

Drilling continues to extend the boundaries of the high-grade mineralisation at Challengers Flagship Hualilan Gold Project

Highlights

- Multiple new zones of high-grade mineralisation outside the boundaries of the existing historical resource¹ with results from the current round of drilling including (Refer table 1):
 - 12.0m at 20.9 g/t AuEq² 20.4 g/t Au, 4.8 g/t Ag, 1.0% Zn from 289m including;
 4.10m at 56.8 g/t AuEq² 55.7 g/t Au, 12.9 g/t Ag, 2.1%, from 291m;
 (results from 0-200m and 303-527m and end of hole pending) (GNDD-157).
 - 110.5m at 3.0 g/t AuEq² 2.5 g/t Au, 7.4 g/t Ag, 0.9% Zn from 81.5m including;
 11.5m at 6.5 g/t AuEq² 5.4 g/t Au, 19.9 g/t Ag, 2.0% Zn from 81.5m and;
 40.0m at 6.2 g/t AuEq² 5.1 g/t Au, 11.7 g/t Ag, 1.9% Zn, from 152m including;
 10.7m at 13.3 g/t AuEq² 10.7 g/t Au, 28.4 g/t Ag, 4.9% Zn from 152m (GNDD-142).
 - 4.0m at 11.3 g/t AuEq² 5.3 g/t Au, 86.2 g/t Ag, 10.6% Zn from 196m and;
 2.0m at 6.2 g/t AuEq² 6.2 g/t Au, 1.3 g/t Ag, 0.0% Zn from 240m and;
 2.9m at 10.2 g/t AuEq² 4.7 g/t Au, 3.6 g/t Ag, 11.6% Zn from 530m (GNDD-134).
 - 6.5m at 16.4 g/t AuEq² 14.3 g/t Au, 43.6 g/t Ag, 3.4% Zn from 101m including;
 2.5m at 42.1 g/t AuEq² 36.8 g/t Au, 111 g/t Ag, 8.6% Zn (GNDD-141).
- New high-grade discovery below the Sentazon Manto with GNDD-142 recording 40.0 metres at 6.2 g/t AuEq including 10.7 metres at 13.3 g/t AuEq and 12.8 metres at 5.7 g/t AuEq.
- The potential scale created by this this new zone stacked below the Sentazon Manto is indicated by the impressive broader intercept of 110.5 metres at 3.0 g/t AuEq in GNDD-142
- Significant new zone of mineralisation discovered south of the Magnata Fault in GNDD-134 and GNDD-157 (12 metres at 20.9 g/t AuEq) with results for the bottom half of GNND-157 pending.
- Vertical extent tripled by the high-grade intersection of 2.9m at 10.2 g/t AuEq from 530m in drill hole GNDD-134. The bulk of the historical resource¹ lies within 80 metres of surface.

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"This is a transformational set of results. We now have repeats of the high-grade mineralisation at depth, with none of the earlier drilling going deep enough to test this. Importantly we have discovered significant extensions on the main zones of mineralisation plus new, and unexpected, high-grade intersections in what were effectively deeper stratigraphic holes.

We are still in exploration drilling mode continually trying to test the limits of the system. The exciting part of exploration is when holes designed to test whether mineralisation is closed-off - return high-grade results which change your perspective about the size of the project. We have seen this in a number of holes in this round of drilling. Our flagship Hualilan project is growing larger by the day."

Challenger Exploration (**ASX: CEL**) ("**CEL**" the "**Company**") is pleased to announce further results from its 5 rig 45,000 metre drilling program at the Company's flagship Hualilan Gold Project, located in San Juan Province, Argentina. Results are reported for a series of holes targeting the high-grade skarn with the holes predominantly designed to explore for extensions to the historical resource estimate¹.

The results (see Table 1) continue to extend the near surface high-grade mineralisation along strike and down dip in multiple locations with mineralisation remaining open in all directions. Highlights from this round of drilling include the discovery of a broad zone of high-grade mineralisation below the main Manto at Sentazon, a new high-grade zone south of the Magnata fault, and high-grade mineralisation down to 500 metres below surface.

The Company has completed 27,000 of 45,000 metres with 5 rigs continuing on site. Results from 67 completed drill holes remain pending with holes GNDD-191 to 195 currently drilling ahead. After discussions with the labs the Company expects to clear the backlog of assays results by the end of February. This is likely to result in reporting additional drilling results in a more timely manner.

HIGHLIGHTS

- GNDD-142 discovered a broad zone of high-grade mineralisation 50 metres below the Sentazon Manto returning 40.5m at 6.2 g/t AuEq including 10.7m at 13.3 g/t AuEq and 12.8m at 5.7 g/t AuEq. This new zone is highly significant as all previous Sentazon drilling, with the exception of CEL drill hole GNDD-106 (25 metres of mineralisation) was not deep enough to test this new broad high-grade zone of mineralisation.
- The scale created by this new zone below the Sentazon Manto is indicated by the broader intercept of 110.5m at 3.0 g/t AuEq in GNDD-142.
- GNDD-134 intersected 4.0m at 11.3 g/t AuEq which extends the Magnata Fault zone 80 metres deeper and is the westerly most test of the Magnata Fault confirming that the Magnata Fault is open and strongly mineralised to the west and at depth. The hole intersected a potential new zone of mineralisation in intrusives south of the Magnata fault (208.5m at 0.5 g/t AuEq incl 81.0m at 0.9 g/t AuEq) which has been followed up in GNDD-157 and GNDD-174 (assays pending). The hole intersected mineralisation to 632 metres downhole, including a significant new high-grade zone at (2.9m at 10.2 g/t AuEq) at 530 metres. This extends mineralisation to 500 metres with the bulk of the historical resource in the top 80 metres.
- GNDD-157 discovered a new high-grade zone south of the Magnata Fault returning 12.0m at 20.9 g/t AuEq from 289 metres including 4.10m at 56.8 g/t AuEq. Interpretation is preliminary with results for the top and bottom of the hole pending. This zone could represent a possible east-west Magnata Fault repeat or a new zone of high-grade intrusion hosted mineralisation. GNDD-157 also intersected mineralisation in the Magnata Fault.
- Follow up drilling of high-grade skarn mineralisation into the Gap Zone returned **6.5m at 16.4** g/t AuEq, including **2.5m at 42.1** g/t AuEq in drill hole GNDD-141.
- Mineralisation remains open in all directions and results continue to suggest the mineralisation is part of a much larger gold bearing system than was originally envisioned.

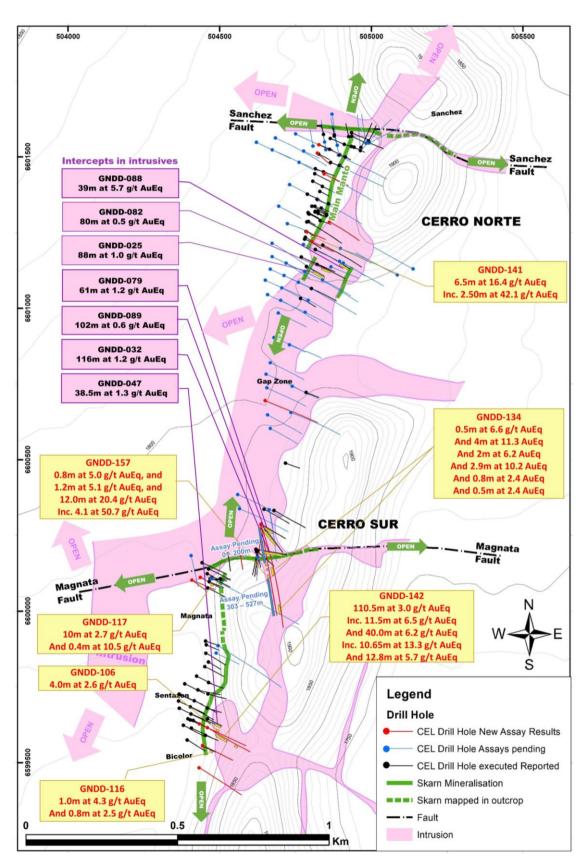


Figure 1 - Overview of the Mineralised system at the Hualilan Gold Project

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

DISCUSSION OF RESULTS

Magnata Fault Zone

The majority of the skarn mineralisation at Magnata is controlled by the east-west sub-vertical Magnata Fault Zone which splits into the M1 and M2 Magnata Faults. There is a north-south striking limestone hosted "manto component" which splays from the fault and dips west. In drilling completed to date, the mineralisation in the Magnata Fault appears to be relatively continuous over the 300 metres of strike, with 120 metres vertical extent. It remains open at depth and in both directions along strike. As previously reported, the intrusion north of the contact with the Magnata Fault also contains broad zones of gold mineralisation which is not included in the historic resource estimate.

GNDD-134

GNDD-134 was collared on the same drill pad as GND-089 and GNDD-079 and drilled south to test the Magnata fault below GNDD-032 which intersected 6 metres at 9.9 g/t AuEq. GNDD-134 intersected 4.0 metres at 11.3 g/t AuEq (5.3 g/t gold, 86.6 g/t silver, 10.6% zinc) from 196m successfully extending the Magnata Fault mineralisation 80 metres vertically below GNDD-032. This is also the western most of the Company's drill holes designed to test the Magnata Fault confirming that mineralisation remains strong and open to the west and at depth in the Magnata Fault. Similar to GNDD-032, the Magnata Fault mineralisation is hosted in intrusives in GNDD-134.

GNDD-134 encountered two broad zones of mineralisation in intrusives at the top of the hole north of the Magnata Fault;

- 65 metres of mineralisation from 18 to 87 metres downhole comprising 15.3 metres at 0.9 g/t AuEq from 17.7m, plus 39.8 metres at 0.3 g/t AuEq from 47m, and
- 27.5 metres of mineralisation between 131 and 180 metres downhole comprising 7.5 metres at 0.5 g/t AuEq from 129.5m and 20 metres at 0.4 g/t AuEq from 161m.

