

22 DECEMBER 2020

Results Received from Recent Reconnaissance Sampling and RC Drill Program Planned Next Quarter

HIGHLIGHTS

- Results received from reconnaissance rock chip sampling confirm anomalous gold mineralisation >1g/t Au over 9km strike between Perseverance and A1 Prospects.
- Rock chip sample results of up to 39g/t Au at Fred's Well over 650m strike and up to 22g/t Au at Perseverance over a 1km strike identify new targets outside the main BIF corridor.
- Detailed 3D structural and geological modelling at Korong and Waihi completed with the interpretation used to optimise drill collar locations for a planned 4,375m RC drill program.
- Upcoming drilling to focus on basal BIF-ultramafic contact where modelling identified historic drilling at both prospects was inadequately tested.

Si6 Metals Limited (ASX: **Si6** or the **Company**) is pleased to provide an update on recent field-based exploration activities at the Monument Gold Project (**MGP**) where Si6 has entered into a binding Heads of Agreement with DiscovEx Resources Ltd (ASX: **DCX** or **DiscovEx**) to acquire a 100% interest in the MGP. The Project is located in WA's world-class Laverton Gold District and comprises more than 300km2 of tenure located approximately 40km west of Laverton.

Chairman Patrick Holywell commented: "We are firmly focussed on a gold project in Western Australia and our base metals project in Botswana with the latter currently being drilled and about 50% from expected depth on the current hole. Further drilling is scheduled for Botswana and we now look forward to drilling WA next quarter.

A number of targets exist within the WA gold project along a 9km strike within the A1-Perseverance corridor. Results from recent sampling at Perseverance and Fred's Wells look promising. We look forward to further enhancing the targets along the corridor and drilling Korong and Waihi prospects next quarter."

Si6 Metals

Corporate Details ASX Code: Si6

Directors

Patrick Holywell Executive Chairman

Steve Groves Technical Director

Joshua Letcher Non-Executive Director

Mauro Piccini Company Secretary

Contact

Suite 2, Level 1 1 Altona Street West Perth WA Australia 6005

+61 (8) 6559 1792

info@sixsigmametals.com sixsigmametals.com

Figure 1: Location map of Monument Gold Project

Reconnaissance Mapping and Sampling

Last month, a reconnaissance mapping, rock chip and grab sampling campaign was undertaken over 9km of strike between the A1 and Perseverance Prospects with 138 samples collected and submitted to ALS Laboratories, Kalgoorlie, Western Australia for gold Fire Assay and Multi-element analysis. The work focussed on sampling outcropping mineralised banded iron formations (BIF), siliceous cherts and waste dumps from historical workings along the mineralised Korong-Perseverance corridor, recording structure, lithology and true thickness of the BIFs and cherts. The assay results for this work have now been received and analysed (see Figure 2 and Appendix 1).

The reconnaissance sampling has confirmed bedrock mineralisation >1g/t Au over the 9km of strike between A1 and Perseverance with a number of bedrock samples >3g/t Au and a peak value of 39.3g/t Au from grab sampling at the Fred's Well North workings, 400m west of the A39 Prospect (Table 1, Figure 2). Prior to this campaign, no rock chip or grab sampling had been undertaken at the Perseverance and Fred's Well prospects with the new sample data delineating anomalous gold mineralisation (>1g/t Au) over 1km strike at Perseverance and 650m combined strike at the Fred's Well north and south groups of workings.

Due to limited outcrop, sampling of quartz veins hosted within the hanging wall basalt and foot wall ultramafic and felsic volcanics either side of the BIF was limited to grab sampling waste dumps from historic workings. The best results from this sampling were obtained from the Fred's Well Prospect which consists of two groups of workings over 650m strike and returned several quartz waste dump **samples ranging from 10g/t Au up to 39.3g/t Au**.

Geology mapping indicates the workings occur along an anastomosing set of steeply dipping, narrow (0.10 to 0.40m thick) quartz veins hosted within weathered felsic volcanics. The workings have been sparsely drill tested with four historical 40m deep RAB holes drilled by Dominion Mining in 1994 at the very southeast end of the workings with a best intersection of 4m @ 1.29g/t Au from 12m from hole 94FWRB003. To date the drill intercept remains to be followed up and the remainder of the Fred's Well Prospect remains largely untested.

