has been initiated.

Ardea Resources Limited (Ardea or the Company) is delighted to announce the confirmation of the "Lily Albany" gold discovery at Aphrodite North. Verification of mineralisation continuity from the most recent RC drill program represents a significant milestone in Ardea's assessment of its Goongarrie Nickel-Cobalt Project for underlying gold mineralisation. Eight RC drill holes were completed for 2,001m on three sections 80 m apart. Assay results show that gold mineralisation is continuous and open.

Ardea's Managing Director, Andrew Penkethman, said:
"Ardea's gold targeting under cover strategy has been shown to be effective in discovering orogenic gold mineralisation with the discovery of Lily Albany. This emerging gold discovery is only 70km northwest of the City of Kalgoorlie-Boulder and Ardea will continue to leverage off the surrounding infrastructure to accelerate its gold strategy. With Ardea tenements covering 65km of strike along the major gold controlling structure, the Bardoc Tectonic Zone, multiple gold targets have been defined and will continue to be systematically explored to build upon this promising start.

The Ardea Team are also keenly awaiting assay results from other gold targets recently drilled and look forward to providing updates on these, as information becomes available."

Lily Albany gold discovery

Lily Albany is the first gold discovery in the Aphrodite North area by any company. It is located over 3km east of Ardea's 25 km long line of nickel-cobalt laterite deposits that define the Goongarrie Nickel Cobalt Project (GNCP), located on one of the granted GNCP mining tenements. Lily Albany is a proof-of-concept discovery that resoundingly illustrates the gold fertility of the Bardoc Tectonic Zone (BTZ) within Ardea's tenure. As per the Western Australian government's guidelines ${ }^{1}$, the discovery has been reported to the Department of Mines, Industry Regulation and Safety (DMIRS).

Ardea drilled the first holes into the area earlier this year when strong gold anomalism was recognised in aircore drilling. The area was identified as a gold target following comprehensive in-house assessment, chiefly from geophysical datasets and the derived structural geological models. Prior to this, the main targets and their host structures had never been drilled.

Gold mineralisation identified to date at Lily Albany corresponds with only two of an extensive series of targets defined by Ardea throughout the Aphrodite North area. It is clear that, whilst we have unequivocal proof of orogenic gold mineralisation, we have not yet hit the heart of the system. With the mineralisation at Lily Albany being open to the north, south, and west, we must continue to explore the full array of targets and gold anomalism throughout the area.

New gold intercepts

The second round of RC drilling at Lily Albany confirms gold mineralisation at all depths beneath transported cover, from shallow ($<40 \mathrm{~m}$) to deep ($>200 \mathrm{~m}$). This indicates the continuous vertical extent characteristic of orogenic gold systems. Strike length covered by this second RC drilling program is around 160 m with gold mineralisation open in most directions. Results from this round of drilling include:

AANR0008	including 2 m at $15.50 \mathrm{~g} / \mathrm{t}$ Au from 44 m
AANR0009	18 m at $1.07 \mathrm{~g} / \mathrm{t}$ Au from 216 m including 2 m at $2.45 \mathrm{~g} / \mathrm{t}$ Au from 218 m
AANR0010	10 m at $1.30 \mathrm{~g} / \mathrm{t}$ Au from 136 m including 2 m at $3.06 \mathrm{~g} / \mathrm{t}$ Au from 136 m
AANR0014	6 m at $1.68 \mathrm{~g} / \mathrm{t}$ Au from 246 m

These new results confirm and build on previously reported results ${ }^{2}$ such as:
AANR0001 6m at $\mathbf{3 . 6 0 g} / \mathrm{t}$ Au from 44 m including 2 m at $9.99 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ from 44 m
and 8 m at $4.94 \mathrm{~g} / \mathrm{t}$ Au from 172 m to 180 m EOH including 4 m at $9.42 \mathrm{~g} / \mathrm{t}$ Au from 172 m
AANR0002
10 m at $1.52 \mathrm{~g} / \mathrm{t}$ Au from 76 m

[^0]
Part of a larger orogenic gold system?

The Lily Albany gold discovery is open in most directions. This new drilling confirms continuity on adjacent, 80 m -spaced sections, but the original widely spaced (320 m line spacing) drilling from earlier this year shows strong gold anomalism over the entire $\sim 2.6 \mathrm{~km}$ strike length of the target structures within Ardea's tenure. Numerous structural and geophysical gold targets within this area are yet to be drilled, even those contiguous with Lily Albany, so investigation of the potential of the area has only just begun.

Through wide-ranging, scientifically robust interrogation of public and proprietary geophysical and geochemical datasets, Ardea's in-house gold targeting program has identified a regional-scale gold target area centred on the Company's tenure. It shows strong geological parallels with the Menzies gold camp to the north and the Paddington gold camp to the south, which each comprise tens to hundreds of historic (and some active) gold mines and workings within a defined area of predominantly outcrop and subcrop. These areas each mark a portion of the Bardoc Tectonic Zone that has been the focus of an intense gold-bearing fluid flux parental to the gold deposits.

By contrast, outcrop on Ardea's tenure is almost totally absent and consequently historic gold exploration has been minimal. Recent drilling such as that at Lily Albany and other target area represents the first steps towards assessing this hypothesis.

Mineralisation Model

The Lily Albany system is localised at the eastern contact of a geochemically distinctive, deformed Layered Mafic Complex which shows strong chlorite-pyrite-carbonate alteration. The deformed intrusion is located at the contact of the Victorious Basalt and the overlying Black Flag Group.

The alteration halo in AANR0009, 198-248m, is 50 m at $0.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 22 \mathrm{ppm} \mathrm{W}, 454 \mathrm{ppm}$ As. This indicates that a large amount of fluid fluxed through these rocks at the eastern Layered Mafic Complex contact.

Figure 1 - Location of the Lily Albany gold discovery at Aphrodite North. Also shown is the desensitised range of gold targets along the Aphrodite Trend, the structural line linking Aphrodite gold project to the south with Goongarrie Lady and other deposits at Goongarrie to the north. Targets for other areas not shown.

Further work

Diamond drilling and further RC drilling are required to define the full extent of gold mineralisation at Lily Albany. Intercepts are broadening to the south, and a high-grade centre to the system is the main target.

A diamond drilling program is being designed to provide certainty about the orientation of major gold-bearing structures and controls on mineralisation. Presently, RC drilling is insufficient to deliver this data which will inform all future exploration and expansion at Lily Albany.

Figure 2 - Gold mineralisation intensity (represented as grade-metres) for all RC drill holes at Lily Albany, superimposed on tentative interpreted geology units and surface imagery. RC drill holes AANR0008 to AANR0015 are reported here for the first time (yellow background). Notable intercepts from the first round of RC drilling are also shown (white background). Note that drill orientations differ, so collar positions are not necessarily indicative of the location of gold mineralisation in the subsurface. Collar locations of initial aircore drillholes are also shown without grades as they are not directly comparable to the $R C$ results.

Widespread, closely-spaced pattern RC drilling is also being considered to fully define the extent of higher grade, shallow mineralisation immediately below the barren transported cover (supergene intercepts include AANR0001, $\mathbf{2 m}$ at $9.99 \mathrm{~g} / \mathrm{t}$ Au from 44 m and AANR0008 $\mathbf{2 m}$ at $15.50 \mathrm{~g} / \mathrm{t}$ Au from 44 m). This will enable assessment for low cost open pit mining of oxide mineralisation. It will also provide valuable targeting data enabling location and orientation of mineralised structures at greater depth.

Current constraints on gold exploration and return of assay results

The drill program was restricted in time and metres relative to initial plans due to rig availability. Also, assay result turnaround times have more than tripled in recent months.

These timing restrictions are due to the rapid increase in demand for drilling across the mining and exploration industry in Western Australia as gold and nickel prices have increased. The touting of a new mining boom in Kalgoorlie-Boulder during the ongoing global pandemic is testament to the outstanding management of the situation by the Government of Western Australia which has allowed exploration and mining to continue almost unfettered. Though the delays are frustrating, they are the sign of a very healthy industry in the Eastern Goldfields of Western Australia. Ardea continues to work with its local service provider partners and due to long term relationships is receiving quality service comparable to the best available in the industry. Gold exploration results from other targets recently tested, will be reported once they become available and have been interpreted.

About Ardea Resources

Ardea Resources (ASX:ARL) is an ASX-listed resources company, with a large portfolio of 100% controlled West Australian-based projects, focussed on:

- Development of the Goongarrie Nickel Cobalt Project, which is part of the Kalgoorlie Nickel Project, a globally significant series of nickel-cobalt deposits which host the largest nickel-cobalt resource in the developed world, coincidentally located as a cover sequence overlying fertile orogenic gold targets; and
- Advanced-stage exploration at WA nickel sulphide and gold targets within the Eastern Goldfields world-class nickel-gold province.

For further information regarding Ardea, please visit www.ardearesources.com.au or contact:

Ardea Resources:

Andrew Penkethman
Managing Director and Chief Executive Officer, Ardea Resources Limited
Tel +61 862445136

CAUTIONARY NOTE REGARDING FORWARD-LOOKING INFORMATION

This news release contains forward-looking statements and forward-looking information within the meaning of applicable Australian securities laws, which are based on expectations, estimates and projections as of the date of this news release.

This forward-looking information includes, or may be based upon, without limitation, estimates, forecasts and statements as to management's expectations with respect to, among other things, the timing and amount of funding required to execute the Company's exploration, development and business plans, capital and exploration expenditures, the effect on the Company of any changes to existing legislation or policy, government regulation of mining operations, the length of time required to obtain permits, certifications and approvals, the success of exploration, development and mining activities, the geology of the Company's properties, environmental risks, the availability of labour, the focus of the Company in the future, demand and market outlook for precious metals and the prices thereof, progress in development of mineral properties, the Company's ability to raise funding privately or on a public market in the future, the Company's future growth, results of operations, performance, and business prospects and opportunities. Wherever possible, words such as "anticipate", "believe", "expect", "intend", "may" and similar expressions have been used to identify such forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the information is given, and on information available to management at such time.

Forward-looking information involves significant risks, uncertainties, assumptions and other factors that could cause actual results, performance or achievements to differ materially from the results discussed or implied in the forward-looking information. These factors, including, but not limited to, fluctuations in currency markets, fluctuations in commodity prices, the ability of the Company to access sufficient capital on favourable terms or at all, changes in national and local government legislation, taxation, controls, regulations, political or economic developments in Australia or other countries in which the Company does business or may carry on business in the future, operational or technical difficulties in connection with exploration or development activities, employee relations, the speculative nature of mineral exploration and development, obtaining necessary licenses and permits, diminishing quantities and grades of mineral reserves, contests over title to properties, especially title to undeveloped properties, the inherent risks involved in the exploration and development of mineral properties, the uncertainties involved in interpreting drill results and other geological data, environmental hazards, industrial accidents, unusual or unexpected formations, pressures, cave-ins and flooding, limitations of insurance coverage and the possibility of project cost overruns or unanticipated costs and expenses, and should be considered carefully. Many of these uncertainties and contingencies can affect the Company's actual results and could cause actual results to differ materially from those expressed or implied in any forward-looking statements made by, or on behalf of, the Company. Prospective investors should not place undue reliance on any forward-looking information.

Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, the Company cannot assure prospective purchasers that actual results will be consistent with such forwardlooking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither the Company nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. The Company does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

No stock exchange, regulation services provider, securities commission or other regulatory authority has approved or disapproved the information contained in this news release.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Matthew Painter, a Competent Person who is a Member of the Australian Institute of Geoscientists. Dr Painter is a full-time employee of Ardea Resources Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Painter consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 - Collar location data

Collar location data for all new RC drill holes completed by Ardea Resources within the Aphrodite North area.

Drill hole	Type	Depth (m)	Tenement	Grid	Easting (mE)	Northing (mN)	RL (mASL)	Dip $\left({ }^{\circ}\right)$	Azimuth $\left({ }^{\circ}\right)$
AANR0008	RC	192	M29/426	MGA94_51	327159.2	6666359.8	380.2	-60	90
AANR0009	RC	280	M29/426	MGA94_51	327079.1	6666360.3	379.9	-60	90
AANR0010	RC	258	M29/426	MGA94_51	327080.2	6666440.0	379.5	-60	90
AANR0011	RC	264	M29/426	MGA94_51	326998.2	6666439.0	379.4	-60	90
AANR0012	RC	168	M292/26	MGA94_51	32718.9	6666520.9	378.6	-60	90
AANR0013	RC	260	M292/426	MG994_51	327041.4	6665626.2	378.7	-60	90
AANR0014	RC	279	M299/426	MGA94_51	327196.7	6666514.0	378.5	-60	205
AANR0015	RC	300	M29/426	MGA94_51	327315.1	6666436.8	378.9	-60	270

Appendix 2 -Assay results

All assays from recent RC drilling program within the Aphrodite North area.
Abbreviations used: Au - gold, Ag - silver, As - arsenic, Sb - antimony, W - tungsten, S - sulphur, m - metre,
g / t - grams per tonne, ppm - parts per million, b.d. - below detection.