This mineralisation in intrusives is the eastern edge of the zone of mineralisation in intrusives intersected in GNDD-79 (61 metres at 1.2 g/t AuEq and GNDD-89 (101.5 metres at 0.6 g/t AuEq incl 30.0 metres at 1.0 g/t AuEq and 21.7 metres at 1.1 g/t AuEq). This zone of mineralised intrusives is 50 to 100 metres wide and has been defined over 100 metres of strike north of the Magnata Fault. It remains open to the north along strike and at depth.

Extension of mineralisation to at least 500 metres sub-surface

GNDD-134 was extended beyond its planned 220 metre depth due to the hole drilling though alteration and potential mineralisation. The hole encountered a number of zones of mineralisation below 500 metres downhole including 1.0 metre at 2.4 g/t AuEq at the contact of the intrusives and an underlying limestone at 500 metres downhole. Following this the hole encountered 20.0 metres at 1.6 g/t AuEq (0.7 g/t gold, 0.7 g/t silver, 1.8% zinc) from 519m and 2.9 metres at 10.2 g/t AuEq (4.7 g/t gold, 3.6 g/t silver, 11.6% zinc) from 529m. The hole continued to intersect mineralisation to 632 metres (over 500m below-surface) in limestones which appear to have been contact metamorphosed as a result from their proximity to an underlying heat source.

The hole was stopped at 653 metres due to the rig having reached the limit of its depth capacity for HQ3 core.

New Intrusive Target

GNDD-134 encountered 300 metres of altered intrusives from 200 to 500 metres downhole south of the Magnata Fault. These intrusives contained both high grade and low-grade mineralisation including **2.0 metres at 6.2 g/t AuEq** from 240.2m and **50.0 metres at 0.3 g/t AuEq** from 272m. As a guide to the scale of the mineralisation the interval from 129.5-338.0 m returned **208.5 metres at 0.5 g/t AuEq** including **81.0m at 0.9 g/t AuEq** in intrusives.

Mineralised intrusives had not previously been intersected south of the Magnata Fault and as such represents a new target for bulk mineralisation. North of the Magnata Fault the mineralised intrusive unit is 50 to 100 thick, dipping at 60-70 degrees to the west and, defined over 100 metres, remaining open along strike. GNDD-134 opens the potential for this unit to extend at least 300 metres further south of the Magnata Fault along strike. GNDD-157 (see next section of this release) was drilled as a further test of the Magnata Fault and this intrusive target. Assays remain pending for the top 200 metres and bottom 225 metres of the hole.

GNDD-157

GNDD-157 was drilled from the same drill pad as GNDD-134 at an azimuth of 170 degrees compared to 154 degrees azimuth in GNDD-134. The hole was designed to have a bottom hole location 150 metres east of GNDD-134. GNDD-157 had a dual objective, test the Magnata Fault 50 metres east of GNDD-134 and to further test the potential for mineralised intrusives south of the Magnata Fault. The Company fast tracked assays for the section 200 to 303 metres downhole with other assays pending.

GNDD-157 returned an intercept of **4.1 metres at 56.8 g/t AuEq (55.7 g/t gold, 12.9 g/t silver, 2.1% zinc)** from 290.5m within a broader intercept of **12 metres at 20.9 g.t AuEq (20.4 g/t gold, 4.8 g/t silver, 1.0% zinc** from 289m. The hole also returned **0.8 metres at 5.0 AuEq (1.7 g/t gold, 59.1 g/t silver, 5.6% zinc)** from 237m and **1.2 metres at 5.1 AuEq (0.6 g/t gold, 5.3 g/t silver, 9.4% zinc)** from 256m. The mineralisation in the zones assayed so far is all hosted in intrusives with the interval from 237 meters to the end of the hole at 527 metres logged as intrusives with varying degrees of alteration.

With assay results for the upper and lower potions of the hole still pending the Company is still interpreting the results. The preliminary view is that the Magnata Fault may be the mineralisation encountered at 237 metres and possibly 256-257 metres downhole. The intercept of 12 metres at 20.9 g.t AuEq (20.4 g/t gold, 4.8 g/t silver, 1.0% zinc) from 289m representing a new zone of mineralisation. At this stage, the Company is unsure if this is a possible east-west Magnata Fault repeat or a new zone of high-grade mineralisation in intrusives.

GNDD-129

GNDD-129 was collared on the same drill pad as GNDD-134 and GNDD-157 and was drilled to the south to test the Magnata fault below GNDD-010 which returned 3.0m at 20.5 g/t AuEq. The hole intersected **0.7 metres at 7.0 g.t AuEq (6.7 g/t gold, 14.1 g/t silver, 0.2% zinc)** from 133m. The hole

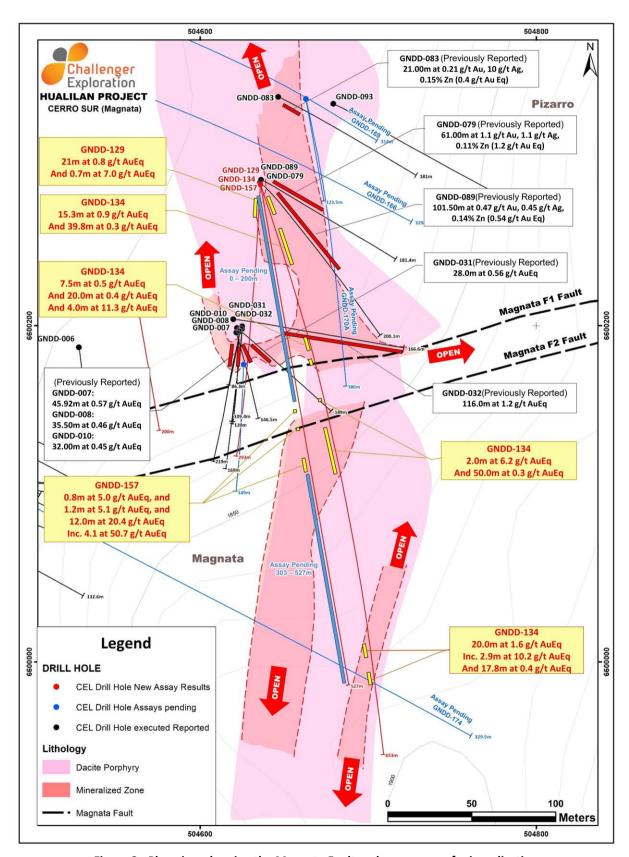


Figure 2 - Plan view showing the Magnata Fault and new zones of mineralisation

also encountered **21 metres at 0.8 g/t AuEq (0.7 g/t gold, 1.8 g/t silver, 0.1% zinc)** in intrusives from 15 metres. This zone of mineralisation in intrusives extends the mineralised intrusives north of the Magnata Fault a further 25 metres to the east.

GNDD-117

GNDD-117 was drilled to test down dip of GNDD-114 (14.7 metres at 3.3 g/t AuEq) which intersected a new zone of mineralisation in sandstone overlying the main limestone unit which hosts the traditional high-grade skarn mineralisation. GNDD-117 extended the new zone down dip with a similar intersection 10.0 metres at 2.7 g/t AuEq (2.5 g/t gold, 10.2 g/t silver, 0.2% zinc) from 61m. The mineralisation down dip in GNDD-117 was also much wider with the higher grade intercept part of a broader zone of mineralisation of returning 54.8 metres at 0.7 g/t AuEq (0.6 g/t gold, 4.2 g/t silver, 0.1% zinc) from 30m. This broad zone of mineralisation is in keeping with other broad zones of lower-grade mineralisation, predominantly overlying the high-grade skarn mineralisation (see ASX Release dated 23 November 2020) noticed in a number of drill holes following the change of policy to assay all samples.

GNDD-145

GNDD-145 was collared between CEL drill holes GNDD-007 and GNDD-060 approximately 50 metres up-dip of both holes and was designed to test the Magnata Fault between these holes. The hole did not encounter any significant mineralisation or the Magnata Fault structure and it is now interpreted as not having been drilled deep enough to intersect the Magnata Fault at this location.

Ongoing Magnata Drill program and results

Assay results for the top and bottom of GNDD-157 are anticipated in the next 1-2 weeks. Additionally, the Company has drilled a number of follow up holes to test both the Magnata Fault and the intrusive-hosted mineralisation north and south of the Magnata fault. GNDD-166, GNDD-168, GNDD-169, GNDD-170,GNDD-174, GNDD-181 and GNDD-189 (all assays pending) have been completed with additional drilling planned (Figure 2).

Sentazon

GNDD-142

GNDD-142 was designed to test for repeats of the high-grade skarn mineralisation or mineralisation in intrusives below the Sentazon Manto with a secondary objective of extending the Sentazon Manto up dip from GNDD-009 (discovery hole at Sentazon) which returned 10.3m at 12.9 g/t AuEq.

GNDD-142 successfully intercepted the Sentazon Manto returning 11.5 metres at 6.5 g/t AuEq (5.4 g/t gold, 19.9 g/t silver, 0.9% zinc) from 92m within a broader zone of 27 metres at 3.0 g/t AuEq (2.4 g/t gold, 11.1 g/t silver, 2.0% zinc) from 81.5m. The intercept in the Sentazon Manto was slightly thicker than in the GNDD-009 discovery hole, however exhibits a similar gram metre value as GNDD-009. It also had a broader zone of halo mineralisation which was not evident in GNDD-009.

The hole then intersected a broad zone of high-grade mineralisation 50 metres below the Sentazon Manto returning 40.5 metres at 6.2 g/t AuEq (5.1 g/t gold, 11.7 g/t silver, 1.9% zinc) from 152m including 10.7 metres at 13.3 g/t AuEq (10.7 g/t gold, 28.4 g/t silver, 4.9% zinc) from 160m plus 12.8 metres at 5.7 g/t AuEq (5.2 g/t gold, 9.3 g/t silver, 0.7% zinc) from 177m. This new zone is highly significant as no drilling, with the exception of the Company's drill hole GNDD-106 (reported in this release) has been drilled deep enough to test this new zone. GNDD-106 intercepted this new zone up-dip from GNDD-142 and returned mineralisation over 25 metres confirming the lateral extent. GNDD-011, one of CEL's early holes, had been programmed to test for deeper mineralisation below the Sentazon Manto, however it was terminated early due to drilling problems.