Rock chip sampling from the other prospects along the A1-Perseverance corridor including Waihi, A4 and A1 all returned anomalous results >1g/t Au from mineralised BIF outcrops and historic workings, confirming the widespread distribution of gold mineralisation along the prospective corridor.

Prospect	Au g/t	East	North	Description
A1	7.62	398172	6833011	Grab sample from dump
A1	3.88	398163	6833026	~1m wide gossan chert
A1	1.38	398164	6833073	3m pit quartz grab sample
A1	1.01	398035	6832981	Rubble 0.4m wide ferric gossanous chert
A4	4.48	396825	6834600	~40cm ferruginous chert
Freds Well North	39.3	397429	6833276	Blue grey limonite quartz from dump
Freds Well North	25.8	397411	6833329	Grab sample from dump
Freds Well North	13.15	397410	6833340	Grab sample from dump
Freds Well North	7.88	397418	6833192	Quartz grab sample from dump
Freds Well North	7.45	397497	6833418	Cream white sacc qtz from dump
Freds Well North	6.07	397434	6833268	Blue grey limonite quartz from dump
Freds Well North	3.73	397419	6833328	Grab sample from dump
Freds Well North	2.01	397377	6833280	Shaft ~10m deep, limonite quartz from dump
Freds Well South	21.3	397760	6832832	Blue grey quartz grab sample
Freds Well South	2.65	397757	6832818	Blue grey quartz grab sample
Freds Well South	1.14	397722	6832890	Blue grey quartz from waste dump
Perseverance	21.5	392290	6838413	Chert, dip different orientation to vein
Perseverance	15.15	392282	6838429	Grab sample from waste dump
Perseverance	15.15	392284	6838422	1m in-situ qtz vein ~40cm thick
Perseverance	10	392265	6838444	Grab sample for north end of waste dump
Perseverance	8.29	392289	6838406	Chert grab sample from waste dump
Perseverance	7.03	392301	6838400	Chert grab sample from waste dump
Perseverance	2.3	392997	6837902	~0.6m ferruginous chert
Perseverance	2.16	392918	6838009	Duplicate of 216141
Perseverance	1.94	392915	6838009	(FW) foot wall of 6m ferruginous chert
Perseverance	1.68	393028	6837863	~1m wide ferruginous chert
Waihi	6.77	394573	6836545	In situ gy qtz sample from chert
Waihi	6.11	394585	6836542	Quartz grab sample from wall
Waihi	2.75	394444	6836683	Grab sample from dumps qtz and gossan

Table 1: Rock chip results greater than 1 g/t Au from the recent sampling exercise

Figure 2: Rock chip sample results and location plan.

3D Geology Modelling, Spadis Analysis and Interpretation

To assist in optimising drill hole positions for a proposed RC drill program in Q1, 2020, 3D geology modelling was recently undertaken at the Korong and Waihi prospects. The principal surfaces modelled include:

- the sheared basal contact between the footwall ultramafic and the mineralised host BIF unit
- the upper contact between the BIF and hanging-wall basalt, and
- a mineralised envelope using a 0.2g/t Au cut-off grade.

Emphasis was placed on modelling the footwall BIF contacts as a large number of drill holes within the historical database are observed terminating in mineralisation >1.0g/t Au several meters above the basal contact at both prospects. Both prospects have also been analysed for mineralised gold trends using Spadis software analysis (see ASX:Si6 announcement on November 9, 2020 to assist in understanding the mineralised trend geometry in three dimensions).

The Spadis analysis combined with the 3D modelling has confirmed that high-grade mineralisation at Korong and Waihi plunges in a southeast direction in addition to a more shallow northeast plunge. Long sections generated in Micromine 3D Software using gold gram metre contours clearly show that these mineralised geometries strongly support the Spadis Analysis (Figures 3 and 4).

Korong Geology Interpretation

Korong Prospect-scale 3D modelling confirmed that a magnetite-rich basal BIF unit hosts most of the significant gold mineralisation which has been historically drill tested for a strike length of over 600m and to a vertical depth of 100m with approximately 1-4m true thickness. The BIF unit strikes 330° northwest and dips approximately 35° to the northeast.

