ASX ANNOUNCEMENT

14 January 2021

ROX RESOURCES LIMITED

ASX: RXL

Rox Resources Limited (ASX: RXL) is an Australian listed company with advanced gold and nickel projects in Western Australia: the Youanmi Gold Project, Mt Fisher Gold project, and the Fisher East and Collurabbie Nickel projects.

DIRECTORS

Mr Stephen Dennis Chairman

Mr Alex Passmore Managing Director

Dr John Mair Non-Executive Director

Shares on Issue	2,04
Share Price	\$0.0
Market Cap.	\$102
Cash &	\$11.8
Receivables	
(incl \$3.75m	
receivable, as at 30	
Sept 2020)	

Level 1, 34 Colin Street, West Perth WA 6005

+61 8 9226 0044

admin@roxresources.com.au

www.roxresources.com.au

Youanmi Exploration Update

Highlights:

- Two new high priority targets, "Link" and "Junction" • identified with testing ongoing.
- RC drilling returns strong results:

RXRC344: 12m @ 6.54g/t Au from 28m. New, high-grade zone identified in granite north of Rebel Pit at Link.

RXRC341: 2m @ 11.81g/t Au from 53m and 10m @ 1.4g/t Au from 164m. New high-grade zone identified in Granite 200m north of United North Pit at Link.

RXRC121: 3m @ 9.6g/t Au from 196m (Grace North).

RXRC325: 12m @ 1.72g/t Au from 28m (Grace North, shallow)

Assays pending for 12 holes.

Assays received for 8 diamond holes at Grace with results pending for 2 holes.

> High grade results include: RXDD004: 1m @ 18.62g/t Au from 202m

AC drilling of 339 holes for 16,297m was completed in the • December guarter, with all assays now received. The results show: (1) Widespread gold anomalism associated with structures in the Youanmi Granite and (2) Prospective targets along the Youanmi mine corridor

Australian gold and nickel company, Rox Resources Limited ("Rox" or "the Company") (ASX: RXL), in conjunction with its joint venture partner Venus Metals Corporation Limited (ASX: VMC) is pleased to provide an update on exploration activities at Youanmi in the OYG JV area (Rox 70% and Manager, VMC 30%).

Managing Director Alex Passmore commented: "We are pleased to report strong results from our comprehensive program undertaken late in 2020 demonstrating the endowment of the Youanmi gold project. Additionally we look forward to commencing testing of our two new compelling near mine targets in late January or early February.

RRL1726D

1m 5 m 3m

Further results are reported herein relating to drilling undertaken in the latter part of CY2020. Drilling was focussed on the Grace prospect, near mine targets and areas of known mineralisation in proximity to existing resources.

Rox continued to receive data for the northern extents of the Grace mineralisation in November and December. The favourable structure and lithology (green, sericitized quartz altered granite) continues although grades into less continuous zones along the Grace structure to the north. The Grace lode transitions into the wider lower grade open pit prospect Plant Zone.

Importantly, the southern extent of the Grace structure, and the structure at depth have emerged as compelling targets. Rox's exploration model indicates that this zone has strong potential for significantly enhancing near mine gold inventory. The southern part of the Grace structure likely intersects the Youanmi mine shear below and south of the historically mined Pollard lodes (Figure 1). These lodes were principally mined in the 1930's with historical mine records indicating production of 260,000oz at 15 g/t Au mined grade. The modern era (1987 – 1993) open pit then mined out remnant mineralisation between surface and 120m below ground level.

This new target "Junction" is to be tested via drilling commencing in late January or early February 2021.

Elsewhere, Aircore drilling to test new targets to the north of the Youanmi mine area has identified extensive gold anomalism in the Youanmi Granite. Several zones greater than 250ppb Au have been delineated indicating gold bearing structures in the granite, that when traced back to intersecting positions in the mafic lithologies, present high priority drill targets.

Activities since the start of October 2020 also focused on identifying new high-grade, north-south trending structures (i.e. analogous to Grace) north of prospects Hill End, United North, Kathleen, and Rebel. RC drilling of 22 holes for 3,928m was completed.

Several new zones of mineralisation have been identified, which are expected to show similar metallurgical characteristics to Grace (i.e. free milling) and may present future opportunities for incorporation into shallow oxide resource inventory.

The intersection zones of these gold bearing structures with regional structures in mafic lithologies are key targets for further RC drilling to be undertaken in Q1 2021.

RC Drilling

The late 2020 RC program has identified a series of north striking lodes within the Younami Granite at the United North and Rebel prospects. This drilling continues to provide excellent results including:

- RXRC344: 12m @ 6.54g/t Au from 28m New high-grade zone identified North of Rebel Pit.
- RXRC341: 1m @ 2.78g/t Au from 31m, **2m** @ **11.81g/t Au from 53m** and 10m @ 1.4g/t Au from 164m. New high-grade zone identified in Granite 200m North of United North Pit.

(see Table 1 for all new results and Figure 2 for highlights).

RC drilling in early 2021 is focused on testing recently discovered north trending lodes at Rebel and United North.

Diamond Drilling

Assays have been received for 8 diamond holes at Grace with results pending for 2 holes.

High grade results include:

RXDD004: 1m @ 18.62g/t Au from 202m

The program was completed in the December quarter and comprised 9 holes for 1,192m to test the following:

- Three shallow (50-70m) diamond holes at the high-grade main shoot to confirm reliability of RC drilling and obtain specific gravity data for resource estimation.
- Two 300m holes at Grace to determine structural controls on mineralisation. Interpretation is ongoing.
- Three deeper (340-380m) holes at Grace North. The holes extended RC holes that previously failed to reach target depth.

Logging of mineralised core intercepts from Grace indicate that gold is hosted within a west dipping zone of strong sericite altered granite, shear veins and quartz-stibnite-gold breccia-style veins within a broad north trending structural zone.

Priority diamond drilling has been planned at the Grace-Mine Shear Junction and is scheduled to commence in February 2021.

The Company looks forward to updating the market on the further results of ongoing aircore, RC and diamond drill programs as results come to hand.

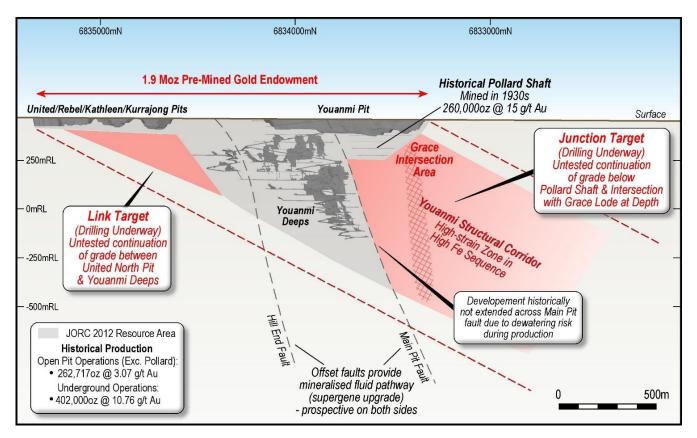


Figure 1 - The Grace-Mine shear zone intersection below the southern half of Main Pit i.e. "Junction Target".

Junction Target Area

The intersection of N-S trending lode structures (Hill End, Peru) with the NW trending high strain zone (Main Pit, northern pits) is where the major accumulations of gold are found at Youanmi. The Junction Target is the region where the Grace Lode and Mine Lode converge beneath both the Youanmi Main Pit and historically mined high-grade Pollard Lode. The Junction Target presents a high priority target area and was not tested by past explorers with no effective historical drilling completed at depth, down plunge of mineralisation seen in the Pollard lodes.

OYG JV Aircore Drilling

Youanmi Granite

Following the discovery of Grace, situated in the Youanmi granite (historically considered unprospective), Rox undertook an extensive aircore drilling program to delineate other gold bearing structures in the same rock unit.

Assays have been received for the first phase of the program, totalling 251 holes for 11,534m. The best result returned was in RXAC022, showing **4m @ 15.95g/t Au** from 36m in granite 3km north of the Youanmi Mine and the Grace zone (Figure 2).

Much of the sporadic historical RAB drilling undertaken by previous operators failed to penetrate an almost ubiquitous silcrete layer at around 11m vertical depth, leaving extensive granite-hosted mineralisation undetected.

This program delineated ten large >250ppb Au anomalous areas. Five of these are greater than 500m in strike length (Figure 2). These anomalies add confidence to the proposition that the Youanmi granite may host large tonnage free milling oxide material.

The anomalies are to be tested in Q1 2021 with RC drilling.

Bunker Area

The Bunker area has two of the key components of the Youanmi mineralisation model

- The mine corridor high-Fe sequence (NNE-trending, E-dipping)
- NNW-trending mineralised structure subparallel equivalent of the mine corridor high-strain zone.

Magnetic imagery shows a distinct ~15° sinistral bend in the high-Fe sequence coincident with the Bunker Pit. There are also several demagnetised breaks in the magnetic highs (BIF), which represent cross-cutting structures. The 1km² flexure zone was tested with AC drilling, with the aim of discovering high-grade oxide deposits. The first phase of the program has been completed, totalling 74 holes for 4,331m.

High grade results returned from this round of drilling (see Table 1 and Figure 3) include:

RXAC462: 8m @ 1.35g/t Au from 32m to 40m within a broader zone of mineralisation of 24m @ 0.73g/t Au from 20m to 44m

RXAC465: 8m @ 1.31g/t Au from 24m to 32m within a broader zone of mineralisation of 28m @ 0.59g/t Au from 24m to 52m

These results are highly encouraging being 400m north along strike (N-S) from Bunker Pit (past production of 7,400ozs at 3.3 g/t Au) in a newly identified structure.