The potential of the bulk mineralised package created by this this new zone being stacked below the Sentazon Manto is indicated by the broader intercept over these two zones in GNDDD-142 which returned an impressive **110.5** metres at **3.0** g/t AuEq from 81.5 metres downhole. In addition, GNDD-142 intersected some lower grade zones of mineralisation higher in the hole above these main zones and between the Sentazon Manto and the new deeper zone of mineralisation.

Given the mineralisation at Sentazon, Muchilera and Magnata appear to join forming a single zone of mineralisation covering 350 metres of strike and 200 metres of plunge extent (which remains open to the north and south along strike, and at depth) the discovery of this deeper new zone holds the potential to significantly expand the high-grade mineralisation at Hualilan.

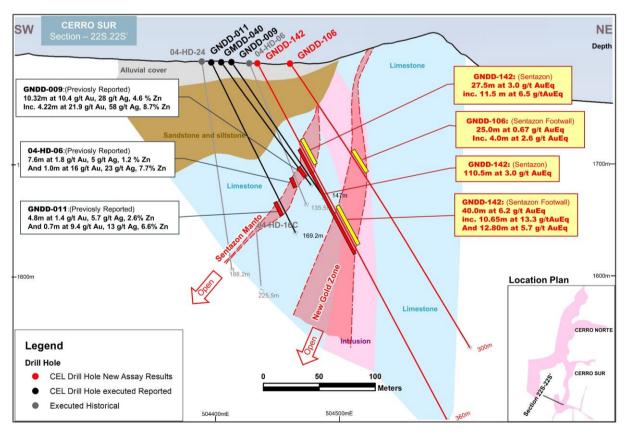


Figure 3 - Section showing new zones of high-grade mineralisation under the Sentazon Manto

GNDD-106 and GNDD-116

GNDD-106 was designed to extend the Sentazon Manto mineralisation in GNDD-009 up-dip. The hole encountered **25 metres at 0.7 g/t AuEq** from 100m including **1.5 metres at 1.8 g/t AuEq** from 114m and **4.0 metres at 2.6 g/t AuEq** from 121m. This mineralisation is now interpreted as the up-dip extension of the new zone discovered in GNDD-142 with the Sentazon Manto sub-cropping and eroded in the extreme up-dip position.

GNDD-116 was drilled in an up-dip location 80 metres south along strike from GNDD-106. The hole encountered two zones of mineralisation including **4.5 metres at 1.5 g/t AuEq** from 27.5m and **0.8 metres at 2.5 g/t AuEq** from 73.7m.

Ongoing Sentazon Drill program

In light of the results of GNDD-142 which intersected a new broad zone of high-grade mineralisation below the Sentazon Manto, additional drill holes have been programmed to test this discovery. GNDD045 will be extended from 60m to 300m and an additional hole will be drilled down dip from GNDD-142 to test below GNDD-011 which was terminated early due to drilling problems.

Gap Zone

The Gap zone comprises approximately 1 kilometre of strike between Cerro Sur and Cerro Norte which lies under cover and is lightly drilled. A number of holes followed up the first high-grade skarn mineralisation encountered in the Gap Zone which was detailed in ASX Release dated 23 November 2020.

GNDD-141 was drilled to test for interpreted plunge extensions of the high-grade mineralisation encountered in GNRC-098 and GNRC-104. The hole intersected **6.5 metres at 16.4 g/t AuEq (14.3 g/t gold, 43.6 g/t silver, 3.4% zinc)** from 101m including an extremely high-grade component of **2.5 metres at 42.1 g/t AuEq (36.8 g/t gold, 111 g/t silver, 8.6% zinc)**. This zone correlates with the mineralisation encountered in GNRC-098 (8 metres at 5.3 g/t AuEq including 2 metres at 17.0 g/t AuEq. GNDD-095 Intersected **1 metre at 2.6 AuEq** up-dip of GNRC-104 (4 metres at 12.0 g/t AuEq) from 141m.

In both holes the high-grade mineralisation occurred at the contact of the intrusives and limestone. In addition to the traditional Manto mineralisation, which is hosted in the limestones or the Magnata and Sanchez Fault, there is a third style of high-grade mineralisation located on contacts. Predominantly at the limestone/intrusive contact and the limestone and overlying siltstone contact.

This drilling confirms the potential for this intrusive/limestone contact zone to host significant high-grade mineralisation. This and the mineralisation intersected in GNDD-035 (5.8 metres at 11.5 g/t AuEq) confirm the potential for the Gap Zone to host high-grade mineralisation over a significant strike extent. Results for GNDD-162 which was drilled as a downdip test of this zone are pending and drillholes are programmed to test up-dip of GNDD-141 and along strike in the Gap Zone.

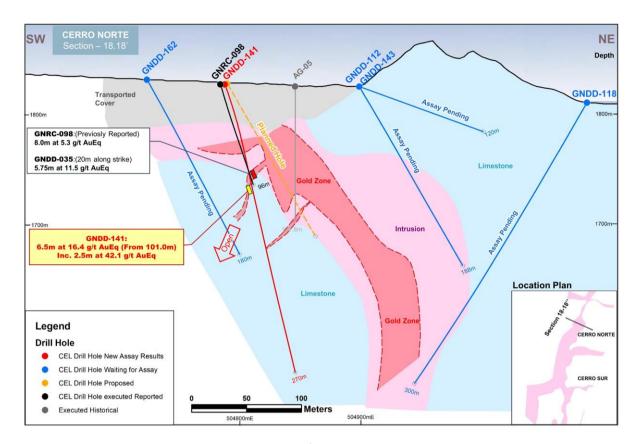


Figure 4 - Section showing new zones of high-grade mineralisation in the Gap Zone.

Main Manto, Cerro Norte

GNDD-149 intersected 2 metres of old workings with no core recovery from 63 metres. This zone of no recovery is believed to indicate the presence of the main skarn mineralisation which has been exploited historically at this near surface location. The historical mining seems to have been limited to the top 50 to 75 metres sub-surface and, according to the historical records, generally recovered hand-sorted grades above 20 g/t gold. Underground lower-grade stockpiles have been observed and sampled as previously reported. The hole also intersected mineralisation in sandstone overlying the main limestone unit returning 4 metres at 0.8 g/t AuEq (0.6 g/t gold, 1.5 g/t silver, 0.3% zinc) from 8m.

GNDD-123 intersected 4 metres of old workings with no core recovery from 53 to 57 metres. The hole had intersected a broad zone of lower-grade mineralisation above this zone of no recovery returning **30 metres at 0.3 g/t AuEq** from 21m. GNDD-148 intersected a zinc rich (low gold) zone of the Main Manto returning **2 metres at 1.3 g/t AuEq (2.7% zinc, 1.0 g/t silver)** from 59m.

These results are consistent with other drilling by CEL in zone covering 100-150 metres of strike at Cerro Norte where the Main Manto appears to be higher in zinc than gold. This zone is outside of the limit of the historical foreign resource estimate.

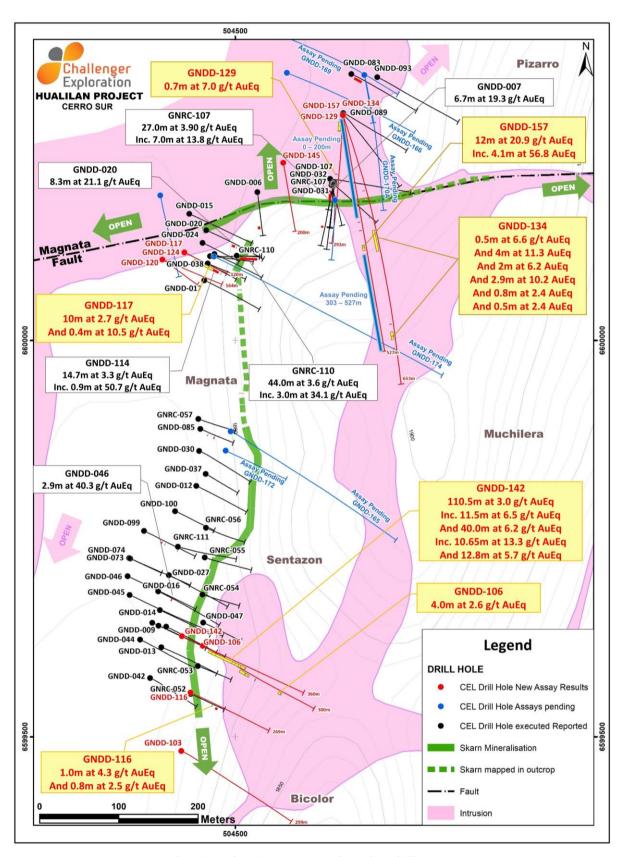


Figure 4 - Plan View Showing current and pending drilling at Cerro Sur.

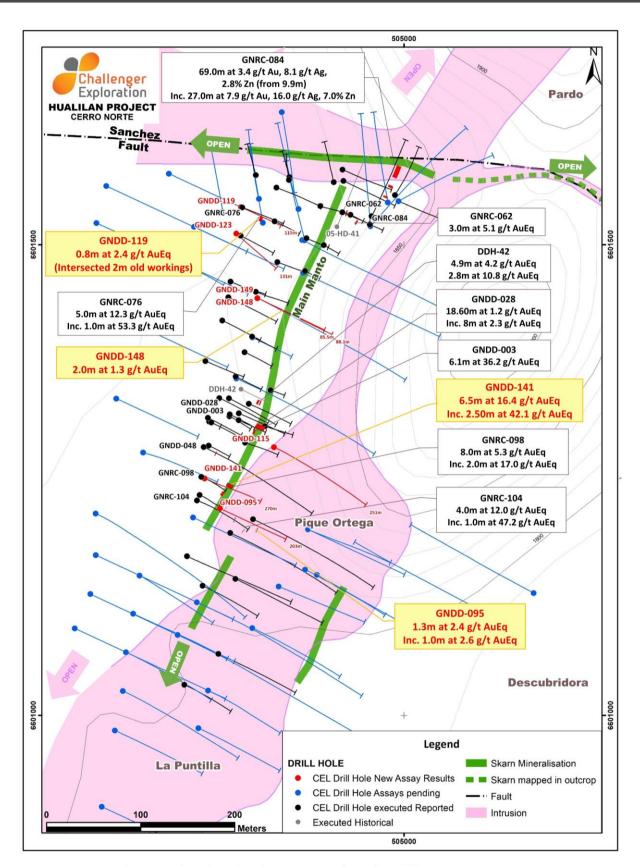


Figure 5 - Plan View Showing current and pending drilling at Cerro Norte.

