

Corporate Details

Zenith Minerals Limited (ASX:ZNC)

ABN: 96 119 397 938

 Issued Shares
 294.4M

 Unlisted options
 9.6M

 Mkt. Cap. (\$0.14)
 \$41M

 Cash (30 Sep 20)
 \$5.0M

 Debt
 Nil

Directors

Peter Bird Exec Chair
Michael Clifford Director-CEO
Stan Macdonald Non-Exec Director
Julian Goldsworthy Non-Exec Director
Graham Riley Non-Exec Director
Nicholas Ong CFO & Co Sec

Major Shareholders

Directors	~8%
HSBC Custody. Nom.	9.5%
J P Morgan	5.3%
Granich	4.5%
Miquilini	3.4%
Abinadon	3.5%

Contact Us

Level 2, 33 Ord Street WEST PERTH WA 6005 PO Box 1426 WEST PERTH WA 6872

Telephone: (08) 9226 1110 Email:info@zenithminerals.com.au Web:www.zenithminerals.com.au

FURTHER POSITIVE RC DRILLING RESULTS FROM THE SPLIT ROCKS GOLD PROJECT

- Further assay results from phase one of the reverse circulation (RC) drill campaign at the Dulcie Laterite Pit target validate the concept of a broad scale gold mineralised shear zone target.
- The Company previously reported initial 4m composite assay results for the first 18 RC holes of the drill program (ZDRC026 to ZDRC043) on the 17th Dec 2020, from a total of 27 RC holes completed on 120m spaced sections. Drilling testing the upper portion of the drill target returned gold mineralisation in every hole, except one. Notable results previously reported include:
 - o 8m @ 7.4 g/t Au incl 4m @ 14.4 g/t Au
 - 12m @ 3.1 g/t Au incl 8m @ 4.4 g/t Au
 - o 8m @ 1.1 g/t Au
 - o 4m @ 1.8 g/t Au
 - 8m @ 0.6 g/t Au within 20m @ 0.4 g/t Au
 - 15m @ 0.5 g/t Au (eoh) within 39m @ 0.4g/t Au
 - o 16m @ 0.6 g/t Au
 - o 8m @ 0.8 g/t Au and 4m @ 1.2 g/t Au
- New 4m composite assay results now received for the remaining 9 RC holes (ZDRC044 to 052) along with 1m resamples from the first 18 RC holes are reported in this ASX release. The 1m resample results affirm the previous 4m composite results and include:
 - o 9m @ 3.9 g/t Au incl 3m @ 9.1 g/t Au
 - o 8m @ 2.7 g/t Au incl 2m @ 9.2 g/t Au and 12m @ 0.5 g/t Au
 - o 12m @ 1.2 g/t Au and 1m @ 1.8 g/t Au and 1m @ 9.9 g/t Au
 - o 13m @ 0.7 g/t Au
 - o 17m @ 0.5 g/t Au
 - o 17m @ 0.5 g/t Au

The new 4m composites are as follows:

- o 4m @ 3.3 g/t Au and 4m @ 1.1 g/t Au
- o 4m @ 1.7 g/t Au
- o 4m @ 1.1 g/t Au and 4m @ 0.4 g/t Au
- o 4m @ 0.8 g/t Au
- The large-scale gold bearing bedrock shear zone extends over 2km in strike and remains open down dip (at 30°) with a thickness ranging from 4 to 40m (refer to Figures 3 5). The depth extent is yet to be fully defined.
- Gold zones appear to also be locally stacked and open to the east, as well as down-dip to the west, requiring a second phase of RC drilling – this will commence early this year.

- These RC results compliment those previously reported from aircore drilling on the 2-Dec-20. These results included:
 - o 14m @ 3.5 g/t Au
 - o 4m @ 2.9 g/t Au
 - o 4m @ 1.5 g/t Au
 - o 1m @ 3.7 g/t Au & 1m @ 1.1g/t Au
 - o 5m @ 1.6 g/t Au
 - o 20m @ 0.7 g/t Au (eoh)
 - o 12m @ 1.2 g/t Au
 - Remaining 1m resamples will be submitted to the laboratory shortly. Follow-up drilling is anticipated to recommence upon receipt of all assay results and a refined interpretation of current available data. On ground activity including drilling is anticipated in early February.
 - The Dulcie Laterite Pit is one of 3 high priority targets to being evaluated first at Split Rocks, the other two are Dulcie North with intersections of 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au and Dulcie Far North with an intersection of 5m @ 5.6 g/t Au. Permitting for follow-up drilling of these two areas is in progress.
- A further 8 of the originally 18 defined gold targets have yet to have first pass drill testing. This work will proceed in early 2021.