Hole	From (m)	To (m)	Sample number	Au $(\mathrm{g} / \mathrm{t})$	Ag $(\mathrm{g} / \mathrm{t})$	$\begin{gathered} \text { As } \\ (\mathrm{pom}) \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\%) \end{gathered}$
AANR0008	40	42	AR033211	0.864	0.3	70	1.9	4	0.041
AANR0008	42	44	AR033212	0.38	0.2	190	2.5	6.5	0.045
AANR0008	44	46	AR033213	15.5	0.1	90	1.8	2.5	0.052
AANR0008	46	48	AR033214	0.198	b.d.	220	2.4	9	0.038
AANR0008	48	50	AR033215	0.804	b.d.	40	1	6	0.033
AANR0008	50	52	AR033216	0.012	b.d.	20	0.8	4.5	0.042
AANR0008	52	54	AR033218	0.042	b.d.	70	1.1	9	0.05
AANR0008	54	56	AR033219	0.088	b.d.	110	1.3	11	0.045
AANR0008	56	58	AR033220	0.064	b.d.	110	1.2	12	0.045
AANR0008	58	60	AR033221	0.024	b.d.	90	1	20	0.048
AANR0008	60	62	AR033222	0.176	b.d.	70	1.1	9	0.044
AANR0008	62	64	AR033223	0.074	b.d.	60	1.1	11.5	0.043
AANR0008	64	66	AR033224	0.02	b.d.	60	1	9	0.043
AANR0008	66	68	AR033225	0.144	b.d.	70	1.2	13	0.061
AANR0008	68	70	AR033226	0.03	b.d.	50	2.8	9.5	0.063
AANR0008	70	72	AR033228	0.006	b.d.	40	2.1	5	0.064
AANR0008	72	74	AR033229	b.d.	b.d.	40	2	2	0.065
AANR0008	74	76	AR033230	0.002	b.d.	40	1.5	1.5	0.066
AANR0008	76	78	AR033231	b.d.	b.d.	70	1.6	3.5	0.077
AANR0008	78	80	AR033232	b.d.	0.2	70	2.1	3.5	0.08
AANR0008	80	82	AR033233	b.d.	b.d.	100	1.6	11.5	0.075
AANR0008	82	84	AR033234	b.d.	b.d.	140	1.7	10.5	0.067
AANR0008	84	86	AR033235	0.002	0.1	100	2.2	5.5	0.098
AANR0008	86	88	AR033236	b.d.	0.8	110	2.8	3.5	0.08
AANR0008	88	90	AR033238	0.002	b.d.	70	2.7	4.5	0.07
AANR0008	90	92	AR033239	b.d.	0.1	100	3.2	6.5	0.085
AANR0008	92	94	AR033240	0.01	1.6	160	6	3.5	0.101
AANR0008	94	96	AR033241	0.01	0.4	110	13.3	12.5	0.074
AANR0008	96	98	AR033242	0.002	1	190	6.8	6.5	0.1
AANR0008	98	100	AR033243	0.002	1.3	180	4	10.5	0.092
AANR0008	100	102	AR033244	0.066	1	120	3.8	8	0.07
AANR0008	102	104	AR033245	b.d.	0.4	90	3.7	8	0.127
AANR0008	104	106	AR033246	0.014	0.4	190	3.7	10.5	0.096
AANR0008	106	108	AR033248	0.14	0.5	210	2.9	14	0.083
AANR0008	108	110	AR033249	b.d.	0.2	290	3.5	8	0.1
AANR0008	110	112	AR033250	0.354	0.3	1170	6.1	7	0.093
AANR0008	112	114	AR033251	0.194	0.6	350	3.7	6	0.093
AANR0008	114	116	AR033252	0.07	0.4	160	4.6	5.5	0.123
AANR0008	116	118	AR033253	0.044	0.4	140	3.6	2.5	0.074
AANR0008	118	120	AR033254	0.014	0.2	140	3.5	2.5	0.094
AANR0008	120	122	AR033255	0.242	0.5	100	3.3	4.5	0.123
AANR0008	122	124	AR033256	0.026	0.3	50	2.2	1	0.133
AANR0008	124	126	AR033258	0.016	0.2	60	1.7	1	0.22
AANR0008	126	128	AR033259	0.006	0.2	70	2.9	1.5	0.294
AANR0008	128	130	AR033260	0.366	0.3	130	2.6	5.5	0.094
AANR0008	130	132	AR033261	0.158	0.3	90	2.4	4.5	0.388
AANR0008	132	134	AR033262	0.076	0.3	90	3.1	6.5	0.767
AANR0008	134	136	AR033263	0.006	0.1	50	2.5	6	0.239
AANR0008	136	138	AR033264	0.05	0.2	20	3	12	0.118
AANR0008	138	140	AR033265	0.068	0.2	70	3.7	9	0.315
AANR0008	140	142	AR033266	0.068	0.2	80	3.8	5.5	0.227

Hole	From (m)	$\begin{aligned} & \hline \text { To } \\ & \text { (m) } \end{aligned}$	Sample number	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \hline \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	As (ppm)	$\begin{gathered} \hline \mathrm{Sb} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { W } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\%) \end{gathered}$
AANR0008	142	144	AR033268	0.012	0.2	10	3.1	4	0.382
AANR0008	144	146	AR033269	0.016	b.d.	10	1.8	4	0.196
AANR0008	146	148	AR033270	0.002	0.1	30	2.3	3.5	0.214
AANR0008	148	150	AR033271	0.004	0.1	30	2.5	4.5	0.247
AANR0008	150	152	AR033272	0.006	0.2	10	3.1	3	0.222
AANR0008	152	154	AR033273	0.002	0.1	40	3.1	2	0.288
AANR0008	154	156	AR033274	0.006	0.1	30	2.5	2	0.24
AANR0008	156	158	AR033275	0.016	0.1	20	2.4	2.5	0.183
AANR0008	158	160	AR033276	0.044	0.1	20	1.9	6.5	0.32
AANR0008	160	162	AR033278	0.022	0.3	b.d.	1.8	3.5	0.195
AANR0008	162	164	AR033279	0.006	0.1	20	2.2	2.5	0.149
AANR0008	164	166	AR033280	0.008	0.2	b.d.	1.5	1	0.145
AANR0008	166	168	AR033281	b.d.	b.d.	b.d.	1.5	,	0.154
AANR0008	168	170	AR033282	0.028	0.2	30	2.3	2.5	0.214
AANR0008	170	172	AR033283	0.002	0.3	b.d.	2	1	0.18
AANR0008	172	174	AR033284	b.d.	0.1	b.d.	1.7	1.5	0.217
AANR0008	174	176	AR033285	0.004	0.1	10	2.1	2	0.842
AANR0008	176	178	AR033286	0.014	0.2	20	1.8	1.5	0.91
AANR0008	178	180	AR033288	0.002	0.3	b.d.	1.7	0.5	0.458
AANR0008	180	182	AR033289	0.004	b.d.	b.d.	1.7	0.5	0.34
AANR0008	182	184	AR033290	0.002	b.d.	b.d.	1.5	,	0.602
AANR0008	184	186	AR033291	0.002	b.d.	b.d.	1	2	0.155
AANR0008	186	188	AR033292	0.004	b.d.	b.d.	0.8	1.5	0.368
AANR0008	188	190	AR033293	0.004	b.d.	b.d.	1	1	0.476
AANR0008	190	192	AR033294	0.006	b.d.	b.d.	1	1	0.124
AANR0009	40	42	AR033295	0.006	0.4	20	1.9	2	0.076
AANR0009	42	44	AR033296	b.d.	0.5	20	3.1	4	0.088
AANR0009	44	46	AR033298	1.74	0.4	20	2.7	2	0.055
AANR0009	46	48	AR033299	0.272	b.d.	b.d.	1.4	2.5	0.035
AANR0009	48	50	AR033300	0.422					
AANR0009	50	52	AR033301	0.034	b.d.	40	1.5	2.5	0.057
AANR0009	52	54	AR033302	0.006	0.2	10	0.8	3.5	0.045
AANR0009	54	56	AR033303	0.054	b.d.	b.d.	1.1	4.5	0.032
AANR0009	56	58	AR033304	0.026	0.2	10	1	6	0.035
AANR0009	58	60	AR033305	b.d.	b.d.	b.d.	1.3	2	0.034
AANR0009	60	62	AR033306	b.d.	b.d.	10	1.7	2.5	0.034
AANR0009	62	64	AR033308	b.d.	b.d.	b.d.	1.2	2	0.032
AANR0009	64	66	AR033309	0.232	0.2	20	1.3	1.5	0.024
AANR0009	66	68	AR033310	0.196	b.d.	20	2.1	0.5	0.025
AANR0009	68	70	AR033311	0.004	b.d.	20	1.7	1	0.027
AANR0009	70	72	AR033312	0.004	b.d.	20	1.6	1.5	0.03
AANR0009	72	74	AR033313	0.008	b.d.	20	2.3	1	0.022
AANR0009	74	76	AR033314	0.044	b.d.	30	2.4	b.d.	0.021
AANR0009	76	78	AR033315	0.07	b.d.	40	2.3	1	0.022
AANR0009	78	80	AR033316	0.08	b.d.	40	2.2	0.5	0.052
AANR0009	80	82	AR033318	0.098	b.d.	50	1.8	1	0.024
AANR0009	82	84	AR033319	0.046	b.d.	50	2	1.5	0.026
AANR0009	84	86	AR033320	0.078	b.d.	20	1.7	1	0.023
AANR0009	86	88	AR033321	0.188	b.d.	20	0.7	2.5	0.026
AANR0009	88	90	AR033322	0.122	b.d.	30	1	0.5	0.02

Hole	From (m)	To (m)	Sample number	Au $(\mathrm{g} / \mathrm{t})$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { As } \\ (\text { ppm }) \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { W } \\ (\text { ppm }) \end{gathered}$	s (\%)
AANR0009	90	92	AR033323	0.076	0.2	20	2.1	0.5	0.013
AANR0009	92	94	AR033324	0.076	0.8	30	2	0.5	0.017
AANR0009	94	96	AR033325	0.008	0.4	10	1.8	1	0.031
AANR0009	96	98	AR033326	0.024	0.7	10	2.1	1	0.027
AANR0009	98	100	AR033328	0.012	0.1	20	1.5	0.5	0.02
AANR0009	100	102	AR033329	0.018	0.4	20	1.3	b.d.	0.038
AANR0009	102	104	AR033330	0.014	0.4	20	1.8	0.5	0.123
AANR0009	104	106	AR033331	0.032	0.5	30	2.3	3	0.34
AANR0009	106	108	AR033332	0.02	0.5	20	2.1	2	0.575
AANR0009	108	110	AR033333	0.006	0.2	20	1.7	1.5	0.277
AANR0009	110	112	AR033334	0.014	0.2	30	2	3.5	0.253
AANR0009	112	114	AR033335	0.004	0.1	30	1.8	3.5	0.226
AANR0009	114	116	AR033336	0.012	0.2	50	1.1	1	0.197
AANR0009	116	118	AR033338	0.012	0.2	50	0.5		0.569
AANR0009	118	120	AR033339	0.004	b.d.	30	0.5	1.5	0.264
AANR0009	120	122	AR033340	0.014	0.3	90	1.3	0.5	0.997
AANR0009	122	124	AR033341	b.d.	b.d.	60	1.4	1.5	0.386
AANR0009	124	126	AR033342	0.034	0.3	50	1.1	1.5	0.341
AANR0009	126	128	AR033343	0.038	0.4	70	1	1.5	0.754
AANR0009	128	130	AR033344	0.048	0.1	30	0.4	3.5	0.504
AANR0009	130	132	AR033345	0.028	0.4	30	0.9	1.5	0.487
AANR0009	132	134	AR033346	0.024	0.4	50	1	1	0.749
AANR0009	134	136	AR033348	0.016	0.3	20	2	1	0.512
AANR0009	136	138	AR033349	0.01	0.2	10	1.3	2	0.129
AANR0009	138	140	AR033350	0.024	0.3	10	0.6	1.5	0.246
AANR0009	140	142	AR033351	0.042	0.1	20	0.5	4.5	0.413
AANR0009	142	144	AR033352	0.258	b.d.	20	0.6	6.5	0.545
AANR0009	144	146	AR033353	0.014	b.d.	40	0.7	8.5	1.41
AANR0009	146	148	AR033354	0.016	0.1	50	0.6	2	0.363
AANR0009	148	150	AR033355	0.078	b.d.	30	0.5	2	0.244
AANR0009	150	152	AR033356	0.004	b.d.	40	0.6	1.5	0.283
AANR0009	152	154	AR033358	0.01	0.1	40	0.8	1	0.31
AANR0009	154	156	AR033359	b.d.	b.d.	40	1.2	1	0.229
AANR0009	156	158	AR033360	0.01	0.2	60	0.8	1	0.305
AANR0009	158	160	AR033361	0.004	0.2	70	1.6	1.5	0.321
AANR0009	160	162	AR033362	0.002	0.3	90	1.4	b.d.	0.43
AANR0009	162	164	AR033363	0.004	0.3	70	0.9	1.5	0.412
AANR0009	164	166	AR033364	0.002	0.3	50	0.9	1	0.267
AANR0009	166	168	AR033365	0.004	0.5	70	0.8	1	0.444
AANR0009	168	170	AR033366	0.002	0.2	50	2.3	1.5	0.217
AANR0009	170	172	AR033368	0.002	0.4	30	3.3	4	0.38
AANR0009	172	174	AR033369	0.002	0.4	30	3.6	2.5	0.365
AANR0009	174	176	AR033370	0.004	0.3	20	1.8	1.5	0.325
AANR0009	176	178	AR033371	0.04	0.6	b.d.	3.6	,	0.522
AANR0009	178	180	AR033372	0.004	0.3	b.d.	0.9	2	0.645
AANR0009	180	182	AR033373	0.014	0.6	10	1.2	2	0.598
AANR0009	182	184	AR033374	0.014	0.1	10	0.9	2	0.26
AANR0009	184	186	AR033375	0.09	0.1	10	0.9		0.552
AANR0009	186	188	AR033376	0.062	b.d.	30	2.9	1.5	0.122
AANR0009	188	190	AR033378	b.d.	b.d.	30	2.5	1.5	0.131
AANR0009	190	192	AR033379	0.008	0.1	20	2	2	0.103
AANR0009	192	194	AR033380	0.002	0.1	30	2.1	1.5	0.14
AANR0009	194	196	AR033381	0.002	b.d.	30	1.2	1.5	0.17
AANR0009	196	198	AR033382	0.014	0.3	50	0.7	2.5	0.177
AANR0009	198	200	AR033383	2.8	0.4	1080	1.1	8.5	1.21
AANR0009	200	202	AR033384	0.37	b.d.	160	0.9	5.5	0.3
AANR0009	202	204	AR033385	0.1	0.1	60	0.7	8	0.309
AANR0009	204	206	AR033386	0.088	0.3	70	0.9	2	0.227
AANR0009	206	208	AR033388	0.038	0.1	60	0.8	4	0.201
AANR0009	208	210	AR033389	0.034	0.1	60	0.8	5.5	0.28
AANR0009	210	212	AR033390	0.178	0.2	220	1.1	10.5	0.357
AANR0009	212	214	AR033391	0.31	b.d.	150	1	7	0.258
AANR0009	214	216	AR033392	0.35	0.1	360	1.1	16.5	0.474
AANR0009	216	218	AR033393	0.626	0.7	130	1.3	22.5	1.83
AANR0009	218	220	AR033394	2.45	0.9	1050	1.7	73	2.16
AANR0009	220	222	AR033395	0.962	0.5	770	1.5	39	1.28
AANR0009	222	224	AR033396	1.22	0.4	1000	1.3	29.5	0.82
AANR0009	224	226	AR033398	0.974	0.9	130	1.1	61.5	1.37
AANR0009	226	228	AR033399	0.762	0.4	980	1.3	30.5	0.881
AANR0009	228	230	AR033400	1.56	2	790	1.3	19.5	1.06
AANR0009	230	232	AR033401	0.19	0.1	130	1.1	8	0.373
AANR0009	232	234	AR033402	0.906	0.2	3280	2.5	13.5	1.05
AANR0009	234	236	AR033403	0.082	b.d.	260	1	145	0.254
AANR0009	236	238	AR033404	0.014	0.2	110	1.4	8	0.36
AANR0009	238	240	AR033405	0.814	0.2	140	1.6	4	0.246
AANR0009	240	242	AR033406	0.034	0.1	120	1.6	3	0.191
AANR0009	242	244	AR033408	0.38	0.2	210	1.4	8	0.405
AANR0009	244	246	AR033409	1.47	0.3	20	1.2	13.5	0.801
AANR0009	246	248	AR033410	0.47	0.4	10	1.3	10.5	0.78
AANR0009	248	250	AR033411	0.222	0.4	10	1.3	6.5	0.52
AANR0009	250	252	AR033412	0.158	0.4	110	1.2	8	0.296
AANR0009	252	254	AR033413	0.078	0.1	30	1.3	5	0.202
AANR0009	254	256	AR033414	0.24	0.2	40	1.2	9	0.297
AANR0009	256	258	AR033415	0.034	0.1	80	1.3	7.5	0.207
AANR0009	258	260	AR033416	0.02	0.1	250	1.4	6	0.173
AANR0009	260	262	AR033418	0.02	0.1	240	1.3	25	0.104
AANR0009	262	264	AR033419	0.098	0.1	330	1.5	17	0.22
AANR0009	264	266	AR033420	0.068	0.1	450	1.5	9	0.224
AANR0009	266	268	AR033421	0.018	b.d.	50	1.2	5	0.053
AANR0009	268	270	AR033422	0.006	b.d.	80	1.4	4	0.078
AANR0009	270	272	AR033423	0.012	0.2	60	1.5	4	0.125
AANR0009	272	274	AR033424	b.d.	b.d.	20	1.4	3	0.098
AANR0009	274	276	AR033425	b.d.	b.d.	10	1.4	2	0.077
AANR0009	276	278	AR033426	b.d.	0.1	20	1.5	2	0.07

