

Multiple high-grade intercepts in exploration drilling at Hualilan

Highlights

- High-grade mineralisation continues to be intersected outside the boundaries of the historical resource with multiple near surface high-grade drill intersections including (refer Table 1):
 - 44.0m at 3.6 g/t AuEq² 2.8 g/t Au, 62.7 g/t Ag from 11m including;
 12.0m at 10.4 g/t AuEq² 8.3 g/t Au, 190.1 g/t Ag, from 36m including;
 3.0m at 34.1 g/t AuEq² 27.3 g/t Au, 613.3 g/t Ag, 0.1% Zn (GNRC-110 Magnata).
 - 27.0m at 3.9 g/t AuEq² 3.6 g/t Au, 14.8 g/t Ag, 0.3% Zn from 16m including;
 7.0m at 13.8 g/t AuEq² 13.3 g/t Au, 12.6 g/t Ag, 0.8% Zn (GNRC-107 Magnata).
 - 5.0m at 12.3 g/t AuEq² 12.2 g/t Au, 7.2 g/t Ag, from 35m including;
 1.0m at 53.3 g/t AuEq² 53.1 g/t Au, 18.0 g/t Ag (GNRC-076 Cerro Norte).
 - 4.0m at 12.0 g/t AuEq² 11.6 g/t Au, 10.5 g/t Ag, 0.7% Zn from 141 metres including;
 1.0m at 47.2 g/t AuEq² 45.6 g/t Au, 40.0 g/t Ag, 2.6% Zn (GNRC-104 Gap Zone).
 - 8.0m at 5.3 g/t AuEq² 4.9 g/t Au, 4.5 g/t Ag, 0.8% Zn from 88m including;
 2.0m at 17.0 g/t AuEq² 15.6 g/t Au, 15.9 g/t Ag, 2.8% Zn (GNRC-098 Gap Zone).
 - 14.7m at 3.3 g/t AuEq² 3.2 g/t Au, 3.3 g/t Ag, 0.1% Zn from 64m including;
 0.9m at 50.7 g/t AuEq² 50.3 g/t Au, 27.2 g/t Ag, 0.2% Zn (GNDD-114 Magnata).
- Mineralisation remains open in all directions and results continue to suggest the mineralisation is part of a much larger gold bearing system than was originally anticipated.

Challenger Exploration (ASX: CEL) ("CEL" the "Company") is pleased to announce further results from drilling at the Company's flagship Hualilan Gold Project, located in San Juan Province, Argentina. The results are from the remainder of the second 7,500 metre drilling program and initial holes targeting the high-grade skarn from the current 5 rig 45,000 metre drilling program. All holes were designed to explore for extensions to the historical resource estimate with the exception of two twin holes for JORC reporting.

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"Another round of impressive drilling results that reinforce our view that we have a much larger gold system than originally anticipated. We are yet to define the limits of the mineralisation within the current 2 kilometers of strike which all of the drilling has been focused.

This round of drilling demonstrates that the high-grade mineralisation we encountered in GNDD-035, our first hole targeting high-grade mineralisation in the Gap Zone, is extensive. We continue to deepen our understanding of the system with drilling, which continues to increase our confidence that the Magnata and Sanchez Faults have the potential to add significant high-grade ounces."

The results (see Table 1) continue to extend the near surface skarn mineralisation along strike and down dip in multiple locations and have defined two new zones of high-grade skarn mineralisation, one above and one below, the historical limestone hosted skarn mineralisation. Drilling has confirmed that there is a previously unrecognised broad continuous zone of bulk gold mineralisation overlying the high-grade skarn which is likely to enhance the economics in an open pit development scenario. This round of results has demonstrated that much of the historical drilling is under sampled and is likely to have left zones of high-grade mineralisation unassayed and thus not included in the historical resource.

The Company has completed approximately 16,000 metres of the high impact current 45,000 metre drill program with 5 rigs continuing on site. Results have been reported up to drill hole GNDD-092 with holes GNDD-157 to 161 currently drilling ahead. For the next phase of drilling the Company will utilise three rigs to extend the high-grade skarn mineralisation predominantly on the Sanchez and Magnata Fault zones with two rigs continuing to target the intrusion hosted mineralisation.

HIGHLIGHTS

- Extension of the high-grade skarn mineralisation into the Gap Zone with holes GNRC-104 (4 metres at 12.0 g/t AuEq) and GNRC-098 (2 metres at 17.0 g/t AuEq within a broader zone of 8 metres at 5.3 g/t AuEq) encountering high-grade mineralisation.
- GNRC-076 returned 5 metres at 12.3 g/t AuEq in sandstone which overlies the limestone between the Main Manto at Cerro Norte and the Sanchez Fault. Mineralisation in sandstone has not been targeted by previous explorers.
- A second drillhole to test the Sanchez Fault (GNRC-084) intersected 29 metres of mineralisation confirming the potential of this zone to materially increase the high-grade mineralisation. Drilling in this zone, which outcrops over 400 metres, is at an early stage however high grade near surface mineralisation has now been defined by RC drilling over 150 metres of strike with assay results pending from a number of deeper diamond core holes.
- The mineralisation at Sentazon and Muchilera appear to join forming a single zone of mineralisation covering 350 metres of strike and 200 metres of plunge extent which remains open to the north and south along strike and at depth.
- GNDD-114 returned 14.7 metres at 3.3 g/t AuEq including 0.9 metres at 50.7 g/t AuEq south of the Magnata Fault. This opens the potential for the skarn mineralisation to extend south over a 300 metre zone of limited drilling to the Sentazon Manto which remains open to the north. This would see continuous manto mineralisation covering 600 metres of strike between Magnata and Sentazon which remains open in both directions along strike and at depth.
- The DDH series of historical drilling (1999-2002), which is regarded as the most reliable historical drilling, has under-sampled the ore zones with twin hole GNRC-110 returning 44 metres at 3.6 g/t AuEq including 3.0 metres at 34.1 g/t AuEq compared to historical hole DDH-53 (28m at 3.2 g/t AuEq) as the bottom part of the mineralisation was not assayed.
- A previously unrecognised broad zone of bulk gold mineralisation has been identified above the skarn in a majority of holes which has the potential to add to the economics of the project.

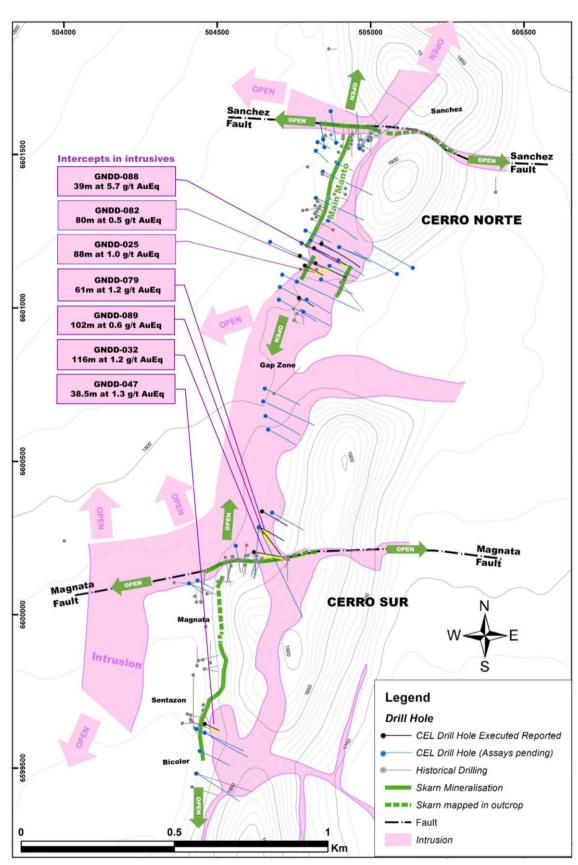


Figure 1 - Overview of the Mineralised system at the Hualilan Gold Project

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

DISCUSSION OF RESULTS

The mineralisation at the Hualilan Gold Project extends over 2 kilometres including a 1km zone of limited exploration, the Gap Zone (Figure 1). Most of the high-grade skarn mineralisation is believed to be controlled by the east-west Sanchez and Magnata faults which provided the main conduit for mineralising fluids. Where these faults intersect permeable limestone beds, the limestones have been replaced with north-south striking, bedding parallel massive sulphide "Manto" bodies.

The Company is better understanding the controls of the mineralisation and believes that the east-west Magnata and Sanchez Faults, which appear to contain more continuous mineralisation than typical skarn orebodies, have the potential to add significantly to the historical high-grade mineralisation. Both the fault controlled and Manto mineralisation remain open in all directions.

Gap Zone

The current drilling is the first to target possible extensions of the high-grade skarn mineralisation in the covered and largely undrilled Gap Zone between Cerro Sur and Cerro Norte. It has confirmed that the skarn mineralisation intersected in GNDD-035 (5.8 metres at 9.5 g/t gold, 29 g/t silver, 3.5% zinc) which extended the Main Manto 100 metres south into the Gap Zone has significant strike extent and replicate zones.