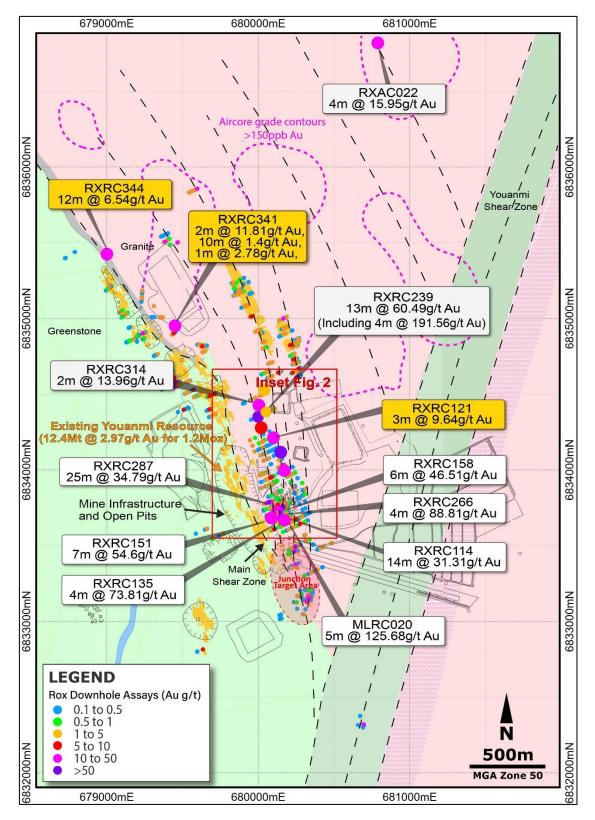


Figure 2 – Youanmi mineralised corridor showing N-S structures in Granite.

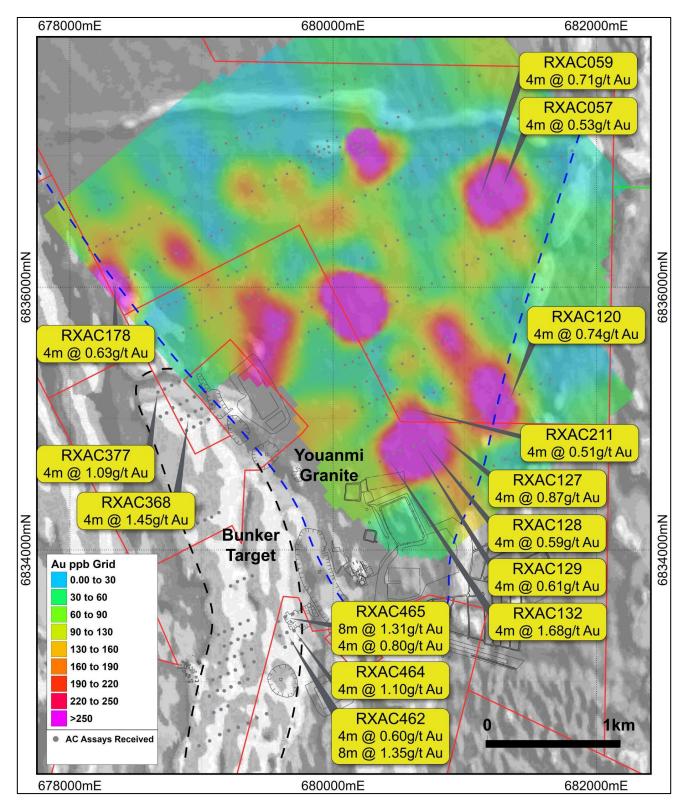


Figure 3. Gold geochemistry grid from aircore drilling in the Youanmi Granite over greyscale magnetics.

Sub-Audio Magnetic (SAM) Trial Survey

The SAM geophysical method was trialled for the primary aim of mapping gold mineralised structures over a 2.5km by 1.5km target area in the very weakly magnetic Youanmi granite and potential extensions to the southeast, beneath historical mine infrastructure (waste dumps and TSFs) that has been poorly drill tested by past explorers.

The SAM method maps the resistivity variations in regolith and bedrock geology. An electrical current is channelled between two widely separated electrodes located along the strike of interest and straddling the survey area. The current is channelled along lower resistivity zones in this direction as these form paths of least resistance. The survey has provided high-resolution magnetic, conductivity and off-time electromagnetic (EM) data.

The results of the SAM survey indicate that known granite hosted mineralisation (Plant Zone and Grace) is associated with magnetometric conductivity lows (more resistive rocks) due to intense silica-sericite alteration.

The SAM method was successful in mapping target structures and numerous priority target structures have been identified. (Figure 4)

Exploration Model and Forward Plans

Rox's recent exploration work has identified the important Link and Junction targets which represent the intersection zones between north-south trending structures and the NW trending mine shear. The intersection of the Grace structure (Figures 5 & 6) with the NW trending mine shear represents a high priority target for adding ounces to the overall project resource in the first half of 2020.

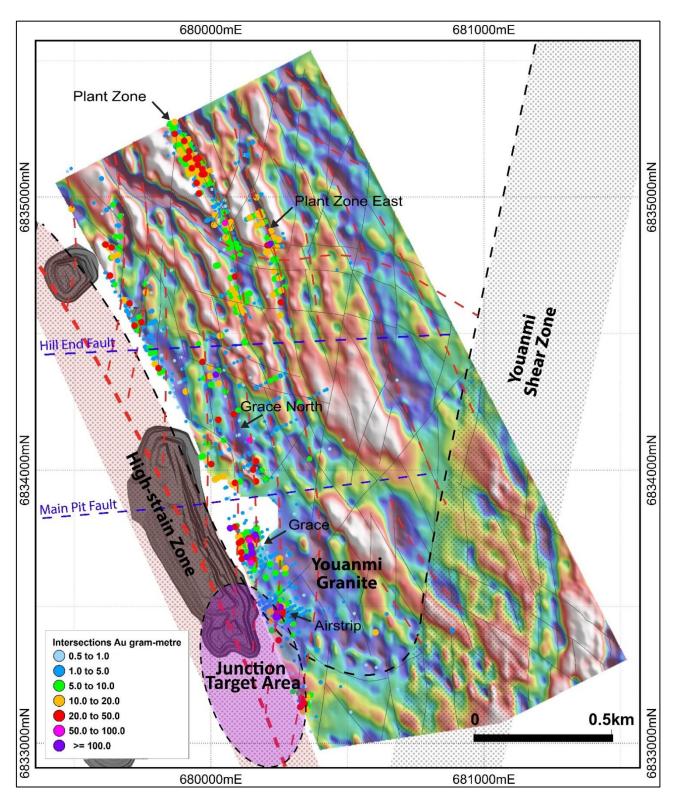


Figure 4 - First Vertical Derivative of magnetometric conductivity (MMC). SAM survey.

High MMC responses (red-white) are sourced by conductive features and MMC low responses (blue-green) are related to more resistive features. Downhole Au grades show a strong correlation of gold mineralisation with MMC lows due to intense silica-sericite alteration. High priority target structures in red.

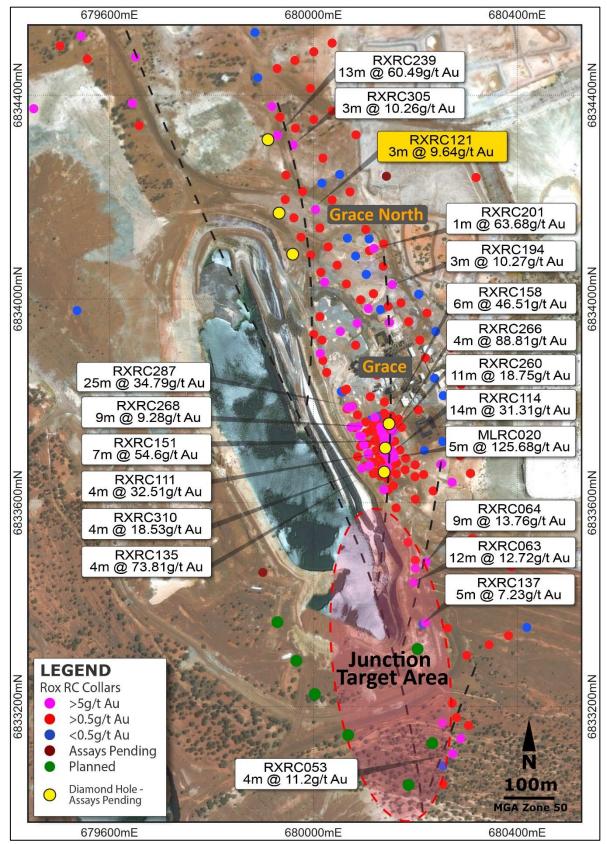


Figure 5 – RC and Diamond Drill hole collars and intercepts over Aerial Photo.