Hole	From (m)	$\begin{aligned} & \hline \text { To } \\ & \text { (m) } \\ & \hline \end{aligned}$	Sample number	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g}(\mathrm{t}) \end{gathered}$	$\begin{gathered} \hline \mathrm{Ag} \\ (\mathrm{~g}(\mathrm{t}) \end{gathered}$	$\begin{gathered} \hline \text { As } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ (\%) \end{gathered}$
AANR0009	278	280	AR033428	b.d.	b.d.	b.d.	1.6	1.5	0.028
AANR0010	40	42	AR033429	0.046	0.1	120	1.7	5	0.032
AANR0010	42	44	AR033430	0.132	0.1	160	2.1	7	0.033
AANR0010	44	46	AR033431	0.076	0.1	200	2	15	0.045
AANR0010	46	48	AR033432	0.05	0.1	180	2.4	4.5	0.051
AANR0010	48	50	AR033433	0.02	b.d.	50	3.6	3	0.05
AANR0010	50	52	AR033434	0.008	b.d.	30	2.4	2.5	0.053
AANR0010	52	54	AR033435	0.006	0.1	30	1.6	3	0.045
AANR0010	54	56	AR033436	0.012	b.d.	40	2.4	5	0.054
AANR0010	56	58	AR033438	0.02	b.d.	50	2.6	4	0.055
AANR0010	58	60	AR033439	0.008	0.1	100	1.5	12	0.05
AANR0010	60	62	AR033440	0.006	0.1	70	1.6	10.5	0.049
AANR0010	62	64	AR033441	0.008	0.2	40	3.6	5	0.056
AANR0010	64	66	AR033442	0.006	0.2	20	3.8	3.5	0.067
AANR0010	66	68	AR033443	0.006	0.2	20	3.5	3.5	0.07
AANR0010	68	70	AR033444	0.006	0.4	10	3.3	1.5	0.074
AANR0010	70	72	AR033445	0.008	0.4	10	2.7	2	0.074
AANR0010	72	74	AR033446	0.006	0.4	20	3	2	0.076
AANR0010	74	76	AR033448	0.288	0.3	20	1.9	3	0.062
AANR0010	76	78	AR033449	0.01	b.d.	10	3.2	2.5	0.073
AANR0010	78	80	AR033450	0.008	0.3	10	3.2	1.5	0.079
AANR0010	80	82	AR033451	0.006	0.1	20	4	1.5	0.076
AANR0010	82	84	AR033452	0.006	b.d.	20	3	,	0.076
AANR0010	84	86	AR033453	0.018	b.d.	20	2.6	2	0.079
AANR0010	86	88	AR033454	0.008	0.2	20	1.3	3.5	0.08
AANR0010	88	90	AR033455	0.008	b.d.	20	1.4	4.5	0.083
AANR0010	90	92	AR033456	0.01	0.1	20	1.1	3.5	0.075
AANR0010	92	94	AR033458	0.01	0.2	20	1.4		0.092
AANR0010	94	96	AR033459	0.008	b.d.	30	1.2	4	0.081
AANR0010	96	98	AR033460	0.008	0.1	20	1.5	4	0.093
AANR0010	98	100	AR033461	0.008	0.2	40	1.6	2.5	0.093
AANR0010	100	102	AR033462	0.008	0.2	40	1.3	,	0.093
AANR0010	102	104	AR033463	0.008	0.2	30	1.8	2	0.109
AANR0010	104	106	AR033464	0.01	0.1	20	3.4	2	0.11
AANR0010	106	108	AR033465	0.012	0.1	40	1.5	4	0.101
AANR0010	108	110	AR033466	0.01	0.2	70	1.3	4.5	0.086
AANR0010	110	112	AR033468	0.024	0.1	70	1.3	5.5	0.081
AANR0010	112	114	AR033469	0.114	0.2	110	1.9	9.5	0.082
AANR0010	114	116	AR033470	0.038	0.2	200	3.5	25.5	0.056
AANR0010	116	118	AR033471	0.022	0.5	260	3.5	17	0.061
AANR0010	118	120	AR033472	0.014	0.2	90	1.8	3.5	0.04
AANR0010	120	122	AR033473	0.024	0.2	150	2.4	3.5	0.074
AANR0010	122	124	AR033474	0.014	0.2	50	,	2	0.024
AANR0010	124	126	AR033475	0.014	0.2	20	1.9	2.5	0.031
AANR0010	126	128	AR033476	0.044	0.2	40	1.8	2.5	0.043
AANR0010	128	130	AR033478	0.016	0.1	80	1.8	2	0.041
AANR0010	130	132	AR033479	0.014	0.2	50	2.4	1.5	0.034
AANR0010	132	134	AR033480	0.014	b.d.	80	2.1	1	0.106
AANR0010	134	136	AR033481	0.034	0.1	110	1.2	2.5	0.102
AANR0010	136	138	AR033482	3.06	0.5	360	1.5	17	0.083
AANR0010	138	140	AR033483	0.88	0.2	230	1.5	30.5	0.094
AANR0010	140	142	AR033484	1.08	0.4	270	1.1	5.5	0.101
AANR0010	142	144	AR033485	0.714	0.1	360	1.6	7.5	0.083
AANR0010	144	146	AR033486	0.746	0.2	190	1.9	9	0.216
AANR0010	146	148	AR033488	0.084	0.3	130	1.2		0.169
AANR0010	148	150	AR033489	0.202	0.3	160	1.3	4.5	0.096
AANR0010	150	152	AR033490	0.072	0.1	80	1.4	3.5	0.186
AANR0010	152	154	AR033491	0.036	0.4	90	1.6	2	0.192
AANR0010	154	156	AR033492	0.018	0.2	70	1.3	2	0.101
AANR0010	156	158	AR033493	0.062	0.2	70	1.4	2	0.217
AANR0010	158	160	AR033494	0.022	0.2	40	1.1	1.5	0.232
AANR0010	160	162	AR033495	0.148	0.2	40	2.1	2.5	0.232
AANR0010	162	164	AR033496	0.052	0.2	40	2.2	2	0.321
AANR0010	164	166	AR033498	0.046	0.2	30	1.8	2.5	0.383
AANR0010	166	168	AR033499	0.036	0.3	20	2	2	0.925
AANR0010	168	170	AR033500	0.028	0.3	20	1.4	2	0.295
AANR0010	170	172	AR033501	0.02	0.1	30	1.4	2	0.317
AANR0010	172	174	AR033502	0.018	0.2	20	1.3	2	0.303
AANR0010	174	176	AR033503	0.03	0.5	20	2.1	2.5	0.366
AANR0010	176	178	AR033504	0.12	0.1	40	1.4	3.5	0.319
AANR0010	178	180	AR033506	0.002	0.4	20	1.1	2.5	0.244
AANR0010	180	182	AR033507	0.026	0.4	20	1.8	2	0.218
AANR0010	182	184	AR033508	0.016	0.2	10	1.3	3.5	0.195
AANR0010	184	186	AR033509	0.002	0.2	b.d.	1.3	2.5	0.165
AANR0010	186	188	AR033510	0.01	0.2	20	1.2	4	0.157
AANR0010	188	190	AR033511	0.12	0.2	20	1.4		0.229
AANR0010	190	192	AR033512	0.004	b.d.	10	1.3	3	0.211
AANR0010	192	194	AR033513	0.002	0.2	b.d.	1.2	4	0.194
AANR0010	194	196	AR033514	0.048	0.4	b.d.	1.4	4.5	0.311
AANR0010	196	198	AR033516	0.028	0.2	b.d.	1.7	3.5	0.466
AANR0010	198	200	AR033517	0.026	0.3	b.d.	1.1		0.411
AANR0010	200	202	AR033518	0.016	0.2	b.d.	1.1	2	0.13
AANR0010	202	204	AR033519	0.006	0.4	b.d.	1		0.123
AANR0010	204	206	AR033520	0.01	0.1	10	1.1	4	0.085
AANR0010	206	208	AR033521	0.02	0.1	90	1.5	10	0.137
AANR0010	208	210	AR033522	0.006	b.d.	10	2	3.5	0.123
AANR0010	210	212	AR033523	0.006	0.1	b.d.	2.5	6	0.182
AANR0010	212	214	AR033524	0.004	0.2	10	2.2	2.5	0.188
AANR0010	214	216	AR033526	0.01	0.1	10	1.9	2.5	0.129
AANR0010	216	218	AR033527	0.006	0.3	b.d.	1.7	2.5	0.086
AANR0010	218	220	AR033528	0.004	0.2	b.d.	1.4	1	0.108
AANR0010	220	222	AR033529	0.002	0.1	10	1.2	1	0.072
AANR	222	224	AR033530	0.004	b.d.	10	1.4	1	0.531