Table 1: New intercepts reported in this report.

	Drill Hole	Гиона	То	lakamal	Cold	۸۵	7	A., Fa.,	Commonts
GNDD-095		From (m)	To (m)	Interval	Gold	Ag (g/t)	Zn (%)	Au Equiv	Comments
inc 50.0 51.3 1.3 1.0 0.9 2.8 2.4 g/t AuEq 1.0 g/t AuEq cut GNDD-106 100.0 125.0 25.0 0.7 0.3 0.0 0.7 g/t AuEq 1.0 g/t AuEq cut inc 114.0 115.5 1.5 1.8 1.7 0.0 1.8 g/t AuEq 1.0 g/t AuEq cut inc 121.0 125.0 4.0 2.6 0.3 0.0 2.6 g/t AuEq 1.0 g/t AuEq cut and 121.1 122.0 1.1 1.2 2.8 0.8 1.6 g/t AuEq 1.0 g/t AuEq cut and 205.0 213.0 8.0 0.5 1.0 0.0 0.5 g/t AuEq 0.2 g/t AuEq cut GNDD-116 27.5 32.0 4.5 1.3 14.6 0.1 1.5 g/t AuEq 0.2 g/t AuEq cut GNDD-117 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut GNDD-117 30.0 84.8 54.8 0.6 1.4 4.1									0.2 g/t AuEg gut
March 121.0 122.0 1.0 2.6 1.7 0.0 2.6 g/t AuEq out									
GNDD-103									-
GNDD-106 100.0 125.0 25.0 0.7 0.3 0.0 0.7 g/t AuEq			122.0	1.0	2.0	1.7	0.0	2.0 g/t AuEq	1.0 g/t Aulq cut
inc			125.0	25.0	0.7	0.2	0.0	0.7 0/4 4	0.2 0/t 100 000 000 000
inc									-
and 141.4 142.4 1.1 1.2 2.8 0.8 1.6 g/t AuEq 1.0 g/t AuEq cut and 205.0 213.0 2.0 1.1 2.2 0.0 1.1 g/t AuEq 0.2 g/t AuEq cut GNDD-116 27.5 32.0 4.5 1.3 14.6 0.1 1.5 g/t AuEq 0.2 g/t AuEq cut and 73.7 74.5 0.8 2.4 3.9 0.3 2.5 g/t AuEq 1.0 g/t AuEq cut GNDD-117 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut GNDD-119 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut inc 61.0 71.0 10.0 2.5 10.2 0.2 2.7 g/t AuEq 10.g/t AuEq cut GNDD-130 8.2 43.8 0.6 4.2 0.1 0.7 g/t AuEq 10.g/t AuEq cut GNDD-120 NSI 0.2 17.4 4.2 2.4 g/t AuEq 0.0 g/t AuEq cut									
and 205.0 213.0 8.0 0.5 1.0 0.0 0.5 g/t AuEq 0.2 g/t AuEq cut GNDD-116 27.5 32.0 4.5 1.3 14.6 0.1 1.5 g/t AuEq 1.0 g/t AuEq cut GNDD-116 27.5 28.5 1.0 3.7 41.4 0.1 4.3 g/t AuEq 1.0 g/t AuEq cut and 73.7 74.5 0.8 2.4 3.9 0.3 2.5 g/t AuEq 1.0 g/t AuEq cut GNDD-117 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut GNDD-119 52.4 53.2 0.8 0.2 17.4 4.1 0.1 1.5 g/t AuEq 1.0 g/t AuEq cut GNDD-120 NSI 3.2 0.8 0.2 17.4 4.2 2.4 g/t AuEq 1.0 g/t AuEq cut GNDD-120 NSI 3.0 0.1 1.6 0.3 0.3 g/t AuEq 0.2 g/t AuEq cut GNDD-123 15.0 36.0 21.0 0.7 1.8									
Inc									
GNDD-116									
inc 27.5 28.5 1.0 3.7 41.4 0.1 4.3 g/t AuEq 1.0 g/t AuEq cut and 73.7 74.5 0.8 2.4 3.9 0.3 2.5 g/t AuEq 1.0 g/t AuEq cut GNDD-117 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut inc 61.0 71.0 10.0 2.5 10.2 0.2 2.7 g/t AuEq 1.0 g/t AuEq cut inc 84.2 84.8 0.6 1.4 4.1 0.1 1.5 g/t AuEq 1.0 g/t AuEq cut GNDD-130 52.4 53.2 0.8 0.2 17.4 4.2 2.2 g/t AuEq 1.0 g/t AuEq cut GNDD-120 NSI									
and 73.7 74.5 0.8 2.4 3.9 0.3 2.5 g/t AuEq 1.0 g/t AuEq cut GNDD-117 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut inc 61.0 71.0 10.0 2.5 10.2 2.7 g/t AuEq 1.0 g/t AuEq cut inc 84.2 84.8 0.6 1.4 4.1 0.1 1.5 g/t AuEq 1.0 g/t AuEq cut GNDD-119 52.4 53.2 0.8 0.2 17.4 4.2 2.4 g/t AuEq 1.0 g/t AuEq cut GNDD-120 NSI									
GNDD-117 30.0 84.8 54.8 0.6 4.2 0.1 0.7 g/t AuEq 0.2 g/t AuEq cut									
Inc									
inc 84.2 at 106.7 lo.7.1 lo.4 lo.4 lo.5 lo.5 g/t AuEq and lo.6.7 lo.7.1 lo.4 lo.4 lo.5 lo.4 lo.5 g/t AuEq are cut lo.g/t Au eq cut lo.g									· .
and 106.7 107.1 0.4 8.5 43.4 3.3 10.5 g/t AuEq 10 g/t Au eq cut GNDD-119 52.4 53.2 0.8 0.2 17.4 4.2 2.4 g/t AuEq 1.0 g/t AuEq cut GNDD-120 NSI									
SAME									
GNDD-120									
GNDD-123 21.0 51.0 30.0 0.1 1.6 0.3 0.3 g/t AuEq 0.2 g/t AuEq cut		+	33.2	0.0	0.2	17.4	7.2	2.4 g/ t AuLq	1.0 g/t Aulq cut
GNDD-124		+	51.0	20.0	0.1	1.6	0.2	0.2 a/t AuEa	0.2 g/t AuEg cut
GNDD-127 NSI		-							
GNDD-129		+	51.0	7.0	0.1	3.0	0.6	0.4 g/t AuEq	0.2 g/t Autq cut
inc 24.0 34.0 10.0 1.0 2.1 0.1 1.1 g/t AuEq 1.0 g/t AuEq cut and 132.5 133.2 0.7 6.7 14.1 0.2 7.0 g/t AuEq 1.0 g/t AuEq cut GNDD-134 17.7 33.0 15.3 0.8 7.5 0.1 0.9 g/t AuEq 0.2 g/t AuEq cut inc 19.0 29.0 10.0 1.0 9.9 0.1 1.2 g/t AuEq 0.2 g/t AuEq cut and 47.0 86.8 39.8 0.3 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 129.5 137.0 7.5 0.4 0.5 0.1 0.5 g/t AuEq 0.2 g/t AuEq cut and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 272.0 322.0 50.0 0.2 0.5 0.1		+	26.0	21.0	0.7	1.0	0.1	0.0 -/- 1	0.2 = /t
and 132.5 133.2 0.7 6.7 14.1 0.2 7.0 g/t AuEq 1.0 g/t AuEq cut GNDD-134 17.7 33.0 15.3 0.8 7.5 0.1 0.9 g/t AuEq 0.2 g/t AuEq cut inc 19.0 29.0 10.0 1.0 9.9 0.1 1.2 g/t AuEq 1.0 g/t AuEq cut and 47.0 86.8 39.8 0.3 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 196.0 220.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 272.0 322.0 50.0 0.2 0.5 0.1 0.3 g/t Au									-
GNDD-134 17.7 33.0 15.3 0.8 7.5 0.1 0.9 g/t AuEq 0.2 g/t AuEq cut inc 19.0 29.0 10.0 1.0 9.9 0.1 1.2 g/t AuEq 1.0 g/t AuEq cut and 47.0 86.8 39.8 0.3 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 129.5 137.0 7.5 0.4 0.5 0.1 0.5 g/t AuEq 0.2 g/t AuEq cut and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 196.0 202.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 272.0 322.0 50.0 0.2 0.5 0.1 1.3 g/t AuEq 0.2 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8<									-
inc 19.0 29.0 10.0 1.0 9.9 0.1 1.2 g/t AuEq 1.0 g/t AuEq cut and 47.0 86.8 39.8 0.3 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 129.5 137.0 7.5 0.4 0.5 0.1 0.5 g/t AuEq 0.2 g/t AuEq cut and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 240.0 242.0 2.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 270.0 322.0 50.0 0.2 0.5 0.1 0.3 g/t AuEq 1.0 g/t AuEq cut and 500.1 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8									
and 47.0 86.8 39.8 0.3 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 129.5 137.0 7.5 0.4 0.5 0.1 0.5 g/t AuEq 0.2 g/t AuEq cut and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut inc 177.5 178.0 0.5 3.8 29.8 5.2 6.6 g/t AuEq 1.0 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 240.0 242.0 2.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq 1.0 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· .</td>									· .
and 129.5 137.0 7.5 0.4 0.5 0.1 0.5 g/t AuEq 0.2 g/t AuEq cut and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut inc 177.5 178.0 0.5 3.8 29.8 5.2 6.6 g/t AuEq 1.0 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 240.0 242.0 2.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 1.0 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq 1.0 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0<									
and 161.0 181.0 20.0 0.3 3.6 0.2 0.4 g/t AuEq 0.2 g/t AuEq cut inc 177.5 178.0 0.5 3.8 29.8 5.2 6.6 g/t AuEq 1.0 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 240.0 242.0 2.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4									
inc 177.5 178.0 0.5 3.8 29.8 5.2 6.6 g/t AuEq 1.0 g/t AuEq cut and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 240.0 242.0 20.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut inc 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4									· .
and 196.0 200.0 4.0 5.3 86.2 10.6 11.3 g/t AuEq 1.0 g/t AuEq cut and 240.0 242.0 2.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 272.0 322.0 50.0 0.2 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4									· .
and 240.0 242.0 2.0 6.2 1.3 0.0 6.2 g/t AuEq 1.0 g/t AuEq cut and 272.0 322.0 50.0 0.2 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4									
and 272.0 322.0 50.0 0.2 0.5 0.1 0.3 g/t AuEq 0.2 g/t AuEq cut and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
and 500.1 501.1 1.0 2.3 8.1 0.2 2.4 g/t AuEq 1.0 g/t AuEq cut and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6									
and 519.0 539.0 20.0 0.7 0.7 1.8 1.6 g/t AuEq 0.2 g/t AuEq cut inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 1.0 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0	_				J				
inc 529.5 532.4 2.9 4.7 3.6 11.6 10.2 g/t AuEq 1.0 g/t AuEq cut and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9<									
and 560.3 578.0 17.8 0.2 0.7 0.4 0.4 g/t AuEq 0.2 g/t AuEq cut inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
inc 560.3 561.0 0.8 0.1 2.0 4.9 2.4 g/t AuEq 1.0 g/t AuEq cut inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
inc 570.2 570.7 0.5 1.2 9.6 2.4 2.4 g/t AuEq 1.0 g/t AuEq cut and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
and 630.3 631.0 0.7 0.9 1.6 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut									
GNDD-141 101.5 108.0 6.5 14.3 43.6 3.4 16.4 g/t AuEq 0.2 g/t AuEq cut inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq 0.2 g/t AuEq cut									
inc 101.5 104.0 2.5 36.8 111 8.6 42.1 g/t AuEq 10 g/t AuEq cut GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut									
GNDD-142 55.8 56.5 0.7 0.7 13.3 4.0 2.8 g/t AuEq 1.0 g/t AuEq cut and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut									· .
and 81.5 109.0 27.5 2.4 11.1 0.9 3.0 g/t AuEq 0.2 g/t AuEq cut inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut	GNDD-142								
inc 92.0 103.5 11.5 5.4 19.9 2.0 6.5 g/t AuEq 1.0 g/t AuEq cut inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut	and	81.5		27.5	2.4	11.1	0.9		
inc 107.0 109.0 2.0 0.9 5.3 0.2 1.0 g/t AuEq 1.0 g/t AuEq cut and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut	inc	92.0	103.5	11.5	5.4	19.9	2.0	6.5 g/t AuEq	
and 125.0 136.0 11.0 0.3 3.2 0.1 0.4 g/t AuEq 0.2 g/t AuEq cut	inc	107.0	109.0	2.0	0.9	5.3	0.2	1.0 g/t AuEq	
inc 132.9 134.0 1.1 1.6 4.6 0.1 1.7 g/t AuEq 1.0 g/t AuEq cut	and	125.0	136.0	11.0	0.3	3.2	0.1	0.4 g/t AuEq	
	inc	132.9	134.0	1.1	1.6	4.6	0.1	1.7 g/t AuEq	1.0 g/t AuEq cut