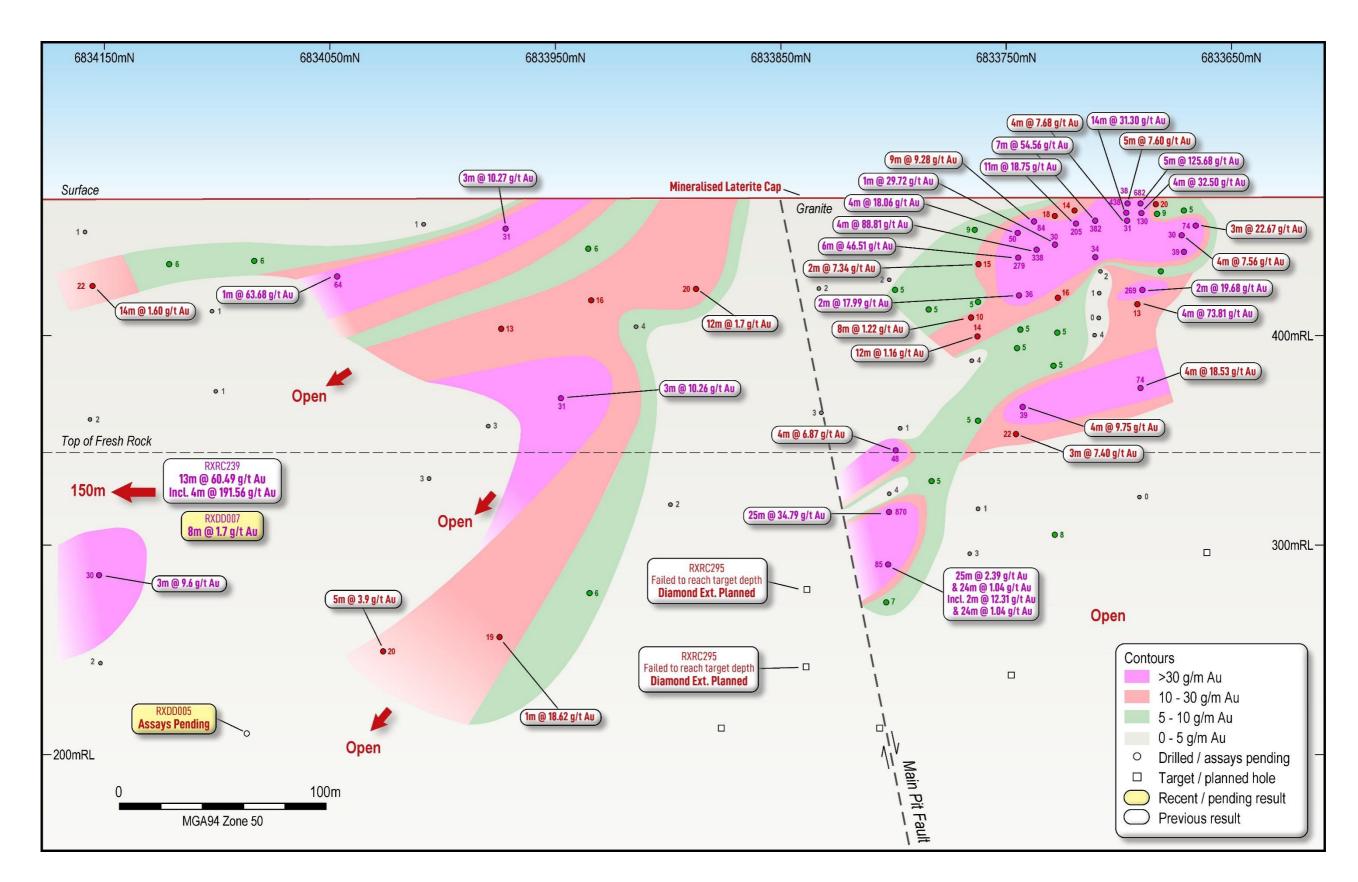


Figure 7 - Grace Prospect long section.

Authorised for release to ASX by Alex Passmore, Managing Director

*** ENDS ***

For more information:

Alex Passmore Managing Director Rox Resources Limited Tel: +61 8 9226 0044 admin@roxresources.com.au Matt Hogan Managing Director Venus Metals Corporation Limited Tel: +61 8 9321 7541

Table 1	– Signi	ficant I	ntersections
---------	---------	----------	--------------

Hole ID	Prospect	Drill type	From	to	Interval	Au g/t	Au g.m
RXRC121	Grace North	RC	196	199	3	9.64	28.92
RXRC203	Grace North	RC	150	153	1	0.61	0.61
RXRC203	Grace North	RC	168	169	1	0.01	0.01
RXRC205	Grace North	RC	134	138	4	0.87	3.48
RXRC193	Grace North	RC	58	66	8	0.5	4
RXRC319	Grace North	RC	134	138	4	0.87	3.48
RXRC321	Grace North	RC	231	232	1	0.87	0.87
RXRC322	Grace North	RC	72	76	4	1.79	7.16
RXRC322	Grace North	RC	174	175	1	0.53	0.53
RXRC322	Grace North	RC	181	186	5	0.86	4.3
RXRC322	Grace North	RC	215	216	1	0.94	0.94
RXRC323	Grace North	RC	59	63	4	0.9	3.6
RXRC324	Grace North	RC	92	96	4	0.82	3.28
RXRC325	Grace North	RC	28	40	12	1.72	20.64
RXRC325	Grace North	RC	48	52	4	0.63	2.52
RXRC325	Grace North	RC	108	110	2	1.08	2.16
RXRC325	Grace North	RC	128	129	1	6.46	6.46
RXRC326	Plant Zone S	RC	143	144	1	0.85	0.85
RXRC329	Hill End E	RC	136	137	1	0.51	0.51
RXRC330	Plant Zone	RC	126	151	25	0.8	20
RXRC333	Hill End E	RC	61	73	12	1.4	16.8
RXRC334	Plant Zone	RC	36	44	8	1.52	12.16
RXRC334	Plant Zone	RC	48	52	4	1.4	5.6
RXRC334	Plant Zone	RC	109	111	2	1.18	2.36
RXRC335	Plant Zone	RC	0	1	1	0.96	0.96
RXRC335	Plant Zone	RC	36	40	4	0.64	2.56
RXRC336	Plant Zone	RC	0	2	2	0.98	1.96
RXRC336	Plant Zone	RC	52	56	4	0.75	3
RXRC336	Plant Zone	RC	92	93	1	0.62	0.62
RXRC336	Plant Zone	RC	110	111	1	1.38	1.38
RXRC336	Plant Zone	RC	128	132	4	1.87	7.48
RXRC336	Plant Zone	RC	148	149	1	0.71	0.71
RXRC340	United NE	RC	23	29	6	1.4	8.4
RXRC340	United NE	RC	35	37	2	0.78	1.56
RXRC340	United NE	RC	43	46	3	0.5	1.5
RXRC340	United NE	RC	51	52	1	3.05	3.05
RXRC341	United NE	RC	31	32	1	2.78	2.78
RXRC341	United NE	RC	53	55	2	11.81	23.62
RXRC341	United NE	RC	164	174	10	1.4	14
RXRC342	Rebel E	RC	44	46	2	2.98	5.96

RXRC344	Rebel N	RC	28	40	12	6.54	78.48
RXRC344	Rebel N	RC	45	47	2	1.22	2.44
RXRC344	Rebel N	RC	173	174	1	0.82	0.82
	United						
RXRC347	Deeps	RC	108	112	4	0.92	3.68
	United						
RXRC347	Deeps	RC	140	144	4	0.54	2.16
	United						
RXRC347	Deeps	RC	152	156	4	0.68	2.71
	United				_		
RXRC347	Deeps	RC	160	164	4	0.58	2.33
DVD 00 47	United		100	100		0.00	25.00
RXRC347	Deeps	RC	188	192	4	8.99	35.99
RXRC347	United	RC	216	220	л	0.77	3.06
	Deeps				4		
RXRC349	United East	RC	0	4	4	0.60	2.39
RXRC349	United East	RC	16	20	4	0.88	3.54
RXRC350	United East	RC	40	48	8	2.88	23.02
	Junction	DC	106	204	0	1 20	11 15
RXRC351	Target Junction	RC	196	204	8	1.39	11.15
RXRC351	Target	RC	220	228	8	2.59	20.72
INNIC551	Target	i i i i i i i i i i i i i i i i i i i	220	220	0	2.55	20.72
RXDD002	Grace	DD	104.5	105.1	0.6	1.56	0.936
RXDD002	Grace	DD	125	126	1	1.00	1
RXDD003	Grace	DD	150	151	1	0.57	0.57
RXDD003	Grace	DD	163	166	3	1.30	3.9
RXDD004	Grace	DD	172	173	1	2.64	2.64
RXDD004	Grace	DD	185	186	1	1.07	1.07
RXDD004	Grace	DD	202	203	1	18.62	18.62
RXDD004	Grace	DD	205	206	1	0.66	0.66
RXDD004	Grace	DD	256	260	4	1.01	4.04
RXDD004	Grace	DD	271	275	4	1.26	5.04
RXDD005	Grace	DD	41	42	1	0.64	0.64
RXDD005	Grace	DD	44	45	1	1.16	1.16
RXDD005	Grace	DD	90	99	9	0.83	7.47
RXDD006	Grace	DD	160	161	1	0.65	0.65
RXDD006	Grace	DD	184	185	1	1.48	1.48
RXDD007	Grace N	DD	8	16	8	1.70	13.62
RXDD007	Grace N	DD	154.42	155.45	1.03	0.58	0.60
RXDD007	Grace N	DD	203	206	3	0.64	1.92
RXDD007	Grace N	DD	240.72	244	3.28	0.71	2.33
RXDD007	Grace N	DD	246	247	1	0.79	0.79
RXDD007	Grace N	DD	297	298.85	1.85	1.52	2.81