Historical and recently undertaken geological mapping and geophysics interpretation has identified a number of faults that cross-cut the basal BIF unit at Korong. It is interpreted that the intersection lineation of these cross faults with the basal BIF unit is the principal control on the higher grade southeast plunge orientation that has been identified in Spadis.

Figure 3: Korong long section showing plunging mineralised shoots and proposed drill hole pierce points.

Waihi Geology Interpretation

At Waihi the recent modelling highlights that chert-rich BIF sequences east of the main BIF unit have been the focus of previous drilling and exploration and that the obscured basal BIF unit which correlates to Korong remains largely untested. The prospectivity of the basal BIF unit is highlighted in the historical drilling with several of the limited number of historic drill holes returning intersections >25 gram metres Au.

Figure 4: Waihi long section showing plunging mineralised shoots and proposed drill hole pierce points.

Proposed Drill Program

Based on the recent 3D modelling and Spadis analysis a 34 hole, 4,375m RC drilling program has been planned for Korong (21 holes for 2,660m) and Waihi (13 holes for 1,715m). The pierce point intersections and collar plan locations for this drilling are shown in Figures 3 to 6.

The proposed drill holes have been designed using a combination of the recently generated 3D surfaces and Spadis modelling with all holes designed to fully penetrate the basal BIF unit terminating in the ultramafic. The planned holes have further been positioned to intersect down plunge extensions and repetitions of mineralisation at depth, cross structures with repeat "blow out zones" down-plunge and shallow mineralisation extensions both to the northwest and southeast.

Figure 5: Korong Prospect proposed drill hole locations.

Figure 6: Waihi Prospect proposed drill hole locations.

Si6

This announcement has been approved by the Chairman of Si6.

For further information please contact:

Patrick Holywell	Victoria Humphries
Executive Chairman	Investor Relations
M: +61 401 407 357	T: +61 431 151 676
ph@sixsigmametals.com	victoria@nwrcommunications.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results is based on, and fairly represents information and supporting documentation prepared by Mr Michael Jackson, who is a Competent Person and a Member of The Australian Institute of Geoscientists. Mr Jackson is a consultant and Exploration Manager to Six Sigma Metals Limited. Mr Jackson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr Jackson consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Si6's mineral properties, planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above announcement. No exploration data or results are included in this document that have not previously been released publicly. The source of all data or results have been referenced. Please also refer to the original acquisition announcement by Si6 on 25 August 2020 titled "Si6 Secures Exclusive Option to Acquire WA Gold Project" for further details.