Hole	From (m)	$\begin{aligned} & \hline \text { To } \\ & \text { (m) } \end{aligned}$	Sample number	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{i}) \end{gathered}$	$\begin{gathered} \hline \text { As } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \hline \text { Sb } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \hline \text { W } \\ (\text { pom }) \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ (\%) \\ \hline \end{gathered}$
AANR0010	224	226	AR033531	0.006	0.3	20	1.7	2	1.23
AANR0010	226	228	AR033532	0.004	b.d.	50	1.1	1.5	0.12
AANR0010	228	230	AR033533	0.006	0.1	20	1	1.5	0.823
AANR0010	230	232	AR033534	0.006	0.1	b.d.	1.1	2	1.05
AANR0010	232	234	AR033536	0.004	0.2	10	1	1	0.441
AANR0010	234	236	AR033537	0.006	0.2	10	1.2	1	0.063
AANR0010	236	238	AR033538	0.004	0.5	10	0.9	1	0.201
AANR0010	238	240	AR033539	0.002	b.d.	b.d.	0.9	1	0.043
AANR0010	240	242	AR033540	0.014	b.d.	b.d.	0.8	2.5	0.097
AANR0010	242	244	AR033541	0.004	0.1	10	1	1.5	0.054
AANR0010	244	246	AR033542	0.02	b.d.	20	0.9	2	0.047
AANR0010	246	248	AR033543	0.006	b.d.	10	1	2	0.339
AANR0010	248	250	AR033544	0.004	0.1	20	0.7	1	0.10
AANR0010	250	252	AR033546	0.028	0.1	40	1.1	3	0.059
AANR0010	252	254	AR033547	0.012	0.2	30	0.8	1	0.09
AANR0010	254	256	AR033548	0.014	0.2	20	0.9	2	0.226
AANR0010	256	258	AR033549	0.01	b.d.	30	1.2	2.5	0.454
AANR0011	40	42	AR033550	0.068	0.4	10	1.9	1.5	0.063
AANR0011	42	44	AR033551	0.042	0.1	10	1.8	1.5	0.05
AANR0011	44	46	AR033552	0.014	0.4	10	1	2	0.056
AANR0011	46	48	AR033553	b.d.	b.d.	b.d.	0.8	3	0.037
AANR0011	48	50	AR033554	0.25	0.2	10	2.7	5	0.03
AANR0011	50	52	AR033556	0.122	0.2	170	7	3	0.063
AANR0011	52	54	AR033557	1.15	0.3	220	5.7	4.5	0.076
AANR0011	54	56	AR033558	0.188	0.1	60	4.8	3.5	0.036
AANR0011	56	58	AR033559	0.018	b.d.	b.d.	1.7	1.5	0.029
AANR0011	58	60	AR033560	0.038	b.d.	50	1.6	5.5	0.027
AANR0011	60	62	AR033561	0.052	b.d.	30	1.7	27.5	0.034
AANR0011	62	64	AR033562	0.054	b.d.	10	0.8	3.5	0.028
AANR0011	64	66	AR033563	0.046	b.d.	20	0.8	2	0.025
AANR0011	66	68	AR033564	0.068	b.d.	10	1.7	1.5	0.032
AANR0011	68	70	AR033566	0.032	b.d.	b.d.	1	b.d.	0.025
AANR0011	70	72	AR033567	0.02	0.4	b.d.	0.9	1.5	0.026
AANR0011	72	74	AR033568	0.068	0.2	10	3.5	1.5	0.033
AANR0011	74	76	AR033569	0.032	0.3	b.d.	1.5	0.5	0.036
AANR0011	76	78	AR033570	0.022	b.d.	b.d.	1	1.5	0.03
AANR0011	78	80	AR033571	0.036	b.d.	30	2.9	1	0.055
AANR0011	80	82	AR033572	0.014	b.d.	20	1.1	1	0.042
AANR0011	82	84	AR033573	0.02	b.d.	b.d.	1	1	0.044
AANR0011	84	86	AR033574	0.026	b.d.	b.d.	2.8	1.5	0.061
AANR0011	86	88	AR033576	0.01	b.d.	10	1.4	1	0.05
AANR0011	88	90	AR033577	0.01	b.d.	10	0.9	0.5	0.046
AANR0011	90	92	AR033578	0.02	b.d.	30	2.6	3	0.067
AANR0011	92	94	AR033579	0.01	0.2	10	1.2	1	0.052
AANR0011	94	96	AR033580	0.018	0.2	20	0.8	1.5	0.042
AANR0011	96	98	AR033581	0.016	0.1	20	1.1	1	0.068
AANR0011	98	100	AR033582	0.036	0.1	40	1.1	2	0.088
AANR0011	100	102	AR033583	0.004	b.d.	40	1	2.5	0.074
AANR0011	102	104	AR033584	0.02	b.d.	50	2	4	0.09
AANR0011	104	106	AR033586	0.03	b.d.	40	1.2	2.5	0.064
AANR0011	106	108	AR033587	0.026	b.d.	30	1.3	2	0.088
AANR0011	108	110	AR033588	0.034	0.2	30	4.1	3	0.097
AANR0011	110	112	AR033589	0.022	0.5	30	1.3	2.5	0.12
AANR0011	112	114	AR033590	0.014	0.7	20	1.2	,	0.084
AANR0011	114	116	AR033591	0.024	0.4	60	1.5	5	0.204
AANR0011	116	118	AR033592	0.012	0.2	80	0.7	4.5	0.19
AANR0011	118	120	AR033593	0.022	0.3	80	0.7	10.5	0.121
AANR0011	120	122	AR033594	0.272	0.2	50	1.5	12	0.164
AANR0011	122	124	AR033596	0.082	0.3	60	0.8	8.5	0.343
AANR0011	124	126	AR033597	0.428	0.3	60	0.6	9.5	0.757
AANR0011	126	128	AR033598	0.032	b.d.	190	1	10.5	0.503
AANR0011	128	130	AR033599	0.016	0.1	110	0.7	4	0.344
AANR0011	130	132	AR033600	0.006	b.d.	40	0.7	2	0.242
AANR0011	132	134	AR033601	0.004	b.d.	40	1.6	2.5	0.229
AANR0011	134	136	AR033602	0.002	b.d.	20	1.5	1	0.172
AANR0011	136	138	AR033603	0.004	b.d.	20	2.4	2	0.188
AANR0011	138	140	AR033604	0.002	b.d.	20	2.7	4.5	0.105
AANR0011	140	142	AR033606	0.002	b.d.	30	2.3	2.5	0.083
AANR0011	142	144	AR033607	0.002	b.d.	30	2.7	4.5	0.15
AANR0011	144	146	AR033608	0.01	0.4	50	2.8	3.5	0.979
AANR0011	146	148	AR033609	0.006	0.2	30	2.9	3	0.304
AANR0011	148	150	AR033610	0.006	b.d.	30	2.3	3	0.246
AANR0011	150	152	AR033611	0.024	0.1	20	1.3	3.5	0.427
AANR0011	152	154	AR033612	0.014	0.2	10	1	4.5	0.46
AANR0011	154	156	AR033613	0.016	0.2	10	1.1	4	0.424
AANR0011	156	158	AR033614	0.008	b.d.	b.d.	1.3	3	0.239
AANR0011	158	160	AR033616	0.006	b.d.	b.d.	1	4.5	0.186
AANR0011	160	162	AR033617	0.044	0.3	20	0.9		0.686
AANR0011	162	164	AR033618	0.01	0.1	20	0.8	3.5	0.542
AANR0011	164	166	AR033619	0.014	0.2	60	0.6	3	0.583
AANR0011	166	168	AR033620	0.006	0.2	40	1.7	2.5	0.379
AANR0011	168	170	AR033621	0.008	0.3	20	1.7	2.5	0.238
AANR0011	170	172	AR033622	0.006	0.2	20	1.4	3.5	0.293
AANR0011	172	174	AR033623	0.006	0.3	10	1.6	4	0.382
AANR0011	174	176	AR033624	0.008	0.2	10	1.8	4.5	0.327
AANR0011	176	178	AR033626	0.004	0.2	b.d.	1.6	4.5	0.277
AANR0011	178	180	AR033627	0.006	0.2	10	1.5	4	0.319
AANR0011	180	182	AR033628	0.014	0.2	20	1.4	4	0.347
AANR0011	182	184	AR033629	0.008	b.d.	20	0.8	2.5	0.243
AANR0011	184	186	AR033630	0.016	b.d.	20	0.4	9	0.485
AANR0011	186	188	AR033631	0.058	b.d.	30	0.8		0.373
AANR0011	188	190	AR033632	0.006	b.d.	20	1.2	1.5	0.213
AANR0011	190	192	AR033633	0.012	0.1	30	1.3	3	0.647

Hole	From (m)	$\begin{gathered} \text { To } \\ \text { (m) } \end{gathered}$	Sample number	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g}(\mathrm{t}) \end{gathered}$	$\begin{gathered} \hline \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	As (ppm)	$\begin{gathered} \mathrm{Sb} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\%) \end{gathered}$
AANR0011	192	194	AR033634	0.008	0.1	30	1.3	2.5	0.412
AANR0011	194	196	AR033636	0.006	b.d.	40	1.9	4	0.192
AANR0011	196	198	AR033637	0.006	b.d.	30	1.9	3.5	0.188
AANR0011	198	200	AR033638	0.008	b.d.	30	2.3	4	0.186
AANR0011	200	202	AR033639	0.012	b.d.	40	1.9	5	0.256
AANR0011	202	204	AR033640	0.02	b.d.	20	1.6	3	0.233
AANR0011	204	206	AR033641	0.028	0.3	40	1.7	2.5	0.965
AANR0011	206	208	AR033642	0.008	b.d.	b.d.	1.7	3	0.256
AANR0011	208	210	AR033643	0.012	b.d.	10	1.3	2.5	0.251
AANR0011	210	212	AR033644	0.03	b.d.	10	0.9	2.5	0.352
AANR0011	212	214	AR033646	0.024	0.1	10	0.6	2.5	0.693
AANR0011	214	216	AR033647	0.062	b.d.	230	0.8	2.5	0.3
AANR0011	216	218	AR033648	0.042	b.d.	160	0.9	4.5	0.198
AANR0011	218	220	AR033649	0.046	0.2	120	0.5	4.5	0.311
AANR0011	220	222	AR033650	0.218	0.2	90	0.5	10	0.42
AANR0011	222	224	AR033651	0.146	b.d.	20	1.1	8	0.647
AANR0011	224	226	AR033652	0.02	b.d.	20	0.8	6	0.5
AANR0011	226	228	AR033653	0.014	0.2	10	0.7	2	0.177
AANR0011	228	230	AR033654	0.012	0.2	10	1.1	2	0.2
AANR0011	230	232	AR033656	0.076	0.2	b.d.	0.5	6	0.496
AANR0011	232	234	AR033657	0.214	0.1	10	0.5	3.5	0.435
AANR0011	234	236	AR033658	0.18	0.2	20	1	3.5	0.831
AANR0011	236	238	AR033659	0.05	0.2	10	1.5	2.5	0.461
AANR0011	238	240	AR033660	0.02	0.4	10	1.4	3	0.542
AANR0011	240	242	AR033661	0.006	0.2	20	1	3	0.435
AANR0011	242	244	AR033662	0.012	0.2	40	0.9	2	0.262
AANR0011	244	246	AR033663	0.016	0.2	30	0.7	2	0.334
AANR0011	246	248	AR033664	0.02	b.d.	20	0.7	3.5	0.268
AANR0011	248	250	AR033666	0.038	0.4	20	0.6	3	0.368
AANR0011	250	252	AR033667	0.016	0.2	40	0.7	2.5	0.274
AANR0011	252	254	AR033668	0.008	b.d.	40	0.9	1.5	0.237
AANR0011	254	256	AR033669	0.034	b.d.	20	0.7	5	0.273
AANR0011	256	258	AR033670	0.014	b.d.	30	0.8	5.5	0.216
AANR0011	258	260	AR033671	0.018	b.d.	30	0.9	3	0.279
AANR0011	260	262	AR033672	0.076	0.2	30	0.7	3	0.387
AANR0011	262	264	AR033673	0.046	b.d.	40	0.7	4	0.301
AANR0012	30	32	AR033674	0.022	b.d.	780	2	3.5	0.144
AANR0012	32	34	AR033676	0.014	b.d.	770	1.9	4	0.152
AANR0012	34	36	AR033677	0.01	b.d.	690	2.1	7	0.103
AANR0012	36	38	AR033678	0.01	b.d.	730	2	7	0.097
AANR0012	38	40	AR033679	0.01	b.d.	790	2	4.5	0.083
AANR0012	40	42	AR033680	0.006	b.d.	2790	2.4	7	0.076
AANR0012	42	44	AR033681	0.01	b.d.	960	2.3	14	0.231
AANR0012	44	46	AR033682	0.004	b.d.	170	1.1	6.5	0.181
AANR0012	46	48	AR033683	0.002	b.d.	90	1	2.5	0.158
AANR0012	48	50	AR033684	0.002	b.d.	90	1.1	4	0.124
AANR0012	50	52	AR033686	0.002	b.d.	40	1.2	4	0.079
AANR0012	52	54	AR033687	0.002	b.d.	30	1.1	4	0.056
AANR0012	54	56	AR033688	0.004	0.2	150	1.7	6.5	0.067
AANR0012	56	58	AR033689	b.d.	b.d.	70	1.3	6	0.059
AANR0012	58	60	AR033690	b.d.	b.d.	40	1.2	4	0.051
AANR0012	60	62	AR033691	0.004	b.d.	30	1.2	3	0.05
AANR0012	62	64	AR033692	0.002	b.d.	10	1	1.5	0.043
AANR0012	64	66	AR033693	0.004	b.d.	50	1.4	2.5	0.037
AANR0012	66	68	AR033694	0.002	b.d.	30	1.2	1.5	0.043
AANR0012	68	70	AR033696	b.d.	b.d.	10	1	2.5	0.033
AANR0012	70	72	AR033697	0.002	b.d.	10	1.4	3	0.039
AANR0012	72	74	AR033698	0.004	b.d.	20	1.2	1.5	0.039
AANR0012	74	76	AR033699	0.004	b.d.	b.d.	1.2	1.5	0.039
AANR0012	76	78	AR033700	0.002	b.d.	10	1.2	2	0.038
AANR0012	78	80	AR033701	0.002	b.d.	40	1.9	2.5	0.04
AANR0012	80	82	AR033702	b.d.	b.d.	10	1.3	1	0.044
AANR0012	82	84	AR033703	0.004	b.d.	20	1.3	1	0.057
AANR0012	84	86	AR033704	0.018	b.d.	20	1.6	1.5	0.062
AANR0012	86	88	AR033706	0.002	b.d.	20	1	b.d.	0.08
AANR0012	88	90	AR033707	0.004	b.d.	40	1.3	1.5	0.068
AANR0012	90	92	AR033708	0.03	0.1	50	1.5	1.5	0.083
AANR0012	92	94	AR033709	0.006	b.d.	60	1.5	2	0.087
AANR0012	94	96	AR033710	0.004	b.d.	50	1.2	1.5	0.096
AANR0012	96	98	AR033711	0.006	b.d.	40	1.6	2.5	0.087
AANR0012	98	100	AR033712	0.008	0.1	30	1	2.5	0.091
AANR0012	100	102	AR033713	0.008	b.d.	20	1.3	1	0.072
AANR0012	102	104	AR033714	0.008	0.1	30	2.2	2	0.089
AANR0012	104	106	AR033716	0.022	b.d.	20	1.3	1.5	0.085
AANR0012	106	108	AR033717	0.086	b.d.	10	1.3	1.5	0.075
AANR0012	108	110	AR033718	0.032	b.d.	b.d.	0.9	1	0.074
AANR0012	110	112	AR033719	0.024	b.d.	b.d.	0.9	1	0.096
AANR0012	112	114	AR033720	0.014	0.1	10	0.9	1.5	0.083
AANR0012	114	116	AR033721	0.012	0.4	b.d.	0.9	1.5	0.059
AANR0012	116	118	AR033722	0.01	0.5	b.d.	0.9	1.5	0.054
AANR0012	118	120	AR033723	0.006	0.3	b.d.	0.9	1.5	0.124
AANR0012	120	122	AR033724	0.01	0.4	b.d.	3.5	2	1.03
AANR0012	122	124	AR033726	0.012	0.5	b.d.	2.9	2.5	2.19
AANR0012	124	126	AR033727	0.012	1.7	20	4.8	2	3.61
AANR0012	126	128	AR033728	0.014	0.7	30	4.2	6	2.41
AANR0012	128	130	AR033729	0.03	0.4	10	2.8	2	2.53
AANR0012	130	132	AR033730	b.d.	0.5	30	1.9	1.5	1.25
AANR0012	132	134	AR033731	b.d.	0.4	b.d.	1.7	2.5	1.23
AANR0012	134	136	AR033732	b.d.	0.1	b.d.	0.9	2.5	0.493
AANR0012	136	138	AR033733	0.002	0.3	10	1.1	1.5	1.44
AANR0012	138	140	AR033734	b.d.	0.1	10	0.8	1	0.143
AANR0012	140	142	AR033736	0.002	0.2	b.d.	0.9	1	0.121
AANR0012	142	144	AR033737	b.d.	0.1	b.d.	0.7	1	0.096

