

ASX Release 16 November 2020 **ASX code: MAU**

Level 1 44A Kings Park Road PO Box 1388 West Perth WA 6872 Telephone 08 9226 1777 www.magres.com.au

ABN 34 121 370 232

SHALLOW SEISMIC SEARCHING FOR MUTILPLE THICKENED LODES

A shallow seismic survey (Figure 1) is starting on 3 December centred on HN9 and will extend eastwards to Lady Julie (8km) and northwards to HN5 (8km), and is suited to search for the very prospective thickened shallow dipping gold-rich multiple lodes below areas that are already strongly mineralised near surface at HN9, HN5 and Lady Julie (Figures 1, 3 and 4), looking for repetitions and continuation both at depth and down dip and any other zones, structures and intrusions that have not been previously discovered.

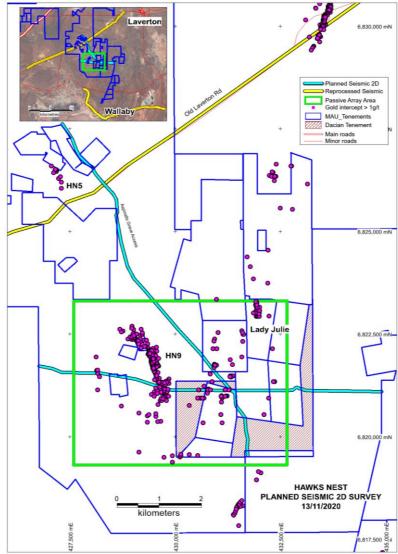


Figure 1 Proposed shallow 2x2D seismic lines (orange) and passive seismic outline (light blue) and two regional reprocessed lines (yellow) shown in inset with all drill hole intersections greater than 1g/t (in mauve) highlighting the HN5 and HN9 mineralised and three main NNE mineralised lines at Lady Julie.

It is expected that the seismic survey will be able to readily delineate these near horizontal lodes and other targets down to 2kms depth and will assist in anticipated deeper drilling programmes below the current drilling average depth of 54m down to a 400m depth. Some of the larger gold deposits in the region have large depth extents sometimes greater than 1km. It is proposed to acquire an 8km NW-SE and an 8km E-W lines centred on the HN9 and Lady Julie areas and include a passive survey over a 20 sq km area centred on HN9. In addition, reprocessing of a 27km and 25km section of the Geoscience Australia 2D seismic lines data both on the Old Laverton road and through the Wallaby Deposit area.

The aim of these surveys is to focus on imaging the geological structure of both HN9, Lady Julie, HN5 and HN3 areas and tie in with the regional architecture that hosts the Wallaby and Granny Smith Deposits. The lines have been selected and positioned to optimally image the sub-surface structure geology and structure based on the current data availability and understanding of Magnetic Resources' objectives and minimal land disturbance through utilising existing tracks.

During the acquisition of the two 2D seismic lines additional nodes will be laid out on a regular grid pattern to acquire passive seismic data over an area centred on HN9. This passive array will try to emulate a 3-D effect and help with future deeper drill hole location. Figure 2 shows some of the equipment being used by Hiseis Pty Ltd who are carrying out this seismic survey for Magnetic Resources, utilising the Inova AHV-1V 62,000lb seismic vibrator truck with Inova Quantum nodes, which are layed every 5m along the track. Table 1 shows some of the parameters for this survey.

Figure 2 Hiseis Inova AHV-1V 62,000lb seismic vibrator truck with Inova Quantum receiver nodes layed every 5m along the track

Table 1 2D Seismic Survey Parameters for proposed lines to be acquired Survey Parameters
Source Interval
Receiver Interval
Sweep
Spread

Spread Setup

5m
5m
1 x 20s
1,200 Channels Liv

Value

Symmetrical Split 3,000m - 2.5m - x - 2.5m - 3,000m

At HN9 there are now at least four discernible mineralised zones recognised that mostly dip shallowly around 20–30° to the east. The schematic section (Figure 3) shows at least four stacked thickened porphyry zones with some very thick intersections including 104m at 0.82g/t from 8m in MHNRC582 including 20m at 2.23g/t from 95m and 70m at 0.49g/t from 13m in MHNRC541. These multi-stacked thickened lodes show similarities with the adjacent Wallaby, Sunrise Dam and Jupiter major gold deposits and are the main target for delineation by the shallow seismic survey with the addition of the passive seismic array, which can produce a pseudo 3D effect.