GNRC-104

GNRC-104 was drilled above GNDD-035 to test for extensions of the Manto mineralisation. The hole encountered 4 metres at 12.0 g/t AuEq (11.6 g/t gold, 10.5 g/t silver, 0.7% zinc) from 141 metres, including 1 metre at 45.6 g/t gold, 40.0 g/t silver, 2.6% zinc.

The upper part of the limestone unit which hosts the skarn mineralisation in GNDD-035 was replaced by dacite at the projected location of the mineralisation in GNRC-104, however the hole encountered another high-grade zone of mineralisation slightly lower in the section near the limestone-intrusive contact. It is believed that the dacite contact with the limestone has provided a significant fluid pathway and site for mineralisation. High grade mineralisation in the limestone trends to broader lower grade mineralisation in the dacite.

GNRC-098

GNRC-098 returned **2 metres at 17.0 g/t AuEq (15.6 g/t gold, 15.9 g/t silver, 2.8% zinc)** from 88 metres within a broader zone of **8 metres at 5.3 g/t AuEq (4.9 g/t gold, 4.5 g/t silver, 0.8% zinc)**. Like GNRC-104 the mineralisation was at the dacite - limestone contact. It is now understood that there is potential for this contact zone to host significant high-grade mineralisation. Potential high-grade skarn mineralisation has also been observed at this level in several more recent holes where assays are pending.

GNRC-098 was followed up with GNDD-141 (assays pending) to test up-dip. Additional drilling is programmed to test up and downdip of GNDD-035, and downdip as well as along strike of GNRC-098, and GNRC-104.

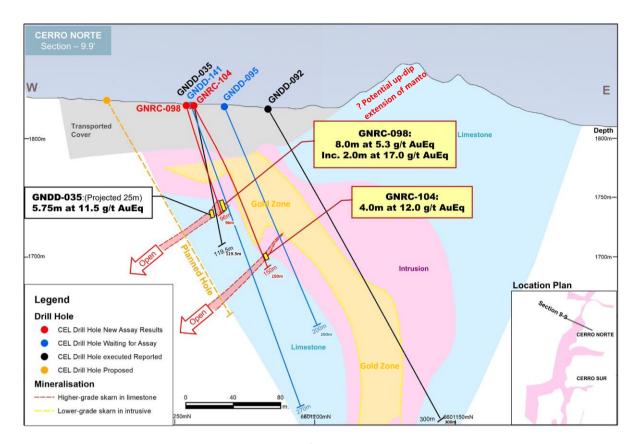


Figure 2 - Section showing new zones of high-grade mineralisation in the Gap Zone

Main Manto Cerro Norte

GNRC-076

GNRC-076 was collared between the Main Manto mineralisation and the Sanchez Fault. The hole was collared as a downdip test of GNDD-034 which encountered a narrow high-grade zone of skarn mineralisation of 0.3 metres at 11.6 g/t AuEq).

GNRC-076 intersected *5 metres at 12.3 g/t AuEq (12.2 g/t gold, 7.2 g/t silver*) from 35 metres including *1 metre at 53.1 g/t gold, 18 g/t silver*. This is a new zone of skarn mineralisation in sandstone above the main limestone unit which hosts broad zones of mineralisation, including high-grade skarn mineralisation.

GNRC-076 then intersected the main limestone unit before it encountered no recovery from 62 metres (old workings) and had to be terminated. This zone of no recovery is believed to indicate the presence of the main skarn mineralisation which has been exploited historically at this near surface location. The historical mining seems to have been limited to the top 50 to 75 metres sub-surface and, according to the historical records, generally recovered hand-sorted grades above 20 g/t gold. Underground lower grade stockpiles have been observed and sampled as previously reported.

The discovery of the mineralisation in sandstone and the likely presence of the traditional Main Manto mineralisation in limestone, albeit mined historically in this location, is encouraging as this area is outside of the limit of the historical foreign resource estimate. The results open the potential for the high-grade mineralisation to extend across this area of limited historical drilling which covers 200 metres of strike extent. A further hole has been completed to avoid the old workings (GNDD-119, assays pending) and a hole is planned with a collar 80 metres to the west of GNRC-076 to test downdip in the sandstone and the limestone.

Magnata

Most of the skarn mineralisation at Magnata is controlled by the east-west sub-vertical Magnata fault zone which splits into the M1 and M2 Magnata Faults. There is a north-south striking "manto component" which dips west. In drilling completed to date, the mineralisation in the Magnata fault appears to be relatively continuous over the 300 metres of strike and 120 metres vertical extent and remains open at depth and in both directions along strike. As previously reported, the dacite near the contact with the Magnata faults also contains broad zones of gold mineralisation which is not included in the historic resource estimate.

The recent round of drilling at Magnata returned a number of significant results including holes designed to extend the Magnata Fault mineralisation, holes designed to test for splays off this fault and north-south limestone hosted skarn mineralisation, and confirmation historical drilling has not sampled part of the ore zone.

GNRC-110

GNRC-110 was drilled to twin DDH-53 which is from a series of 79 diamond core holes drilled from 1999 to 2002 by Chilean Company CMEC. This series was regarded as the most reliable of the historical drilling. It now appears that these DDH series holes may have significantly under-reported the width of the skarn mineralisation due to under-sampling.

GNRC-110 returned **44.0 metres at 3.6 g/t AuEq (2.8 g/t gold, 62.7 g/t silver) from 11 metres including 12.0 metres at 10.4 g/t AuEq (8.3 g/t gold, 190.1 g/t silver)** compared to DDH-53 which reported 28 metres at 3.2 g/t AuEq including 19.1 metres at 4.4 g/t AuEq. The under-reporting in DDH-53 relates to two issues:

- not all of the mineralised zone was assayed. Only the core with abundant visible sulphides was sampled and in hole DDH-53 this unsampled interval comprised some of the higher-grade zones.
- DDH-53 recorded poor drill recovery, approaching 75%, over this zone which is now known to result in under-reporting of grade. The poor recovery may have preferentially impacted the sulphides and hence the gold.

The Company will review which of the DDH series of drill holes will be redrilled given the possibility many of these holes have likely been under sampled. The initial focus of this review will be the 12 DDH series holes which tested the Magnata Fault.

GNRC-107

GNRC-107 was a twin of the Company's GNDD-008 and GND-008A drill holes to determine if RC drilling provided a more representative sample than diamond core in areas of difficult drilling. GNDD-008 had to be redrilled after the original hole was abandoned. In the main M2 Magnata Fault where GNDD-008A returned 2.6 metres at 25.5 g/t AuEq (22.8 g/t gold, 218 g/t silver, 0.7% zinc) the hole reported recoveries as low as 40%. The Company's experience twinning historical holes is that where core recovery drops below 90% the drilling can significantly under report both gold grade and width.

GNRC-107 was terminated short of the M2 Magnata Fault zone, however it identified a significant high-grade near surface zone, interpreted as the M1 Magnata Fault, which was previously overlooked. The zone returned **27 metres at 3.9 g/t AuEq (3.6 g/t gold, 14.8 g/t silver and 0.3% zinc)** from 16 metres including **7 metres at 13.8 g/t AuEq (13.3 g/t gold, 12.6 g/t silver, 0.8% zinc)**. It correlates with near surface mineralisation recorded in historical drill holes DDH 68 (17.9 metres at 2.2 g/t Au, 6.3 g/t silver, 0.2% zinc) and DDH-72 (11.7 metres at 3.8 g/t gold, 14.1 g/t silver, 1.3% zinc) collared 25 metres and 100 metres to the south-west confirming the potential for significant near surface mineralisation on the M1 Magnata fault. A diamond drill core extension of GNRC-107 is planned.

GNDD-038 and GNDD-114

GNDD-038 was drilled to test the southern extension of GNDD005 and GNDD018 mineralisation in the limestone and intercepted **2.85 metres at 2.0 g/t AuEq** from 71 metres. GNDD-114 was collared 30 metres to the west of GNDD-038 to test down plunge intersecting a much broader and higher-grade zone of mineralisation of **14.7 metres at 3.3 g/t AuEq (3.2 g/t gold, 3.3 g/t silver, 0.1% zinc)** from 64 metres including **0.9 metres at 50.7 g/t AuEq (50.3 g/t gold, 27.2 g/t silver, 0.2% zinc)**. Further drilling has been completed down dip with assay results pending.

Sanchez Zone

The Sanchez Fault has been mapped in outcrop over 500 metres of strike across the main Cerro Norte. The steep terrain in this location has made drill pad location difficult and as such the Sanchez Fault has historically only been drilled to 50 metres sub-surface over less than 50 metres of strike. The Company's first hole GNRC-068 into the Sanchez Zone returned 69.0 metres at 4.8 g/t AuEq including a broad high grade zone of 27.0 metres at 11.4 g/t AuEq containing a bonanza grade zone of 4.0 metres at 48 g/t AuEq.