Hole	From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Sample number	$\begin{aligned} & \mathrm{Au} \\ & (\mathrm{~g} / \mathrm{t}) \end{aligned}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \text { As } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { W } \\ (\text { ppm }) \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ (\%) \end{gathered}$
AANR0012	144	146	AR033738	0.002	0.2	b.d.	0.8	0.5	0.076
AANR0012	146	148	AR033739	b.d.	0.1	b.d.	0.6	0.5	0.089
AANR0012	148	150	AR033740	0.006	0.1	b.d.	0.7	1.5	0.076
AANR0012	150	152	AR033741	b.d.	0.1	b.d.	0.8	1.5	0.071
AANR0012	152	154	AR033742	b.d.	b.d.	b.d.	0.6	1	0.356
AANR0012	154	156	AR033743	b.d.	b.d.	b.d.	0.6	b.d.	0.413
AANR0012	156	158	AR033744	0.002	0.3	30	1.2	b.d.	0.863
AANR0012	158	160	AR033746	0.002	0.1	20	0.9	4.5	0.338
AANR0012	160	162	AR033747	b.d.	0.1	10	0.9	1.5	0.217
AANR0012	162	164	AR033748	0.002	0.1	20	0.9	1.5	0.341
AANR0012	164	166	AR033749	0.002	0.1	50	1.5	4	0.724
AANR0012	166	168	AR033750	b.d.	0.2	10	1	1.5	0.681
AANR0013	40	42	AR033751	0.778	0.4	30	2.2	2	0.046
AANR0013	42	44	AR033752	0.364	b.d.	40	1.7	2.5	0.049
AANR0013	44	46	AR033753	0.042	0.1	30	1.3	2	0.064
AANR0013	46	48	AR033754	0.022	b.d.	40	0.9	3	0.073
AANR0013	48	50	AR033756	0.014	0.1	50	0.9	2.5	0.071
AANR0013	50	52	AR033757	0.004	b.d.	70	0.6	2	0.087
AANR0013	52	54	AR033758	0.004	b.d.	70	0.7	2	0.086
AANR0013	54	56	AR033759	0.1	0.2	40	3.1	2	0.079
AANR0013	56	58	AR033760	0.004	b.d.	40	2.6	3	0.094
AANR0013	58	60	AR033761	0.006	0.2	20	2.4	2.5	0.086
AANR0013	60	62	AR033762	0.016	0.1	10	2.5	1.5	0.088
AANR0013	62	64	AR033763	0.008	b.d.	b.d.	1.9	1	0.104
AANR0013	64	66	AR033764	b.d.	b.d.	b.d.	3.2	1.5	0.081
AANR0013	66	68	AR033766	0.062	0.1	b.d.	2.9	2	0.056
AANR0013	68	70	AR033767	0.004	0.2	b.d.	2.1	2.5	0.073
AANR0013	70	72	AR033768	0.002	b.d.	b.d.	2.3	2.5	0.07
AANR0013	72	74	AR033769	0.02	b.d.	b.d.	2.5	2.5	0.064
AANR0013	74	76	AR033770	0.01	0.2	b.d.	0.9	3	0.063
AANR0013	76	78	AR033771	b.d.	0.2	10	0.9	2	0.069
AANR0013	78	80	AR033772	0.002	0.2	30	1.5	2	0.079
AANR0013	80	82	AR033773	0.006	0.1	30	1.8	1.5	0.074
AANR0013	82	84	AR033774	b.d.	0.2	30	2.2	2	0.077
AANR0013	84	86	AR033776	b.d.	0.2	30	2.6	1	0.079
AANR0013	86	88	AR033777	0.002	0.4	20	2.4	1	0.077
AANR0013	88	90	AR033778	b.d.	b.d.	20	2.7	1.5	0.087
AANR0013	90	92	AR033779	0.006	b.d.	20	2.2	1.5	0.086
AANR0013	92	94	AR033780	0.002	0.5	30	3.1	1.5	0.102
AANR0013	94	96	AR033781	0.014	0.5	50	3.6	1.5	0.109
AANR0013	96	98	AR033782	0.002	0.2	30	3.3	1.5	0.105
AANR0013	98	100	AR033783	0.004	0.2	40	3.3	1	0.087
AANR0013	100	102	AR033784	b.d.	0.4	50	2.6	2	0.095
AANR0013	102	104	AR033786	b.d.	0.1	60	5	2	0.102
AANR0013	104	106	AR033787	0.004	0.2	40	2.8	1	0.098
AANR0013	106	108	AR033788	0.002	0.6	80	1.4	4	0.115
AANR0013	108	110	AR033789	0.008	0.2	90	1.8	6.5	0.129
AANR0013	110	112	AR033790	0.004	0.1	70	1.5	1.5	0.124
AANR0013	112	114	AR033791	0.014	0.3	620	1.7	30	0.112
AANR0013	114	116	AR033792	0.014	0.3	1700	2.5	13	0.106
AANR0013	116	118	AR033793	0.008	0.2	750	1.7	12	0.106
AANR0013	118	120	AR033794	0.004	0.2	630	1.3	8.5	0.103
AANR0013	120	122	AR033796	0.752	0.1	1040	1.7	7	0.089
AANR0013	122	124	AR033797	0.024	0.1	170	1.3	2	0.096
AANR0013	124	126	AR033798	0.004	0.2	100	1.4	2	0.102
AANR0013	126	128	AR033799	0.004	0.1	50	1.4	6.5	0.128
AANR0013	128	130	AR033800	b.d.	b.d.	40	1.7	1	0.124
AANR0013	130	132	AR033801	b.d.	0.2	40	2.8	1	0.124
AANR0013	132	134	AR033802	0.194	0.3	50	1.9	2	0.134
AANR0013	134	136	AR033803	0.672	1.5	30	1.4	1.5	0.117
AANR0013	136	138	AR033804	0.092	b.d.	30	1	1	0.111
AANR0013	138	140	AR033806	0.012	0.1	40	1.7	2	0.142
AANR0013	140	142	AR033807	b.d.	0.1	10	1.1	2.5	0.102
AANR0013	142	144	AR033808	0.002	b.d.	30	1.1	1.5	0.106
AANR0013	144	146	AR033809	0.008	0.3	20	1.5	2.5	0.117
AANR0013	146	148	AR033810	0.006	0.3	10	1.1	3	0.103
AANR0013	148	150	AR033811	0.008	0.3	10	1.8	2	0.29
AANR0013	150	152	AR033812	0.01	0.3	10	1.6	2	0.292
AANR0013	152	154	AR033813	0.002	0.2	10	1.3	2.5	0.225
AANR0013	154	156	AR033814	0.004	0.3	10	1.6	1.5	0.489
AANR0013	156	158	AR033816	b.d.	0.2	20	1.8	1.5	0.214
AANR0013	158	160	AR033817	0.276	0.3	20	1.3	5.5	0.666
AANR0013	160	162	AR033818	0.296	0.3	50	1.5	6	0.716
AANR0013	162	164	AR033819	0.012	0.1	40	1.1	3.5	0.319
AANR0013	164	166	AR033820	0.882	0.2	60	1.2	5.5	0.705
AANR0013	166	168	AR033821	2.63	0.6	190	1.8	7	1.43
AANR0013	168	170	AR033822	0.03	0.2	70	1.5	3.5	0.211
AANR0013	170	172	AR033823	0.002	0.2	b.d.	1.7	2.5	0.2
AANR0013	172	174	AR033824	0.108	0.3	340	1.2	4	0.282
AANR0013	174	176	AR033826	0.024	0.1	20	1	3	0.267
AANR0013	176	178	AR033827	0.002	0.2	b.d.	1.1	2	0.177
AANR0013	178	180	AR033828	0.018	0.3	480	1.1	4.5	0.226
AANR0013	180	182	AR033829	0.006	0.2	140	1.1	6.5	0.183
AANR0013	182	184	AR033830	0.006	0.2	30	1.2	7	0.244
AANR0013	184	186	AR033831	0.014	0.2	20	1.1	7.5	0.251
AANR0013	186	188	AR033832	0.01	0.1	80	1.2	13	0.108
AANR0013	188	190	AR033833	0.004	0.2	10	1	14	0.121
AANR0013	190	192	AR033834	0.078	0.2	10	1	6	0.139
AANR0013	192	194	AR033836	0.004	0.2	b.d.	1.1	2.5	0.189
AANR0013	194	196	AR033837	b.d.	b.d.	b.d.	1.1	2	0.143
AANR0013	196	198	AR033838	0.03	0.3	10	1.4	2	0.486
AANR0013	198	200	AR033839	0.002	b.d.	b.d.	1	1.5	0.099
AANR0013	200	202	AR033840	0.048	0.1	b.d.	1	3.5	0.29

Hole	From (m)	To (m)	Sample number	Au $(\mathrm{g} t \mathrm{t})$	Ag $(\mathrm{g} / \mathrm{ft})$	As (ppm)	Sb (ppm)	W (ppm)	S $(\%)$
AANR0013	202	204	AR033841	0.008	0.1	b.d.	1	1.5	0.145
AANR0013	204	206	AR033842	0.008	b.d.	b.d.	1.1	1.5	0.101
AANR0013	206	208	AR033843	0.01	0.1	b.d.	1.6	4.5	0.17
AANR0013	208	210	AR033844	0.014	0.2	b.d.	1.1	3	0.481
AANR0013	210	212	AR033846	0.016	b.d.	b.d.	1	1.5	0.252
AANR0013	212	214	AR033847	0.016	0.2	b.d.	1	1.5	0.337
AANR0013	214	216	AR033848	0.008	0.1	10	0.9	1	0.64
AANR0013	216	218	AR033849	0.008	0.7	b.d.	1.7	3	2.92
AANR0013	218	220	AR033850	0.008	0.4	b.d.	1.4	3	2.53
AANR0013	220	222	AR033851	0.01	0.4	b.d.	2	2	3.23
AANR0013	222	224	AR033852	0.01	b.d.	60	0.9	1.5	0.506
AANR0013	224	226	AR033853	0.008	0.1	20	0.9	1	1.11
AANR0013	226	228	AR033854	0.006	0.1	b.d.	0.7	2	0.058
AANR0013	228	230	AR033856	0.008	0.1	20	0.9	1	0.077
AANR0013	230	232	AR033857	0.012	b.d.	30	0.9	2	0.043
AANR0013	232	234	AR033858	0.004	0.1	10	0.9	1.5	0.112
AANR0013	234	236	AR033859	0.01	0.1	b.d.	0.8	2.5	0.127
AANR0013	236	238	AR033860	0.012	0.2	b.d.	0.8	1.5	0.133
AANR0013	238	240	AR033861	0.008	b.d.	60	0.7	1.5	0.281
AANR0013	240	242	AR033862	0.01	b.d.	20	0.6	1	0.069
AANR0013	242	244	AR033863	0.008	b.d.	b.d.	0.6	1.5	0.058
AANR0013	244	246	AR033864	0.01	b.d.	20	0.6	1.5	0.195
AANR0013	246	248	AR033866	0.01	0.1	70	0.7	1	0.26
AANR0013	248	250	AR033867	0.006	b.d.	20	0.6	1.5	0.293
AANR0013	250	252	AR033868	0.008	0.2	320	0.8	3	0.779
AANR0013	252	254	AR033869	0.016	0.3	30	1.7	1	2.33
AANR0013	254	256	AR033870	0.006	0.1	40	0.8	1.5	0.849
AANR0013	256	258	AR033871	0.01	0.1	10	0.9	1.5	0.404
AANR0013	258	260	AR033872	0.01	0.2	b.d.	0.9	0.5	0.97