Commenting on the results announced Chairman Peter Bird said "We have now validated the first of multiple targets in the Dulcie area with further drilling planned at Dulcie North and Dulcie Far North. The Dulcie area is the current focus for the Company, however another 8 targets are sited within 18km of prospective strike. The next stage at Dulcie is to try and identify some higher-grade zones and to consider some great depth extensions. This activity will follow immediately after we have completed our refined interpretation of the dataset we now have. The objective here is to define a broad scale open pit type resource. The current year is going to be very interesting at Split Rocks especially once we get the permits to drill Dulcie North and Dulcie Far North"

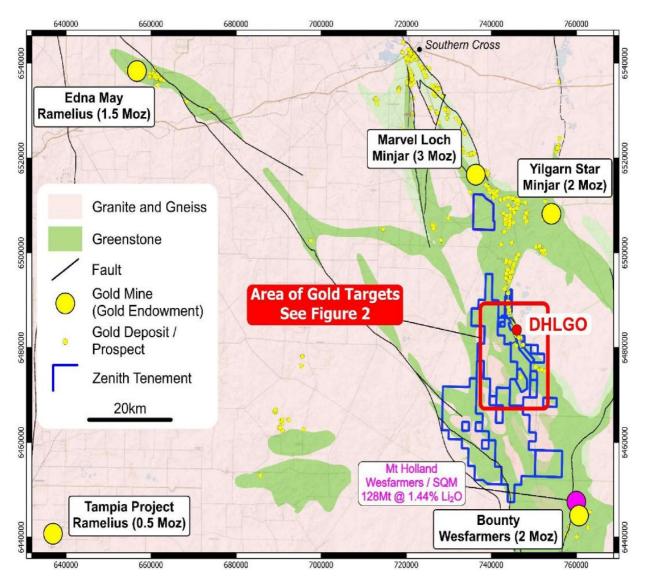
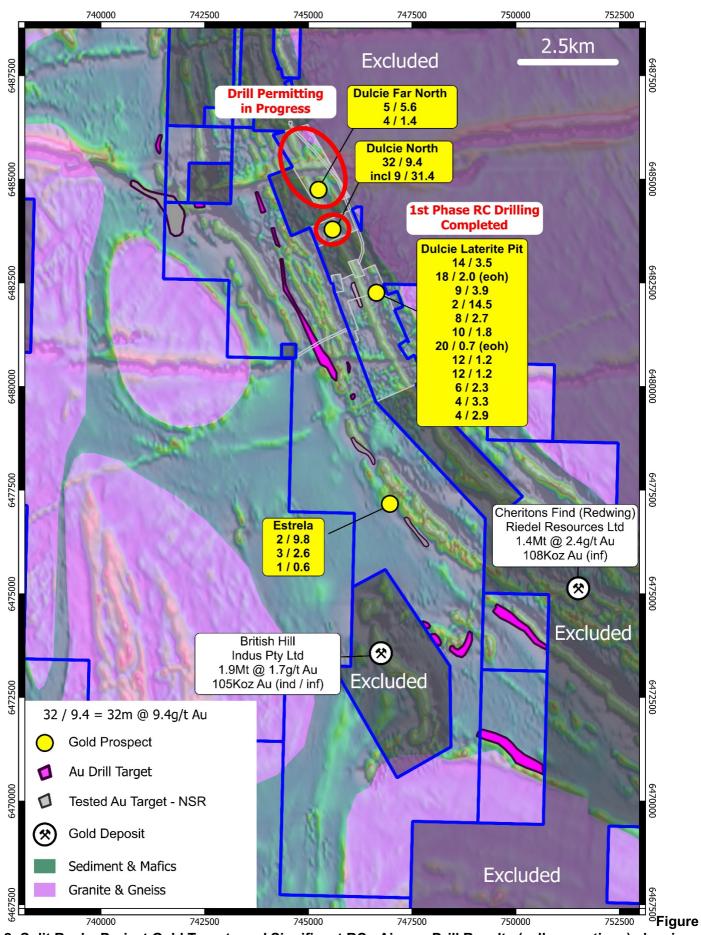



Figure 1- Split Rocks Project Location Map Showing Zenith tenements, Dulcie Heap Leach Gold Operation (DHLGO) Prospect and Regional Gold Endowment

2: Split Rocks Project Gold Targets and Significant RC - Aircore Drill Results (yellow captions) showing gold drill targets, and areas of Planned Drilling