This shallow seismic survey will tie into the 27km seismic survey completed previously by Geoscience Australia along the old Laverton Rd and will allow better interpretation by providing a framework for the gold intersections made by Magnetic Resources in the previously drilled HN3 and HN5 prospects (Fig 1).and for the search for new thickened zones, multiple lodes and other targets within these areas.

Currently large programmes of 87 infill drillholes totaling 4,677m are being carried out at HN9 and 53 holes for 3105m at Lady Julie mainly in preparation for defining indicated resources. In addition, drilling is planned from interpretation of previous drill results and some core drilling that will be used for density measurements utilized in the resource study. In the future, deeper drilling will be planned down to 400m depth once the results of this seismic survey are ready.

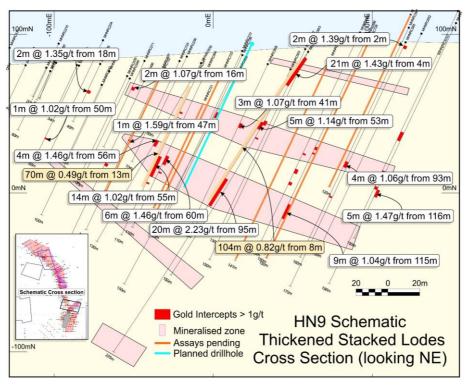


Figure 3. HN9 NNE Long Section with multiple mineralised porphyry zones that thicken and plunge shallowly to the NE

The thickened zone is distinct and is located at the intersection of the NNW gold rich shear zone and the discordant NE-trending thickened zone to the south (Figure 1 and 4). This structural setting, both at a local and regional sense and other distinct changes in orientation will be examined in conjunction with the results of the shallow seismic survey.

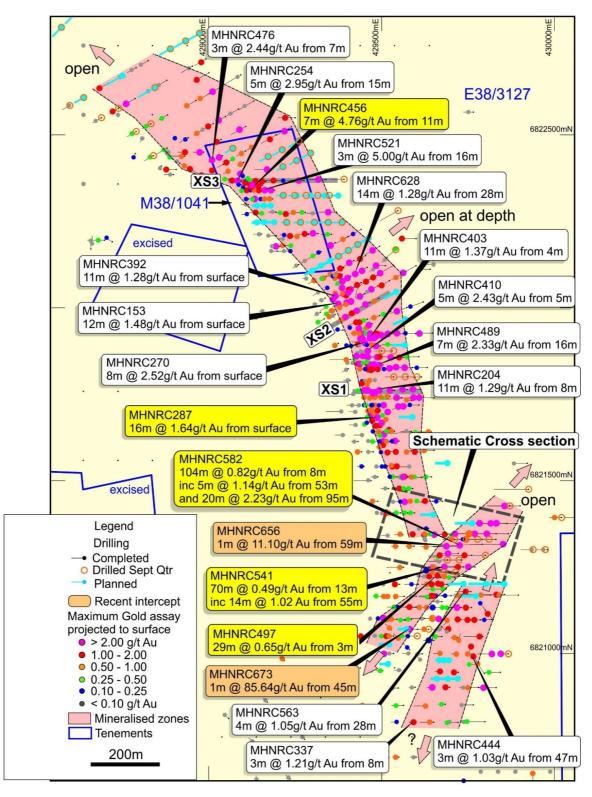


Figure 4. HN9 historical drilling (64 RAB/RC), MAU 618 RC drillholes completed and a further 87 holes planned for 4670m in blue within the 3km mineralised gold zone and further to the WNW and the new thickened area.