The Sanchez Zone is a high priority target as the Company's experience with its drilling of the Magnata Fault Zone is that the mineralisation is generally:

- high-grade;
- laterally and vertically continuous;
- extensive at depth, with the Magnata Vein open below 160 metres;
- likely to extend under cover along strike beyond the limits of the main outcrop; and
- open at depth and under cover in both directions along strike

GNRC-084

Drill hole GNRC-084 was drilled to test 40 metres under GNRC-068 (Figure 2) and is near to historical drill hole 05-HD-40, although not a twin. 05-HD-40 is also thought to have understated both width and grade due to poor core recovery. GNRC-084 intersected over 30 metres of mineralisation and extended the Sanchez Zone 40 metres deeper, confirming 05-HD-40 has likely significantly understated both grade and width.

GNRC-084 encountered two zones of extremely low recovery from 40 to 44 and 59 to 65 metres which are believed to be old stopes. The hole is located within 75 metres of surface and historical mining seems to have been limited to the top 50 to 75 metres. These stopes encountered in GNRC-084 may correlate with the higher-grade zones in GNRC-068. Drillhole GNDD-147 (assays pending) has been drilled as a deeper test designed to intersect the Sanchez Fault below the zone of historical mining.

The ground to the north and below GNRC-084 will be further tested as the bottom 2 metres of the hole intersected mineralisation in intrusives grading 1.1 AuEq

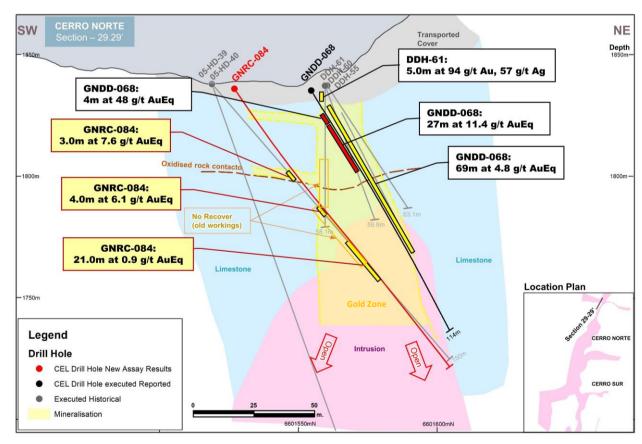


Figure 3 - Cross Section showing GNRC-084 and Sanchez Fault Zone

GNRC-070. GNRC-071 and GNRC-072

These were a series of shallow RC holes designed to test the Sanchez Fault near surface over 150 metres of strike to the west of GNRC-084. The holes confirmed that the Sanchez Fault is mineralised over this 150 metres and remains open under cover to the west. All of these shallow holes have subsequently been tested by deeper diamond core holes (assays pending) to extend the Sanchez fault mineralisation deeper.

GNRC-070 was collared 50 metres west of GNRC-084 and intersected **1 metre at 6.6 g/t gold, 3.1 g/t silver, 0.4% zinc** from 41 metres however it is now believed that the hole was terminated prior to reaching the Sanchez Fault.

GNRC-071 was collared 100 metres west along strike from GNRC-084 and intersected **2 metres at 1.5 g/t AuEq** before encountering 6 metres of old workings and having to be terminated. The intersection of the old workings confirms the high-grade mineralisation on the Sanchez Fault likely continues along strike. GNRC-072 was redrilled behind and at a steeper angle to test underneath hole GNRC-071 and encountered a broad lower-grade zone of mineralisation, however the hole appears to have been terminated prior to reaching the Sanchez Fault due to poor drilling conditions.

Sentazon and Muchilera

Drill holes GNDD-085, GNDD-037 and GNDD-100 were drilled as further tests of the Muchilera Manto which is located between the Magnata Manto in the north and the Sentazon Manto to the south. The Muchilera Manto is historically mapped as a 2 to 3 metre thick, bedding-parallel mineralised zone. Previous drill holes by the Company intersected minor skarn alteration and results such as 3.0 metres at 1.0 g/t gold, 53.0 g/t silver, 0.1% zinc - 1.6 g/t AuEq in GNDD-030.

Drill hole GNDD-085 is located 30 metres north along strike from GNDD-030 and *returned 1.3 metres* at 6.3 g/t AuEq (5.5 g/t gold, 75.6 g/t silver, 0.1% zinc) from 22.5m and 2.2 metres at 2.4 g/t AuEq (2.1 g/t gold, 2.4 g/t silver, 0.6.% zinc). The hole confirms that the Muchilera Manto remains open along strike to the north and now appears to join with the Sentazon Manto to the south. This forms a zone of continuous mineralisation covering 350 metres of strike which remains open to the north and south along strike and at depth.

The next round of drilling at Sentazon will have two aims.

- Infill drilling designed to target and better define the plunging shoots which control the highgrade mineralisation; and
- Exploration to test the 300 metres of unexplored strike to the north between GNRC-110 (44.0 metres at 2.8 g/t gold, 62.7 g/t silver) at Magnata and GNDD-085 at Muchilera (1.3 metres at 6.3 g/t AuEq and 2.2 metres at 2.4 g/t AuEq).

Bulk Mineralisation above the skarn

GNRC-069 was collared to test under the Dona Justa Pit at Cerro Norte just south of the Sanchez Fault. The hole is a good example of the broad zones of lower grade mineralisation that were not recognised historically due to assaying only being conducted where sulphides were visible.

GNRC-069 recorded a combined 32 metres of mineralisation from 18 to 97 metres downhole. This includes **7 metres at 0.7 g/t AuEq** from **18 metres and 10 metres at 0.9 g/t AuEq** from 53 metres and **15 metres at 0.6 g/t AuEq**. This mineralisation has the potential to be economically significant in exploitation via open cut.

With the Company's policy of assaying all drill core it has recorded broad zones of lower grade mineralisation, predominantly overlying the high-grade skarn mineralisation, in the majority of its drill holes. Examples from the drill holes reported in this release are shown In Table 2 below.

Drill Hole (#)	Results
GNDD-021 - Main Manto	19.8 metres at 1.9 g/t AuEq from 98.2m
GNDD-028 - Main Manto	18.6 metres at 1.2 g/t AuEq from 41.4m
GNDD-048 - Gap Zone	19 metres at 0.8 g/t AuEq from 36m
GNDD-050 - Main Manto	22 metres at 0.5 g/t AuEq from 21m
GNRC-069 - Main Manto	7 metres at 0.7 g/t AuEq from 18m;
	10 metres at 0.9 g/t AuEq from 53m;
	15 metres at 0.6 g/t AuEq.
GNRC-072 - Sanchez	19 metres at 0.3 g/t AuEq from 43m
GNRC-078 - Main Manto	17 metres at 0.4 g/t AuEq from 11 m
GNRC-081 - Main Manto	30 metres at 0.5 g/t AuEq from 23m (hole terminated before reaching target due to poor drilling conditions)
GNRC-086 - Main Manto	21 metres at 0.6 g/t AuEq from 3m
GNRC-090 - Main Manto	13 metres at 0.5 g/t AuEq from 7m
GNRC-091 - Main Manto	24 metres at 0.5 g/t AuEq from 47m
GNRC-097 - Main Manto	8 metres at 0.4 g/t AuEq
GNRC-098 - Gap Zone	19 metres at 0.3 g/t AuEq from 40m
GNDD-102 - Gap Zone	11 metres at 0.7 g/t AuEq from 36m;
	8.9 metres at 0.5 g/t AuEq from 77.4 m
GNRC-111 - Sentazon	18 metres at 0.5 g/t AuEq from 31m

Table 2 - Bulk Mineralisation (additional to skarn) encountered in current drill holes