AANR0014	20	22	AR033873	b.d.	b.d.	160	1.8	1.5	0.06
AANR0014	22	24	AR033874	0.002	b.d.	90	1.3	0.5	0.085
AANR0014	24	26	AR033876	0.002	b.d.	50	1	b.d.	0.143
AANR0014	26	28	AR033877	b.d.	b.d.	70	0.9	1	0.389
AANR0014	28	30	AR033878	b.d.	b.d.	110	1.1	0.5	0.654
AANR0014	30	32	AR033879	0.002	b.d.	40	0.6	1	0.73
AANR0014	32	34	AR033880	0.002	b.d.	40	0.6	0.5	0.292
AANR0014	34	36	AR033881	b.d.	b.d.	20	1	0.5	0.285
AANR0014	36	38	AR033882	b.d.	b.d.	30	0.8	0.5	0.287
AANR0014	38	40	AR033883	b.d.	b.d.	70	0.9	0.5	0.244
AANR0014	40	42	AR033884	0.002	b.d.	30	0.8	b.d.	0.184
AANR0014	42	44	AR033886	0.016	b.d.	40	0.9	0.5	0.174
AANR0014	44	46	AR033887	b.d.	0.1	70	2.6	1.5	0.077
AANR0014	46	48	AR033888	b.d.	0.2	50	1.3	1.5	0.047
AANR0014	48	50	AR033889	0.002	0.1	70	1.7	3.5	0.048
AANR0014	50	52	AR033890	0.002	b.d.	20	0.8	1	0.029
AANR0014	52	54	AR033891	b.d.	b.d.	10	0.7	b.d.	0.036
AANR0014	54	56	AR033892	0.002	b.d.	10	0.8	1	0.028
AANR0014	56	58	AR033893	0.004	b.d.	50	1.4	0.5	0.026
AANR0014	58	60	AR033894	0.004	0.2	80	1.3	0.5	0.036
AANR0014	60	62	AR033896	0.002	b.d.	100	1.6	0.5	0.047
AANR0014	62	64	AR033897	0.002	0.2	40	1.9	2.5	0.035
AANR0014	64	66	AR033898	b.d.	0.3	20	1.7	1	0.037
AANR0014	66	68	AR033899	0.01	b.d.	10	1.2	1	0.039
AANR0014	68	70	AR033900	0.02	b.d.	20	1.3	0.5	0.047
AANR0014	70	72	AR033901	0.008	b.d.	10	1.2	1	0.035
AANR0014	72	74	AR033902	0.06	0.1	b.d.	1.4	1	0.043
AANR0014	74	76	AR033903	0.044	0.1	10	1.6	0.5	0.038
AANR0014	76	78	AR033904	1.13	b.d.	10	1.3	3.5	0.046
AANR0014	78	80	AR033906	0.2	b.d.	10	1.4	1.5	0.041
AANR0014	80	82	AR033907	0.026	b.d.	10	1.6	1	0.043
AANR0014	82	84	AR033908	0.01	0.2	20	1.5	3	0.034
AANR0014	84	86	AR033909	0.038	0.2	20	1.8	5	0.033
AANR0014	86	88	AR033910	0.04	0.1	140	2	,	0.031
AANR0014	88	90	AR033911	0.01	b.d.	200	1.6	5	0.041
AANR0014	90	92	AR033912	0.022	b.d.	110	1.8	3.5	0.062
AANR0014	92	94	AR033913	0.002	0.2	60	1.7	3.5	0.046
AANR0014	94	96	AR033914	0.008	0.1	60	1.7	3	0.041
AANR0014	96	98	AR033916	0.004	0.1	70	1.6	3.5	0.052
AANR0014	98	100	AR033917	0.002	0.1	70	1.9	3	0.049
AANR0014	100	102	AR033918	0.002	b.d.	90	1.8	3	0.044
AANR0014	102	104	AR033919	0.02	0.2	150	1.5	3.5	0.061
AANR0014	104	106	AR033920	0.02	0.1	100	1.7	7	0.056
AANR0014	106	108	AR033921	0.002	0.1	230	1.3	6	0.078
AANR0014	108	110	AR033922	0.06	0.1	190	1.9	5.5	0.117
AANR0014	110	112	AR033923	0.312	0.2	300	1.5	4	0.087
AANR0014	112	114	AR033924	0.134	0.2	350	1.4	3.5	0.099
AANR0014	114	116	AR033926	0.06	0.1	90	1.6	4	0.1
AANR0014	116	118	AR033927	0.14	0.3	160	1.1	3	0.091
AANR0014	118	120	AR033928	0.212	1	40	1.3	2	0.092
AANR0014	120	122	AR033929	0.02	0.1	40	1.4	2	0.088
AANR0014	122	124	AR033930	0.002	0.2	20	1.2	1.5	0.119
AANR0014	124	126	AR033931	0.072	0.2	30	1	1.5	0.106
AANR0014	126	128	AR033932	0.01	0.2	20	1.2	4	0.228
AANR0014	128	130	AR033933	0.056	0.4	20	2.8	6	1.54
AANR0014	130	132	AR033934	0.012	b.d.	40	1.7	4	0.249
AANR0014	132	134	AR033936	0.016	0.2	40	1.7	3.5	0.38
AANR0014	134	136	AR033937	0.008	0.1	50	1.5	2	0.282
AANR0014	136	138	AR033938	0.008	0.2	60	1.7	2.5	0.286
AANR0014	138	140	AR033939	0.014	0.3	60	1.8	2.5	0.31
AANR0014	140	142	AR033940	0.018	0.3	40	1.9	2	0.379
AANR0014	142	144	AR033941	0.008	0.5	40	1.7	2	0.247
AANR0014	144	146	AR033942	0.032	0.4	70	1.6	3	0.23
AANR0014	146	148	AR033943	0.014	0.2	40	1.7	2.5	0.284

Hole	From (m)	$\begin{aligned} & \hline \text { To } \\ & \text { (m) } \end{aligned}$	Sample number	$\begin{aligned} & \mathrm{Au} \\ & (\mathrm{~g} / \mathrm{t}) \end{aligned}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \text { As } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { W } \\ (\text { ppm }) \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ (\%) \end{gathered}$
AANR0014	148	150	AR033944	0.012	b.d.	50	1.8	2.5	0.25
AANR0014	150	152	AR033946	0.026	0.1	60	2.3	3	0.28
AANR0014	152	154	AR033947	0.006	0.1	b.d.	1.4	2	0.427
AANR0014	154	156	AR033948	0.004	b.d.	30	1.2	1	0.259
AANR0014	156	158	AR033949	0.016	0.5	10	2.5	2	1.72
AANR0014	158	160	AR033950	0.004	0.2	20	1.5	2	0.342
AANR0014	160	162	AR033951	0.006	b.d.	30	1.6	1.5	0.333
AANR0014	162	164	AR033952	0.004	0.2	10	1.4	1	0.299
AANR0014	164	166	AR033953	0.006	0.2	10	1.4	1.5	0.345
AANR0014	166	168	AR033954	0.004	b.d.	10	1.4	1	0.217
AANR0014	168	170	AR033956	0.012	0.2	10	2.5	1.5	0.223
AANR0014	170	172	AR033957	0.006	0.3	20	2.4	1	0.322
AANR0014	172	174	AR033958	0.002	b.d.	10	2.1	2.5	0.182
AANR0014	174	176	AR033959	0.002	0.1	20	2.8	1.5	0.279
AANR0014	176	178	AR033960	0.004	0.2	20	1.5	1	0.335
AANR0014	178	180	AR033961	0.032	0.1	20	1.3	1.5	0.295
AANR0014	180	182	AR033962	0.012	b.d.	30	2.4	2	0.294
AANR0014	182	184	AR033963	0.014	0.3	30	,	2.5	0.35
AANR0014	184	186	AR033964	0.006	0.3	30	2	1.5	0.305
AANR0014	186	188	AR033966	0.01	0.1	20	1.2	2	0.282
AANR0014	188	190	AR033967	b.d.	0.2	30	0.9	2.5	0.313
AANR0014	190	192	AR033968	0.028	0.1	40	1.1	2	0.328
AANR0014	192	194	AR033969	0.34	0.2	10	1.4	6	0.608
AANR0014	194	196	AR033970	0.502	0.5	10	1.1	9.5	0.916
AANR0014	196	198	AR033971	0.038	0.2	30	1	3	0.381
AANR0014	198	200	AR033972	0.024	b.d.	30	1.1	5.5	0.576
AANR0014	200	202	AR033973	0.074	0.2	40	1	4.5	0.536
AANR0014	202	204	AR033974	0.032	0.2	40	0.9	3	0.365
AANR0014	204	206	AR033976	0.022	0.1	40	1.8	2	0.333
AANR0014	206	208	AR033977	0.012	0.1	40	1.4	2.5	0.301
AANR0014	208	210	AR033978	0.03	0.1	40	1.6	1.5	0.24
AANR0014	210	212	AR033979	0.008	0.1	20	1.6	2.5	0.239
AANR0014	212	214	AR033980	0.026	b.d.	30	1.1	2	0.268
AANR0014	214	216	AR033981	0.012	0.1	30	1.2	1.5	0.269
AANR0014	216	218	AR033982	0.044	0.3	20	1.5	2	0.265
AANR0014	218	220	AR033983	0.004	0.1	50	1.3	2.5	0.283
AANR0014	220	222	AR033984	0.022	0.2	50	1.6	2.5	0.329
AANR0014	222	224	AR033986	0.034	0.2	50	1.1	2	0.24
AANR0014	224	226	AR033987	0.022	0.1	60	1.2	1.5	0.267
AANR0014	226	228	AR033988	0.46	0.8	60	1.2	7.5	1.38
AANR0014	228	230	AR033989	0.06	0.1	50	1.5	1.5	0.373
AANR0014	230	232	AR033990	0.018	0.2	50	1.7	2	0.325
AANR0014	232	234	AR033991	0.024	b.d.	70	1.3	2.5	0.208
AANR0014	234	236	AR033992	0.02	0.1	70	1.5	2	0.225
AANR0014	236	238	AR033993	0.018	0.1	40	1.5	4	0.303
AANR0014	238	240	AR033994	0.064	b.d.	70	1.1	2	0.229
AANR0014	240	242	AR033996	0.072	0.5	60	1.2	2.5	0.267
AANR0014	242	244	AR033997	0.022	0.2	50	1.4	1.5	0.215
AANR0014	244	246	AR033998	0.022	b.d.	80	1.5	1.5	0.19
AANR0014	246	248	AR033999	2.29	0.6	3550	3.6	29	0.664
AANR0014	248	250	AR034000	0.498	0.3	550	1.2	45.5	0.488
AANR0014	250	252	AR034001	2.26	0.4	2180	1.9	91.5	1.11
AANR0014	252	254	AR034002	0.23	0.1	1160	1.8	41.5	0.464
AANR0014	254	256	AR034004	0.026	0.4	70	1.2	9	0.231
AANR0014	256	258	AR034005	0.032	0.1	100	1.5	2.5	0.185
AANR0014	258	260	AR034006	0.184	0.2	390	1.3	6.5	0.205
AANR0014	260	262	AR034007	0.024	0.1	60	1.2	1.5	0.109
AANR0014	262	264	AR034008	0.03	0.1	70	1.3	2	0.162
AANR0014	264	266	AR034009	0.062	b.d.	70	1.1	3	0.205
AANR0014	266	268	AR034010	0.022	0.1	40	0.9	2	0.18
AANR0014	268	270	AR034011	0.018	0.1	40	0.9	1.5	0.19
AANR0014	270	272	AR034012	0.168	0.2	40	0.9	12.5	0.294
AANR0014	272	274	AR034014	0.024	0.1	50	1	1	0.226
AANR0014	274	276	AR034015	0.018	0.2	50	1	1.5	0.17
AANR0014	276	278	AR034016	0.016	0.2	50	0.9	1.5	0.126
AANR0014	278	279	AR034017	0.014	0.2	40	0.9	1.5	0.196
AANR0015	10	12	AR034018	0.014	b.d.	10	1.7	2	0.086
AANR0015	12	14	AR034019	0.004	b.d.	10	1.7	3	0.106
AANR0015	14	16	AR034020	0.002	b.d.	10	0.8	1	0.065
AANR0015	16	18	AR034021	0.002	b.d.	10	0.7	1	0.017
AANR0015	18	20	AR034022	b.d.	b.d.	20	0.8	1	0.013
AANR0015	20	22	AR034024	0.002	b.d.	10	0.8	1	0.013
AANR0015	22	24	AR034025	b.d.	b.d.	10	0.9	1	0.029
AANR0015	24	26	AR034026	b.d.	b.d.	b.d.	0.9	1	0.283
AANR0015	26	28	AR034027	0.002	b.d.	10	0.8	1	0.517
AANR0015	28	30	AR034028	b.d.	b.d.	10	0.9	1	0.769
AANR0015	30	32	AR034029	b.d.	b.d.	10	1.2	1	0.68
AANR0015	32	34	AR034030	b.d.	b.d.	b.d.	0.8	1	0.625
AANR0015	34	36	AR034031	0.01	b.d.	b.d.	0.6	0.5	0.271
AANR0015	36	38	AR034032	b.d.	b.d.	b.d.	0.9	1	0.244
AANR0015	38	40	AR034034	b.d.	b.d.	b.d.	0.9	1	0.088
AANR0015	40	42	AR034035	0.004	b.d.	b.d.	0.9	1	0.062
AANR0015	42	44	AR034036	b.d.	b.d.	b.d.	0.9	1	0.077
AANR0015	44	46	AR034037	b.d.	b.d.	b.d.	0.6	1	0.037
AANR0015	46	48	AR034038	b.d.	b.d.	b.d.	0.7	1	0.039
AANR0015	48	50	AR034039	0.006	b.d.	b.d.	0.6	1	0.039
AANR0015	50	52	AR034040	0.006	b.d.	10	0.6	0.5	0.03
AANR0015	52	54	AR034041	0.024	b.d.	10	0.9	1	0.018
AANR0015	54	56	AR034042	0.084	b.d.	b.d.	1.7	1	0.04
AANR0015	56	58	AR034044	0.158	0.2	b.d.	1.7	1	0.016
AANR0015	58	60	AR034045	0.1	0.3	10	1.3	1	0.017
AANR0015	60	62	AR034046	0.094	0.2	20	1.8	1.5	0.032
AANR0015	62	64	AR034047	0.056	0.1	10	2.1	1	0.014