RXDD008	Grace	DD	0	1	1	0.59	0.59
RXDD008	Grace	DD	3	4	1	0.51	0.51
RXDD008	Grace	DD	51	53	2	0.68	1.36
RXDD008	Grace	DD	55.15	60	4.85	0.84	4.07
RXDD009	Grace	DD	0	1	1	2.31	2.31
RXDD009	Grace	DD	9.28	10.5	1.22	8.01	9.77
RXDD009	Grace	DD	12	14.22	2.22	5.34	11.85
RXDD010	Grace	DD	1	3.43	2.43	0.89	2.16
RXDD010	Grace	DD	12.5	13.5	1	3.39	3.39
RXAC034	YM Granite	AC	48	50	2	0.154	0.31
RXAC050	YM Granite	AC	44	47	3	0.157	0.47
RXAC056	YM Granite	AC	24	28	4	0.2	0.8
RXAC056	YM Granite	AC	44	48	4	0.23	0.92
RXAC057	YM Granite	AC	48	52	4	0.53	2.12
RXAC057	YM Granite	AC	56	63	7	0.29	2.03
RXAC059	YM Granite	AC	16	24	8	0.46	3.68
RXAC067	YM Granite	AC	52	56	4	0.11	0.44
RXAC067	YM Granite	AC	64	66	2	0.16	0.32
RXAC073	YM Granite	AC	28	32	4	0.17	0.68
RXAC076	YM Granite	AC	44	46	2	0.11	0.22
RXAC078	YM Granite	AC	68	72	4	0.1	0.4
RXAC083	YM Granite	AC	52	54	2	0.1	0.2
RXAC087	YM Granite	AC	16	20	4	0.21	0.84
RXAC092	YM Granite	AC	44	48	4	0.17	0.68
RXAC092	YM Granite	AC	52	56	4	0.22	0.88
RXAC092	YM Granite	AC	60	76	16	0.21	3.36
RXAC092	YM Granite	AC	88	92	4	0.2	0.8
RXAC092	YM Granite	AC	100	104	4	0.1	0.4
RXAC093	YM Granite	AC	28	36	8	0.18	1.44
RXAC093	YM Granite	AC	40	43	3	0.22	0.66
RXAC095	YM Granite	AC	72	76	4	0.18	0.72
RXAC111	YM Granite	AC	56	60	4	0.13	0.52
RXAC112	YM Granite	AC	40	48	8	0.17	1.36
RXAC118	YM Granite	AC	28	32	4	0.14	0.56
RXAC120	YM Granite	AC	40	44	4	0.74	2.96
RXAC121	YM Granite	AC	40	44	4	0.17	0.68
RXAC122	YM Granite	AC	36	44	8	0.22	1.76
RXAC125	YM Granite	AC	48	66	18	0.25	4.5
RXAC126	YM Granite	AC	24	27	3	0.2	0.6
RXAC127	YM Granite	AC	0	4	4	0.15	0.6
RXAC127	YM Granite	AC	28	32	4	0.88	3.52
RXAC128	YM Granite	AC	0	4	4	0.59	2.36

RXAC128	YM Granite	AC	20	29	9	0.23	2.07
RXAC129	YM Granite	AC	0	4	4	0.62	2.48
RXAC129	YM Granite	AC	24	34	10	0.23	2.3
RXAC130	YM Granite	AC	0	4	4	0.14	0.56
RXAC130	YM Granite	AC	16	20	4	0.13	0.52
RXAC132	YM Granite	AC	4	8	4	0.46	1.84
RXAC132	YM Granite	AC	32	40	8	0.95	7.6
RXAC140	YM Granite	AC	44	48	4	0.15	0.6
RXAC141	YM Granite	AC	48	56	8	0.32	2.56
RXAC143	YM Granite	AC	48	52	4	0.22	0.88
RXAC145	YM Granite	AC	0	4	4	0.17	0.68
RXAC150	YM Granite	AC	52	54	2	0.18	0.36
RXAC153	YM Granite	AC	20	37	17	0.34	5.78
RXAC154	YM Granite	AC	40	42	2	0.24	0.48
RXAC158	YM Granite	AC	28	31	3	0.19	0.57
RXAC160	YM Granite	AC	48	57	9	0.21	1.89
RXAC170	YM Granite	AC	48	51	3	0.19	0.57
RXAC171	YM Granite	AC	44	49	5	0.28	1.4
RXAC172	YM Granite	AC	4	8	4	0.17	0.68
RXAC178	YM Granite	AC	20	24	4	0.38	1.52
RXAC178	YM Granite	AC	32	40	8	0.37	2.96
RXAC179	YM Granite	AC	52	56	4	0.18	0.72
RXAC183	YM Granite	AC	52	56	4	0.1	0.4
RXAC184	YM Granite	AC	56	60	4	0.14	0.56
RXAC186	YM Granite	AC	12	16	4	0.14	0.56
RXAC186	YM Granite	AC	40	45	5	0.15	0.75
RXAC187	YM Granite	AC	28	32	4	0.1	0.4
RXAC188	YM Granite	AC	56	58	2	0.1	0.2
RXAC190	YM Granite	AC	48	52	4	0.21	0.84
RXAC191	YM Granite	AC	40	44	4	0.2	0.8
RXAC205	YM Granite	AC	52	60	8	0.13	1.04
RXAC206	YM Granite	AC	52	56	4	0.1	0.4
RXAC206	YM Granite	AC	60	64	4	0.19	0.76
RXAC211	YM Granite	AC	28	39	11	0.33	3.63
RXAC241	YM Granite	AC	56	60	4	0.18	0.72
RXAC366	Kurrajong	AC	36	44	8	0.24	1.92
RXAC366	Kurrajong	AC	55	57	2	0.11	0.23
RXAC368	Kurrajong	AC	24	28	4	0.37	1.44
RXAC368	Kurrajong	AC	32	36	4	1.45	5.82
RXAC368	Kurrajong	AC	52	56	4	0.21	0.84
RXAC370	Kurrajong	AC	28	36	8	0.28	2.2
RXAC371	Kurrajong	AC	44	52	8	0.24	1.88
RXAC375	Kurrajong	AC	44	52	8	0.22	1.78

RXAC377	Kurrajong	AC	48	52	4	1.09	4.37
RXAC379	Kurrajong	AC	52	56	4	0.10	0.40
RXAC381	Kurrajong	AC	20	24	4	0.12	0.46
RXAC382	Kurrajong	AC	28	32	4	0.30	1.21
RXAC382	Kurrajong	AC	36	40	4	0.11	0.45
RXAC382	Kurrajong	AC	44	48	4	0.13	0.53
RXAC383	Kurrajong	AC	28	44	16	0.13	2.13
RXAC384	Kurrajong	AC	28	32	4	0.14	0.55
RXAC440	Bunker	AC	8	12	4	0.17	0.69
RXAC441	Bunker	AC	36	40	4	0.12	0.46
RXAC443	Bunker	AC	48	64	16	0.22	3.46
RXAC448	Bunker	AC	55	57	2	0.12	0.25
RXAC451	Bunker	AC	32	36	4	0.11	0.42
RXAC451	Bunker	AC	48	56	8	0.32	2.52
RXAC451	Bunker	AC	64	68	4	0.24	0.97
RXAC452	Bunker	AC	56	64	8	0.22	1.74
RXAC458	Bunker	AC	84	88	4	0.21	0.83
RXAC462	Bunker	AC	8	12	4	0.21	0.85
RXAC462	Bunker	AC	20	44	24	0.73	17.4
RXAC463	Bunker	AC	8	12	4	0.43	1.72
RXAC464	Bunker	AC	4	12	8	0.69	5.48
RXAC465	Bunker	AC	4	8	4	0.12	0.50
RXAC465	Bunker	AC	24	52	28	0.59	16.41
RXAC467	Bunker	AC	48	52	4	0.11	0.42
RXAC469	Bunker	AC	52	56	4	0.11	0.42
RXAC471	Bunker	AC	44	48	4	0.10	0.42
RXAC472	Bunker	AC	40	52	12	0.16	1.90
RXAC473	Bunker	AC	60	63	3	0.12	0.37
RXAC475	YM FS	AC	12	16	4	0.11	0.44

		Drill						
Hole ID	Prospect	Туре	East	North	RL	Depth	Dip	Azi
RXRC121	Grace North	RC	680004	6834175	465	240	-65	65
RXRC193	Grace North	RC	680118	6834010	464	110	-60	65
RXRC203	Grace North	RC	680029	6834102	466	230	-65	65
RXRC205	Grace North	RC	680103	6834136	466	180	-60	65
RXRC211	Grace North	RC	680072	6834210	465	200	-60	65
RXRC318	Grace North	RC	680114	6833855	458	220	-75	60
RXRC319	Grace North	RC	680174	6834169	462	160	-60	65
RXRC321	Grace North	RC	679947	6834243	465	234	-60	65
RXRC322	Grace North	RC	680019	6834276	466	120	-60	65
RXRC323	Grace North	RC	680147	6833985	460	126	-60	65
RXRC324	Grace North	RC	680093	6833998	460	160	-68	65
RXRC325	Grace North	RC	680150	6833954	459	140	-60	70
RXRC326	Plant Zone S	RC	680084	6834322	463	200	-60	70
RXRC327	Plant Zone S	RC	680143	6834241	463	180	-60	70
RXRC328	Hill End E	RC	679886	6834523	470	140	-60	65
RXRC329	Hill End E	RC	679955	6834554	468	137	-60	65
RXRC330	Plant Zone	RC	679961	6834727	468	162	-60	65
RXRC331	Hill End E	RC	679888	6834684	470	140	-60	65
RXRC332	Hill End E	RC	679811	6834653	470	140	-60	65
RXRC333	Hill End E	RC	679733	6834642	470	140	-60	65
RXRC334	Plant Zone	RC	680236	6834559	463	122	-60	65
RXRC335	Plant Zone	RC	680319	6834238	466	210	-60	65
RXRC336	Plant Zone	RC	680066	6834447	467	174	-60	65
RXRC337	Airstrip E	RC	680829	6833373	455	180	-60	65
RXRC338	YM Granite	RC	680187	6837025	450	120	-60	65
RXRC339	Grace North	RC	679912	6834312	467	156	-60	65
RXRC340	United NE	RC	679472	6834890	469	160	-60	70
RXRC341	United NE	RC	679416	6834932	469	180	-60	65
RXRC342	Rebel E	RC	679094.3	6835286	469	140	-60	65
RXRC343	PZM	RC	679324.1	6835469	469	252	-60	70
RXRC344	Rebel N	RC	678949.1	6835389	470	200	-60	75
RXRC345	Main HW	RC	679536.4	6833977	481	180	-60	65
	United							
RXRC346	North	RC	679293	6834561	467	210	-60	70
	United	DC	670270	C024C42	400	240	~~	70
RXRC347	North	RC	679278	6834642	469	240	-60	70
RXRC348	Kathleen	RC	679214	6834775	469	192	-60	65
RXRC349	United NE	RC	679642	6834718	470	120	-60	70
RXRC350	United NE	RC	679597	6834780	467	120	-60	90