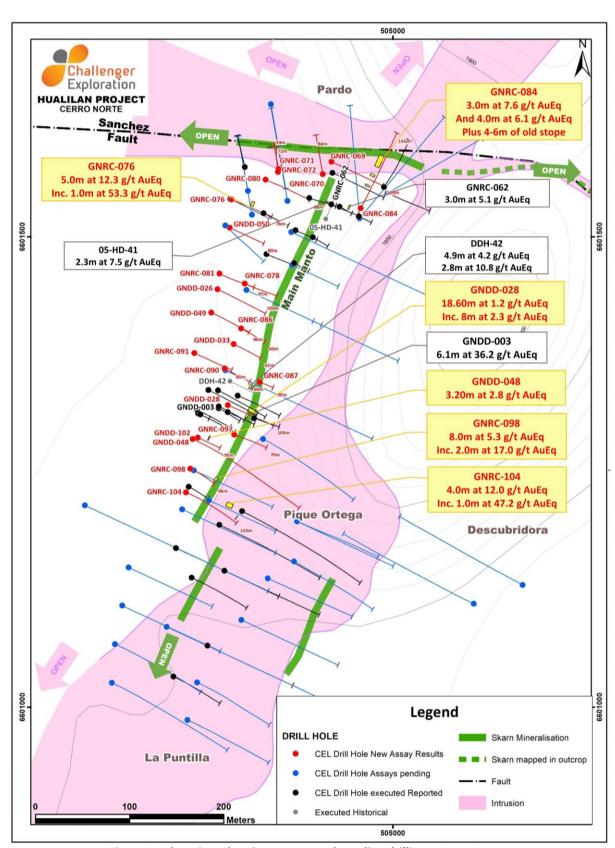


Figure 4 - Plan View Showing current and pending drilling at Cerro Norte

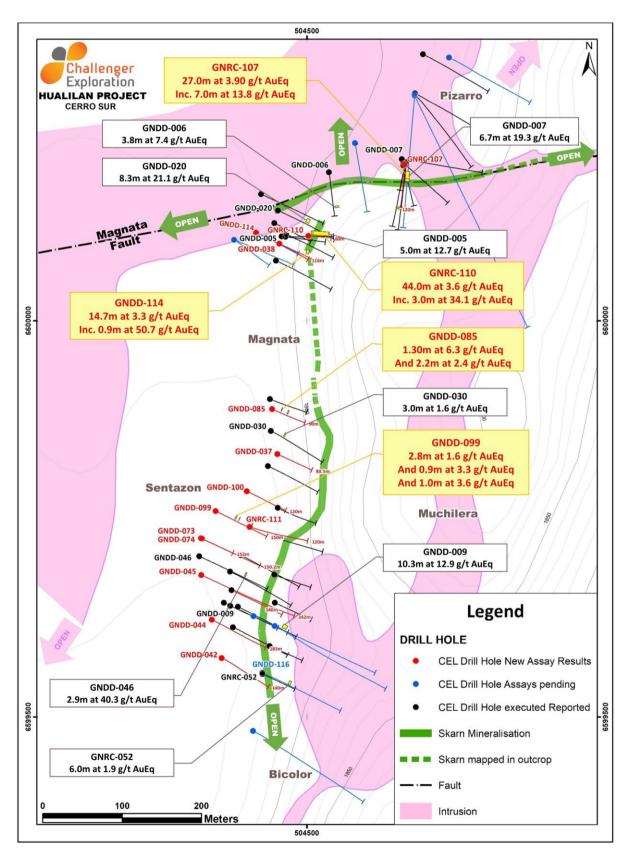


Figure 5 - Plan View Showing current and pending drilling at Cerro Sur

Table 1: New intercepts reported in this report

			: I. New III		-			
Drill Hole	From	To	Total	Gold	Ag	Zn	Au Equiv	Comments
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)	00 / 10 7
GNDD-021	98.20	118.00	19.80	0.29	2.2	3.4	1.9 g/t AuEq	0.2 g/t AuEq cut
inc	98.20	108.00	9.80	0.40	4.4	6.8	3.6 g/t AuEq	1.0 g/t AuEq cut
inc	104.20	105.00	0.80	0.88	12.6	22.7	11.7 g/t AuEq	10 g/t AuEq cut
GNDD-026	NSI							
GNDD-028	41.40	60.00	18.60	0.21	3.2	2.0	1.2 g/t AuEq	0.2 g/t AuEq cut
inc	52.00	60.00	8.00	0.42	6.0	3.8	2.3 g/t AuEq	1.0 g/t AuEq cut
GNDD-033	NSI							
GNDD-036	NSI							
GNDD-037	NSI							
GNDD-038	71.50	74.35	2.85	0.53	15.6	2.8	2.0 g/t AuEq	0.2 g/t AuEq cut
GNDD-042	NSI							
GNDD-044	NSI							
GNDD-045	85.90	88.00	2.10	1.4	28.8	0.1	1.7 g/t AuEq	0.2 g/t AuEq cut
GNDD-048	36.00	55.00	19.00	0.6	5.0	0.25	0.8 g/t AuEq	0.2 g/t AuEq cut
inc	38.00	41.15	3.15	2.7	12.1	0.09	2.8 g/t AuEq	1.0 g/t AuEq cut
GNDD-049	NSI							
GNDD-050	21.00	43.00	22.00	0.21	2.9	0.53	0.5 g/t AuEq	0.2 g/t AuEq cut
inc	21.00	23.00	2.00	1.4	4.8	0.07	1.5 g/t AuEq	1.0 g/t AuEq cut
GNRC-069	18	25	7	0.62	3.0	0.11	0.71 g/t AuEq	0.2 g/t AuEq cut
inc	19	20	1	2.2	8.6	0.15	2.4 g/t AuEq	1.0 g/t AuEq cut
and	53	63	10	0.65	5.7	0.37	0.88 g/t AuEq	0.2 g/t AuEq cut
inc	59	62	3	1.7	11	0.84	2.3 g/t AuEq	1.0 g/t AuEq cut
and	84	99	15	0.54	2.4	0.13	0.63 g/t AuEq	0.2 g/t AuEq cut
inc	84	88	4	0.90	5.2	0.36	1.1 g/t AuEq	1.0 g/t AuEq cut
and	96	97	1	1.0	1.4	0.06	1.0 g/t AuEq	1.0 g/t AuEq cut
GNRC-070	41	42	1	6.6	3.1	0.36	6.8 g/t AuEq	0.2 g/t AuEq cut
GNRC-071	48	50	2	0.45	5.4	2.1	1.5 g/t AuEq	0.2 g/t AuEq cut
GNRC-072	43	62	19	0.16	4.9	0.13	0.27 g/t AuEq	0.2 g/t AuEq cut
GNDD-073	NSI							-
GNDD-074	41	43	2	1.2	20.5	0.04	1.4 g/t AuEq	0.2 g/t AuEq cut
and	47	49	2	0.8	16.7	0.13	1.1 g/t AuEq	0.2 g/t AuEq cut
GNRC-076	35	40	5	12.2	7.2	0.02	12.3 g/t AuEq	0.2 g/t AuEq cut
inc	35	36	1	53.1	18	0.00	53.3 g/t AuEq	10 g/t AuEq cut
GNRC-078	11	28	17	0.13	1.7	0.43	0.35 g/t AuEq	0.2 g/t AuEq cut
inc	12	13	1	0.74	4.8	0.91	1.2 g/t AuEq	1.0 g/t AuEq cut
GNRC-080	NSI							<i>J</i> , 1
GNRC-081	23	53	30	0.28	2.0	0.33	0.46 g/t AuEq	0.2 g/t AuEq cut
inc	32	37	5	1.0	3.6	0.73	1.4 g/t AuEq	1.0 g/t AuEq cut
GNRC-084	4	5	1	1.2	2.0	0.07	1.2 g/t AuEq	0.2 g/t AuEq cut
and	41	44	3	5.2	6.4	5.0	7.6 g/t AuEq	0.2 g/t AuEq cut
and	60	64	4	3.6	11.6	5.0	6.1 g/t AuEq	0.2 g/t AuEq cut
and	78	99	21	0.81	2.6	0.08	0.87 g/t AuEq	0.2 g/t AuEq cut
inc	91	92	1	6.7	10.7	0.42	7.0 g/t AuEq	1.0 g/t AuEq cut
and	97	99	2	1.6	1.2	0.03	1.6 g/t AuEq	0.2 g/t AuEq cut
and	143	99 145	2	0.67	4.9	0.03	1.0 g/t AuEq 1.1 g/t AuEq	0.2 g/t AuEq cut
GNDD-085	22.50	23.80	1.30	5.47	75.6	0.08	6.3 g/t AuEq	0.2 g/t AuEq cut
								0.2 g/t AuEq cut
and CNBC 086	39.30	41.50	2.20	2.11	2.4	0.55	2.40 g/t AuEq	
GNRC-086	3	24	21	0.38	1.5	0.33	0.55 g/t AuEq	0.2 g/t AuEq cut
inc	4	5	1	0.85	3.4	0.89	1.3 g/t AuEq	1.0 g/t AuEq cut