APPENDIX 1 – ROCK CHIP SAMPLE RESULTS DATA TABLE

Prospect	Sample ID	Au g/t	East	North	Description
Perseverance	216090	10	392265	6838444	Grab sample for north end of waste dump
Perseverance	216091	0.55	392277	6838438	Grab sample from waste dump
Perseverance	216092	15.15	392282	6838429	Grab sample from waste dump
Perseverance	216093	15.15	392284	6838422	1m in-situ vein ~40cm thick
Perseverance	216094	21.5	392290	6838413	Chert dip different orientation to vein
Perseverance	216095	8.29	392289	6838406	Chert grab sample from waste dump
Perseverance	216096	7.03	392301	6838400	Chert grab sample from waste dump
Perseverance	216097	0.19	392339	6838347	Sulfide rich chert 10cm to 20cm wide, gossanous
Perseverance	216098	0.07	392365	6838320	Gossanese chert subcrop
Perseverance	216099	0.24	392061	6838322	Cream banded chert in creek
Perseverance	216100	0.12	392624	6838160	Gossanous quartz vein ~0.5m wide
Perseverance	216115	0.06	392629	6838158	Banded saccharoidal qtz north 50cm wide
Perseverance	216116	0.005	392661	6838174	Banded saccharoidal qtz 50cm wide
Perseverance	216117	0.03	392657	6838186	Banded saccharoidal qtz 50cm wide
Perseverance	216118	0.05	392639	6838191	Banded ferruginous chert
Perseverance	216119	0.13	392554	6838234	Banded ferruginous chert
Perseverance	216120	0.1	392542	6838227	Banded ferruginous chert
Perseverance	216121	0.005	392333	6838382	10cm thick banded chert
Perseverance	216122	0.01	392329	6838392	10cm thick banded chert
Perseverance	216123	0.02	392700	6837893	Banded chert in sz ser- chl altn
Perseverance	216124	0.02	392602	6837979	Banded chert in sz ser- chl altn
Perseverance	216125	0.01	392548	6838060	Banded to gossan chert in shear zone
Perseverance	216126	0.01	392514	6838087	Ferruginous chert in cb - ser shear zone
Perseverance	216127	0.31	392546	6838199	Gossanous chert in shear zone
Perseverance	216128	0.17	392544	6838206	Gossanous chert
Perseverance	216129	0.19	392526	6838228	Gossanous chert
Perseverance	216130	0.03	392531	6838238	Gossanous chert
Perseverance	216131	0.01	392662	6838154	Gossan Sulphide rich chert 30cm wide
Perseverance	216132	0.03	392685	6838175	Gossan sulphide rich chert 40cm wide
Perseverance	216133	0.01	392775	6838163	Grab sample from waste dump
Perseverance	216134	0.4	392762	6838170	Grab sample from waste dump
Perseverance	216135	0.01	392793	6838158	Sulphidic chert 30cm wide
Perseverance	216136	0.03	392803	6838129	Sulphidic chert 30cm wide
Perseverance	216137	0.05	392839	6838089	Sulphidic chert 30cm wide
Perseverance	216138	0.19	392895	6838023	6m wide sulphidic chert
Perseverance	216139	0.04	392011	6838037	1m wide sulphidic chert/siltstone
Perseverance	216140	0.005	392916	6838054	1m wide black chert
Perseverance	216141	1.94	392915	6838009	(FW) foot wall of 6m ferruginous chert
Perseverance	216142	2.16	392918	6838009	Duplicate of 216141
Perseverance	216143	0.03	393211	6837683	1m wide ferruginous chert

Prospect	Sample ID	Au g/t	East	North	Description
Perseverance	216144	0.005	393277	6837674	1m wide ferruginous chert
Perseverance	216145	0.005	393239	6837682	~1m wide vein ferruginous chert
Perseverance	216146	0.005	393266	6837654	~2m wide ferruginous chert
Perseverance	216147	0.09	393274	6837650	~1m wide ferruginous chert
Perseverance	216148	0.01	393337	6837626	~2m wide ferruginous chert
Perseverance	216149	0.005	393342	6837561	~3m wide gossanous chert
Perseverance	216150	0.005	393353	6837533	0.5m wide ferruginous chert
Perseverance	216151	0.17	393246	6837637	0.4m wide ferruginous chert
Perseverance	216152	0.87	393260	6837620	0.4m wide ferruginous chert
Perseverance	216154	0.39	393279	6837603	0.4m wide ferruginous chert
Perseverance	216155	0.16	393310	6837561	~1m wide ferruginous chert
Perseverance	216156	0.08	392961	6837957	~0.6m ferruginous chert
Perseverance	216157	2.3	392997	6837902	~0.6m ferruginous chert
Perseverance	216158	1.68	393028	6837863	~1m wide ferruginous chert
Perseverance	216159	0.04	393111	6837784	40cm wide ferruginous chert subcrop
Perseverance	216160	0.17	393140	6837748	40cm wide ferruginous chert subcrop
Perseverance	216161	0.02	393155	6837718	40cm wide ferruginous chert subcrop
Perseverance	216162	0.06	393197	6837715	Grab sample from workings of ferruginous
Perseverance	216163	0.2	393263	6837721	Grab sample from workings
Perseverance	216164	0.07	393259	6837228	Grab sample from workings
A4	216165	0.93	396330	6834942	Ferric chert ~2m wide
A4	216166	0.43	396330	6834942	~40cm thick
A4	216167	0.09	396363	6834908	~40cm thick
A4	216168	0.21	396584	6834752	~2m ferruginous chert
A4	216169	0.12	396621	6834736	~1m ferruginous chert
A4	216170	0.34	396769	6834651	~1.5m ferruginous chert
A4	216171	4.48	396825	6834600	~40cm ferruginous chert
A4	216172	0.55	396851	6834592	~60cm ferruginous chert
Waihi	216173	0.02	394555	6836493	Grab sample from dump qtz vein
Waihi	216174	0.005	394568	6836505	5cm x-cutting qtz vein on drill pad floor
Waihi	216175	0.06	394579	6836505	Gossanous quartz/ chert in pit wall
Waihi	216176	0.12	394593	6836540	Grab sample from dumps qtz + gossan
Waihi	216177	6.11	394585	6836542	Quartz grab sample from wall
Waihi	216178	6.77	394573	6836545	In situ gy qtz sample from chert
Waihi	216179	2.75	394444	6836683	Grab sample from dumps qtz and gossan
A1	216189	0.02	398675	6832131	Footwall chert of A1
A1	216190	0.01	398671	6832139	Footwall chert of A1
A1	216191	0.28	398630	6832190	Footwall chert of A1
A1	216192	0.11	398620	6832219	30cm footwall chert A1
A1	216193	0.09	398604	6832264	1.5m wide footwall chert
A1	216194	0.11	398564	6832307	1.5m wide footwall chert
A1	216195	0.04	398555	6832322	Ferruginous chert