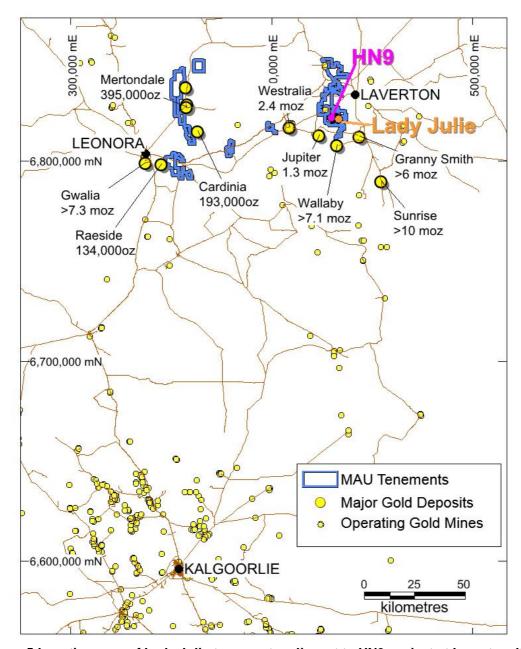


Figure 5 Location map of Lady Julie tenements adjacent to HN9 project at Laverton, WA.

Managing Director George Sakalidis commented: "With the Australian gold price at record levels of \$2,600 the HN9 and Lady Julie Project being only 15km NW of the Granny Smith Operations owned by Gold Fields Australia Pty Ltd and only 10km NE of the Jupiter Operations owned by Dacian Gold Ltd at Laverton, WA. (Figure 5), are shaping up and have potential for a shallow large-scale mining centre.

The 2D seismic survey and supporting passive survey planned will provide a pseudo 3D framework for the structure over the HN9, HN5 and Lady Julie areas where we will be searching for the multiple thickened shallow lodes and feeder structures and intrusions. It will also show the down dip extent of the dipping zones already located. There are large existing drill programmes being carried out and further drill targets are being planned now with a lot more deeper targets expected from the seismic work starting in early December."

This announcement has been authorised for release by Managing Director George Sakalidis. For more information on the company visit www.magres.com.au

George Sakalidis
Managing Director
Phone (08) 9226 1777
Mobile 0411 640 337
Email george@magres.com.au

The information in this report is based on information compiled by George Sakalidis BSc (Hons), who is a member of the Australasian Institute of Mining and Metallurgy. George Sakalidis is a Director of Magnetic Resources NL. George Sakalidis has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. George Sakalidis consents to the inclusion of this information in the form and context in which it appears in this report.

The Information in this report that relates to:

- Promising 200m wide 0.7g/t soil geochemistry associated with extensive 1km long NS porphyries at newly named Hawks Nest 9.
 MAU ASX Release 15 October 2018.
- 2. 1.1km NNW Mineralised Gold Intersections at HN9. MAU ASX Release 7 November 2018.
- 3. Surface drilled Mineralisation extends to significant 1.5km at HN9. MAU Release 20 November 2018
- 4. Hawks Nest Delivers with 8m@4.2g/t Gold from 4m MAU Release 29 January 2018
- 5. Robust Near Surface High-grade Zone of 7m @ 4.5g/t Gold from 5m from 1m splits. MAU Release 5 March 2018
- 6. Hawks Nest Geochemical Survey Outlines Potential Extensions to the Prospective 7m @ 4.5g/t Gold Intersected. MAU Release 20 March 2018
- An 865m RC drilling programme started testing promising 7m at 4.5g/t gold and eight separate anomalous soil geochemical targets at HN5. MAU Release 10 May 2018
- 8. Large Gold Mineralised Shear Zone Greater Than 250m at Hawks Nest 5. MAU Release 9 June 2018
- 9. Gold Geochemical Target Zone Grows to Significant 2km in Length at HN9. MAU Release 7 January 2019
- 10. Significant 2km Gold Target is open to the East on 83% of the 24 Lines Drilled at HN9. MAU Release 4 February 2019.
- 11. Significant 2.1km Gold Target Still open to North, South, East and at Depth. MAU Release 25 March 2019
- 12. Gold Target Enlarged By 47% to Significant 3.1km and is still open to the North, East and at Depth. MAU Release 22 May 2019
- 13. HN9 Prospective Zone Enlarged by 170% with Lady Julie Tenements. MAU Release 24 June 2019.
- 200m-Wide Gold Zone Open to The Northeast and Very Extensive Surface Gold Mineralisation Confirmed At HN9 Laverton. MAU Release 27 June 2019.
- 200m Wide Gold Zone Open to the North and New 800m Anomalous Gold Zone defined at HN9 Laverton. MAU Release 4 September 2019
- 16. Highest Grades Outlined at HN9 and are being Followed Up and Lady Julie Shallow Drilling Commencing Shortly. MAU Release 14 October 2019
- 17. Central Part of HN9 Shows Significant Thickening of The Mineralised Zone to 28m. MAU Release 28 November 2019
- 18. Multiple Horizons and Feeder Zone at Hawks Nest 9. MAU Release 17 January 2020.
- 19. Significant 2km Gold Target is open to the East on 83% of the 24 Lines Drilled at HN9. 4 Feb 2019.
- 20. Significant 2.1km Gold Target Still open to North, South, East and at Depth. 25 March 2019.
- 21. 200m-Wide Gold Zone Open to the Northeast and Very Extensive Surface Gold Mineralisation Confirmed at HN9 Laverton. 27 June 2019.
- 22. 200m Wide Gold Zone open to the North and New 800m Anomalous Gold Zone defined at HN9 Laverton. 4 September 2019.
- 23. Highest Grades Outlined at HN9 and Being Followed Up and Lady Julie Shallow Drilling Commencing Shortly14 October 2019.
- 24. Central Part of HN9 Shows Significant Thickening of the Mineralised Zone to 28m.28 November 2019.
- 25. Multiple Silicified Porphyry Horizons from Deep Drilling and 57m Mineralised Feeder Zone at HN9. 17 January 2020.
- 26. Very High-Grade Intersection of 4m at 49g/t Adjacent to 70m Thick Mineralised Feeder Zone. 5 February 2020.
- 27. 20km of Thickened Porphyry Units Outlined by Ground Magnetic Interpretation at Hawks Nest 9. 9 March 2020.
- 28. Further Thick Down Plunge Extensions and NW Extensions shown up at HN9. 18th May 2020.
- 29. Four Stacked Thickened Porphyry Lodes at HN9 3 August 2020.
- 30. High Grade Intersections in Thickened Zone at HN9. 18th September 2020.
- 31. Positive Metallurgical Results from HN9 27 October 2020.
- 32. Follow up of 16m at 1.16g/t from 64m at Lady Julie 2nd November 2020.