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

and	22	24	2	2.9	1.9	0.08	3.0 g/t AuEq	0.2 g/t AuEq cut
GNRC-087	22	26	4	0.65	15.9	0.26	0.95 g/t AuEq	0.2 g/t AuEq cut
GNRC-090	7	20	13	0.35	2.7	0.25	0.50 g/t AuEq	0.2 g/t AuEq cut
inc	14	15	1	1.1	7.3	0.45	1.4 g/t AuEq	1.0 g/t AuEq cut
GNRC-091	30	54	24	0.38	3.7	0.20	0.51 g/t AuEq	0.2 g/t AuEq cut
inc	43	47	4	1.4	3.5	0.40	1.6 g/t AuEq	1.0 g/t AuEq cut
GNDD-093	75.30	76.70	1.40	2.1	10.6	7.8	3.8 g/t AuEq	0.2 g/t AuEq cut
and	153.65	154.15	0.50	1.4	7.3	0.17	1.6 g/t AuEq	0.2 g/t AuEq cut
GNRC-097	49	57	8	0.39	2.2	0.04	0.4 g/t AuEq	0.2 g/t AuEq cut
inc	50	51	1	1.1	2.8	0.03	1.2 g/t AuEq	1.0 g/t AuEq cut
GNRC-098	40	59	19	0.21	1.8	0.19	0.32 g/t AuEq	0.2 g/t AuEq cut
and	88	96	8	4.9	4.5	0.76	5.3 g/t AuEq	0.2 g/t AuEq cut
inc	88	90	2	15.6	15.9	2.8	17.0 g/t AuEq	10 g/t Au eq cut
inc	94	96	2	2.6	1.2	0.13	2.7 g/t AuEq	1.0 g/t AuEq cut
GNDD-099	53.00	55.80	2.80	0.42	19.8	2.0	1.6 g/t AuEq	0.2 g/t AuEq cut
and	64.00	64.90	0.90	3.1	9.7	0.22	3.3 g/t AuEq	0.2 g/t AuEq cut
and	101.00	102.00	1.00	2.9	64.4	0.04	3.6 g/t AuEq	0.2 g/t AuEq cut
GNDD-100	NSI							
GNDD-102	36.00	47.00	11.00	0.59	3.2	0.18	0.71 g/t AuEq	0.2 g/t AuEq cut
inc	36.00	38.00	2.00	1.5	5.9	0.13	1.6 g/t AuEq	1.0 g/t AuEq cut
and	77.40	86.30	8.90	0.10	2.5	0.82	0.52 g/t AuEq	0.2 g/t AuEq cut
inc	84.30	85.20	0.90	-	1.3	3.3	1.6 g/t AuEq	1.0 g/t AuEq cut
GNRC-104	141	142	1	45.6	40.0	2.6	47.2 g/t AuEq	10 g/t Au eq cut
GNRC-107	16	43	27	3.6	14.8	0.25	3.9 g/t AuEq	0.2 g/t AuEq cut
inc	23	24	1	0.17	74.4	0.07	1.0 g/t AuEq	1.0 g/t AuEq cut
inc	29	31	2	1.2	12.2	0.06	1.3 g/t AuEq	1.0 g/t AuEq cut
inc	35	42	7	13.3	12.6	0.80	13.8 g/t AuEq	10.0 g/t AuEq cut
and	52	53	1	0.18	73.2	0.11	1.0 g/t AuEq	0.2 g/t AuEq cut
and	93	94	1	0.12	51.2	3.1	2.1 g/t AuEq	0.2 g/t AuEq cut
GNRC-110	11	55	44	2.8	62.7	0.05	3.6 g/t AuEq	0.2 g/t AuEq cut
inc	12	13	1	1.7	1.0	0.00	1.7 g/t AuEq	1.0 g/t AuEq cut
inc	20	31	11	1.8	37.2	0.02	2.2 g/t AuEq	1.0 g/t AuEq cut
inc	36	48	12	8.3	190	0.12	10.4 g/t AuEq	1.0 g/t AuEq cut
inc	41	44	3	27.3	613	0.05	34.1 g/t AuEq	10 g/t Au eq cut
GNRC-111	31	49	18	0.31	12.2	0.13	0.50 g/t AuEq	0.2 g/t AuEq cut
inc	33	34	1	1.3	59.4	0.02	2.0 g/t AuEq	1.0 g/t AuEq cut
inc	41	42	1	2.1	82.7	0.01	3.0 g/t AuEq	1.0 g/t AuEq cut
GNDD-114	64.00	78.70	14.70	3.2	3.3	0.08	3.3 g/t AuEq	0.2 g/t AuEq cut
inc	77.80	78.70	0.90	50.3	27.2	0.18	50.7 g/t AuEq	10.0 g/t AuEq cut

Table 1 Continued

See below for information regarding AuEq's reported under the JORC Code

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1450 Oz, Ag US\$16 Oz, Zn US\$2,200 /t
- Metallurgical recoveries for Au, Ag and Zn are assumed to be the same (see JORC Table 1 Section 3 Metallurgical
 assumptions) based on metallurgical test work hence no weighting on recovery is required
- The formula used: AuEq (g/t) = Au (g/t) + Ag (g/t)x (16/1450) + Zn (%) x 2.12
- CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer
Managing Director
+61 411 885 979
kris.knauer@challengerex.com

Scott Funston
Chief Financial Officer
+61 413 867 600
scott.funston@challengerex.com

Media Enquiries Jane Morgan + 61 405 555 618

jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

8 July 2020 - CEL MAKES NEW GOLD DISCOVERY AT ITS HUALILAN PROJECT WHICH IS EXPECTED TO SUBSTANTIALLY INCREASE SCALE 27 July 2020 - CEL BUILDS ON NEW GOLD DISCOVERY AT HUALILAN WITH A SECOND SIGNIFICANT INTERSECTION 1KM ALONG STRIKE 1 Sept 2020 - OUTSTANDING HIGH-GRADE NEAR SURFACE DRILL RESULTS CONTINUE FROM THE HUALILAN GOLD PROJECT, ARGENTINA

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽²⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 45,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource which will allow an economic review.
- 2. El Guayabo Gold/Copper Project covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^										
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)							
Measured	218	14.2	100							
Indicated	226	14.6	106							
Total of Measured & Indicated	445	14.4	206							
Inferred	977	13.4	421							
Measured, Indicated & Inferred	1,421	13.7	627							

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate.
Rounding errors may be present. Troy ounces (oz) tabled here

#1 For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement – Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data - Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary						
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assa was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.						
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples length are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.						
	representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.						
	Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg	Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.						
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration.						
		Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.						
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.						
		Hole_id Type (m) (m) Elevation Azimuth Dip Depth Date						

Criteria	JORC Code explanation	Commenta	ry							
		AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
		AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
		AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
		AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
		AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
		AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
		AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
		AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)		(m)	Date
		MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
								· · · · · · · · · · · · · · · · · · ·		
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	1999
1		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55	45.0	1999

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	iry							
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
		Holo id	Tuno	East	North	Elevation	Azimuth	Dip	Depth	Date
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	10010				
				230 137 0.5	0002116.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1804.8 1769.8	116	-65	66.0	1999-00 1999-00
		DDH22 DDH23								1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25	DD DD	2504762.9 2504920.4 2504821.0 2504862.6	6601587.1 6601994.3 6601938.8 6601964.5	1769.8 1767.9 1802.0 1803.7	116 000 116 116	-65 -90 -80 -74	66.0 58.8 100.3 49.2	1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26	DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3	1769.8 1767.9 1802.0	116 000 116 116 312	-65 -90 -80 -74 -60	66.0 58.8 100.3 49.2 80.3	1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27	DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6	116 000 116 116 312 116	-65 -90 -80 -74 -60	66.0 58.8 100.3 49.2 80.3 43.2	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28	DD DD DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6	116 000 116 116 312 116 116	-65 -90 -80 -74 -60 -60	66.0 58.8 100.3 49.2 80.3 43.2 41.7	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29	DD DD DD DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0	116 000 116 116 312 116 116 350	-65 -90 -80 -74 -60 -60 -50	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3	116 000 116 116 312 116 116 350 059	-65 -90 -80 -74 -60 -60 -50 -52	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1	116 000 116 116 312 116 116 350 059 116	-65 -90 -80 -74 -60 -50 -52 -85 -75	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1	116 000 116 116 312 116 116 350 059 116 350	-65 -90 -80 -74 -60 -50 -52 -85 -75	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH32	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1	116 000 116 116 312 116 116 350 059 116 350 350	-65 -90 -80 -74 -60 -50 -52 -85 -75 -51	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH32 DDH33 DDH33 DDH33	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4 2504826.5	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3	116 000 116 116 312 116 116 350 059 116 350 350 116	-65 -90 -80 -74 -60 -50 -52 -85 -75 -51 -65	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH32 DDH33 DDH33 DDH34 DDH35	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2504897.6 2504939.4 2504939.4 2504826.5 2505003.9	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2 6601920.2	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3 1808.8	116 000 116 116 312 116 116 350 059 116 350 350 116 310	-65 -90 -80 -74 -60 -50 -52 -85 -75 -51 -65 -70 -85	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4 174.6	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH32 DDH33 DDH33 DDH33	DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4 2504826.5	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3	116 000 116 116 312 116 116 350 059 116 350 350 116	-65 -90 -80 -74 -60 -50 -52 -85 -75 -51 -65	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61.8.6

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ary							
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00

Criteria	JORC Code explanation	Commentar	ſy							
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7 1999	9-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6 1999	9-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9 1999	9-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6 1999	9-00
			Тур	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	e	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.2	ļ
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5	
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2	
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.0	
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9	
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1	
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4	
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6	
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0	
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.5	
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2	
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7	
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0	
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0	
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7	
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2	
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8	
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9	
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45 -60	60.0	
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7	
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0	
		04HD30 04HD31	DD DD	2504421.0	6600044.0 6601326.0	1764.0	108	-45 60	128.2	
		04HD31 04HD32	DD	2504687.0 2504828.0	6601916.0	1794.0 1801.3	045 116	-60 -70	242.9 68.4	
		U4HD32	טט	2504828.0	0001910.0	1801.3	110	-70	08.4	

Criteria	JORC Code explanation	Commentary							
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7

CEL drilling of HQ3 core (triple tube) was done using a LM90 truck mounted drill machine that is operated by Foraco Argentina S.A. (Mendoza) and a trailer mounted Hydrocore drill machine operated by Energold Drilling (Mendoza). The core has not been oriented.

CEL drilling of reverse circulation (RC) drill holes is being done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes to GNDD105 are surveyed using DGPS. Collar location for GNDD060 and holes from GNDD106 are surveyed with a handheld GPS to be followed up with DGPS.

Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0
GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6
GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5
GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9

Criteria	JORC Code explanation	Commentary						
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5
		GMDD041	504473.000	6600104.000	1806.400	-55	095	95.0
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0
		GNDD045	504366.823	6599679.058	1793.712	-57	115	242.0
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0
		GNDD060	504803.0	6601065.0	1822.0	-60	115	200.0
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary						
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0
		GNDD106	504459.3	6599614.7	1792.9	-55	115	300.0
		GNDD108	504895.0	6601154.9	1824.0	-60	115	200.0
		GNDD109	504792.0	6601026.4	1822.0	-60	115	209.0
		GNDD112	504898.2	6601197.6	1825.8	-60	115	188.0
		GNDD113	504704.7	6601067.1	1826.3	-60	115	230.0
		GNDD114	504436.0	6600111.0	1808.0	-50	115	116.0
		GNDD115	504862.0	6601285.0	1824.4	-60	115	251.0
		GNDD116	504443.7	6599555.8	1789.5	-65	115	269.0
		GNDD117	504436.0	6600111.0	1808.0	-60	115	120.0
		GNDD118	505086.0	6601110.0	1811.2	-60	295	300.0
		GNDD119	504827.0	6601540.0	1837.6	-66	115	115.0
		GNDD120	504408.2	6600102.0	1808.3	-60	110	164.0
		GNDD121	504867.0	6601137.0	1822.1	-57	115	181.0
		GNDD122	504658.0	6600647.6	1816.8	-60	115	250.0
		GNDD123	504822.0	6601512.0	1835.6	-63	130	130.0
		GNDD124	504408.2	6600102.0	1808.3	-70	115	160.0
		GNDD125	505138.0	6601130.0	1808.4	-60	295	300.0
		GNDD126	504719.2	6601148.6	1828.0	-60	115	196.0
		GNDD127	504892.0	6601505.0	1837.0	-55	115	300.0
		GNDD128	504712.3	6601108.0	1827.1	-60	115	230.0
		GNDD129	504636.0	6600284.0	1820.0	-55	185	291.0
		GNDD130	504839.0	6601092.8	1821.4	-60	115	227.0

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD131	504655.5	6600737.1	1818.4	-60	115	280.0
		GNDD132	504822.0	6601358.0	1830.5	-55	115	300.0
		GNDD133	504870.3	6601640.9	1838.5	-60	170	182.0
		GNDD134	504636.0	6600284.0	1820.0	-55	154	290.0
		GNDD135	504846.0	6601548.7	1834.8	-64	350	135.0
		GNDD136	504844.5	6601443.3	1829.3	-55	115	310.0
		GNDD137	504650.0	6600695.0	1818.2	-60	115	370.0
		GNDD138	504888.0	6601538.0	1837.5	-65	350	237.0
		GNDD139	504759.7	6601085.5	1825.3	-60	115	200.0
		GNDD140	504994.4	6601546.3	1835.3	-60	60	230.0
		GNDD141	504788.4	6601251.8	1827.9	-70	115	270.0
		GNDD142	504432.8	6599627.0	1793.2	-62	115	360.0
		GNDD143	504898.2	6601197.6	1825.8	-20	115	120.0
		GNDD144	504964.6	6601519.7	1837.3	-70	40	410.0
		GNDD145	504560.7	6600224.1	1816.1	-64	170	200.0
		GNDD146	504776.1	6601210.3	1827.9	-70	115	350.0
		GNDD147	504964.6	6601519.7	1837.3	-60	355	240.0
		GNDD148	504844.5	6601443.3	1829.3	-24	115	85.5
		GNDD149	504844.5	6601443.3	1829.3	-5	115	88.1
		GNDD150	504850.2	6601523.3	1836.8	-65	350	251.0
		GNDD151	504672.6	6601214.5	1833.6	-60	115	430.0
		GNDD152	504893.0	6601470.0	1835.0	-15	115	165.0
		GNDD153	504693.0	6600984.0	1824.2	-70	115	326.0
		GNDD154	504894.3	6601504.8	1836.3	-65	350	212.0
		GNDD155	504780.1	6601120.2	1824.0	-60	115	420.0
		GNDD156	504839.1	6601401.6	1829.4	-37	115	59.0
		GNDD158	504807.6	6601535.3	1837.0	-60	350	170.0
		GNDD160	504968.0	6601543.0	1835.4	-55	350	170.0
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary						
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

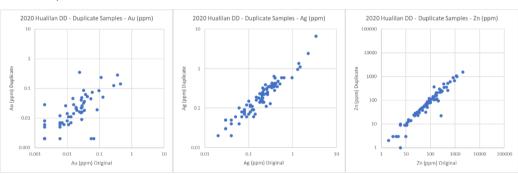
Contact

Criteria	JORC Code explanation	Commentary							
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96	
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150	
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120	
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	•	ed into wooden boxe run. These depths a	•					
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Triple tube drilli	ng has been being do	one by CEL to maxir	nise core recov	ery.			
		kg sub-samples every 25-30 san	are collected from a is collected for each i nples using a riffle spl sure sample recover	metre of RC drilling litter to split out a 2	. Duplicate sar 2-4 kg sub-samp	nples are	taken at the ra	ate of I	
		whereby low re- available to mon fracturing in the	onship has been obso coveries have resulte re accurately quantify rock. A positive corn erally post mineral a	ed in underreporting y this. Core recover relation between re	g of grade. Insury is influenced ecovery and RQ	fficient in by the int D has bee	formation is n ensity of natu n observed. 1	ot yet ral	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 	core photograp	e available for most on The from the historic de lect. No RC sample o	Irilling have been fo	ound. No drill c				
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	structure to a le work. RC drill cl quantitative. Go	all the core is logged vel that is suitable fo nips are logged for ge eological logging is do holds all drilling logg	r geological modell cology, alteration a one in MS Excel in a	ing resource es nd mineralisation of format that ca	timation a	and metallurgi e possible logg	ical test ging is	
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc 	split using a wide blade chisel or a manual core split press. The geologist logging the core indicates on							
, , , ,	 and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. 	Sample intervals are selected based on lithology alteration and mineralization boundaries. Sample lengths average 1.38m. No second-half core samples have been submitted. The second half of the core samples has been retained in the core trays for future reference.							
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	From hole GND	0073, duplicate diam	ond core samples h	nave been colle	cted for e	very 25-30m c	rilled. The	

Criteria JORC Code explanation

- Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Commentary


duplicate diamond core samples are ¼ core samples. Duplicate core sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance		
			original	duplicate	original	duplicate	original	duplicate	
Au (ppm)	87	0.392	0.029	0.026	0.006	0.006	0.005	0.003	
Ag (ppm)	87	0.864	0.32	0.34	0.21	0.18	0.23	0.56	
Cd (ppm)	87	0.950	0.75	0.68	0.19	0.17	2.58	2.03	
Cu (ppm)	87	0.001	37.29	6.26	2.80	3.00	8.4E+04	9.1E+01	
Fe (%)	87	0.969	1.053	1.034	1.200	0.430	0.8	0.8	
Pb (ppm)	87	0.913	46.2	33.4	13.0	11.5	1.1E+04	4.0E+03	
S (%)	87	0.975	0.155	0.157	0.080	0.070	0.038	0.040	
Zn (ppm)	87	0.945	178	159	77	75	9.4.E+04	6.5.E+04	

n=count

RSQ = R squared

The correlation for Cu is poor as a consequence of 1 pair, where Cu results vary significantly. Removing this outlier provides at RSQ for Cu of 0.950



RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

n RSQ mean median variance

Criteria	JORC Code explanation	Commentary								
					original	duplicate	original	duplicate	original	duplicate
		Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
		Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
		Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
		Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
		Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
		Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
		S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
		Zn (ppm) n=count RSQ = R square	85 ed	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
		2020 Hualilan RC -	Duplicate S	amples - Au (ppm	100	20 Hualilan RC - Duplic	ate Samples - Ag (pp	100000	Hualilan RC - Duplicat	te Samples - Zn (ppm)

Quality of assay data and laboratory tests

- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading

The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project.

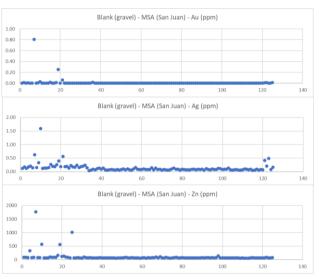
Internal laboratory standards were used for each job to ensure correct calibration of elements.

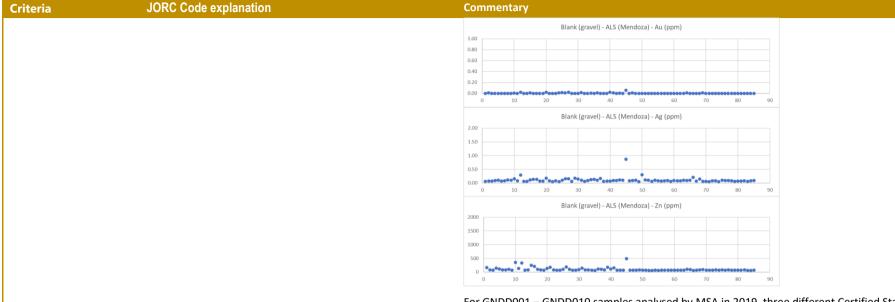
Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

The ALS laboratory in Mendoza has not yet been inspected by CEL representatives.