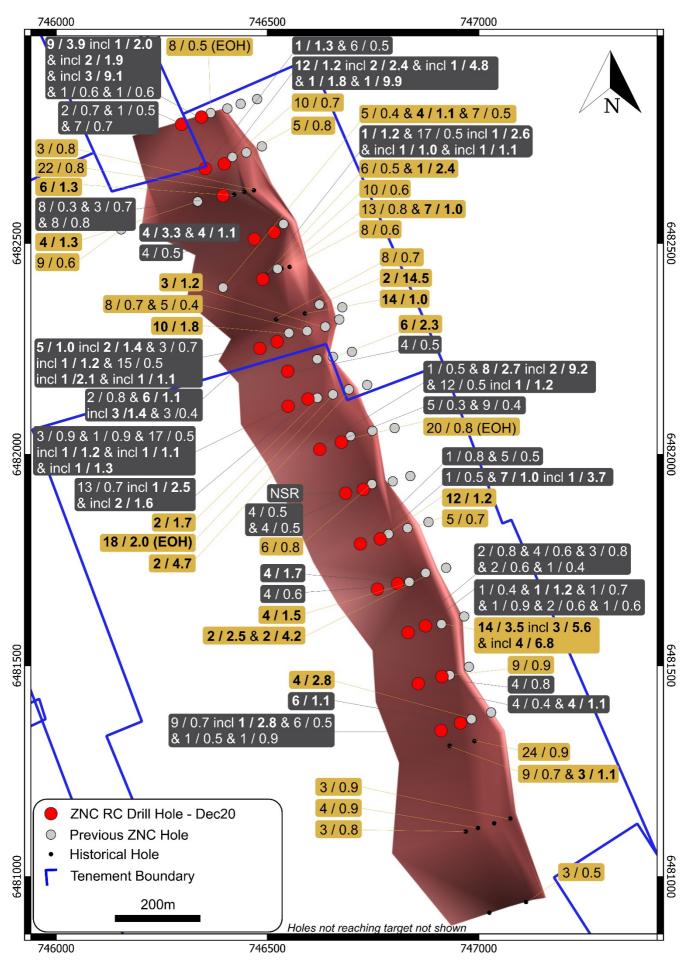


Figure 3: Split Rocks Project – Dulcie Laterite Pit Plan with Significant Drill Results and Bedrock Gold Drill Target (0.2 g/t Au minimum cut-off, maximum 8m internal dilution).

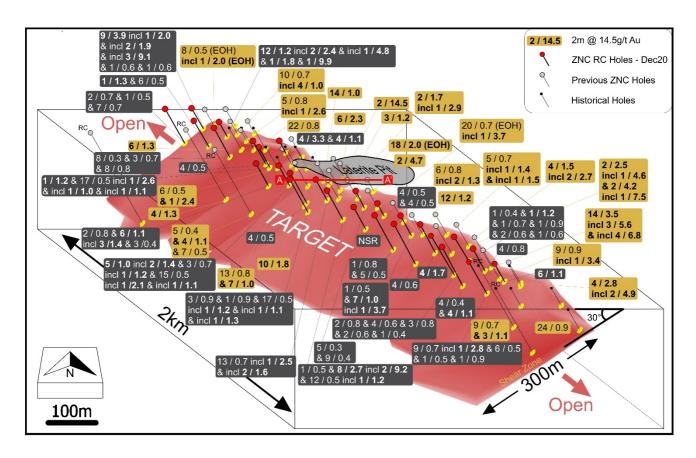


Figure 4: Split Rocks Project – 3D View of Dulcie Laterite Pit Significant Drill Results and Bedrock Gold Drill Target (0.2 g/t Au minimum cut-off, maximum 8m internal dilution).

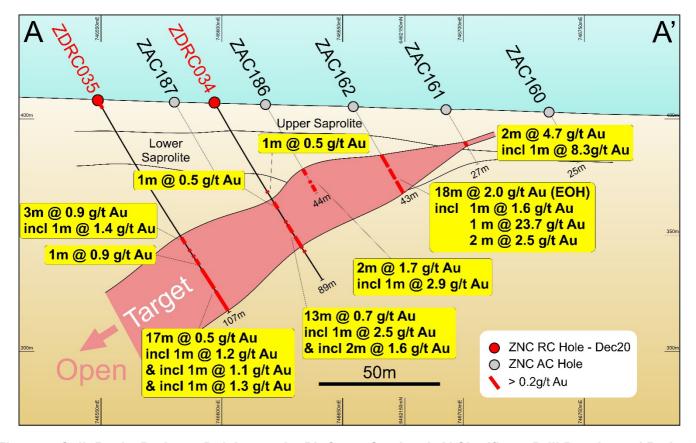


Figure 5: Split Rocks Project – Dulcie Laterite Pit Cross Section A-A' Significant Drill Results and Bedrock Gold Drill Target (Refer to Figure 4 for Section Location)

Split Rocks Project Background on Gold Potential

Zenith's Split Rocks project is located within the Southern Cross region in the Forrestania greenstone belt, approximately halfway between Perth and Kalgoorlie. Several very large current and previously operated gold mines located north and south along strike from Zenith's project area attest to the regional gold endowment of this area.

A major targeting exercise by the Company's geological team initially identified 12 high-quality gold drill targets, subsequently expanded to 18 targets in the north eastern sector of the Company's 100% owned Split Rocks project (Refer to ZNC ASX Release 2 September 2020).