Hole	From (m)	$\begin{aligned} & \hline \text { To } \\ & \text { (m) } \\ & \hline \end{aligned}$	Sample number	Au (g/t)	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	As (ppm)	$\begin{gathered} \hline \text { Sb } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ (\%) \\ \hline \end{gathered}$
AANR0015	64	66	AR034048	0.04	0.1	10	1.9	1	0.014
AANR0015	66	68	AR034049	0.034	b.d.	b.d.	2.2	1	0.012
AANR0015	68	70	AR034050	0.048	0.2	10	2.3	1	0.012
AANR0015	70	72	AR034051	0.048	0.2	30	1.7	1	0.01
AANR0015	72	74	AR034052	0.04	b.d.	10	1.8	1	0.01
AANR0015	74	76	AR034054	0.05	0.1	20	1.9	1	0.016
AANR0015	76	78	AR034055	0.596	0.2	b.d.	1.3	1.5	0.016
AANR0015	78	80	AR034056	0.784	0.2	b.d.	1.5	1	0.012
AANR0015	80	82	AR034057	0.048	b.d.	10	1.3	1	0.014
AANR0015	82	84	AR034058	0.672	0.1	10	1.1	1	0.014
AANR0015	84	86	AR034059	0.08	b.d.	20	1.5	1	0.023
AANR0015	86	88	AR034060	0.01	b.d.	b.d.	1.4	1	0.034
AANR0015	88	90	AR034061	0.018	0.1	b.d.	1.5	1	0.045
AANR0015	90	92	AR034062	0.09	b.d.	10	1.8	1.5	0.05
AANR0015	92	94	AR034064	0.008	0.1	10	1.2	1	0.045
AANR0015	94	96	AR034065	0.002	b.d.	10	0.8	1	0.035
AANR0015	96	98	AR034066	b.d.	b.d.	10	1	1	0.037
AANR0015	98	100	AR034067	0.016	b.d.	b.d.	1	1.5	0.049
AANR0015	100	102	AR034068	0.004	b.d.	10	1.2	1	0.059
AANR0015	102	104	AR034069	0.002	0.1	b.d.	1.8	1	0.059
AANR0015	104	106	AR034070	0.028	0.3	10	1.3	1.5	0.049
AANR0015	106	108	AR034071	0.006	0.2	b.d.	1.4	1	0.05
AANR0015	108	110	AR034072	0.002	b.d.	b.d.	1.8	1	0.049
AANR0015	110	112	AR034074	b.d.	0.2	10	1.2	1	0.042
AANR0015	112	114	AR034075	b.d.	0.4	b.d.	1.2	1	0.044
AANR0015	114	116	AR034076	b.d.	0.3	b.d.	1	0.5	0.094
AANR0015	116	118	AR034077	0.002	0.1	b.d.	1	1	0.084
AANR0015	118	120	AR034078	0.002	0.1	b.d.	0.6	1.5	0.052
AANR0015	120	122	AR034079	b.d.	0.2	b.d.	0.6	1	0.047
AANR0015	122	124	AR034080	0.008	b.d.	b.d.	0.7	1	0.062
AANR0015	124	126	AR034081	0.002	b.d.	b.d.	0.7	1	0.093
AANR0015	126	128	AR034082	b.d.	0.1	10	0.8	1	0.116
AANR0015	128	130	AR034084	0.002	0.2	10	1.5	1	0.099
AANR0015	130	132	AR034085	0.004	b.d.	b.d.	0.7	1	0.059
AANR0015	132	134	AR034086	0.004	0.1	b.d.	0.8	0.5	0.062
AANR0015	134	136	AR034087	0.002	0.1	b.d.	0.8	0.5	0.095
AANR0015	136	138	AR034088	0.002	b.d.	10	0.6	1	0.081
AANR0015	138	140	AR034089	0.002	b.d.	b.d.	1	1	0.129
AANR0015	140	142	AR034090	0.004	b.d.	b.d.	0.7	1.5	0.444
AANR0015	142	144	AR034091	0.002	0.2	b.d.	0.9	1	1.75
AANR0015	144	146	AR034092	0.002	0.2	b.d.	1.2	2	1.71
AANR0015	146	148	AR034094	0.004	0.3	b.d.	1	2.5	2.16
AANR0015	148	150	AR034095	0.002	0.3	b.d.	0.9	3	2.29
AANR0015	150	152	AR034096	0.004	0.1	b.d.	1.1	3	0.65
AANR0015	152	154	AR034097	0.002	b.d.	b.d.	1.2	3.5	0.812
AANR0015	154	156	AR034098	0.004	b.d.	b.d.	1.4	3.5	0.567
AANR0015	156	158	AR034099	b.d.	b.d.	b.d.	1.4	3	0.409
AANR0015	158	160	AR034100	0.004	2.5	20	0.9	4.5	2.11
AANR0015	160	162	AR034101	0.004	0.4	b.d.	0.8	4	1.18
AANR0015	162	164	AR034102	0.004	b.d.	b.d.	0.9	3	0.688
AANR0015	164	166	AR034104	0.004	0.3	b.d.	0.7	3.5	0.663
AANR0015	166	168	AR034105	0.008	0.1	b.d.	0.8	2	0.498
AANR0015	168	170	AR034106	0.006	0.4	b.d.	1.1	2	0.766
AANR0015	170	172	AR034107	0.014	0.3	b.d.	1	2.5	0.896
AANR0015	172	174	AR034108	0.002	0.3	40	1	1.5	0.476
AANR0015	174	176	AR034109	b.d.	0.5	10	1.2	1.5	1.33
AANR0015	176	178	AR034110	b.d.	0.6	b.d.	1.1	1.5	1.2
AANR0015	178	180	AR034111	b.d.	0.4	10	1	1.5	0.949
AANR0015	180	182	AR034112	b.d.	0.3	20	1.2	1.5	0.19
AANR0015	182	184	AR034114	b.d.	b.d.	10	0.8	1.5	0.268
AANR0015	184	186	AR034115	b.d.	0.2	10	1	1.5	0.201
AANR0015	186	188	AR034116	b.d.	b.d.	20	1	1.5	0.186
AANR0015	188	190	AR034117	0.004	b.d.	20	0.6	1	0.191
AANR0015	190	192	AR034118	0.002	0.1	20	0.8	1	0.211
AANR0015	192	194	AR034119	b.d.	b.d.	10	1.4	1	0.111
AANR0015	194	196	AR034120	b.d.	0.2	10	1.5	2.5	0.074
AANR0015	196	198	AR034121	b.d.	0.3	b.d.	2.2	7	0.065
AANR0015	198	200	AR034122	b.d.	b.d.	b.d.	1.4	2	0.102
AANR0015	200	202	AR034124	b.d.	b.d.	10	1	1.5	0.096
AANR0015	202	204	AR034125	b.d.	b.d.	b.d.	1	1.5	0.113
AANR0015	204	206	AR034126	b.d.	b.d.	b.d.	1.2	1	0.124
AANR0015	206	208	AR034127	0.002	b.d.	b.d.	1.3	1	0.1
AANR0015	208	210	AR034128	0.002	b.d.	10	1	0.5	0.116
AANR0015	210	212	AR034129	0.002	0.2	10	1.4	1.5	0.831
AANR0015	212	214	AR034130	0.002	0.2	20	1.7	1.5	1.12
AANR0015	214	216	AR034131	b.d.	b.d.	30	1.8	1.5	0.574
AANR0015	216	218	AR034132	0.002	b.d.	30	1.2	1	0.168
AANR0015	218	220	AR034134	b.d.	b.d.	10	1.2	1	0.152
AANR0015	220	222	AR034135	0.002	b.d.	20	1.2	1	0.17
AANR0015	222	224	AR034136	0.002	b.d.	10	1.3	1	0.104
AANR0015	224	226	AR034137	b.d.	b.d.	b.d.	1.2	0.5	0.19
AANR0015	226	228	AR034138	0.002	b.d.	20	1.1	1	0.276
AANR0015	228	230	AR034139	0.004	0.2	b.d.	1.1	4	0.908
AANR0015	230	232	AR034140	0.004	0.2	b.d.	4.9	4	1.16
AANR0015	232	234	AR034141	0.002	b.d.	b.d.	2.2	2	0.727
AANR0015	234	236	AR034142	0.004	0.1	b.d.	1.6	1	0.37
AANR0015	236	238	AR034144	0.004	0.1	b.d.	1.8	1	0.26
AANR0015	238	240	AR034145	0.004	0.3	10	2	1	0.226
AANR0015	240	242	AR034146	0.004	0.1	30	2.4	1	0.313
AANR0015	242	244	AR034147	0.002	0.1	100	1.7	1	0.19
AANR0015	244	246	AR034148	0.008	0.6	30	2.1	2	3.3
AANR0015	246	248	AR034149	0.004	0.3	50	2.2	2	1.04
AANR0015	248	250	AR034150	0.006	0.2	b.d.	1.1	3	0.778
AANR0015	250	252	334	0.002	b.d.	b.d.	1.3	2.5	0.239

Hole	From (m)	To (m)	Sample number	Au $(\mathrm{g} / \mathrm{ti})$	Ag $(\mathrm{g} / \mathrm{t})$	As (ppm)	Sb (ppm)	W (ppm)	S $(\%)$
AANR0015	252	254	AR034152	0.006	0.1	b.d.	2	3.5	0.392
AANR0015	254	256	AR034154	b.d.	b.d.	10	1.7	2.5	0.147
AANR0015	256	258	AR034155	b.d.	b.d.	b.d.	1.2	2	0.15
AANR0015	258	260	AR034156	0.002	b.d.	b.d.	2.5	3.5	0.268
AANR0015	260	262	AR034157	0.002	b.d.	10	2	2.5	0.261
AANR0015	262	264	AR034158	b.d.	0.1	10	1.9	2.5	0.155
AANR0015	264	266	AR034159	b.d.	b.d.	10	2.4	3.5	0.23
AANR0015	266	268	AR034160	b.d.	0.1	10	1.5	2.5	0.173
AANR0015	268	270	AR034161	b.d.	b.d.	10	1.7	2.5	0.132
AANR0015	270	272	AR034162	0.002	0.1	10	1.6	2	0.26
AANR0015	272	274	AR034164	0.002	b.d.	10	1.6	1	0.17
AANR0015	274	276	AR034165	0.004	b.d.	10	1.3	1	0.227
AANR0015	276	278	AR034166	0.004	b.d.	10	2.1	1	0.154
AANR0015	278	280	AR034167	0.008	b.d.	10	1.5	1.5	0.092
AANR0015	280	282	AR034168	0.004	b.d.	20	1.4	2	0.111
AANR0015	282	284	AR034169	0.002	b.d.	10	1.6	1.5	0.079
AANR00155	284	286	AR034170	0.002	b.d.	10	1.2	4.5	0.098
AANR0015	286	288	AR0341711	0.004	0.2	20	1.4	5.5	0.086
AANR0015	288	290	AR034172	0.006	b.d.	20	1.5	3	0.077
AANR0015	290	292	AR034174	0.344	0.3	10	1.4	5.5	0.294
AANR0015	292	294	AR034175	0.142	0.1	10	1.2	7	0.23
AANR0015	294	296	AR034176	0.028	0.2	10	1.5	4	0.176
AANR0015	296	298	AR034177	0.058	b.d.	10	1.2	3	0.224
AANR0015	298	300	AR034178	0.02	b.d.	10	1	4	0.329

Appendix 3-Collated intercepts, Goongarrie South

Parameters used to define gold intercepts at Big Four

Parameter	Gold	
Minimum cut-off	$0.5 \mathrm{~g} / \mathrm{t}$	$2.0 \mathrm{~g} / \mathrm{t}$
Minimum intercept thickness	2 m	2 m
Maximum internal waste thickness	2 m	2 m

Gold intercepts are defined using a nominal $0.5 \mathrm{~g} / \mathrm{t}$ Au cut-off on a minimum intercept of 2 m and a maximum internal waste of 2 m . Secondary intercepts (i.e. the "including" intercepts) are defined using a nominal $2.0 \mathrm{~g} / \mathrm{t}$ cut-off and the same intercept and internal waste characteristics. Where appropriate, consideration is also given to geological controls, such as vein and alteration zone distributions, in the definition of intercepts.

Drillhole	Interval	Gold intercept ($0.5 \mathrm{~g} / \mathrm{t}$ cutoff)		Gold intercept (2.0 g/t cutoff)
AANR0008	40-50m	10 m at $3.55 \mathrm{~g} / \mathrm{t}$ Au from 40 m	including	2 m at $15.50 \mathrm{~g} / \mathrm{t}$ Au from 44m
AANR0009	44-46m	2 m at $1.74 \mathrm{~g} / \mathrm{t}$ Au from 44 m		
	198-200m	2 m at $2.8 \mathrm{~g} / \mathrm{t}$ Au from 198m		
	216-234m	18 m at $1.07 \mathrm{~g} / \mathrm{t}$ Au from 216 m	including	2 m at $\mathbf{2 . 4 5 \mathrm { g } / \mathrm { t }} \mathrm{Au}$ from 218 m
	238-240m	2 m at $0.81 \mathrm{~g} / \mathrm{t}$ Au from 238 m		
	244-246m	2 m at $1.47 \mathrm{~g} / \mathrm{t}$ Au from 244 m		
also	198-248m	50 m at $0.70 \mathrm{~g} / \mathrm{t}$ Au from 198m	using geological controls (and nominal 0.19/t cutoff)	
AANR0010	136-146m	10 m at 1.3g/t Au from 136m	including	2 m at $3.06 \mathrm{~g} / \mathrm{t}$ Au from 136m
AANR0011	52-54m	2 m at $1.15 \mathrm{~g} / \mathrm{t}$ Au from 52 m		
AANR0013	40-42m	2 m at $0.78 \mathrm{~g} / \mathrm{t}$ Au from 40 m		
	120-122m	2 m at $0.75 \mathrm{~g} / \mathrm{t}$ Au from 120 m		
	134-136m	2 m at $0.67 \mathrm{~g} / \mathrm{t}$ Au from 134 m		
	164-168m	4 m at $1.76 \mathrm{~g} / \mathrm{t}$ Au from 164m		
AANR0014	76-78m	2 m at $1.13 \mathrm{~g} / \mathrm{t}$ Au from 76 m		
	194-196m	2 m at $0.5 \mathrm{~g} / \mathrm{t}$ Au from 194 m		
	246-252m	6 m at $1.68 \mathrm{~g} / \mathrm{t}$ Au from 246 m	including and	2 m at $2.29 \mathrm{~g} / \mathrm{t}$ Au from 246 m 2 m at $2.26 \mathrm{~g} / \mathrm{t}$ Au from 250 m
AANR0015	76-84m	8 m at $0.53 \mathrm{~g} / \mathrm{t}$ Au from 76 m		

Appendix 4 - Location map

Lily Albany location map, as provided to the Western Australian Department of Mines, Industry Relations and Safety (DMIRS) reporting the Lily Albany gold discovery.