Table 2 - Collar Locations and Drilling Details

RXRC351	Junction	RC	679901	6833463	457	228	-55	65
RXRC352	Junction	RC	680239	6833324	458	156	-60	65
RXRC353	Junction	RC	679971	6833299	457.26	252	-55	70
RXRC354	Junction	RC	680007	6833236	456.68	270	-55	70
RXRC355	Junction	RC	680050	6833162	455.67	228	-55	70
RXRC104	YM S	RC	680230.9	6833127	455.13	240		
RXRC356	YM S	RC	680182	6833031	457.13	250	-60	105
RXRC357	Rebel	RC	678917	6835343	467.46	120	-60	75
RXRC358	Rebel	RC	678910	6835376	468.64	120	-60	75
RXRC359	Rebel	RC	678937	6835405	470	120	-60	75
	Plant Zone							
RXRC360	NE	RC	681719	6836231	450.3	228	-60	290
RXDD001	Grace	DD	680091	7833732	461	110.93	-71	65
RXDD002	Grace	DD	680093	6833733	461	303.1	-71	65
RXDD003	Grace	DD	680044	6833774	461	300	-76	60
RXDD004	Grace	DD	680008	6833965	463	350	-85	65
RXDD005	Grace	DD	679965	6834091	462	383.6	-74	65
RXDD006	Grace	DD	679934	6834164	465	342.1	-69	74
RXDD007	Grace	DD	679902	6834286	467	332	-68	73
RXDD008	Grace	DD	680148	6833757	462	70.7	-60	65
RXDD009	Grace	DD	680142	6833713	461	40.8	-60	65
RXDD010	Grace	DD	680141	6833666	460	40.8	-60	65
RXAC025	YM Granite	AC	679996	6836937	445	41	-60	65
RXAC026	YM Granite	AC	679921	6836901	446	37	-60	65
RXAC027	YM Granite	AC	679852	6836867	446	34	-60	65
RXAC028	YM Granite	AC	680029	6837142	444	50	-60	65
RXAC029	YM Granite	AC	679956	6837112	444	42	-60	65
RXAC030	YM Granite	AC	679883	6837070	445	38	-60	65
RXAC031	YM Granite	AC	679812	6837034	446	40	-60	65
RXAC032	YM Granite	AC	679742	6837000	445	39	-60	65
RXAC033	YM Granite	AC	679672	6836957	448	48	-60	65
RXAC034	YM Granite	AC	681492	6837320	442	50	-60	65
RXAC035	YM Granite	AC	681406	6837283	442	41	-60	65
RXAC036	YM Granite	AC	681305	6837236	441	29	-60	65
RXAC037	YM Granite	AC	681227	6837195	440	54	-60	65
RXAC038	YM Granite	AC	681138	6837147	441	60	-60	65
RXAC039	YM Granite	AC	681051	6837109	441	59	-60	65
RXAC040	YM Granite	AC	680956	6837048	442	57	-60	65
RXAC041	YM Granite	AC	680867	6837009	442	45	-60	65
RXAC042	YM Granite	AC	680781	6836970	441	47	-60	65

RXAC043	YM Granite	AC	680688	6836923	442	42	-60	65
RXAC044	YM Granite	AC	680601	6836879	442	43	-60	65
RXAC045	YM Granite	AC	680514	6836831	444	46	-60	65
RXAC046	YM Granite	AC	680422	6836784	444	39	-60	65
RXAC047	YM Granite	AC	680339	6836744	444	44	-60	65
RXAC048	YM Granite	AC	680246	6836698	443	45	-60	65
RXAC049	YM Granite	AC	680159	6836651	445	45	-60	65
RXAC050	YM Granite	AC	680071	6836604	446	47	-60	65
RXAC051	YM Granite	AC	681818	6837038	442	70	-60	65
RXAC052	YM Granite	AC	681735	6836990	441	33	-60	65
RXAC053	YM Granite	AC	681648	6836954	441	39	-60	65
RXAC054	YM Granite	AC	681554	6836917	441	44	-60	65
RXAC055	YM Granite	AC	681462	6836856	441	53	-60	65
RXAC056	YM Granite	AC	681380	6836809	441	64	-60	65
RXAC057	YM Granite	AC	681283	6836763	440	63	-60	65
RXAC058	YM Granite	AC	681202	6836707	440	66	-60	65
RXAC059	YM Granite	AC	681113	6836665	441	69	-60	65
RXAC060	YM Granite	AC	681021	6836636	441	55	-60	65
RXAC061	YM Granite	AC	680926	6836594	441	57	-60	65
RXAC062	YM Granite	AC	680842	6836546	441	54	-60	65
RXAC063	YM Granite	AC	680753	6836502	442	48	-60	65
RXAC064	YM Granite	AC	680665	6836453	443	50	-60	65
RXAC065	YM Granite	AC	680580	6836403	443	52	-60	65
RXAC066	YM Granite	AC	680491	6836357	444	63	-60	65
RXAC067	YM Granite	AC	680400	6836314	445	66	-60	65
RXAC068	YM Granite	AC	680309	6836263	446	42	-60	65
RXAC069	YM Granite	AC	680223	6836220	447	36	-60	65
RXAC070	YM Granite	AC	681637	6836480	440	53	-60	65
RXAC071	YM Granite	AC	681553	6836433	441	61	-60	65
RXAC072	YM Granite	AC	681458	6836389	441	63	-60	65
RXAC073	YM Granite	AC	681374	6836349	441	53	-60	65
RXAC074	YM Granite	AC	681284	6836294	442	51	-60	65
RXAC075	YM Granite	AC	681202	6836250	442	56	-60	65
RXAC076	YM Granite	AC	681104	6836215	442	46	-60	65
RXAC077	YM Granite	AC	681016	6836168	444	59	-60	65
RXAC078	YM Granite	AC	680926	6836118	444	74	-60	65
RXAC079	YM Granite	AC	680841	6836078	445	60	-60	65
RXAC080	YM Granite	AC	680752	6836028	445	51	-60	65
RXAC081	YM Granite	AC	680663	6835984	446	45	-60	65
RXAC082	YM Granite	AC	680572	6835936	447	61	-60	65
RXAC083	YM Granite	AC	680487	6835890	449	54	-60	65
RXAC084	YM Granite	AC	681588	6835982	444	55	-60	65
RXAC085	YM Granite	AC	680692	6835530	451	51	-60	65

RXAC086	YM Granite	AC	680606	6835474	452	51	-60	65
RXAC087	YM Granite	AC	680525	6835417	453	33	-60	65
RXAC088	YM Granite	AC	680436	6835371	453	25	-60	65
RXAC089	YM Granite	AC	680347	6835324	454	20	-60	65
RXAC090	YM Granite	AC	680255	6835282	454	18	-60	65
RXAC091	YM Granite	AC	680165	6835240	455	42	-60	65
RXAC092	YM Granite	AC	680867	6835620	448	107	-60	65
RXAC093	YM Granite	AC	680788	6835573	449	43	-60	65
RXAC094	YM Granite	AC	681053	6835717	446	74	-60	65
RXAC095	YM Granite	AC	680962	6835669	446	92	-60	65
RXAC096	YM Granite	AC	681222	6835805	446	49	-60	65
RXAC097	YM Granite	AC	681135	6835761	445	80	-60	65
RXAC098	YM Granite	AC	681397	6835909	445	60	-60	65
RXAC099	YM Granite	AC	681313	6835858	444	66	-60	65
RXAC100	YM Granite	AC	681492	6835938	443	61	-60	65
RXAC101	YM Granite	AC	681827	6834940	450	60	-60	65
RXAC102	YM Granite	AC	681754	6834903	449	72	-60	65
RXAC103	YM Granite	AC	681678	6834868	449	76	-60	65
RXAC104	YM Granite	AC	681581	6834829	449	69	-60	65
RXAC105	YM Granite	AC	681501	6834772	449	48	-60	65
RXAC106	YM Granite	AC	681388	6834737	448	25	-60	65
RXAC107	YM Granite	AC	681310	6834689	450	19	-60	65
RXAC108	YM Granite	AC	681222	6834641	451	57	-60	65
RXAC109	YM Granite	AC	681132	6834607	452	49	-60	65
RXAC110	YM Granite	AC	681047	6834549	453	97	-60	65
RXAC111	YM Granite	AC	680972	6834512	453	67	-60	65
RXAC112	YM Granite	AC	680874	6834480	452	70	-60	65
RXAC113	YM Granite	AC	680770	6834431	452	53	-60	65
RXAC114	YM Granite	AC	680689	6834394	457	52	-60	65
RXAC115	YM Granite	AC	681650	6835302	448	51	-60	65
RXAC116	YM Granite	AC	681578	6835263	448	70	-60	65
RXAC117	YM Granite	AC	681509	6835224	448	29	-60	65
RXAC118	YM Granite	AC	681415	6835183	448	41	-60	65
RXAC119	YM Granite	AC	681329	6835141	449	47	-60	65
RXAC120	YM Granite	AC	681244	6835107	448	66	-60	65
RXAC121	YM Granite	AC	681144	6835049	450	63	-60	65
RXAC122	YM Granite	AC	681062	6835001	451	52	-60	65
RXAC123	YM Granite	AC	680963	6834963	451	60	-60	65
RXAC124	YM Granite	AC	680877	6834924	452	61	-60	65
RXAC125	YM Granite	AC	680785	6834883	452	66	-60	65
RXAC126	YM Granite	AC	680693	6834829	453	27	-60	65
RXAC127	YM Granite	AC	680615	6834788	454	42	-60	65
RXAC128	YM Granite	AC	680511	6834758	456	29	-60	65