Drilling to date has tested 10 targets with outstanding first pass results returned at:

- <u>Dulcie North</u>: 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au with the highest individual 1m sample returning 199.2 g/t Au.
- Dulcie Laterite Pit:
 - 2m @ 14.5 g/t Au, incl. 1m @ 20.8 g/t Au,
 - 18m @ 2.0 g/t Au (EOH) incl. 1m @ 23.7 g/t Au
 - 14m @ 3.5 g/t Au &
 - 2m @ 4.7 g/t Au incl. 1m @ 8.3 g/t Au
- Estrela Prospect: 2m @ 9.8 g/t Au (open to north & south)
- o Dulcie Far North: 5m @ 5.6 g/t Au incl. 4m @ 6.8 g/t Au

Phase 2 follow-up drilling at Estrela provided sufficient encouragement to continue to test the identified structural target further along strike to the north with new results including 2m @ 0.4 g/t Au and 1m @ 0.6 g/t Au along strike from 2m @ 9.8 g/t Au and 3m @ 2.6 g/t Au. The mineralised structure at Estrela appears to be present over at least 200 metres of strike but is disrupted by numerous unmineralized pegmatites.

A further 8 of the 18 targets generated by Zenith extending over 18km of strike are yet to have first pass drill testing. Given recent positive ASX announcements, first pass testing of these additional targets will now be deferred whilst the Company concentrates its efforts on following up the significant near surface gold results at the 3 Dulcie targets, Dulcie Laterite Pit, Dulcie North & Dulcie Far North.

RC drilling at the Dulcie Laterite Pit is the subject of this ASX release, whilst permitting is now anticipated to be completed in January for a major follow-up drill campaign at Dulcie North and Dulcie Far North prospects.

Table 1: Significant Gold Intersections from Initial 4m Composite Sampling of Split Rocks RC 18 holes (ZDRC026 to ZDRC043) – Results awaited for 9 holes (ZDRC044 to ZDRC052)

	Init	ial 4m Comp	osite Sampl	es	1m Re-Sampling					
Hole	From (m)	To (m)	Interval (m)	Original Au Grade (g/t)	Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	
ZDRC026	36	44	8	0.8	ZDRC026	37	43	6	1.1	
ZDRC027	40	48	8	0.8	ZDRC027	38	47	9	0.7	
					incl	41	42	1	2.8	
&	72	76	4	1.2	&	70	76	6	0.5	
&	96	100	4	0.5	&	99	100	1	0.5	
					&	117	118	1	0.9	
					ZDRC028	1	2	1	0.4	
ZDRC028	8	12	4	0.8	&	11	12	1	1.2	
&	40	44	4	1.9	&	40	41	1	0.7	
					&	46	47	1	0.9	
&	52	56	4	0.4	&	53	55	2	0.6	
					&	62	63	1	0.6	
&	68	72	4	0.7				_		

	Init	tial 4m Comp	osite Sampl	es		1m Re-Sampling			
Hole	From (m)	To (m)	Interval (m)	Original Au Grade (g/t)	Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)
					ZDRC029	0	2	2	0.8
ZDRC029	44	48	4	0.5	&	44	48	4	0.6
					&	59	62	3	0.8
					&	70	72	2	0.6
					&	85	86	1	0.4
					ZDRC030	36	37	1	0.5
ZDRC030	44	52	8	0.6	&	46	53	7	1.0
					incl	46	47	1	3.7
					ZDRC031	51	52	1	0.8
ZDRC031	68	72	4	0.7	&	65	70	5	0.5
ZDRC032	20	24	4	0.5	ZDRC032	23	28	5	0.3
&	40	48	8	0.5	&	37	46	9	0.4
					ZDRC033	50	51	1	0.5
ZDRC033	52	60	8	7.4	&	54	62	8	2.7
incl	52	56	4	14.4	incl	54	56	2	9.2
&	68	72	4	0.4	&	67	79	12	0.5
					incl	67	68	1	1.2
					ZDRC034	44	45	1	0.5
					&	50	51	1	0.5
ZDRC034	56	72	16	0.6	&	59	72	13	0.7
					incl	59	60	1	2.5
					& incl	70	72	2	1.6
ZDRC035	0	4	4	0.4	ZDRC035	0	4	4	0.4
&	68	72	4	0.9	&	69	72	3	0.9
					incl	69	70	1	1.4
&	80	84	4	0.9	&	82	83	1	0.9
&	92	107 (EOH)	15	0.5	&	88	105	17	0.5
					incl	88	89	1	1.2
					& incl	94	95	1	1.1
					& incl	103	104	1	1.3
ZDRC036	0	4	4	1.0	ZDRC036	0	5	5	1.0
					incl	0	2	2	1.4
&	44	52	8	0.5	&	47	50	3	0.7
					incl	47	48	1	1.2
&	64	80	20	0.4	&	65	80	15	0.5
					incl	67	68	1	2.1
					& incl	76	77	1	1.1
ZDRC037	0	4	4	0.4	ZDRC037	0	2	2	0.8
&	60	68	8	0.7	&	63	69	6	1.1
					incl	66	69	3	1.4
					&	103	106	3	0.4
ZDRC038	36	40	4	0.4	ZDRC038	39	40	1	1.2