All of which are available on www.magres.com.au

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 At the Lady Julie Project for RAB sampling, 4m composites and 1m splits completed by Metex (A60731, A62445, A65027, A66477) At the Lady Julie Project for AC sampling, 4m composites and 1m splits completed by Metex (A62445) At the Lady Julie Project for RC sampling, 4m composites and 1m splits completed by Metex (A62445) At the Lady Julie Project for Diamond, 1m samples completed by Metex (A65027) At HN9 for RAB sampling, 1m completed by Duketon (A22722) AT HN9 for RAB sampling, 4m composites completed by Gwalia (A29728) At HN9 for AC sampling, 4m composites and 1m splits completed by Metex (A62445, A72419) At HN9 for RC sampling, 2m composites completed by Julia Mines (A18060) and 5m composites completed by Placer (A34935) All the reported historical drilling and their relevant sampling procedures, QAQC and analytical methods etc. are referred to in the original WAMEX reports reported in the main text of this ASX release for the Lady Julie tenements and for the HNP project (ASX release of 7 November 2018). The targets at Lady Julie and HN9 have been tested by RC drilling. A 1 metre split is taken directly from a cone splitter mounted beneath the rig's cyclone. The cyclone and splitter are cleaned regularly to minimize contamination. Sampling and QAQC procedures are carried out using Magnetics' protocols as per industry sound practice. RC drilling was used to obtain bulk 1 metre samples from which composite 4m samples were prepared by spear sampling of the bulk 1m samples. 3kg of the composite sample was pulverized to produce a 50g charge for fire assay for gold. The assay results of the composite samples from the rig's cyclone and splitter are selected for fire assay using the same method.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Rotary air blast (RAB) drilling with a blade bit. Reverse Circulation (RC) drilling was carried out using a face sampling hammer with a nominal diameter of 140mm. Aircore (AC) drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recoveries are visually estimated qualitatively on a metre basis. Various drilling additive (including muds and foams) have been used to condition the RC holes to maximize recoveries and sample quality. Insufficient drilling and geochemical data is available at the present stage to evaluate potential sample bias. Drill samples are sometimes wet which may result in sample bias because of preferential loss/gain of fine/coarse material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Lithology, alteration and veining is recorded and imported into the Magnetic Resources central database. The logging is considered to be of sufficient standard to support a geological resource. All drill holes were logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples are cyclone split to produce a 2-3kg sample. 4m composite samples are prepared by tube sampling bulk 1m samples. No field duplicates were taken Sample sizes are appropriate for the grain size being sampled
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis 	 RC samples are assayed using a 50g charge and a fire assay method with an AAS finish which is regarded as appropriate. The technique provides an estimate of the total gold content Industry standard standards and duplicates are used by the NATA registered laboratory conducting the analyses

Criteria	JORC Code explanation	Commentary
	including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent verification of drill intersections has yet been carried out. Twin holes are planned to be drilled. Primary data is entered into an in-house database and checked by the database manager. No adjustment of assay data other than averaging of repeat and duplicate assays No verification of historically reported drilling has been carried out
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars located by hand- held GPS with an accuracy of +/- 5m. Grid system: MGAz51 GDA94. Topographic control using regional DEM data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drilling was carried out at the Lady Julie and HN9 prospect. 1m samples were composited into 4m composite samples for assay. RC drilling was carried out and 1m samples were composited into 2m and 5m composite samples for assay
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Lady Julie historical geological mapping and the trends of old gold diggings indicate a general NS trend to the geological structures. The historical drilling was carried out orthogonal to this trend.
Sample security	• The measures taken to ensure sample security.	 Samples were stored in the field prior to dispatch to Perth using a commercial freight company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews of the sampling techniques and data from historical drilling have been carried out.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Lady Julie targets are adjacent to the HN9 target area is situated on Prospecting Licenses P38/4346, P38/4379 to P38/4384. The HN9 targets are on exploration Licence E38/3127 held 100% by Magnetic Resources NL. E38/3127, M38/1041 and P38/4346, P38/4379 to P38/4384 are granted tenements with no known impediments to obtaining a licence to operate.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	The HN9 and Lady Julie areas have been subject to historical exploration refer to text
Geology	 Deposit type, geological setting and style of mineralisation. 	 At HN9 and Lady Julie there are two main mineralization styles that have been observed: quartz veining and stockworking in the porphyries and shear-hosted quartz veins on porphyry-amphibolite contacts.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to table in the text of this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 No weighting or cutting of gold values, other than averaging of duplicate and repeat analyses.

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The relationships between mineralization widths and intercept lengths at HN9 and Lady Julie remain to be clarified.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Plus 1g/t Au intersections from the historical drilling have been reported in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of 	 Shallow 2D seismic along two lines 8km long each and larger passive seismic array and reprocessing of older Geoscience Australia seismic data sets along the Old Laverton Rd and Wallaby traverses.

Criteria	JORC Code explanation	Commentary
	possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 A further 53 RC holes for 3605m are planned at Lady Julie and 87 holes for 4670m at HN9.