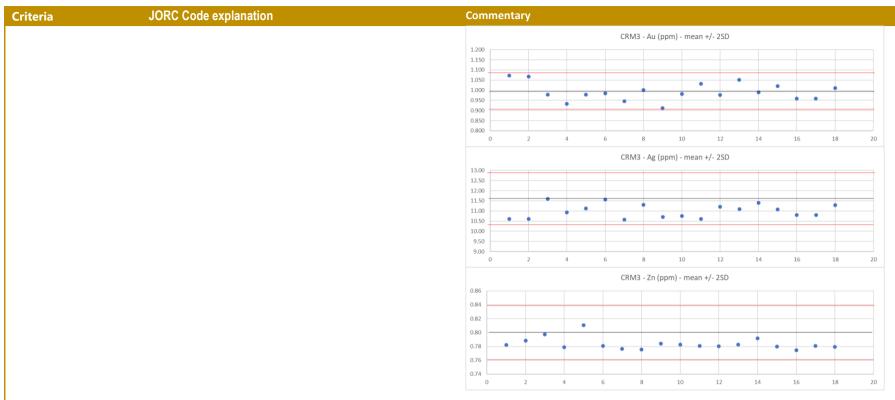
CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to

mineralization present in the Project.


Criteria

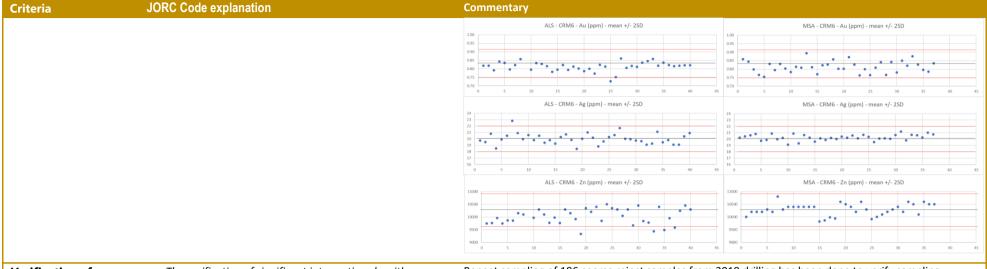

JORC Code explanation

Commentary


times calibrations factors applied and their derivation etc.

 Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.





For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of both the MSA and ALS. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Repeat sampling of 186 coarse reject samples from 2019 drilling has been done to verify sampling. Original samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Repeat samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Deviation		
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983

Criteria	JORC Code explanation	Commentary								
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994	
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954	
		Cd values >1000 are set at								
		REE is the sum off Ce, La, S	ic, Y. CE > 500 is	s set at 50	00. Below	detectio	n is set at z	ero		
		CEL have sought to twin so	me of the histo	ric drill h	oles to ch	eck the r	esults of pro	evious exp	oloration. A full	
		analysis of the twin holes h	•	mpleted.	The holes	are:				
		GNDD003 – DDH34 and 04	HD08							
		GNRC110 – DDH53 GNDD144 – 05HD39								
		GNRC107 – GNDD008/008	Δ							
		•								
		Final sample assay analyse backed-up and the data co							files are	
		Assay results summarised	in the context o	f this rep	ort have b	een roui	nded appro	priately to	2 significant	
		figures. No assay data hav	e been otherwi	se adjust	ed.					
Location of data points	- Accuracy and quality of surveys used to locate drill h (collar and down-hole surveys) trenches mine worki and other locations used in Mineral Resource estima	ngs Argentinian SGM survey.	Following completion of drilling collars are surveyed using a differential GPS (DGPS) relative into the Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.							
	s (collar and down-hole surveys) trenches mine work	The drill machine is set-up design.	on the drill pad	using ha	nd-held e	quipmen	t according	to the pro	pposed hole	
		Diamond core drill holes a are surveyed down hole ex rods.	-				_			
		All current and previous dr surveyed using DGPS to pr					gic surface	points ha	ve been	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient establish the degree of geological and grade continual appropriate for the Mineral Resource and Ore Reservestimation procedure(s) and classifications applied. 	uity to check previous explorat	infill and exten ion, extend min ralization and e	sion drilli eralisatio xploratio	ng where on along st n potentia	appropri trike, and	ate. The cu I provide so	ırrent drill me inforr	ing is designed nation to	

Criteria	JORC Code explanation	Commentary
	- Whether sample compositing has been applied.	Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria Mineral tenement

status

and land tenure

JORC Code explanation

Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.

- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Additional to the Minas and Demasias an application for an Exploration Licence covering 26 km2 surrounding the 15 Minas has been accepted by the San Juan Department of Mines and is currently being processed.

Exploration licence application surrounding the Minas and Demasias at the Hualilan Project

Name	Number	Status	Grant Date	Expiry Date	Area (ha)
Josefina	30.591.654	Pending	-	5 year application	2570

There are no know impediments to obtaining the exploration license or operating the Project.

Exploration done by other parties

 Acknowledgment and appraisal of exploration by other parties. Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006.

There is 6 km of underground workings that pass through mineralised zones. Records of the underground

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
		 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totaling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occurs in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz–galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all 	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria

JORC Code explanation

Commentary

Material drill holes:

- easting and northing of the drill hole collar
- elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent Person should clearly explain why this is the case.

been allowed. No metallurcial or recovery factors have been used. Drill collar location is provided in the previous section.

Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)
AG16	38.6	1.2	0.1	28.6	1.7
MG10	108.0	3.0	1.3	No assay	No assay
DDH36	24.7	9.3	1.6	46.3	1.2
DDH53	17.3	1.4	1.0	1.7	0.00
DDH53	24.0	8.9	3.7	239.5	0.03
DDH53	35.7	3.9	3.9	87.8	0.06
DDH53	41.0	3.0	2.6	7.6	0.20
DDH54	20.0	1.1	1.2	0.7	0.00
DDH54	31.1	8.3	3.9	32.1	0.80
DDH65	62.0	8.2	11.0	60.6	1.2
DDH65	82.0	1.0	1.8	33.4	0.30
DDH66	83.1	7.2	23.7	42.9	2.4
DDH66	87.9	2.4	69.9	114.4	2.2
DDH66	104.9	2.8	1.8	29.0	0.10
DDH67	98.7	1.3	0.2	7.8	1.3
DDH68	4.0	17.9	2.2	6.3	0.20
DDH68	73.7	0.5	0.8	9.0	1.2
DDH69	4.0	16.1	2.3	1.6	0.10
DDH69	76.9	0.3	0.1	7.0	28.0
DDH69	79.7	0.8	1.3	120.0	4.5
DDH70	84.0	7.0	5.2	13.5	0.70
DDH71	11.0	2.0	0.5	218.0	0.06
DDH71	39.9	1.0	1.3	6.0	0.03
DDH71	45.5	1.1	0.4	22.8	0.60
DDH71	104.0	10.0	33.5	126.7	7.9
DDH72	26.0	11.7	3.8	14.1	1.3
DDH72	52.7	6.3	1.5	30.4	0.04
DDH73	62.5	3.5	0.5	15.6	0.60
DDH74	119.9	0.5	7.3	98.5	2.6
DDH76	61.3	0.7	4.0	11.1	0.50
DDH76	74.4	4.0	0.8	8.8	0.30
DDH76	84.8	1.2	1.4	10.9	2.0
DDH78	109.1	0.7	1.1	13.4	1.9
03HD01A	90.1	1.7	2.1	37.4	2.4

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		03HD03	55.0	2.4	2.5	25.6	2.3	
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
		04HD20	43.2	1.8	0.9	83.9	0.20	
		04HD21	70.1	0.2	4.8	60.6	6.4	
		04HD21	141.1	0.6	12.9	105.0	4.8	
		04HD24	72.0	2.0	2.5	3.2	0.04	
		04HD24	83.0	2.0	3.1	25.3	0.04	
		04HD24	94.0	4.2	0.7	21.2	0.10	
		04HD25	92.0	1.7	2.4	51.5	6.3	
		04HD26	21.7	2.3	1.5	32.5	3.0	
		04HD28	42.8	0.4	1.9	4.5	0.10	
		04HD29	37.0	1.0	0.1	112.0	0.01	
		05HD42	90.5	1.0	1.9	6.1	0.03	

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

riteria	JORC Code explanation	Commentary					
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

From GNDD001 the following significant assay results have been received reported to a cut-off of 1 g/t Au (equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.3	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.9	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.6	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.8	(1)
and	10.00	75.00	0.75	38	0.27	1.3	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.2	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.0	
GNDD007	45.92	13.00	0.43	7.8	0.12	0.57	(2)
inc	3.00	45.00	1.9	5.2	0.26	2.0	
inc	3.00	55.00	2.3	35	0.54	2.9	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.55	(2)
inc	1.80	46.00	2.4	3.1	0.12	2.5	