RXAC129	YM Granite	AC	680461	6834733	456	34	-60	65
RXAC130	YM Granite	AC	680410	6834708	457	37	-60	65
RXAC131	YM Granite	AC	680356	6834673	457	35	-60	65
RXAC132	YM Granite	AC	680095	6835795	452	42	-60	65
RXAC133	YM Granite	AC	680026	6835755	453	26	-60	65
RXAC134	YM Granite	AC	679957	6835721	454	48	-60	65
RXAC135	YM Granite	AC	679886	6835682	456	43	-60	65
RXAC136	YM Granite	AC	679815	6835657	457	16	-60	65
RXAC137	YM Granite	AC	679654	6836058	454	22	-60	65
RXAC138	YM Granite	AC	679579	6836022	456	24	-60	65
RXAC139	YM Granite	AC	679510	6835982	456	33	-60	65
RXAC140	YM Granite	AC	679430	6835948	456	60	-60	65
RXAC141	YM Granite	AC	679360	6835916	457	56	-60	65
RXAC142	YM Granite	AC	679285	6835875	458	52	-60	65
RXAC143	YM Granite	AC	679224	6835844	459	59	-60	65
RXAC144	YM Granite	AC	679149	6835801	462	7	-60	65
RXAC145	YM Granite	AC	679078	6835767	463	10	-60	65
RXAC146	YM Granite	AC	679025	6835743	465	6	-60	65
RXAC147	YM Granite	AC	678968	6835707	465	9	-60	65
RXAC148	YM Granite	AC	678917	6835686	465	6	-60	65
RXAC149	YM Granite	AC	678861	6835655	464	17	-60	65
RXAC150	YM Granite	AC	679838	6835848	454	54	-60	65
RXAC151	YM Granite	AC	679766	6835813	454	39	-60	65
RXAC152	YM Granite	AC	679691	6835775	455	35	-60	65
RXAC153	YM Granite	AC	679620	6835747	457	37	-60	65
RXAC154	YM Granite	AC	679548	6835705	458	42	-60	65
RXAC155	YM Granite	AC	679338	6836154	456	40	-60	65
RXAC156	YM Granite	AC	679271	6836119	457	35	-60	65
RXAC157	YM Granite	AC	679203	6836087	459	26	-60	65
RXAC158	YM Granite	AC	679127	6836056	460	31	-60	65
RXAC159	YM Granite	AC	679052	6836016	463	59	-60	65
RXAC160	YM Granite	AC	678986	6835978	463	57	-60	65
RXAC161	YM Granite	AC	678908	6835950	464	36	-60	65
RXAC162	YM Granite	AC	678869	6835917	464	15	-60	65
RXAC163	YM Granite	AC	678809	6835886	463	18	-60	65
RXAC164	YM Granite	AC	678749	6835866	463	32	-60	65
RXAC165	YM Granite	AC	678692	6835839	461	42	-60	65
RXAC166	YM Granite	AC	679252	6836488	454	41	-60	65
RXAC167	YM Granite	AC	679157	6836435	457	32	-60	65
RXAC168	YM Granite	AC	679076	6836387	459	27	-60	65
RXAC169	YM Granite	AC	678982	6836352	463	40	-60	65
RXAC170	YM Granite	AC	678897	6836305	463	51	-60	65
RXAC171	YM Granite	AC	678808	6836258	461	49	-60	65

RXAC172	YM Granite	AC	678720	6836215	460	50	-60	65
RXAC173	YM Granite	AC	678667	6836189	459	42	-60	65
RXAC174	YM Granite	AC	678610	6836153	459	40	-60	65
RXAC175	YM Granite	AC	678562	6836129	459	46	-60	65
RXAC176	YM Granite	AC	678496	6836097	459	63	-60	65
RXAC177	YM Granite	AC	678394	6836050	458	31	-60	65
RXAC178	YM Granite	AC	678342	6836020	458	45	-60	65
RXAC179	YM Granite	AC	678443	6836071	458	64	-60	65
RXAC180	YM Granite	AC	678965	6836689	458	45	-60	65
RXAC181	YM Granite	AC	678873	6836656	459	53	-60	65
RXAC182	YM Granite	AC	678787	6836608	457	41	-60	65
RXAC183	YM Granite	AC	678694	6836562	454	59	-60	65
RXAC184	YM Granite	AC	678605	6836522	454	62	-60	65
RXAC185	YM Granite	AC	678526	6836475	454	38	-60	65
RXAC186	YM Granite	AC	678469	6836448	454	45	-60	65
RXAC187	YM Granite	AC	678414	6836419	455	43	-60	65
RXAC188	YM Granite	AC	678361	6836390	455	58	-60	65
RXAC189	YM Granite	AC	678305	6836364	456	50	-60	65
RXAC190	YM Granite	AC	678254	6836337	457	55	-60	65
RXAC191	YM Granite	AC	678202	6836310	458	49	-60	65
RXAC192	YM Granite	AC	678146	6836282	458	51	-60	65
RXAC193	YM Granite	AC	680360	6835545	453	23	-60	65
RXAC194	YM Granite	AC	680302	6835514	455	29	-60	65
RXAC195	YM Granite	AC	680255	6835489	456	29	-60	65
RXAC196	YM Granite	AC	680198	6835464	455	40	-60	65
RXAC197	YM Granite	AC	680149	6835433	457	45	-60	65
RXAC198	YM Granite	AC	680092	6835409	458	47	-60	65
RXAC199	YM Granite	AC	680487	6835222	453	22	-60	65
RXAC200	YM Granite	AC	680434	6835195	453	20	-60	65
RXAC201	YM Granite	AC	680383	6835169	453	30	-60	65
RXAC202	YM Granite	AC	680332	6835145	454	25	-60	65
RXAC203	YM Granite	AC	680276	6835115	455	23	-60	65
RXAC204	YM Granite	AC	680222	6835085	456	33	-60	65
RXAC205	YM Granite	AC	680166	6835058	457	63	-60	65
RXAC206	YM Granite	AC	680898	6835267	451	68	-60	65
RXAC207	YM Granite	AC	680837	6835229	452	42	-60	65
RXAC208	YM Granite	AC	680765	6835196	453	31	-60	65
RXAC209	YM Granite	AC	680692	6835161	454	32	-60	65
RXAC210	YM Granite	AC	680623	6835122	453	41	-60	65
RXAC211	YM Granite	AC	680557	6835086	453	39	-60	65
RXAC212	YM Granite	AC	680484	6835052	453	18	-60	65
RXAC213	YM Granite	AC	680405	6835028	454	24	-60	65
RXAC214	YM Granite	AC	680335	6834978	456	27	-60	65

RXAC215	YM Granite	AC	680265	6834941	456	45	-60	65
RXAC216	YM Granite	AC	680167	6837584	443	66	-60	65
RXAC217	YM Granite	AC	680084	6837545	444	61	-60	65
RXAC218	YM Granite	AC	679989	6837497	444	38	-60	65
RXAC219	YM Granite	AC	679900	6837448	444	42	-60	65
RXAC220	YM Granite	AC	679808	6837402	445	32	-60	65
RXAC221	YM Granite	AC	679722	6837358	445	41	-60	65
RXAC222	YM Granite	AC	679630	6837308	445	56	-60	65
RXAC223	YM Granite	AC	679547	6837267	447	63	-60	65
RXAC224	YM Granite	AC	679458	6837216	447	39	-60	65
RXAC225	YM Granite	AC	679358	6837169	449	27	-60	65
RXAC226	YM Granite	AC	679268	6837135	450	42	-60	65
RXAC227	YM Granite	AC	679186	6837093	451	56	-60	65
RXAC228	YM Granite	AC	679094	6837040	452	35	-60	65
RXAC229	YM Granite	AC	678933	6836952	456	44	-60	65
RXAC230	YM Granite	AC	678844	6836911	457	54	-60	65
RXAC231	YM Granite	AC	678758	6836866	458	65	-60	65
RXAC232	YM Granite	AC	678666	6836817	458	44	-60	65
RXAC233	YM Granite	AC	678578	6836778	456	48	-60	65
RXAC234	YM Granite	AC	678488	6836724	455	62	-60	65
RXAC235	YM Granite	AC	678399	6836679	455	49	-60	65
RXAC236	YM Granite	AC	678308	6836630	455	50	-60	65
RXAC237	YM Granite	AC	678220	6836589	456	33	-60	65
RXAC238	YM Granite	AC	678130	6836540	457	42	-60	65
RXAC239	YM Granite	AC	678042	6836500	459	59	-60	65
RXAC240	YM Granite	AC	680225	6837055	444	49	-60	65
RXAC241	YM Granite	AC	680264	6837028	443	60	-60	65
RXAC242	YM Granite	AC	680223	6837010	443	55	-60	65
RXAC243	YM Granite	AC	680190	6836993	443	45	-60	65
RXAC244	YM Granite	AC	680229	6837098	443	44	-60	65
RXAC245	YM Granite	AC	680188	6837078	444	48	-60	65
RXAC246	YM Granite	AC	680153	6837065	443	43	-60	65
RXAC247	YM Granite	AC	679966	6837068	445	32	-60	65
RXAC248	YM Granite	AC	679932	6837049	445	34	-60	65
RXAC249	YM Granite	AC	679892	6837030	446	32	-60	65
RXAC250	YM Granite	AC	679856	6837007	446	36	-60	65
RXAC251	YM Granite	AC	681588	6837376	442	41	-60	65
RXAC366	Kurrajong	AC	679001	6835074	468	57	-60	65
RXAC367	Kurrajong	AC	678953	6835055	469	53	-60	65
RXAC368	Kurrajong	AC	678902	6835021	469	61	-60	65
RXAC369	Kurrajong	AC	678846	6834992	470	58	-60	65
RXAC370	Kurrajong	AC	678947	6835164	467	40	-60	65
RXAC371	Kurrajong	AC	678890	6835135	468	56	-60	65