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

and	152.0	192.0	40.0	5.1	11.7	1.9	6.2 g/t AuEq	0.2 g/t AuEq cut
inc	153.1	154.1	1.0	23.4	40.1	13.5	30.2 g/t AuEq	10 g/t Au eq cut
inc	160.0	170.7	10.7	10.7	28.4	4.9	13.3 g/t AuEq	1.0 g/t AuEq cut
inc	166.2	170.7	4.5	23.9	41.3	11.0	29.5 g/t AuEq	10 g/t Au eq cut
inc	177.2	190.0	12.8	5.2	9.3	0.7	5.7 g/t AuEq	1.0 g/t AuEq cut
inc	187.1	188.1	1.0	44.0	53.8	6.5	47.6 g/t AuEq	10 g/t Au eq cut
and	237.0	237.5	0.5	1.1	2.7	0.1	1.2 g/t AuEq	1.0 g/t AuEq cut
all 3 0.2 g/t AuEq	81.5	192.0	110.5	2.5	7.4	0.9	3.0 g/t AuEq	combined intervals
GNDD-145	NSI							
	NSI 16.0	23.0	7.0	0.1	1.7	0.4	0.4 g/t AuEq	0.2 g/t AuEq cut
GNDD-145	<u> </u>	23.0 61.0	7.0 2.0	0.1 0.0	1.7 1.0	0.4	0.4 g/t AuEq 1.3 g/t AuEq	
GNDD-145 GNDD148	16.0		_	_		_		0.2 g/t AuEq cut
GNDD-145 GNDD148 and	16.0 59.0	61.0	2.0	0.0	1.0	2.7	1.3 g/t AuEq	0.2 g/t AuEq cut 1.0 g/t AuEq cut
GNDD-145 GNDD148 and GNDD-149	16.0 59.0 8.0	61.0 12.0	2.0 4.0	0.0	1.0 1.5	2.7 0.3	1.3 g/t AuEq 0.8 g/t AuEq	0.2 g/t AuEq cut 1.0 g/t AuEq cut 0.2 g/t AuEq cut
GNDD-145 GNDD148 and GNDD-149 GNDD-157	16.0 59.0 8.0 237.2	61.0 12.0 238.0	2.0 4.0 0.8	0.0 0.6 1.7	1.0 1.5 59.1	2.7 0.3 5.6	1.3 g/t AuEq 0.8 g/t AuEq 5.0 g/t AuEq	0.2 g/t AuEq cut 1.0 g/t AuEq cut 0.2 g/t AuEq cut 1.0 g/t AuEq cut

Table 1 Continued

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1450 Oz, Ag US\$16 Oz, Zn US\$2,200 /t
- Metallurgical recoveries for Au, Ag and Zn are assumed to be the same (see JORC Table 1 Section 3 Metallurgical
 assumptions) based on metallurgical test work hence no weighting on recovery is required.
- The formula used: AuEq (g/t) = Au (g/t) + Ag (g/t)x 0.011034 + Zn (%) x 0.471862
- CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

30 Dec 2019 - CEL RECEIVES FURTHER OUTSTANDING HIGH-GRADE ASSAY RESULTS FROM FIRST DRILLING AT THE HUALILAN PROJECT 8 July 2020 - CEL MAKES NEW GOLD DISCOVERY AT ITS HUALILAN PROJECT WHICH IS EXPECTED TO SUBSTANTIALLY INCREASE SCALE 27 July 2020 - CEL BUILDS ON NEW GOLD DISCOVERY AT HUALILAN WITH A SECOND SIGNIFICANT INTERSECTION 1KM ALONG STRIKE 1 Sept 2020 - OUTSTANDING HIGH-GRADE NEAR SURFACE DRILL RESULTS CONTINUE FROM THE HUALILAN GOLD PROJECT, ARGENTINA 30 oct 2020 - DRILLING CONFIRMS MAJOR INTRUSION-HOSTED GOLD SYSTEM UNDERLYING THE HIGH-GRADE MINERALISATION 23 Nov 2020 - MULTIPLE HIGH-GRADE INTERCEPTS IN EXPLORATION DRILLING AT HUALILAN

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽¹⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 45,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. **El Guayabo Gold/Copper Project** covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^									
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)						
Measured	218	14.2	100						
Indicated	226	14.6	106						
Total of Measured & Indicated	445	14.4	206						
Inferred	977	13.4	421						
Measured, Indicated & Inferred	1,421	13.7	627						

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate.
Rounding errors may be present. Troy ounces (oz) tabled here

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe , BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement – Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

^{#1} For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data - Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling. For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts. For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine. Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination. A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration. Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.
		Hole_id Type East North Elevation Azimuth Dip Depth Date (m) (m) (m ASL) (°) (°) (m)

Criteria	JORC Code explanation	Commenta	ry							
		AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
		AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
		AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
		AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
		AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
		AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
		AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
		AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
			_	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)		(m)	Date
		MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	1999
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55	45.0	1999

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
			_	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)		(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00
The second secon										
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00
		DDH35 DDH36 DDH37	DD DD DD	2505003.9 2504637.5 2504826.5	6602156.7 6600777.3 6601920.2	1808.8 1799.9 1809.4	310 330 000	-85 -50 -90	174.6 45.5 121.0	1999-00 1999-00 1999-00

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact

Criteria	JORC Code explanation	Commenta	ary							
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00

Criteria	JORC Code explanation	Commenta	ry							
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7 199	9-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6 199	9-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9 199	9-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6 199	9-00
			Тур	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	e	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.2	
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5	
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2	
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.0	
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9	
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1	
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4	
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6	
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0	
		04HD16C		2504457.1	6600311.7	1770.3	195	-65	225.5	
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2	
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7	
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0	
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0	
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7	
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2	
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8	
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9	
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45 60	60.0	
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7	
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0	
		04HD30 04HD31	DD DD	2504421.0 2504687.0	6600044.0 6601326.0	1764.0	108	-45 60	128.2	
		04HD31 04HD32	DD	2504687.0 2504828.0	6601916.0	1794.0 1801.3	045 116	-60 -70	242.9 68.4	
		U4HD32	טט	2304828.0	0001910.0	1001.3	110	-/0	08.4	

Criteria	JORC Code explanation	Commentary							
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7

CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various Argentinian drilling companies based in Mendoza and San Juan. The core has not been oriented.