Prospect	Sample ID	Au g/t	East	North	Description
A1	216196	0.005	398466	6832416	Fine grained aphanitic
A1	219197	0.005	398413	6832421	Silicious felsic intrusive??
A1	219198	0.13	398106	6832811	1.5m banded chert plunging lin -58s
A1	219199	0.03	398098	6832829	~1m thick bedded chert
A1	219200	0.43	398007	6833025	Rubble 0.5m wide ferric gossanous chert
A1	219201	0.03	398009	6833018	Rubble 0.4m wide ferric gossanous chert
A1	219202	0.61	398032	6832990	Rubble 0.5m wide ferric gossanous chert
A1	219203	1.01	398035	6832981	Rubble 0.4m wide ferric gossanous chert
A1	219204	0.17	398111	6833176	Gossanous chert
A1	219205	0.02	398094	6833173	Siliceous siltstone, lam to bedded
A1	219206	1.38	398164	6833073	3m pit quartz grab sample
A1	219207	0.005	398144	6833070	~1m wide gossan chert
A1	219208	0.46	398145	6833048	0.5m gossanous chert
A1	219209	3.88	398163	6833026	~1m wide gossan chert -63 south plunge lin
A1	219210	7.62	398172	6833011	Grab sample from dump
A1	219211	0.08	398129	6833000	Footwall of gossan chert 1m pit
A1	219212	0.87	398184	6833002	Grab sample from waste dump
Freds Well North	219213	7.88	397418	6833192	Quartz grab sample from dump
Freds Well North	219214	0.01	397407	6833211	Quartz grab sample from dump
Freds Well North	219215	0.005	397424	6833218	Qtz from shallow pit on structure
Freds Well North	219216	2.01	397377	6833280	Shaft ~10m deep, limonite quartz from dump
Freds Well North	219217	0.01	397453	6833152	Limonitic blue grey quartz
Freds Well North	219218	6.07	397434	6833268	Blue grey limonite quartz from dump
Freds Well North	219219	39.3	397429	6833276	Blue grey limonite quartz from dump
Freds Well North	219220	0.05	397414	6833310	Qtz from dump
Freds Well North	219221	25.8	397411	6833329	Grab sample from dump
Freds Well North	219222	13.15	397410	6833340	Grab sample from dump
Freds Well North	219223	0.41	397422	6833343	Grab sample from dump
Freds Well North	219224	3.73	397419	6833328	Grab sample from dump
Freds Well North	219225	7.45	397497	6833418	Cream white sacc qtz from dump
Freds Well North	219226	0.02	397502	6833419	Gossanous quartz from dump
Freds Well South	219227	0.02	397676	6832971	Blue grey quartz from waste dump
Freds Well South	219228	0.005	397699	6832925	Blue grey quartz from waste dump
Freds Well South	219229	0.005	397708	6832914	Blue grey quartz from waste dump
Freds Well South	219230	0.06	397715	6832901	Blue grey quartz from waste dump
Freds Well South	219231	1.14	397722	6832890	Blue grey quartz from waste dump
Freds Well South	219232	0.01	397729	6832875	Blue grey quartz from waste dump
Freds Well South	219233	0.71	397726	6832870	Blue grey quartz and gossan from waste dump
Freds Well South	219235	0.18	397734	6832864	Blue gry quartz with gossanous from waste dump
Freds Well South	219236	0.19	397750	6832853	Blue grey quartz grab sample
Freds Well South	219237	21.3	397760	6832832	Blue grey quartz grab sample
Freds Well South	219238	2.65	397757	6832818	Blue grey quartz grab sample