	Initial 4m Composite Samples				1m Re-Sampling				
Hole	From (m)	To (m)	Interval (m)	Original Au Grade (g/t)	Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)
&	56	72	16	0.4	&	55	72	17	0.5
					incl	57	58	1	2.6
					& incl	61	62	1	1.0
					& incl	71	72	1	1.1
ZDRC039	44	56	12	3.1	ZDRC039	44	53	9	3.9
incl	44	52	8	4.4	incl	44	45	1	2.0
					& incl	46	48	2	1.9
					& incl	50	53	3	9.1
					&	59	60	1	0.6
					&	73	74	1	0.6
ZDRC040	24	28	4	0.8					
					ZDRC040	29	31	2	0.7
					&	36	37	1	0.5
&	72	80	8	0.6	&	72	79	7	0.7
					incl	75	77	2	1.1
ZDRC041	32	40	8	1.1	ZDRC041	31	43	12	1.2
					incl	32	34	2	2.4
					& incl	36	37	1	4.8
&	56	60	4	0.5	&	59	60	1	1.8
&	84	88	4	1.8	&	87	88	1	9.9
ZDRC042	16	20	4	0.5	ZDRC042	18	19	1	1.3
					&	60	66	6	0.5
					ZDRC043	47	55	8	0.3
ZDRC043	60	64	4	0.4	&	61	64	3	0.7
					&	72	80	8	0.8
ZDRC044	12	16	4	3.3					
&	28	32	4	1.1					
ZDRC045	52	56	4	0.5					
ZDRC046	84	88	4	0.5					
ZDRC047	28	32	4	0.5					
&	40	44	4	0.5		1m Do	Assays Av	vaited	
ZDRC048				NSR		Till V6-	Assays AV	vaiteu	
ZDRC049	48	52	4	1.7					
ZDRC050	76	80	4	0.6					
ZDRC051	40	44	4	0.8					
ZDRC052	52	56	4	0.4					
&	96	100	4	1.1					

Note: Zenith has gold rights below 6m from surface only. Some 4m composite results extend through the zone 4m – 8m depth interval. High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution, whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m. 4m composites are based on riffle split samples, 1m resamples are all cone split.

Table 2: Drill Hole Collar Locations

Hole_ID	Hole_Type	Easting	Northing	RL	Depth (m)	Azimuth	Dip
ZDRC026	RC	746957	6481364	410	71	73	-60
ZDRC027	RC	746911	6481346	411	119	73	-60
ZDRC028	RC	746874	6481594	406	107	73	-60
ZDRC029	RC	746833	6481578	405	113	73	-60
ZDRC030	RC	746767	6481800	401	83	73	-60
ZDRC031	RC	746720	6481788	403	95	73	-60
ZDRC032	RC	746675	6482029	411	89	73	-60
ZDRC033	RC	746624	6482012	402	89	73	-60
ZDRC034	RC	746596	6482131	407	89	73	-60
ZDRC035	RC	746549	6482114	402	107	73	-60
ZDRC036	RC	746523	6482267	404	101	73	-60
ZDRC037	RC	746482	6482251	410	107	73	-60
ZDRC038	RC	746489	6482415	398	140	73	-60
ZDRC039	RC	746344	6482799	407	155	73	-60
ZDRC040	RC	746297	6482782	417	107	73	-60
ZDRC041	RC	746398	6482688	400	101	73	-60
ZDRC042	RC	746353	6482677	412	79	73	-60
ZDRC043	RC	746395	6482613	403	119	73	-60
ZDRC044	RC	746516	6482526	489	107	73	-60
ZDRC045	RC	746469	6482510	402	131	73	-60
ZDRC046	RC	746548	6482197	403	155	73	-60
ZDRC047	RC	746727	6481917	404	149	73	-60
ZDRC048	RC	746685	6481908	396	101	73	-60
ZDRC049	RC	746808	6481694	411	113	73	-60
ZDRC050	RC	746760	6481681	412	119	73	-60
ZDRC051	RC	746913	6481474	409	143	73	-60
ZDRC052	RC	746857	6481457	411	137	73	-60