RXAC372	Kurrajong	AC	678838	6835109	469	52	-60	65
RXAC373	Kurrajong	AC	678782	6835080	470	53	-60	65
RXAC374	Kurrajong	AC	678736	6835043	470	69	-60	65
RXAC375	Kurrajong	AC	678688	6835014	470	60	-60	65
RXAC376	Kurrajong	AC	678631	6834977	470	57	-60	65
RXAC377	Kurrajong	AC	678669	6835201	470	63	-60	65
RXAC378	Kurrajong	AC	678720	6835225	470	48	-60	65
RXAC379	Kurrajong	AC	678774	6835253	469	60	-60	65
RXAC380	Kurrajong	AC	678830	6835281	468	57	-60	65
RXAC381	Kurrajong	AC	678887	6834909	470	59	-60	65
RXAC382	Kurrajong	AC	678942	6834935	469	55	-60	65
RXAC383	Kurrajong	AC	678995	6834965	469	48	-60	65
RXAC384	Kurrajong	AC	679055	6834992	469	37	-60	65
RXAC420	Bunker	AC	679495	6832752	462	54	-60	65
RXAC421	Bunker	AC	679421	6832722	463	57	-60	65
RXAC422	Bunker	AC	679354	6832681	464	60	-60	65
RXAC423	Bunker	AC	679280	6832649	466	62	-60	65
RXAC424	Bunker	AC	679208	6832625	468	57	-60	65
RXAC425	Bunker	AC	679138	6832594	469	62	-60	65
RXAC426	Bunker	AC	679062	6832546	469	41	-60	65
RXAC427	Bunker	AC	678982	6832509	469	36	-60	65
RXAC428	Bunker	AC	679202	6832812	464	51	-60	65
RXAC429	Bunker	AC	679148	6832786	465	69	-60	65
RXAC430	Bunker	AC	679094	6832762	467	66	-60	65
RXAC431	Bunker	AC	679353	6833017	457	57	-60	65
RXAC432	Bunker	AC	679289	6832988	457	69	-60	65
RXAC433	Bunker	AC	679224	6832958	459	46	-60	65
RXAC434	Bunker	AC	679172	6832928	461	55	-60	65
RXAC435	Bunker	AC	679121	6832930	461	50	-60	65
RXAC436	Bunker	AC	679399	6833149	456	69	-60	65
RXAC437	Bunker	AC	679326	6833116	455	59	-60	65
RXAC438	Bunker	AC	679258	6833085	455	58	-60	65
RXAC439	Bunker	AC	679203	6833059	456	74	-60	65
RXAC440	Bunker	AC	679144	6833033	458	63	-60	65
RXAC441	Bunker	AC	679086	6833011	459	58	-60	65
RXAC442	Bunker	AC	679380	6833244	457	72	-60	65
RXAC443	Bunker	AC	679308	6833209	456	66	-60	65
RXAC444	Bunker	AC	679252	6833189	456	70	-60	65
RXAC445	Bunker	AC	679194	6833168	456	42	-60	65
RXAC446	Bunker	AC	679137	6833139	456	54	-60	65
RXAC447	Bunker	AC	679383	6833362	458	57	-60	65
RXAC448	Bunker	AC	679330	6833346	458	57	-60	65
RXAC449	Bunker	AC	679278	6833319	458	75	-60	65

RXAC450	Bunker	AC	679224	6833290	458	70	-60	65
RXAC451	Bunker	AC	679174	6833268	457	68	-60	65
RXAC452	Bunker	AC	679355	6833463	459	66	-60	65
RXAC453	Bunker	AC	679293	6833436	459	79	-60	65
RXAC454	Bunker	AC	679234	6833398	459	54	-60	65
RXAC455	Bunker	AC	679176	6833379	459	56	-60	65
RXAC456	Bunker	AC	679129	6833355	459	65	-60	65
RXAC457	Bunker	AC	679060	6832886	465	40	-60	65
RXAC458	Bunker	AC	679690	6833288	457	90	-60	65
RXAC459	Bunker	AC	679635	6833260	457	62	-60	65
RXAC460	Bunker	AC	679595	6833346	458	42	-60	65
RXAC461	Bunker	AC	679583	6833456	460	33	-60	65
RXAC462	Bunker	AC	679650	6833371	458	73	-60	65
RXAC463	Bunker	AC	679751	6833315	457	63	-60	65
RXAC464	Bunker	AC	679704	6833386	458	64	-60	65
RXAC465	Bunker	AC	679636	6833490	460	76	-60	65
RXAC466	Bunker	AC	679694	6833513	460	59	-60	65
RXAC467	Bunker	AC	679387	6833802	460	59	-60	65
RXAC468	Bunker	AC	679325	6833781	460	56	-60	65
RXAC469	Bunker	AC	679273	6833758	460	60	-60	65
RXAC470	Bunker	AC	679221	6833725	461	52	-60	65
RXAC471	Bunker	AC	679132	6834284	464	52	-60	65
RXAC472	Bunker	AC	679078	6834250	465	54	-60	65
RXAC473	Bunker	AC	679026	6834228	466	63	-60	65
RXAC474	Bunker	AC	678971	6834203	467	66	-60	65
RXAC475	Youanmi S	AC	679891	6829653	445	66	-60	270
RXAC476	Youanmi S	AC	679974	6829653	445	60	-60	270
RXAC477	Youanmi S	AC	680062	6829654	445	40	-60	270
RXAC478	Youanmi S	AC	680151	6829654	445	70	-60	270
RXAC479	Youanmi S	AC	680215	6829644	445	15	-60	270
RXAC480	Youanmi S	AC	680294	6829655	445	15	-60	270
RXAC481	Youanmi S	AC	680374	6829652	445	30	-60	270
RXAC482	Youanmi S	AC	680457	6829652	445	15	-60	270
RXAC483	Youanmi S	AC	680537	6829651	445	15	-60	270
RXAC484	Youanmi S	AC	680615	6829654	445	15	-60	270
RXAC485	Youanmi S	AC	680698	6829653	445	15	-60	270
RXAC486	Youanmi S	AC	680775	6829652	445	30	-60	270
RXAC487	Youanmi S	AC	680857	6829653	445	46	-60	270

Competent Person Statements

Exploration Results

The information in this report that relates to Data and Exploration Results is based on information compiled and reviewed by Mr Gregor Bennett a Competent Person who is a Member of the Australian Institute Geoscientists (AIG) and Exploration Manager at Rox Resources. Mr Bennett has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

The information in this report that relates to previous Exploration Results, was either prepared and first disclosed under the JORC Code 2004 or under the JORC Code 2012 and was previously disclosed to ASX on 24 Sep, 7 Nov, 19 Nov 2019 and 6 May, 26 Jun, 23 Jun, 28 Jul, 1 Sep and 7 Oct 2020 or has been cross-referenced in the text to the date of original announcement to ASX. In the case of the 2004 JORC Code Exploration Results and Mineral Resources, they have not been updated to comply with the JORC Code 2012.

Resource Statements

The information in this report that relates to gold Mineral Resources for the Youanmi Project was reported to the ASX on 17 April 2019 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 17 April 2019, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 17 April 2019 continue to apply and have not materially changed.

The information in this report that relates to gold Mineral Resources for the Mt Fisher project was reported to the ASX on 11 July 2018 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 11 July 2018, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 11 July 2018 continue to apply and have not materially changed.

The information in this report that relates to nickel Mineral Resources for the Fisher East project was reported to the ASX on 5 February 2016 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 5 February 2016, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 5 February 2016 continue to apply and have not materially changed.

The information in this report that relates to nickel Mineral Resources for the Collurabbie project was reported to the ASX on 18 August 2017 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 18 August 2017, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 18 August 2017 continue to apply and have not materially changed.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Rox Resources Limited planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

About Rox Resources

Rox Resources Limited is an emerging Australian minerals exploration company. The company has a number of key assets at various levels of development with exposure to gold, nickel, copper and platinum group elements (PGE's). The 1.2Moz Youanmi Gold Project and the Fisher East Nickel Project (78kt Ni) being the most advanced projects with exploration ongoing at the Mt Fisher Gold Project and the Collurabbie Nickel-Copper-PGE Project.

Youanmi Gold Project (Youanmi Gold Mine 70%, Regional JV's 50% earn-in)

The Youanmi Gold Mine is located 480 km to the northeast of Perth, Western Australia. The Youanmi Mining Centre has produced an estimated 667,000 oz of gold (at 5.47 g/t Au) since discovery in 1901 during three main periods: 1908 to 1921, 1937 to 1942, and 1987 to 1997.

The project is situated in the Youanmi Greenstone Belt, within the Southern Cross Province of the Archaean Yilgarn Craton in Western Australia. The structure of the Youanmi Project is dominated by the north-trending Youanmi Fault Zone. Most of the gold mineralisation seen at the project is hosted within north-northwest splays off the north-northeast trending Youanmi Fault.

Fisher East Nickel Project (100%)

The Fisher East nickel project is located in the North Eastern Goldfields region of Western Australia and hosts several nickel sulphide deposits. The total project area is ~350km2.

Discovery of, and drilling at the Camelwood, Cannonball and Musket nickel prospects has defined a JORC 2012 Mineral Resource (ASX:RXL 5 February 2016) of 4.2Mt grading 1.9% Ni reported at 1.0% Ni cut-off (Indicated Mineral Resource: 3.7Mt grading 1.9% Ni, Inferred Mineral Resource: 0.5Mt grading 1.5% Ni) comprising massive and disseminated nickel sulphide mineralisation, and containing 78,000 tonnes of nickel. Higher grade mineralisation is present in all deposits (refer to ASX announcement above) and is still open at depth beneath each deposit. Additional nickel sulphide deposits continue to be discovered (e.g. Sabre) and these will add to the resource base. Exploration is continuing to define further zones of potential nickel sulphide mineralisation.

Collurabbie Gold-Nickel Project (100%)

The Collurabbie project is located in the highly prospective North Eastern Goldfields region of Western Australia and is prospective for gold and nickel. The project area of ~123km2 hosts the Olympia nickel sulphide deposit and a number of other prospects for nickel sulphide mineralisation. A JORC 2012 Inferred Mineral Resource of 573,000t grading 1.63% Ni, 1.19% Cu, 0.082% Co, 1.49g/t Pd, 0.85g/t Pt has been defined at Olympia (ASX: RXL 18 August 2017). The style of nickel sulphide mineralisation is different to that at Fisher East, with a significant copper and PGE component at Collurabbie, and has been compared to the Raglan nickel deposits in Canada (>1Mt contained nickel). In addition, there is potential for gold mineralisation, with several strong drilling intersections including 2m @ 2.4g/t Au from the Naxos prospect.