Prospect	Sample ID	Au g/t	East	North	Description
Freds Well South	219239	0.03	397775	6832810	Blue grey quartz gossanous - grab sample
Freds Well South	219240	0.05	397776	6832801	Blue grey quartz gossanous - grab sample

APPENDIX 2 – JORC CODE, 2012 Edition

Section 1 – Sampling Techniques and Data for historic work

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature & quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity & the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Rock chip sampling consisted of breaking outcropping, in-situ surface rocks with a sledge hammer and collecting approximately 2kg of material into a pre-numbered calico bag. Grab sampling consisted of collecting approximately 2kg of random quartz fragments from mine dumps into a pre-numbered calico bag. Information recorded from individual sample sites includes sample ID, east and north coordinates, date sampled, structure orientation if applicable and description of sample (ie. rock type, whether grab or rock chip sample).
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) & details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented & if so, by what method, etc.).If no site visits have been undertaken indicate why this is the case.	 Historic drilling reported at Fred's Well consists of rotary air blast drilling (RAB) as reported in the DiscovEx historic database. RAB drilling is an open hole drilling method which is subject to smearing and contamination.

		METE
Drill sample recovery	 Method of recording & assessing core & chip sample recoveries & results assessed. Measures taken to maximise sample recovery & ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade & whether sample bias may have occurred due to preferential loss/gain of fine/coarse material 	NA
Logging	 Whether core & chip samples have been geologically & geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies & metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length & percentage of the relevant intersections logged 	NA
Sub-sampling techniques & sample preparation	 If core, whether cut or sawn & whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc.& whether sampled wet or dry. For all sample types, the nature, quality & appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All rock chip and grab samples were sent to ALS Laboratories, Kalgoorlie, Western Australia which is an accredited laboratory. Sample preparation for rock chip and grab sampling consisted of coarse crushing to 70% <2mm particles, riffle splitting off 250g then pulverising to better than 85% passing 75 microns. Quality Control (QC) procedures involved the use of field sample duplicates and certified reference materials which were inserted into the sample stream at a rate of 1:50. These were later checked and verified and found to be within an acceptable margin of error.

Quality of assay data & laboratory tests	 The nature, quality & appropriateness of the assaying & laboratory procedures used & whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make & model, reading times, calibrations factors applied & their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) & whether acceptable levels of accuracy (i.e. lack of bias) & precision have been established. 	 Rock chip and grab samples were analysed for gold using 30 gram Fire assay with an AAS finish. This technique is considered suitable for determination of gold for this project. Fire assays are classified as total assays. See above for quality control procedures.
Verification of sampling & assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical & electronic) protocols. Discuss any adjustment to assay data. 	 Sample data points were plotted in GIS software and checked to spatially validate the coordinates entered into the database are correct.
Location of data points	 Accuracy & quality of surveys used to locate drill holes (collar & down- hole surveys), trenches, mine workings & other locations used in Mineral Resource estimation. Specification of the grid system used. Quality & adequacy of topographic control 	 Data points were recorded using a Garmin hand held GPS with a margin of error of 3m. All data points are recorded in the GDA94, zone 51 south coordinate system.
Data spacing & distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing & distribution is sufficient to establish the degree of geological & grade continuity appropriate for the Mineral Resource & Ore Reserve estimation procedure(s)&classifications applied. Whether sample compositing has 	NA