Table 3: Historical Drilling - Collar Locations

Hole_ID	Hole_Type	Easting	Northing	RL	Depth (m)	Azimuth	Dip
CRB001	RAB	746421	6482615	404	52	74	-60
CRB003	RAB	746445	6482622	404	52	74	-60
CRB004	RAB	746497	6482426	406	50	74	-60
CRB005	RAB	746468	6482625	403	51	74	-60
CRB006	RAB	746533	6482440	404	50	74	-60
CRB007	RAB	746552	6482444	403	50	74	-60
CRB026	RAB	747075	6481138	397	42	73	-60
CRB027	RAB	747037	6481126	399	46	73	-60
CRB028	RAB	746998	6481115	400	43	73	-60
DLRC1006	RC	746521	6482320	408	114	73	-60
DLRC1009	RC	746588	6482334	406	50	73	-60
PDC1565	RC	747025	6480915	397	162	74	-60
PDC1566	RC	746969	6481107	402	150	74	-60
PDC1567	RC	746931	6481310	405	144	74	-60
PDR976	RAB	747112	6480940	396	49	74	-60
PDR1131	RAB	746990	6481321	403	49	74	-60

Table 4: Significant Gold Intersections from historical drilling

	ne 4. Oigiiii	lount Gor			
Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
CRB001	37	43	6	1.3	
incl	37	39	2	2.7	
& incl	40	41	1	1.9	
CRB003	17	39	22	0.8	
incl	22	25	3	1.2	
& incl	26	28	2	1.6	
& incl	32	34	2	2.5	
& incl	38	39	1	1.1	
CRB004	34	40	6	0.5	
&	45	46	1	2.4	
CRB005	15	28	13	0.3	
incl	15	17	2	0.6	1m samples
& incl	21	23	2	0.6	Till Salliples
& incl	27	28	1	0.6	
&	35	38	3	0.8	
incl	35	36	1	1.6	
CRB006	20	33	13	0.8	
incl	21	23	2	1.9	
& incl	28	29	1	1.8	
& incl	30	31	1	1.1	
&	41	48	7	1.0	
incl	42	43	1	2.9	
and incl	47	48	1	1.5	
CRB007	27	35	8	0.6	

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
incl	29	30	1	1.4	
&	40	41	1	0.7	
CRB026	9	12	3	0.9	3m composites
CRB027			No signifi	icant result	
CRB028	39	43	4	0.9	3m & 1m samples
incl	42	43	1	1.6	
DLRC1006	48	49	1	0.6	
&	75	83	8	0.7	
incl	81	83	2	2.0	1m camples
DLRC1009	28	42	14	1.0	1m samples
incl	31	32	1	1.2	
& incl	34	35	1	3.3	
& incl	41	42	1	4.0	
PDC1565			No signifi	icant result	
PDC1566	51	54	3	0.8	
PDC1567	38	48	9	0.7	
&	75	78	3	1.1	
PDR976	39	42	3	0.5	3m composites
PDR1131	15	39	24	0.9	
incl	15	18	3	3.8	
& incl	36	39	3	1.1	

For further information please refer to the Company's website or contact the Company directly.

Authorised for release by the Zenith Minerals Limited Board of Directors – 15th January 2021 For further information contact:

Zenith Minerals Limited

Directors Michael Clifford or Peter Bird

E: mick@zenithminerals.com.au / peter@zenithminerals.com.au Phone +61 8 9226 1110

Media Enquiries

Fraser Beattie

E: fbeattie@canningspurple.com.au Phone +61 8 6314 6300

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Michael Clifford, who is a Member of the Australian Institute of Geoscientists and an employee of Zenith Minerals Limited. Mr Clifford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Material ASX Releases Previously Released

The Company has released all material information that relates to Exploration Results, Mineral Resources and Reserves, Economic Studies and Production for the Company's Projects on a continuous basis to the ASX and in compliance with JORC 2012. The Company confirms that it is not aware of any new information that materially

affects the content of this ASX release and that the material assumptions and technical parameters remain unchanged.

About Zenith

Zenith has a vision to build a gold and base metals business with a team of proven project finders. Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using third party funds.

Zenith is continuing to focus on its core Australian gold and copper projects including:

- Red Mountain Gold Project in Queensland (100% owned) where ongoing drilling is following-up the highgrade near surface gold and silver intersected in the maiden drill program (ASX Releases 3 Aug 20 & 13 Oct 20), including:
 - o 13m @ 8.0 g/t Au & 3.2 g/t Ag from surface, incl. 6m @ 16.7 g/t Au & 5.3g/t Ag
 - o 15m @ 3.5 g/t Au, incl. 2m @ 22.4 g/t Au
- Split Rocks Gold Project in Western Australia (100% owned), where recent drilling returned, high-grade near surface gold mineralisation at multiple targets (ASX Release 5 Aug 20, 19-Oct-20, 28-Oct-20), including:
 - <u>Dulcie North</u>: 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au with the highest individual 1m sample returning 199.2 g/t Au.
 - Dulcie Laterite Pit:
 - 2m @ 14.5 g/t Au, incl. 1m @ 20.8 g/t Au,
 - 18m @ 2.0 g/t Au (EOH) incl. 1m @ 23.7 g/t Au &
 - 14m @ 3.5 g/t Au
 - Estrela Prospect: 2m @ 9.8 g/t Au (open to north & south)
 - O Dulcie Far North: 5m @ 5.6 g/t Au incl. 4m @ 6.8 g/t Au
- Develin Creek Copper-Zinc Project in Queensland (100% owned) maiden drill test of the new Snook copper target located 30km south of Zenith's JORC resources discovers massive sulphides.
- Jackadgery Gold Project in New South Wales (option to earn initial 90%), historic trenching returned 160m
 2 g/t Au. No drilling to date. Zenith planning maiden drill test (ASX Release 10 Sep 20).