Ardea Resources Limited

Appendix 5 - JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	- All holes were sampled on a 2 metre down hole interval basis, with exceptions being made for end of hole final-lengths. All sampling lengths were recorded in ARL's standard sampling record spreadsheets. Sample condition, sample recovery and sample size were recorded for all drill-core samples collected by ARL. - Industry standard practice was used in the processing of samples for assay, with 2 m intervals of RC chips collected in green plastic bags. - Assay of samples utilised standard laboratory techniques with standard ICP-AES undertaken on 40 gram samples for Au, Pt and Pd , and lithium borate fused-bead XRF analysis used for the remaining multi-element suite. Other elements are determined by separate XRF and LA-ICP-MS analyses. Further details of lab processing techniques are found in Quality of assay data and laboratory tests below.
Drilling techniques	- Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- In this program, Ardea drilled the Aphrodite North area project with eight reverse circulation (RC) drill holes. All holes were drilled at -60° with six to 090° one to 270° and another to 205° to define the possible orientations of structures in a target with limited previous exploration drilling. - RC drilling was performed with a face sampling hammer (bit diameter between $41 / 2$ and $51 / 4$ inches) and samples were collected by either a cone (majority) or riffle splitter using 2 metre composites. Sample condition, sample recovery and sample size were recorded for all drill samples collected by ARL.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- RC chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was high. RC Chip sample condition recorded using a three code system, $D=D r y, M=M o i s t, ~ W=W e t . ~ A ~$ proportion of samples were moist or wet, with the majority of these being associated with soft kaolin-goethite clays, where water injection has been used to improve drill recovery. - Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, using water injection at times of reduced air circulation, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- RC logging was undertaken on 1 metre intervals. Visual geological logging was completed for all drilling both at the time of drilling (using standard Ardea logging codes), and later over relevant met-sample intervals with a metallurgical-logging perspective. Geochemistry from Ardea aircore drilling data was used together with logging data to validate logged geological horizons. Aircore results cannot be used in a resource estimation. - Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling practices. ARL employees supervised all drilling. A small selection of representative chips were collected for every 1 metre interval and stored in chip-trays for future reference. - In total, $2,001 \mathrm{~m}$ were drilled during the program, with the chips generated during entire program logged in detail.
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and	- 2 metre composite samples were recovered using a 15:1 rig mounted cone splitter or trailer mounted riffle splitter during drilling into a calico sample bag. Sample target weight was between 2 and 3 kg . In the case of wet clay samples, grab samples taken from sample return pile, initially into a calico sample bag. Wet samples were stored separately from other samples in plastic bags and riffle split once dry. - QAQC was employed. A standard, blank or duplicate sample was inserted into the

Ardea Resources Limited

Criteria	JORC Code explanation	Commentary
	appropriateness of the sample preparation technique. - Quality control procedures adopted for all subsampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	sample stream every 10 samples on a rotating basis. Standards were quantified industry standards. Every 30th sample a duplicate sample was taken using the same sample sub sample technique as the original sub sample. Sample sizes are appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	- All Ardea samples were submitted to Kalgoorlie Bureau Veritas (BV) laboratories and transported to BV Perth, where they were pulverised. - The samples were sorted, wet weighed, dried then weighed again. Primary preparation has been by crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which has then been pulverised in a vibrating pulveriser. All coarse residues have been retained. - The samples have been cast using a $66: 34$ flux with 4% lithium nitrate added to form a glass bead. Al, As, $\mathrm{Ba}, \mathrm{Ca}, \mathrm{Cl}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{S}$, $\mathrm{Sc}, \mathrm{Si}, \mathrm{Sr}, \mathrm{Ti}, \mathrm{V}, \mathrm{Zn}, \mathrm{Zr}$ have been determined by X-Ray Fluorescence (XRF) Spectrometry on oven dry $\left(105^{\circ} \mathrm{C}\right)$ sample unless otherwise stated. - A fused bead for Laser Ablation MS was created to define Ag_LA, Be_LA, Bi_LA, Cd_LA, Ce_LA, Co_LA, Cs_LA, Dy_LA, Er_LA, Eu_LA, Gd_LA, Ge_LA, Hf_LA, Ho_LA, In_LA, La_LA, Lu_LA, Mo_LA, Nb_LA, Nd_LA, Ni_LA, Pr_LA, Rb_LA, Re_LA, Sb_LA, Sc_LA, Se_LA, Sm_LA, Sn_LA, Ta_LA, Tb_LA, Te_LA, Th_LA, TI_LA, Tm_LA, U_LA, V_LA, W_LA, Y_LA, Yb_LA, which have been determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LAICP-MS). - The samples have been analysed by Firing a 40 g (approx) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. Au1, Pd, Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. - Loss on Ignition results have been determined using a robotic TGA system. Furnaces in the system were set to 110 and 1000 degrees Celsius. LOI1000 have been determined by Robotic TGA. - Dry weight and wet weight have been determined gravimetrically. - BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. - Ardea also inserted QAQC samples into the sample stream at a 1 in 10 frequency, alternating between blanks (industrial sands) and standard reference materials. Additionally, a review was conducted for geochemical consistency between historically expected data, recent data, and geochemical values that would be expected in a nickel laterite profile. - All of the QAQC data has been statistically assessed. There were rare but explainable inconsistencies in the returning results from standards submitted, and it has been determined that levels of accuracy and precision relating to the samples are acceptable.
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. - Ardea also inserted QAQC samples into the sample stream at a 1 in 20 frequency, alternating between duplicates splits, blanks (industrial sands) and standard reference materials. - All of the QAQC data has been statistically assessed. Ardea has undertaken its own further in-house review of QAQC results of the BV routine standards, 100% of which returned within acceptable QAQC limits. This fact combined with the fact that the data is demonstrably consistent has meant that the results are considered to be acceptable and suitable for reporting.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- All drill holes are to be surveyed using an RTK DGPS system with either a 3 or 7 digit accuracy. The coordinates are stored in the exploration database referenced to the MGA Zone 51 Datum GDA94. - Gyroscopic downhole surveys were undertaken with hole orientation measurements gathered every 10 m during descent and then on ascent of the tool. - Topography is very flat. The topographic surface has been constructed from hole collar surveys. These are consistent with regional DTMs and are considered adequate for exploration purposes. - A DGPS pickup up of drill collar locations is considered sufficiently accurate for reporting of resources, but is not suitable for mine planning and reserves.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the	- The drill line spacing was 80 m , with collars defined on an ad hoc basis to delimit interpreted structure, lithological, and mineralised trends. - The spacing is not considered sufficient at this stage for the definition of Mineral Resources. - Samples were composited over 2 m for the entire drill program apart from the upper

Ardea Resources Limited

Criteria	JORC Code explanation	Commentary
	Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	transported lake clays, which were not sampled. This is justified by the results of the previous aircore program where transported overburden was shown to be barren of mineralisation.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- All drill holes in this program were angled. They were designed to delimit mineralisation at depth and to close off and intercept all possible orientations of mineralised structures at a high angle to the east-west sections. Where pre-existing drill holes were present, these were utilised to assist with delimiting mineralisation. This approach was undertaken due to limited knowledge concerning the orientation of strata and structures in the area due to a complete absence of outcrop. - Without diamond drilling, the orientation of mineralised structures is unknown, but a steep west dip best fits the limited data collected to date. It is also consistent with other known mineralisation along structure to the south and north. Geological interpretation of the geology of the Aphrodite North area continues, but presently there is sufficient uncertainty to preclude definition of sampling bias or not.
Sample security	- The measures taken to ensure sample security.	- All samples were collected and accounted for by ARL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Kalgoorlie from logging site by ARL employees/ consultants and submitted directly to BV Kalgoorlie. - The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audit or review beyond normal operating procedures has yet been undertaken on the current dataset. ARL has periodically conducted internal reviews of sampling techniques relating to resultant exploration datasets, and larger scale reviews capturing the data from multiple drilling programs. - Internal reviews of the exploration data included the following: - Unsurveyed drill hole collars (less than 1% of collars). - Drill Holes with overlapping intervals (0\%). - Drill Holes with no logging data (less than 2% of holes). - Sample logging intervals beyond end of hole depths (0\%). - Samples with no assay data (from 0 to $<5 \%$ for any given project, usually related to issues with sample recovery from difficult ground conditions, mechanical issues with drill rig, damage to sample in transport or sample preparation). - Assay grade ranges. - Collar coordinate ranges - Valid hole orientation data. - The BV Laboratory was visited by ARL staff in 2017, and the laboratory processes and procedures were reviewed at this time and determined to be robust.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- The tenement on which the drilling was undertaken is M29/426. ARL, through its subsidiary companies, is the sole holder of the tenement. The tenement is in good standing. - Heritage surveys over the area did not identify any areas of interest over or near the program area.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- The target area has not been subject to systematic exploration previously. The area was identified through appraisal of regional open file datasets and proprietary targeting criteria and datasets. Nickel laterite resource drilling is located $\sim 3 \mathrm{~km}$ to the west, and sporadic historic gold drilling recorded in open file is evident outside the tenure to the north and south. A handful of shallow drillholes of unknown type coincide with the footprint of the current drill program but are considered to have been drilled to insufficient depth and are therefore likely ineffective. - Ardea's recent aircore and RC drilling programs are the only significant drill programs in the Aphrodite North area prior to this RC drill program. The data from these programs was used to inform the design of this RC drill program.
Geology	- Deposit type, geological setting and style of mineralisation.	- The geology of the target area is still under assessment. - A layered mafic intrusion is either thrust repeated or isoclinally folded near the contact

Ardea Resources Limited

Criteria	JORC Code explanation	Commentary
		of the Victorious Basalt with the basal units of the Black Flag Formation. With a complete lack of exposure, geophysics and the results of this and the previous aircore and RC programs are the only information available. - The target style of mineralisation is orogenic shear or vein hosted gold mineralisation. Veining and alteration styles intersected during drilling are consistent with this style of mineralisation.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length.	- All holes drilled in this most recent program are listed in "Appendix 1 - Collar location data".
Drill hole Information	- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- All assay data relating to the metals of interest at the target area, namely gold and associated trace finder elements arsenic, antimony, silver, tungsten, and sulphur, are listed in "Appendix 2 - Assay results". Other elements were assayed but have not been reported here. They are of use and of interest from a scientific and metallurgical perspective but are not considered material and their exclusion does not detract from the understanding of this report.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- Drill hole samples have been collected over 2 m down hole intervals. - Gold intercepts are defined using a $0.5 \mathrm{~g} / \mathrm{tcut-off}$ on a minimum intercept of 1 m and a maximum internal waste of 2 m . In each case, geological contacts are taken into account. An additional 50 m wide intercept of interest was calculated using a nominal $0.1 \mathrm{~g} / \mathrm{t}$ Au cutoff with larger intermal dilution due justified on geological grounds. - All assay samples were composited over 2 m . - No metal equivalent calculations have been used in this assessment.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	- All drill holes in this program were angled. - Without diamond drilling, the orientation of mineralised structures is unknown. At surface, several orientations are evident, butitis not apparent in RC chips. Geological interpretation of the area continues and the current best-fit geometry suggests the highest degree of representivity from the drillholes with an east azimuth, but presently there is sufficient uncertainty to preclude definition of sampling bias or not.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- Appropriate maps are shown in the body of the document. Additional data has brought into question initial interpretations in cross section. There is insufficient certainty around the true orientation of several gold lodes to provide a meaningful cross section.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Not applicable to this report. All results are reported either in the text or in the associated appendices.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- No other data are, at this stage, known to be either beneficial or deleterious to recovery of the metals reported.
Further work	- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out driling). - Diagrams clearly highlighting the areas of possible extensions, including the main	- Further drilling is required to identify the extent and nature of primary mineralisation in fresh rock. Both RC and diamond drill programs are flagged to increase the understanding of controls and orientation of mineralised structures. Initially, 2 diamond drill holes would be likely. Closely-spaced, pattern RC drilling to a nominal 150 m depth is being considered to fully define the uppermost distributions of gold in

Criteria	JORC Code explanation	Commentary
	geological interpretations and future drilling areas, provided this information is not commercially sensitive.	both saprolite and fresh rock. - First-pass, high-level metallurgical assessment of the Lily Albany project is underway to characterise the mineralisation and delimit possible treatment mechanisms.

[^0]: 1 "Reporting Mineral Discoveries (Minerals of Economic Interest) - Guidance Note", Government of Western Australia, Department of Mines, Industry and Safety, September 2020 (DMIRSSEP20_6631).
 ${ }^{2}$ Ardea Resources ASX announcement, 13 August 2020