Mt Fisher Gold Project (100%)

The Mt Fisher gold project is located in the North Eastern Goldfields region of Western Australia, adjacent to the Fisher East nickel project, and hosts several gold deposits. The total project area is ~220km2.

Drilling by Rox has defined numerous high-grade gold targets and a JORC 2012 Measured, Indicated and Inferred Mineral Resource (ASX:RXL 11 July 2018) of 1.0 million tonnes grading 2.7 g/t Au reported at a 0.8 g/t Au cut-off exists for 89,000 ounces of gold (Measured: 170,000 tonnes grading 4.1 g/t Au, Indicated: 220,000 tonnes grading 2.7 g/t Au, Inferred: 630,000 tonnes grading 2.3 g/t Au) aggregated over the Damsel, Moray Reef and Mt Fisher deposits.

JORC Table 1 - Section 1 Data and Sampling Techniques

Criteria	JORC Code explanation	Commentary
Sampling techniques		RC hole diameter was 5.5" (140 mm) reverse circulation percussion (RC). Sampling of RC holes was undertaken by collecting 1m cone split samples at intervals.
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	Diamond drill hole core size is NQ2 size diameter through the mineralisation. Sampling of diamond holes was by cu half core as described further below.
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Aircore hole diameter was 85mm. Sampling of AC holes was undertaken by collecting (scoop) a combination o composite sampling (2m to 5m)
		Drill holes were generally angled at -65 ⁰ towards grid northeast (but see Table for individual hole dips and azimuths) to intersect geology as close to perpendicular as possible.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Drillhole locations were picked up by differential GPS. Logging of drill samples included lithology, weathering, texture, moisture and contamination (as applicable). Sampling protocols and QAQC are as per industry best practice procedures.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases	RC drillholes were sampled on 1m intervals using a cone splitter. Diamond core is dominantly NQ2 size, sampled on geological intervals, with a minimum of 0.2 m up to a maximum of 1.2 m. HQ and NQ2 holes were cut in half, with one half sent to the lab and one half retained. Aircore drilling was sampled (scooped) using a combination of composite sampling (2m to 4m)
	more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Samples were sent to Intertek Genalysis in Perth, crushed to 10mm, dried and pulverised (total prep) in LM5 units (Some samples > 3kg were split) to produce a sub-sample. RC and diamond pulps were analysed by 50g Fire Assay with ICP-OES (Intertek code FA50/OE). AC pulps were analysed by 25gram aqua regia 52 element (Intertek code AR25/MS52).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique was Reverse Circulation (RC) and diamond core (DD). The RC hole diameter was 140mm face sampling hammer. Hole depths reported range from 50m to 250m for RC and 40m to 380m for diamond. Drilling technique was aircore (AC) with hole diameter of 85mm. Hole depths reported range from 6m to 107m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC and AC drill recoveries were high (>90%).
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Samples were visually checked for recovery, moisture and contamination and notes made in the logs.

Criteria	JORC Code explanation	Commentary		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, and therefore no sample bias.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Detailed geological logs have been carried out on all RC and AC holes, but no geotechnical data have been recorded (or is possible to be recorded due to the nature of the sample). Detailed geological and geotechnical logs were carried ou on all diamond drill holes for recovery, RQD, structures etc which included structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness, fill material and this data is stored in the database.		
		The geological data would be suitable for inclusion in a Mineral Resource estimate.		
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of diamond core and RC and AC chips recorded lithology, mineralogy, mineralisation, weathering, colour, and other sample features. RC chips are stored in plastic RC chip trays.		
	The total length and percentage of the relevant intersections logged	All holes were logged in full.		
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Drill core was cut in half on site using a core saw. Al samples were collected from the same side of the core preserving the orientation mark in the kept core half.		
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the drill rig using a cone splitter. If any mineralised samples were collected wet these were noted in the drill logs and database. AC samples were scooped directly from drill sample piles.		
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation followed industry best practice. Fire Assay samples were dried, coarse crushing to ~10mm followed by pulverisation of the entire sample in an LM5 o equivalent pulverising mill to a grind size of 85% passing 75 micron.		
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and blank samples. The insertion rate of these was approximately 1:20.		
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	For RC drilling field duplicates were taken on a routine basis at an approximate 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run. No diamond core field duplicates were taken. No field duplicates were taken for AC drilling.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation which lies in the percentage range.		

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique involved Fire Assay 50g for RC. The analytical technique involved 25g aqua regia for AC.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical or portable analysis tools were used to determine assay values stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed for consistency and any discrepancies.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior personnel from the Company have visually inspected mineralisation within significant intersections.
	The use of twinned holes.	Two twin RC holes have been completed at the Grace Prospect and confirm reliability of previous results.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected using a standard set of Excel templates on Toughbook laptop computers in the field. These data are transferred to Geobase Pty Ltd for data verification and loading into the database.
	Discuss any adjustment to assay data.	No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations have been established using a field GPS unit.
	Specification of the grid system used.	The grid system is MGA_GDA94, zone 50 for easting, northing and RL.
	Quality and adequacy of topographic control.	The topography of the mined open pits is well defined by historic monthly survey pickups
Data spacing and distribution	Data spacing for reporting of Exploration Results.	RC and diamond drill hole spacing varies 40-200 metres between drill sections, with some areas at 40 metre dril section spacing. Down dip step-out distance varies 20-100 metres. AC drill hole spacing along section lines is variable and ranges between 40m and 100m. The section lines were spaced at between 80m and 400m intervals.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for JORC(2012) classifications applied.

Criteria	JORC Code explanation	Commentary
		No sample compositing has occurred for diamond core drilling. Sample intervals are based on geological boundaries with even one metre samples between.
	Whether sample compositing has been applied.	For RC samples, 1m samples through target zones were sent to the laboratory for analysis. The remainder of the hole was sampled using 4m composite samples. For 4m composite samples >0.25g/t Au, 1m samples were collected and sent to the laboratory for analysis.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation strikes generally NNW-SSE and dips to the west at approximately -50 degrees. The drill orientation was 065 and 245 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Sample security is managed by the Company. After preparation in the field samples are packed into polyweave bags and despatched to the laboratory. For a large number of samples these bags were transported by the Company directly to the assay laboratory. In some cases the sample were delivered by a transport contractor the assay laboratory. The assay laboratory audits the samples on arrival and reports any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have yet been completed.

JORC Table 1 - Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Rox Resources Ltd is in a Joint Venture Agreement with Venus Metals Corporation Ltd under which it has a 70% interest in the Youanmi Gold Mine Joint Venture (OYG Joint Venture). Tenements in the JV consist of the following mining leases: M 57s /10, 51,76,97,109, 135, 160A, 164, 165, 166 and 167.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Significant previous exploration has been carried our throughout the project by various companies, including AC/RAB, RC drilling and diamond drilling 1971-1973 WMC: RAB, RC and surface diamond drilling 1976 Newmont: 10 surface diamond drilling (predominantly targeting base metals). 1980-1986 BHP: RAB, RC and surface diamond drilling (predominantly targeting base metals). 1986-1993 Eastmet: RAB, RC and surface diamond drilling. 1993-1997 Goldmines of Australia: RAB, RC and surface diamond drilling. Underground mining and associated underground diamond drilling. 2000-2003 Aquila Resources Ltd: Shallow RAB and RC drilling 2004-2005 Goldcrest Resources Ltd: Shallow RAB and RC drilling; data validation. 2007- 2013 Apex Minerals NL: 9 diamond holes targeting extensions to the Youanmi deeps resource.
Geology	Deposit type, geological setting and style of mineralisation.	The Youanmi Project straddles a 40km strike length of the Youanmi Greenstone Belt, lying within the Southern Cross Province of the Archaean Yilgarn Craton in Westerr Australia. The greenstone belt is approximately 80km long and 25km wide, and incorporates an arcuate, north-trending major crustal structure termed the Youanmi Fault Zone. This structure separates two discordant greenstone terrains, with the stratigraphy to the west characterised by a series of weakly deformed, layered mafic complexes (Windimurra Black Range, Youanmi and Barrambie) enveloped by strongly deformed, north-northeast trending greenstones. Gold mineralisation is developed semi-continuously in shear zones over a strike length of 2,300m along the westerr margin of the Youanmi granite. The Youanmi gold lodes are invariably associated with a high pyrite and arsenopyrite content and the primary ore is partially to totally refractory. There are a series of major fault systems cutting through the Youanmi trend mineralisation that have generated some significant off-sets. The Youanmi Deeps project area is subdivided into three main areas or fault blocks by cross-cutting steep south-easi trending faults; and these are named Pollard, Main, and Hil End from south to north respectively. Granite hosted gold mineralisation occurs at several sites most notably Grace and the Plant Zone Prospects. Gold mineralization occurs as free particles within quartz-sericite altered granite shear zones. The Commonwealth-Connemarra mineralised trend is centred 4km northwest of the Youanmi plant. The geology, comprises a sequence of folded mafic and felsic volcanic rocks intercalated with BIF and intruded by granite along the eastern margin. Gold mineralisation is developed over a 600m strike length, associated with a north trending and steeply west dipping shear zone that traverses the northwest trending succession.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to drill results Table/s and the Notes attached thereto.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay intervals have been length weighted. No top cuts have been applied. A lower cut-off of 0.5g/t Au was applied for RC and diamond core.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralisation over 0.5g/t Au has been included in aggregation of intervals for RC and diamond core. Mineralisation over 0.1g/t Au has been included in aggregation of intervals for AC.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used or reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect	The mineralisation strikes generally NNW-SSE and dips to the west at approximately -50 degrees. The drill orientation was 065 and 245 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike. Given the angle of the drill holes and the interpreted dip of the host rocks and mineralisation (see Figures in the text), reported intercepts approximate true width.
Diagrams	(e.g. 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Table in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of both low and high grades and widths is practiced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the announcement.

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Further work (AC, RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.