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary		
		Zenith Minerals: 1m assay results received for 18 reverse circulation drill holes. 4m composite assays received for the last 9 RC holes.		
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard	Historical drill holes: CRB* RAB holes were drilled by Sons of Gwalia Ltd in 1997. Samples were collected as 3m composites (a62999) and 4m composites with some later re- sampling at 1m (a66931).		
	measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples	PDC* RC holes were drilled by Sons of Gwalia Ltd in 1999. Samples were collected as 3m composites (a62999).		
	should not be taken as limiting the broad meaning of sampling.	PDR* RAB holes were drilled by Sons of Gwalia Ltd in 1998. Samples were collected as 3m composites with some later re-sampling at 1m (a58137 & a62999).		
		DLRC* RC holes were drilled by Southern Cross Goldfields Ltd in 2009-2010. Samples were collected as 4m composites with some later re-sampling at 1m (85232 & 88742).		
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Zenith Minerals: Two 1m drill samples were collected via a cyclone cone splitter. One set of samples was split through riffle splitter to obtain 4m composites. Selected 1m intervals were collected from the other set of 1m samples and assayed.		
		Historical samples are considered to be representative of the intervals sampled.		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Zenith Minerals: Reverse circulation drilling was used to obtain 1 m to 4m samples from which ~2kg was pulverised to produce a 50 g charge for fire assay. Historical drilling: Historical RAB and RC drilling were used to obtain 1 to 4m composite samples which were analysed for gold following diverse methods (see below).		

Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Zenith Minerals: Reverse circulation Historical drilling: RAB and RC
	Method of recording and assessing core and chip sample recoveries and results assessed.	Zenith Minerals: Drill chips were sieved and logged by a qualified geologist on site, data recorded in field on a laptop and then entered into a database.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drill chip recoveries not documented in historical report. Zenith Minerals: Drilling produced generally dry samples with excellent recoveries, all 1m samples were cone split on site with a subsequent 4m composite sample generated using a riffle splitter to ensure a representative sample was collected for assay. Not documented in historical drilling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Zenith Minerals: No indications of sample bias based on results to date. Not documented in historical drilling.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Zenith Minerals: Drill chips were sieved and logged by a qualified geologist on site. No reporting of resources. Historical drill samples were logged by qualified geologists.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Zenith Minerals: Drill chips logging is qualitative. Representative chip samples collected and stored in 20 compartment plastic chip trays.
	The total length and percentage of the relevant intersections logged.	Historical logging was qualitative. Zenith Minerals: All intervals logged and sampled. All historical intersections were logged.
	If core, whether cut or sawn and whether quarter, half or all core taken.	No core
Sub-sampling techniques and sample	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Zenith Minerals: 4m samples were riffle spilt. Different methods were used with historical samples. When reported, generally 1m samples from cyclones were riffle split and composited to final sample. Samples were generally dry but some were reported as wet.
preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Zenith Minerals: Samples were analysed at Nagrom Laboratories in Perth, the samples were crushed, pulverised and assayed by gold using fire assay. CRB* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. Re-

		sampling assayed at ALS laboratory in Perth (WA) via aqua regia followed by graphite furnace/AAS determination.
		PDC* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS determination.
		PDR* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. Resampling assayed at ALS laboratory in Perth (WA) via aqua regia followed by graphite furnace/AAS determination.
		DLRC* samples were analysed at Ultra Trace Perth (WA) using Fire Assay (FA002) followed by ICPOES determination.
	Quality control procedures adopted for all sub-sampling stages to maximise	Zenith Minerals: ~2kg of drill sample was crushed and pulverised and a sub-sample was taken in the laboratory and analysed.
	representivity of samples.	Standard industry laboratory procedures are assumed to have been in place following pulverising of the sample material (80% passing 75um).
	Measures taken to ensure that the	Zenith Minerals: Field duplicates were collected during sampling by riffle splitting selected 1m samples.
Sub-sampling techniques and sample preparation -	sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Historical drilling: Generally not reported; selected repeat samples from the PDR* series were sent to ALS Laboratories in Perth and assayed for gold using an aqua regia digestion followed by graphite furnace / AAS determination (a62999).
continued	Whether sample sizes are appropriate to	Zenith Minerals: Each sample was ~2kg in weight which is appropriate to test for the grain size of material.
	the grain size of the material being sampled.	Historical Drilling: Sample sizes are assumed to be following industry standards and appropriate.
		Zenith Minerals: The samples were crushed and assayed for gold using fire assay which is considered a near total assay technique.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Historical Drilling: CRB* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. Re- sampling assayed at ALS laboratory in Perth (WA) via aqua regia followed by graphite furnace/AAS determination.
		PDC* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS determination.
		PDR* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. Re-