	been applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures & the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation & the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed & reported if material 	 Rock chip sampling was undertaken along the strike of the BIF outcrops with samples taken across the footwall BIF-ultramafic contact where possible. Samples were collected at 10 to 50m intervals. Grab sampling was undertaken along the length of line of shallow prospecting pits (1 to 10m deep) generally at 10 to 20m intervals. Sampling focussed on random quartz fragments occurring within the discarded material on the surface of the dumps.
Sample security	• The measures taken to ensure sample security the different materials.	 Individual samples were collected into pre- numbered calico sample bags which were then placed into larger polyweave bags and cable tied. The polyweave bags were then dispatched by company to the laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques & data.	 No audits or reviews have been undertaken. Program and results are reviewed by company senior personnel.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The historic drilling and geochem sampling reported has been undertaken on tenements E39/1866, E39/2024, P39/5456 and 5457 which are located approximately 40km northwest of Laverton, in the Eastern Goldfields Region, Western Australia. The tenements are held by Monument Mining Pty Ltd, a wholly owned subsidiary of DiscovEx Resources Pty Ltd whereby Six Sigma has an exclusive option to acquire a 100% interest. A summary of the material terms and conditions of the proposed acquisition of the tenements, pursuant to the binding exclusive heads of agreement (Heads of Agreement), are as follows: DCX has agreed to grant Si6 an exclusive option (Option) to acquire a 100% interest in the Project by way of acquisition of 100% of the issued capital of Monument Exploration Pty Ltd. In consideration for DCX granting Si6 the Option, Si6 must pay an option fee of \$25,000 cash and \$50,000 in cash and/or shares (Cash/Share Payment, split at Si6's election), payable within 10 Business Days of execution of the Heads of Agreement. Si6 has a 12-month option and due diligence period (Option Period). During the Option Period, Si6 must maintain the Project tenements. Within 6 months of the date of execution of the Heads of Agreement. Si6 has a 12-month option and due diligence period (Option Period). During the Option Period, Si6 must maintain the Project tenements. Within 6 months of the date of execution of the Heads of Agreement, Si6 will pay further consideration of \$50,000 cash and another \$50,000 Cash/Share Payment (split at Si6's sole discretion). Shares issued as part of the Cash/Share Payment will be issued under Listing Rule 7.1 placement capacity. Upon exercise of the Option (to occur at Si6's sole discretion), Si6 to pay further consideration of \$100,000 cash and \$300,000 in cash and/or shares (at Si6's election). The price of all Si6 shares to be issued under the Heads of Agreement will be equal to the VWAP of Si6's shares a

		 All shares issued pursuant to the Heads of Agreement will be voluntarily held in escrow for a period of 12 months following the respective issue dates. All other consideration shares will be issued subject to shareholder approval with the date of the shareholders meeting to be advised in due course. Prior owners of the Project to retain existing royalties of up to 2% of gross revenue (Existing Royalties). Following settlement of the acquisition, DCX will retain a royalty of up to 1.5% of gross revenue (calculated after the payment of any applicable Existing Royalties, whereby if Existing Royalties of greater than 1.5% are paid in respect of certain Project areas, no additional royalty will be paid to DCX).
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The historic RAB drilling data published in the report is contained in the historical database compiled by DiscovEx Resources Pty Ltd which is a compilation of exploration activities undertaken by previous explorers.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The deposit style being targeted is Archaean Lode Gold. Gold mineralisation principally occurs in quartz veins derived from open space filling (brittle fracturing) and to a lesser degree within altered wall rocks accompanied by varying quantities of pyrite, pyrrhotite, arsenopyrite, sphalerite, galena and chalcopyrite. The lode gold deposits within the Monument Gold Project are hosted within banded iron formation and siliceous sediments (cherts) which have been fractured by shearing, cross-faulting and folding.

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The historic drill hole intercepts reported are not Material and have not been verified or validated by the Company. The reporting of the historic drilling intercept at Fred's Well coincides with anomalous gold in soil mineralisation and verifies positive results obtained from the recent rock chip sampling.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The drill hole intercept is reported using a 1g/t Au cut-off and consists of a 4m composite sample which is standard practice from sampling RAB drill holes. Anomalous rock chip samples are reported using a lower cut-off 1g/t Au.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported. 	 Historic drilling intercepts are reported as down-hole lengths. Mineralisation is known to be sub-vertical to east dipping perpendicular to drilling.

	there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A location plan of the prospects showing the rock chip sampling data is provided in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The report is considered balanced with the information provided in the context. The reporting of historical drilling data is provided.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A planned RC drill program to test the geological modelling and Spadis interpretation is outlined in the report and planned for Q1 2021. Lag sampling is planned for Perseverance to delineate targets for air core drilling. Air core drilling will also be planned to test the Fred's Well target. Assessment of regional targets is ongoing.