Criteria	JORC Code explanation	Commentary							
		and	0.70	60.30	0.8	25	0.21	1.1	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		GNDD007A	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.46	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.8	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	14.7	(1)
		and	1.00	99.70	0.93	43	0.52	1.6	
		and	2.40	107.00	6.3	222	1.9	9.7	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.41	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.5	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.5	
		and	3.00	100.00	0.85	50	0.02	1.4	
		and	10.32	109.10	10.4	28	4.6	12.9	
		inc	4.22	115.20	21.9	58	8.7	26.7	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.45	(2)
		inc	5.00	30.00	0.65	21	0.09	0.92	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.7	(2)
		inc	3.00	139.00	17.7	143	2.5	20.5	

- (1) cut-off of 10 g/t Au equivalent
- (2) cut-off of 0.2 g/t Au equivalent

Drilling in 2020:

2									
Hole_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
	(m)	(m)	(g/t)	(g/t)		(g/t)			
GNDD011	81.00	1.00	1.9	43	0.13	2.4	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.7	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.6	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	9.6	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.7	0.05	0.18	

Criteria	JORC Code explanation	Commentary									
		inc	122.50	0.83	4.0	61	10.1	9.4	0.21	1.2	
		GNDD014	118.50	7.55	2.4	15	3.6	4.3	0.05	0.16	
		GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
		and	156.00	1.90	1.0	31	2.8	2.7	0.02	0.79	
		GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
		and	109.50	5.00	1.8	27	8.3	6.0	0.16	0.01	
		and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
		GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
		GNDD018	37.75	0.85	1.1	3.6	0.1	1.1	0.01	0.05	
		and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
		inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
		GNDD019	24.00	1.90	1.0	5.3	5.3	3.5	0.12	0.03	
		GNDD020	71.25	8.25	17.7	257	0.30	20.7	0.60	0.68	
		inc	74.00	5.50	26.0	355	0.42	30.1	0.05	0.21	1
		GNDD020	83.30	0.65	0.03	2.7	10.70	5.1	0.00	0.02	
		GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
		and	31.50	0.35	28.1	104	5.8	32.0	0.35	0.12	1
		and	98.20	19.80	0.29	2.2	3.4	1.9	0.01	0.04	2
		inc	98.20	9.80	0.40	4.4	6.8	3.6	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	11.7	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	1.3	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	3.4	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.3	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.2	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.3	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.38	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.28	0.00	0.02	2
		GNDD032	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD034	47.60	0.30	0.03	1.4	24.4	11.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.5	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	20.1	0.14	0.56	1
		GNDD038	71.50	2.85	0.53	15.6	2.8	2.0	0.06	0.13	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		GNDD046	124.15	2.85	29.5	522	10.8	40.3	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.4	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.8	0.01	0.06	2
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.5	0.01	0.15	2
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.27	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.88	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.37	0.00	0.01	2
		GNRC056	56	1	2.3	138	0.08	3.8	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.36	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.1	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.4	0.04	0.01	
		GNRC064	22	1	0.01	4.2	3.8	1.8	0.00	0.00	
		and	27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	1.6	0.05	0.01	

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.8	0.23	0.08	2
		inc	9	27	7.9	16	7.0	11.4	0.59	0.16	
		and	51	1	1.0	40	0.93	1.9	0.08	0.12	
		and	59	1	1.3	4.9	0.09	1.4	0.00	0.02	
		and	66	2	1.6	1.2	0.02	1.7	0.01	0.00	
		and	72	4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07	
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	96	1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	41	1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	48	2	0.45	5.4	2.1	1.5	0.01	0.12	
		GNRC072	43	19	0.16	4.9	0.13	0.27	0.00	0.09	2
		GNRC075	31	18	0.78	1.6	0.07	18	0.01	0.22	2
		inc	37	2	2.2	1.6	0.08	2	0.01	0.32	
		and	46	2	1.8	2.4	0.08	2	0.00	0.07	
		GNRC076	35	5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc	35	1	53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2
		inc	168.50	1.00	1.5	59.3	6.6	5.3	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.35	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.2	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC081	23	30	0.28	2.0	0.33	0.46	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.0	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	0.54	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	2.3	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.5	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.6	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.4	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.40	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.6	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.1	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.87	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.3	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.40	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNDD088	45.05	23.45	0.07	0.23	0.53	0.33	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.7	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.0	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.50	0.01	0.07	2

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.36	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.27	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.6	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	2.0	0.01	0.03	
		GNRC097	49	8	0.39	2.2	0.04	0.4	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.52	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.6	0.02	0.03	
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.0	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.0	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNRC110	11	44	2.8	62.7	0.05	3.6	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.2	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.4	0.02	0.51	
		inc	41	3	27.3	613	0.05	34.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.50	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.0	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.0	0.01	0.10	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary									
		Met: GMDD039 GMDD039	18.00 67.60 116.72	8.00 1.00 8.68	0.15 24.5 5.5	1.9 58 12	0.60 3.9 2.2	0.45 27.0 6.7	0.01 0.27 0.06	0.07 1.8 0.00	2 1
		inc GMDD041 inc GMDD041 GMDD043 GMDD043 (1) cut off (2) cut off	116.72 122.50 31.00 41.70 63.50 18.00 70.50 10 g/t Au eq	2.90 16.0 2.0 5.1 10.00 0.30 uivalent quivalent	11.8 2.6 20.0 7.9 0.09 25.9	24 4.9 29 83 1.7 81	4.2 0.27 1.2 7.9 0.48 9.4	14.1 2.8 20.8 12.5 0.34 31.2	0.06 0.14 0.01 0.06 0.47 0.01 0.33	0.00 0.00 0.25 1.7 0.21 0.10 3.1	1 2 2 1
Data aggregation methods	 In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Weighted ave off grade of a between sam between sam gold grade eq Metallurgical calculate the	rage signification 1.0 g/t Au exples above the ples above the uivalent: Au recoveries for Au equivalen 2. Previous ruded in the nuile Cu and Pthis early sta	int interce juivalent a le cut-off ge cut-off ge US\$ 1450, or Au, Ag all t values. An etallurgion etal equivalent a ge of the F	nd 10 g/grade and grade. The formal f	t Au equ d 0.2 g/t e follow s\$16 /o e assume gly The f ork and alculatio e table	vivalent all and a vivalent all and a ving metals and Zn U and Zn U and to be the formula using eological and have a reabove, the	owing for usuallent allowing and metalles 2200 /the same and ed is AuEquand petroleasonable	up to 2m o ing up to 4 I prices ha d so no fac (g/t) = Ag graphic de potential c	f internal of m of internal of we been us ctors have (g/t) + Au (scriptions of eventua	hal dilution ed to report been applied to g/t)x (16/1450) suggest all the l economic
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation in method exploration in	nost cases to program. s may be thic veins. agrams have	confidentl ker in the o been provi	y establi	sh the ti	rue width o	of the mine	eralized int sation may	ersections intersect	at this stage of ENE-striking
Diagrams	- Appropriate maps and sections (with scales) and	Representative r	maps and sec	tions are p	orovided	in the b	ody of rep	ort.			

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates. Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation; Metallurgical test work.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs.
		Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a salable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	 Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made. 	The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; - Metal prices: Au U\$\$550 Oz Ag U\$\$10 Oz - Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil - Operating cost: U\$\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made. 	Historical metallurgical test-work is currently under review however the assumptions used (80% recovery for Au, Ag and Zn) based on initial test results seem conservative. - The most recent test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. - The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. - Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% – 87.2%.

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	- Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in comcentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.
	 deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.

JORC Code explanation Criteria Commentary - The basis for the classification of the Mineral Resources into varying Classification The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications confidence categories. under the National Instrument 43-101 code and is considered foreign. These classifications are Whether appropriate account has been taken of all relevant factors (ie considered appropriate given the confidence that can be gained from the existing data and results relative confidence in tonnage/grade estimations reliability of input from drilling. data confidence in continuity of geology and metal values quality quantity and distribution of the data). The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in Whether the result appropriately reflects the Competent Person's view continuity of geology and metal values quality quantity and distribution of the data. Appropriate of the deposit. account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut. The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) - See Table 1. The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported. The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) - See Table 1. The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.

Criteria	JORC Code explanation	Commentary				
		Historic 2003 NI43-101 (non-JORC Code compliant):				
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		Measured	299578	14.2		_
		Indicated	145001	14.6		
		Inferred	976539	13.4		
		Historic 2006 NI43-101 (non-JORC Code compliant)				
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		Measured	164294	12.5	52.1	2.5
		Indicated	51022	12.4	36.2	2.6
		Inferred	213952	11.7	46.6	2.3
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The historic resource estimate has not been audited.				
		The earlier (1996 and 2000) Mineral Resource Estimates were audited and re-stated in a 2003 resource report. This independent report was done to NI-43-101 standard and the results of this report were released to the TSX. This report concluded that "Detailed resource calculations made by three different groups are seen to be realistic.				
Discussion of relative accuracy/confidence	- Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach or procedure are deemed appropriate given the confidence limits. The main two factors which could affect relative accuracy is grade continuity and top cut.				
	 such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be 	Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability.				
	relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate	The deposit contains very high grades and there is a potential need for the use of a top cut. It is noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as reported.				

Criteria	JORC Code explanation	Commentary	
	should be compared with production data where available.		
	No production data is available for comparison		