		sampling assayed at ALS laboratory in Perth (WA) via aqua regia followed by graphite furnace/AAS determination. DLRC* samples were analysed at Ultra Trace Perth (WA) using Fire Assay (FA002) followed by ICPOES determination.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools used in this drilling program
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Zenith Minerals: Certified reference material, blanks and duplicates samples were included in each sample batch and appropriate levels of precision and accuracy were confirmed in QA/QC review Historical drilling: Generally not reported; selected repeat samples from the PDR* series were sent to ALS Laboratories in Perth and assayed for gold using an aqua regia digestion followed by graphite furnace / AAS determination (a62999).
Verification of	The verification of significant intersections by either independent or alternative company personnel.	Zenith Minerals: Company personnel have observed the assayed samples. Historical drilling: Thirteen successive drilling campaigns by seven different companies analysed by at least six separate laboratories have confirmed the presence of bedrock gold mineralisation.
sampling and assaying	The use of twinned holes.	No twinning
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Zenith Minerals: Field data were all recorded in field laptops and sample record books and then entered into a database. Historical drilling: Field data were recorded on paper logs.
	Discuss any adjustment to assay data.	No adjustments were made.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and	Zenith Minerals: Sample location is based on GPS coordinates +/-5m accuracy. Historical drilling: Original drill collar locations based on compass and
Location of data points	other locations used in Mineral Resource estimation.	tape surveys or GPS depending on year of drilling. Selected drill hole collar locations have been verified in the field using GPS with +/- 3m accuracy. Some more recent drilling surveyed using a carrier-phase enhancement GPS (a85232).
	Specification of the grid system used.	The grid system used to compile data was MGA94 Zone 50
Location of data points - continued	Quality and adequacy of topographic control.	Topography control is +/- 5m

Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes shown in Figures 2 to 5 and Tables 1 & 2
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data alone will not be used to estimate mineral resource or ore reserve.
	Whether sample compositing has been applied.	Drilling produced generally dry samples with excellent recoveries, all 1m samples were cone split on site with a subsequent 4m composite sample generated using a riffle splitter to ensure a representative sample was collected for assay.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The intersections in all drill holes are interpreted to be close to true widths.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As above
Sample security	The measures taken to ensure sample security.	Zenith Minerals: Samples were kept in numbered and secured bags until delivered to the laboratory. Historical drilling: Industry standards are inferred to have been used.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Zenith Minerals: Sampling techniques are consistent with industry standards. Historical drilling: No specific audit documented but thirteen successive drilling campaigns by seven different companies analysed by at least six separate laboratories have confirmed the presence of bedrock gold mineralisation.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	covering the operating Dulcie Heap Leach Gold Project (DHLGO) in exchange for surface laterite gold rights on Zenith's adjoining exploration licence E77/2388.
	The state of the s	Tenements are mining leases and prospecting leases, current heap leach operation is active, no known impediments to obtain a licence to operate.

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Refer to Tables 3 and 4 and to ASX release 21st March 2019.
Geology	Deposit type, geological setting and style of mineralisation.	Archean mesothermal lode gold mineralisation hosted within banded iron formation (BIF) and mafic rock types.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to Figures 1 - 5 and Tables 1 to 4 and descriptions in body of text of this ASX release and to Figures 1,2 & 3 and Table 1 and descriptions in body of text of ZNC ASX Release 21 Oct 2019.
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
momation	o down hole length and interception depth	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high	High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution, whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	As above and included in Tables
Data aggregation methods - continued	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	All Zenith drilling is angled -60 degrees east and based on current interpretation is thought to be representing true width thickness of the flat lying supergene or gentle west dipping gold mineralised zones however further drilling is required to confirm this interpretation.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Mineralised intervals reported are down-hole lengths but
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be	Refer to Figures 1 - 5 and Table 1 and 2 in body of text of this ASX release and to Figures 1,2 & 3 and Table 1 and descriptions in body of text of ZNC ASX Release 21 Oct 2019 and those in ZNC ASX Release 5 Aug 2020 & 2 Sep 2020.

	limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to Figures 1 - 5 and Table 1 and 2 in body of text of this ASX release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful or material exploration data to be reported at this stage.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures in body of this report.