CEL drilling of reverse circulation (RC) drill holes is being done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes to GNDD105 are surveyed using DGPS. Collar location for GNDD060 and holes from GNDD106 are surveyed with a handheld GPS to be followed up with DGPS.

Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0
GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6
GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5
GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9

Criteria	JORC Code explanation	Commentary						
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5
		GMDD041	504473.000	6600104.000	1806.400	-55	095	95.0
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0
		GNDD045	504366.823	6599679.058	1793.712	-57	115	242.0
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0
		GNDD060	504803.0	6601065.0	1822.0	-60	115	200.0
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0
		GNDD106	504459.3	6599614.7	1792.9	-55	115	300.0
		GNDD108	504895.0	6601154.9	1824.0	-60	115	200.0
		GNDD109	504792.0	6601026.4	1822.0	-60	115	209.0
		GNDD112	504898.2	6601197.6	1825.8	-60	115	188.0
		GNDD113	504704.7	6601067.1	1826.3	-60	115	230.0
		GNDD114	504436.0	6600111.0	1808.0	-50	115	116.0
		GNDD115	504862.0	6601285.0	1824.4	-60	115	251.0
		GNDD116	504443.7	6599555.8	1789.5	-65	115	269.0
		GNDD117	504436.0	6600111.0	1808.0	-60	115	120.0
		GNDD118	505086.0	6601110.0	1811.2	-60	295	300.0
		GNDD119	504827.0	6601540.0	1837.6	-66	115	115.0
		GNDD120	504408.2	6600102.0	1808.3	-60	110	164.0
		GNDD121	504867.0	6601137.0	1822.1	-57	115	181.0
		GNDD122	504658.0	6600647.6	1816.8	-60	115	250.0
		GNDD123	504822.0	6601512.0	1835.6	-63	130	130.0
		GNDD124	504408.2	6600102.0	1808.3	-70	115	160.0
		GNDD125	505138.0	6601130.0	1808.4	-60	295	300.0
		GNDD126	504719.2	6601148.6	1828.0	-60	115	196.0
		GNDD127	504892.0	6601505.0	1837.0	-55	115	300.0
		GNDD128	504712.3	6601108.0	1827.1	-60	115	230.0
		GNDD129	504636.0	6600284.0	1820.0	-55	185	291.0
		GNDD130	504839.0	6601092.8	1821.4	-60	115	227.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD131	504655.5	6600737.1	1818.4	-60	115	280.0
		GNDD132	504822.0	6601358.0	1830.5	-55	115	300.0
		GNDD133	504870.3	6601640.9	1838.5	-60	170	182.0
		GNDD134	504636.0	6600284.0	1820.0	-55	154	290.0
		GNDD135	504846.0	6601548.7	1834.8	-64	350	135.0
		GNDD136	504844.5	6601443.3	1829.3	-55	115	310.0
		GNDD137	504650.0	6600695.0	1818.2	-60	115	370.0
		GNDD138	504888.0	6601538.0	1837.5	-65	350	237.0
		GNDD139	504759.7	6601085.5	1825.3	-60	115	200.0
		GNDD140	504994.4	6601546.3	1835.3	-60	60	230.0
		GNDD141	504788.4	6601251.8	1827.9	-70	115	270.0
		GNDD142	504432.8	6599627.0	1793.2	-62	115	360.0
		GNDD143	504898.2	6601197.6	1825.8	-20	115	120.0
		GNDD144	504964.6	6601519.7	1837.3	-70	40	410.0
		GNDD145	504560.7	6600224.1	1816.1	-64	170	200.0
		GNDD146	504776.1	6601210.3	1827.9	-70	115	350.0
		GNDD147	504964.6	6601519.7	1837.3	-60	355	240.0
		GNDD148	504844.5	6601443.3	1829.3	-24	115	85.5
		GNDD149	504844.5	6601443.3	1829.3	-5	115	88.1
		GNDD150	504850.2	6601523.3	1836.8	-65	350	251.0
		GNDD151	504672.6	6601214.5	1833.6	-60	115	430.0
		GNDD152	504893.0	6601470.0	1835.0	-15	115	165.0
		GNDD153	504693.0	6600984.0	1824.2	-70	115	326.0
		GNDD154	504894.3	6601504.8	1836.3	-65	350	212.0
		GNDD155	504780.1	6601120.2	1824.0	-60	115	420.0
		GNDD156	504839.1	6601401.6	1829.4	-37	115	59.0
		GNDD157	504636.0	6600284.0	1820.0	-55	170	527.0
		GNDD158	504807.6	6601535.3	1837.0	-60	350	170.0
		GNDD159	504907.7	6601149.3	1825.0	-40	115	202.0
		GNDD160	504968.0	6601543.0	1835.4	-55	350	170.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD161	504667.0	6600820.0	1819.0	-60	115	251.00
		GNDD162	504723.0	6601279.3	1832.1	-60	115	180.00
		GNDD163	504750.3	6601575.5	1840.3	-60	115	180.00
		GNDD164	504673.4	6601523.0	1840.2	-60	115	311.00
		GNDD165	504488.0	6599861.0	1805.4	-10	115	253.80
		GNDD166	504565.3	6600337.7	1819.6	-60	115	327.00
		GNDD167	504730.0	6600879.0	1818.0	-60	115	251.00
		GNDD168	504559.6	6600384.5	1815.5	-60	115	314.00
		GNDD169	504683.8	6601562.4	1841.0	-60	115	416.00
		GNDD170	504663.0	6600335.0	1822.9	-60	170	123.50
		GNDD170A	504663.0	6600335.0	1822.9	-60	170	380.00
		GNDD171	504679.0	6600903.0	1821.0	-70	115	350.00
		GNDD172	504488.0	6599861.0	1805.4	-45	115	119.70
		GNDD173	504694.5	6601336.6	1835.6	-60	115	191.00
		GNDD174	504473.0	6600105.9	1806.4	-11	115	329.50
		GNDD175	504650.3	6601092.5	1829.4	-60	115	353.00
		GNDD176	504734.7	6600655.9	1813.5	-60	115	350.00
		GNDD177	504761.8	6601481.8	1836.2	-60	115	160.00
		GNDD178	504626.0	6600177.0	1823.3	-60	185	145.20
		GNDD179	504405.5	6600183.0	1811.3	-55	170	192.10
		GNDD180	504653.1	6600782.2	1819.1	-60	115	341.00
		GNDD181	504678.0	6600330.0	1824.0	-60	160	400.00
		GNDD182	504666.9	6601128.9	1828.8	-60	115	337.00
		GNDD183	504777.0	6601519.0	1837.3	-65	115	146.00
		GNDD184	504672.7	6601170.3	1830.3	-60	115	321.50
		GNDD185	504730.7	6601408.1	1834.9	-60	115	180.00
		GNDD186	504738.8	6600742.2	1814.0	-60	115	208.00
		GNDD187	504620.9	6601547.6	1843.4	-67	115	320.00
		GNDD188	504658.0	6601044.8	1827.4	-60	115	280.00
		GNDD189	504473.0	6600105.9	1806.4	-29	115	320.00

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD191	504600.0	6601422.7	1841.1	-70	115	260.00
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary								
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80		
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60		
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70		
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96		
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150		
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120		
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60		
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120		
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed.		d into wooden boxe un. These depths a	•	•					
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Triple tube drilling has been being done by CEL to maximise core recovery.								
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	RC sub-samples are collected from a rotary splitter mounted to the face sample recovery cyclone. A 2-4 kg sub-samples is collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered weighed to measure sample recovery and consistency in sampling.								
		A possible relationship has been observed between historic sample recovery and Au Ag or Zn grade whereby low recoveries have resulted in underreporting of grade. Insufficient information is not yet available to more accurately quantify this. Core recovery is influenced by the intensity of natural fracturing in the rock. A positive correlation between recovery and RQD has been observed. The fracturing is generally post mineral and not directly associated with the mineralisation.								
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 									
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	For CEL drilling, all the core is logged for recovery RQD weathering lithology alteration mineralization and structure to a level that is suitable for geological modelling resource estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation. Where possible logging is quantitative. Geological logging is done in MS Excel in a format that can readily be transferred to a database which holds all drilling logging sample and assay data.								
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc 	split using a wide blade chisel or a manual core split press. The geologist logging the co					g the core indi			
	and whether sampled wet or dry.	Sample intervals	are selected based	on lithology alterati	on and minera	lization b	oundaries. Sa	mple		

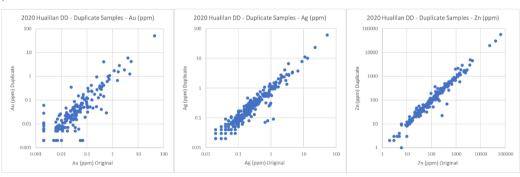
Criteria

JORC Code explanation

- For all sample types the nature quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Commentary

lengths average 1.38m. No second-half core samples have been submitted. The second half of the core samples has been retained in the core trays for future reference.

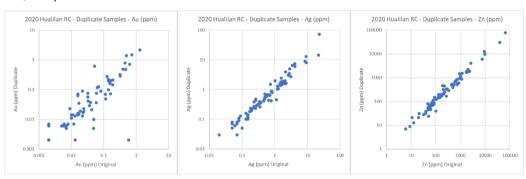

From hole GNDD073, duplicate diamond core samples have been collected for every 25-30m drilled. The duplicate diamond core samples are ¼ core samples. Duplicate core sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	259	0.984	0.315	0.344	0.011	0.008	7.724	10.092
Ag (ppm)	259	0.984	0.90	0.87	0.21	0.19	14.68	17.64
Cd (ppm)	259	0.989	4.83	4.29	0.21	0.19	989.15	764.54
Cu (ppm)	259	0.265	31.08	20.33	3.40	3.30	3.9E+04	1.2E+04
Fe (%)	259	0.991	1.427	1.407	1.490	1.460	3.2	3.1
Pb (ppm)	259	0.990	182.9	180.7	15.4	15.4	1.8E+06	2.5E+06
S (%)	259	0.994	0.411	0.405	0.080	0.080	2.030	1.834
Zn (ppm)	259	0.993	783	689	85	80	2.4.E+07	1.8.E+07

n=count

RSQ = R squared

The correlation for Cu is poor because of 1 pair, where Cu results vary significantly. Removing this outlier provides at RSQ for Cu of 0.980


RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

Criteria JORC Code explanation Commentary

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm) n=count	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08

RSQ = R squared

CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.

Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

Quality of assay data and laboratory tests

 The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

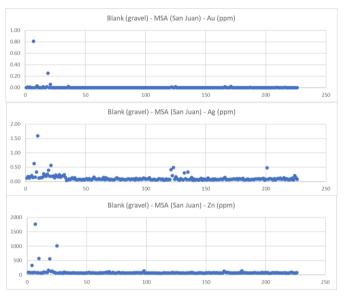
For geophysical tools spectrometers handheld XRF

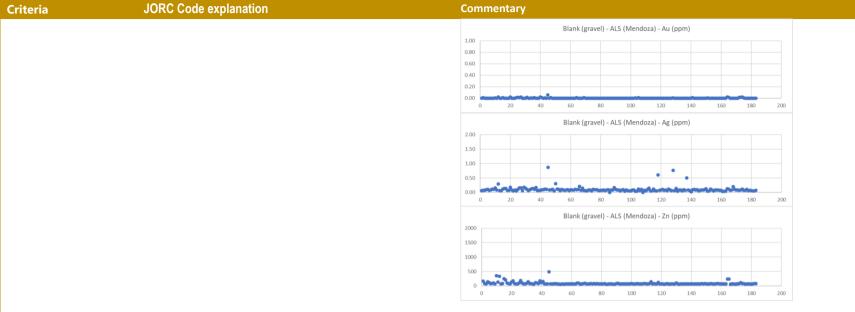
The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project.

Criteria

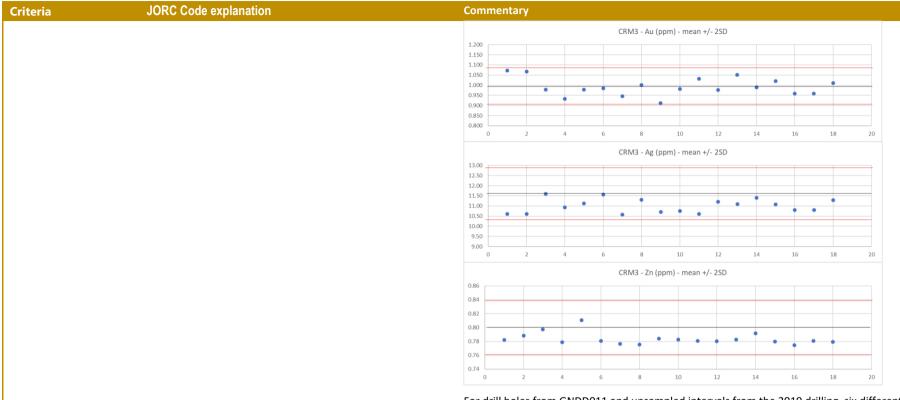
JORC Code explanation

instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.


 Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.


Commentary

The ALS laboratory in Mendoza has not yet been inspected by CEL representatives.


Internal laboratory standards were used for each job to ensure correct calibration of elements.

CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.

For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of both the MSA and ALS. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision. A fail is defined as a value that is outside +/- 2 standard deviations from the expected value

	Standar	d deviations fro	m the expecte	d value		
ALS_CRM_04	Count	Maximum	Minimum	Average	Fail Count	
Au_FA_ppm	57	2.78	-0.67	0.75		2

Criteria	JORC Code explanation	Commentary					
		Ag_4acid_ppm	56	1.40	-1.40	-0.20	0
		Zn_4acid_ppm	57	2.40	-1.80	0.13	2
		ALS_CRM_05	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	41	1.26	-2.64	-0.37	3
		Ag_4acid_ppm	50	1.73	-2.18	-0.29	2
		Zn_4acid_ppm	50	1.70	-1.54	0.19	0
		ALS_CRM_06	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	49	0.87	-2.56	-0.35	2
		Ag_4acid_ppm	50	2.26	-1.84	-0.27	1
		Zn_4acid_ppm	49	0.67	-3.23	-0.99	6
		ALS_CRM_07	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	29	2.67	-2.50	-0.04	4
		Ag_4acid_ppm	31	0.79	-2.57	-0.78	2
		Zn_4acid_ppm	31	6.04	-0.52	0.92	4
		ALS_CRM_08	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	29	1.79	-4.36	-1.10	7
		Ag_4acid_ppm	31	3.17	-1.15	0.36	1
		Zn_4acid_ppm	31	2.67	-1.33	0.85	4
		ALS_CRM_09	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	29	1.51	-4.68	-1.30	10
		Ag_4acid_ppm	31	0.87	-3.26	-0.89	5
		Zn_4acid_ppm	31	2.05	-1.53	0.32	1
			Standar	d deviations fro	om the expecte	ed value	
		MSA_CRM_04	Count	Maximum	Minimum	Average	Fail Count
		 Au_FA_ppm	34	1.57	-1.83	-0.05	0
		Ag_4acid_ppm	34	0.70	-1.00	-0.19	0
		Zn_4acid_ppm	34	2.50	-1.22	0.68	3
		MSA_CRM_05	Count	Maximum	Minimum	Average	Fail Count

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9

Criteria	JORC Code explanation	Commentary								
		Au_FA_ppm	44	0.58	-2.63	-0.92	1			
		Ag_4acid_ppm	44	1.03	-1.70	-0.25	0)		
		Zn_4acid_ppm	44	1.89	-0.62	0.67	0)		
		MSA_CRM_06	Count	Maximum	Minimum	Average	Fail Count			
		Au_FA_ppm	42	1.72	-1.87	-0.35	0)		
		Ag_4acid_ppm	42	0.73	-1.22	-0.14	0)		
		Zn_4acid_ppm	42	1.67	-1.60	0.03	0)		
		MSA_CRM_07	Count	Maximum	Minimum	Average	Fail Count			
		Au_FA_ppm	32	1.67	-1.83	-0.13	0	1		
		Ag_4acid_ppm	32	0.53	-1.04	-0.30	0)		
		Zn_4acid_ppm	32	2.04	-1.57	0.32	1			
		MSA_CRM_08	Count	Maximum	Minimum	Average	Fail Count			
		Au_FA_ppm	41	0.87	-1.82	-0.67	0	1		
		Ag_4acid_ppm	41	1.50	-0.73	0.14	0)		
		Zn_4acid_ppm	41	2.42	-1.92	0.00	1			
		MSA_CRM_09	Count	Maximum	Minimum	Average	Fail Count			
		Au_FA_ppm	36	1.61	-1.99	-0.24	0)		
		Ag_4acid_ppm	36	0.92	-1.25	-0.31	0	1		
		Zn_4acid_ppm	36	2.26	-1.26	0.54	2			
Verification of sampling and assaying	 The verification of significant intersections by eith independent or alternative company personnel. The use of twinned holes. Documentation of primary data data entry proceed data verification data storage (physical and electroprotocols. 	Original samples we Vancouver analysis) dures analysis). The repeatonic) closely with the orig	analysis). The repeat analysis teerinique was identical to the original. The repeat analyses correlate vel							
	- Discuss any adjustment to assay data.		,	Mean	Median	·	d Deviation			
				ivicali			u Deviation	Correlation		
		Element		MSA ALS	MSA	ALS M	SA ALS	coefficient		

Criteria	JORC Code explanation	Commentary									
		Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972		
		Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903		
		Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997		
		Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994		
		Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997		
		S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987		
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988		
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983		
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994		
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954		
		Cd values >1000 are set at 1000 REE is the sum off Ce, La, Sc, Y.		is set at 50	00. Below	detectio	n is set at z	ero			
		CEL have sought to twin some of the historic drill holes to check the results of previous exploration. A full									
		analysis of the twin holes has ye		ompleted.	The holes	are:					
	GNDD003 – DDH34 and 04HD08 GNRC110 – DDH53										
		GNRC110 – DDH53 GNDD144 – 05HD39									
		GNRC107 – GNDD008/008A									
		Final sample assay analyses are	received	by digital	file in PDF	and CSV	format. T	he origina	l files are		
		backed-up and the data copied	into a dri	l hole data	abase for	geologica	l modellin	g.			
		Assay results summarised in the figures. No assay data have been				een rour	nded appro	priately to	o 2 significant		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. 	Following completion of drilling Argentinian SGM survey. The lo WGS84 UTM zone 19s.		-	_						
	Specification of the grid system used.Quality and adequacy of topographic control.	The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.									
		Diamond core drill holes are sur are surveyed down hole every 2					_				

Criteria	JORC Code explanation	Commentary
		rods.
		All current and previous drill collar sites Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

settings.

Criteria Mineral tenement and land tenure

status

JORC Code explanation

Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical

- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

sites wilderness or national park and environmental

Commentary

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

North of 195-152-C-1981		Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Additional to the Minas and Demasias an application for an Exploration Licence covering 26 km2 surrounding the 15 Minas has been accepted by the San Juan Department of Mines and is currently being processed.

Exploration licence application surrounding the Minas and Demasias at the Hualilan Project

Name	Number	Status	Grant Date	Expiry Date	Area (ha)
Josefina	30.591.654	Pending	-	5 year application	2570

There are no know impediments to obtaining the exploration license or operating the Project.

Exploration done by other parties

 Acknowledgment and appraisal of exploration by other parties. Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006.

There is 6 km of underground workings that pass through mineralised zones. Records of the underground

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
		 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totaling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occurs in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz—galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all 	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria

JORC Code explanation

Commentary

Material drill holes:

- easting and northing of the drill hole collar
- elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent Person should clearly explain why this is the case.

been allowed. No metallurcial or recovery factors have been used. Drill collar location is provided in the previous section.

Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)
AG16	38.6	1.2	0.1	28.6	1.7
MG10	108.0	3.0	1.3	No assay	No assay
DDH36	24.7	9.3	1.6	46.3	1.2
DDH53	17.3	1.4	1.0	1.7	0.00
DDH53	24.0	8.9	3.7	239.5	0.03
DDH53	35.7	3.9	3.9	87.8	0.06
DDH53	41.0	3.0	2.6	7.6	0.20
DDH54	20.0	1.1	1.2	0.7	0.00
DDH54	31.1	8.3	3.9	32.1	0.80
DDH65	62.0	8.2	11.0	60.6	1.2
DDH65	82.0	1.0	1.8	33.4	0.30
DDH66	83.1	7.2	23.7	42.9	2.4
DDH66	87.9	2.4	69.9	114.4	2.2
DDH66	104.9	2.8	1.8	29.0	0.10
DDH67	98.7	1.3	0.2	7.8	1.3
DDH68	4.0	17.9	2.2	6.3	0.20
DDH68	73.7	0.5	0.8	9.0	1.2
DDH69	4.0	16.1	2.3	1.6	0.10
DDH69	76.9	0.3	0.1	7.0	28.0
DDH69	79.7	0.8	1.3	120.0	4.5
DDH70	84.0	7.0	5.2	13.5	0.70
DDH71	11.0	2.0	0.5	218.0	0.06
DDH71	39.9	1.0	1.3	6.0	0.03
DDH71	45.5	1.1	0.4	22.8	0.60
DDH71	104.0	10.0	33.5	126.7	7.9
DDH72	26.0	11.7	3.8	14.1	1.3
DDH72	52.7	6.3	1.5	30.4	0.04
DDH73	62.5	3.5	0.5	15.6	0.60
DDH74	119.9	0.5	7.3	98.5	2.6
DDH76	61.3	0.7	4.0	11.1	0.50
DDH76	74.4	4.0	0.8	8.8	0.30
DDH76	84.8	1.2	1.4	10.9	2.0
DDH78	109.1	0.7	1.1	13.4	1.9
03HD01A	90.1	1.7	2.1	37.4	2.4

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary						
		03HD03	55.0	2.4	2.5	25.6	2.3	
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
		04HD20	43.2	1.8	0.9	83.9	0.20	
		04HD21	70.1	0.2	4.8	60.6	6.4	
		04HD21	141.1	0.6	12.9	105.0	4.8	
		04HD24	72.0	2.0	2.5	3.2	0.04	
		04HD24	83.0	2.0	3.1	25.3	0.04	
		04HD24	94.0	4.2	0.7	21.2	0.10	
		04HD25	92.0	1.7	2.4	51.5	6.3	
		04HD26	21.7	2.3	1.5	32.5	3.0	
		04HD28	42.8	0.4	1.9	4.5	0.10	
		04HD29	37.0	1.0	0.1	112.0	0.01	
		05HD42	90.5	1.0	1.9	6.1	0.03	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

eria	JORC Code explanation	Commentary					
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
l		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

From GNDD001 the following significant assay results have been received reported to a cut-off of 1 g/t Au (equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.3	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.9	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.6	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.8	(1)
and	10.00	75.00	0.75	38	0.27	1.3	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.2	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.0	
GNDD007	45.92	13.00	0.43	7.8	0.12	0.57	(2)
inc	3.00	45.00	1.9	5.2	0.26	2.0	
inc	3.00	55.00	2.3	35	0.54	2.9	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.55	(2)
inc	1.80	46.00	2.4	3.1	0.12	2.5	

West Perth WA 6005

Criteria	JORC Code explanation	Commentary							
		and	0.70	60.30	0.8	25	0.21	1.1	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		GNDD007A	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.46	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.8	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	14.7	(1)
		and	1.00	99.70	0.93	43	0.52	1.6	
		and	2.40	107.00	6.3	222	1.9	9.7	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.41	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.5	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.5	
		and	3.00	100.00	0.85	50	0.02	1.4	
		and	10.32	109.10	10.4	28	4.6	12.9	
		inc	4.22	115.20	21.9	58	8.7	26.7	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.45	(2)
		inc	5.00	30.00	0.65	21	0.09	0.92	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.7	(2)
		inc	3.00	139.00	17.7	143	2.5	20.5	

- (1) cut-off of 10 g/t Au equivalent
- (2) cut-off of 0.2 g/t Au equivalent

Drilling in 2020:

2									
Hole_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
	(m)	(m)	(g/t)	(g/t)		(g/t)			
GNDD011	81.00	1.00	1.9	43	0.13	2.4	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.7	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.6	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	9.6	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.7	0.05	0.18	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 923

	Commentary									
	inc	122.50	0.83	4.0	61	10.1	9.4	0.21	1.2	
	GNDD014	118.50	7.55	2.4	15	3.6	4.3	0.05	0.16	
	GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
	and	156.00	1.90	1.0	31	2.8	2.7	0.02	0.79	
	GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
	and	109.50	5.00	1.8	27	8.3	6.0	0.16	0.01	
	and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
	GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
	GNDD018	37.75	0.85	1.1	3.6	0.1	1.1	0.01	0.05	
	and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
	inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
	GNDD019	24.00	1.90	1.0	5.3	5.3	3.5	0.12	0.03	
	GNDD020	71.25	8.25	17.7	257	0.30	20.7	0.60	0.68	
	inc	74.00	5.50	26.0	355	0.42	30.1	0.05	0.21	1
	GNDD020	83.30	0.65	0.03	2.7	10.70	5.1	0.00	0.02	
	GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
	and	31.50	0.35	28.1	104	5.8	32.0	0.35	0.12	1
	and	98.20	19.80	0.29	2.2	3.4	1.9	0.01	0.04	2
	inc	98.20	9.80	0.40	4.4	6.8	3.6	0.01	0.07	
	inc	104.20	0.80	0.88	13	22.7	11.7	0.02	0.30	1
	GNDD022	NSI								
	GNDD023	58.00	5.00	0.32	3.7	0.1	1.3	0.01	0.09	
	GNDD024	85.00	6.00	2.5	19	0.15	3.4	0.40	1.4	
	inc	88.00	1.00	14.9	107	0.46	16.3	2.4	8.3	1
	GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
	inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
	inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
	inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
	inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
	inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
	GNDD026	NSI								
	GNDD027	NSI								
	GNDD028	41.40	18.60	0.21	3.2	2.0	1.2	0.08	0.01	2
	inc	52.00	8.00	0.42	6.0	3.8	2.3	0.18	0.02	
	GNDD029	36.00	12.00	0.17	2.1	0.39	0.38	0.01	0.16	2
	GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
	GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary									
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.28	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	11.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.5	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	20.1	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	2.0	0.06	0.13	
		GNDD042	NSI								
		GNDD044	NSI								
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.7	0.01	0.02	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		GNDD046	124.15	2.85	29.5	522	10.8	40.3	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.4	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.8	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.8	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.5	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.27	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.88	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.37	0.00	0.01	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 638

Criteria	JORC Code explanation	Commentary									
		GNRC056	56	1	2.3	138	0.08	3.8	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.36	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.1	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.4	0.04	0.01	
		GNRC064	22	1	0.01	4.2	3.8	1.8	0.00	0.00	
		and	27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	1.6	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.8	0.23	0.08	2
		inc	9	27	7.9	16	7.0	11.4	0.59	0.16	
		and	51	1	1.0	40	0.93	1.9	0.08	0.12	
		and	59	1	1.3	4.9	0.09	1.4	0.00	0.02	
		and	66	2	1.6	1.2	0.02	1.7	0.01	0.00	
		and	72	4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07	
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	96	1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	41	1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	48	2	0.45	5.4	2.1	1.5	0.01	0.12	
		GNRC072	43	19	0.16	4.9	0.13	0.27	0.00	0.09	2
		GNDD073	NSI								
		GNDD074	41	2	1.2	20.5	0.04	1.4	0.00	0.02	
		and	47	2	0.8	16.7	0.13	1.1	0.03	0.03	
		GNRC075	31	18	0.78	1.6	0.07	18	0.01	0.22	2
		inc	37	2	2.2	1.6	0.08	2	0.01	0.32	
		and	46	2	1.8	2.4	0.08	2	0.00	0.07	
		GNRC076	35	5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc	35	1	53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380

Criteria	JORC Code explanation	Commentary									
		inc	168.50	1.00	1.5	59.3	6.6	5.3	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.35	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.2	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.46	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.0	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	0.54	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	2.3	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.5	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.6	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.4	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.40	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.6	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.1	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.87	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.3	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.40	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 92

Criteria	JORC Code explanation	Commentary									
		GNRC087	22	4	0.65	15.9	0.26	0.95	0.00	0.04	
		GNDD088	45.05	23.45	0.07	0.23	0.53	0.33	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.7	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.0	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.50	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.36	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.27	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	3.8	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.6	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	2.0	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.50	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.4	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNRC097	49	8	0.39	2.2	0.04	0.4	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.6	0.09	0.33	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
		and	101.00	1.00	2.9	64.4	0.04	3.6	0.01	0.04	
		GNDD100	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.52	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.6	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00	
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01	
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.0	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.0	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNRC110	11	44	2.8	62.7	0.05	3.6	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.2	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.4	0.02	0.51	
		inc	41	3	27.3	613	0.05	34.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.50	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.0	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.0	0.01	0.10	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.68	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.4	0.03	0.25	
		GNDD120	NSI								
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.28	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.42	0.02	0.13	2
		GNDD127	NSI								
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.91	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.6	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.3	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.29	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.4	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.6	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	10.2	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.39	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.4	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.4	0.15	1.6	2
			101.50	2.50	36.8	111	8.6	42.1	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.8	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	3.0	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.2	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	30.2	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.3	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.5	0.29	0.27	1

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	177.2	12.8	5.2	9.3	0.7	5.7	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.6	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
		bulk intersec	81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	2
		GNDD145	NSI								
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.37	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.3	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.78	0.01	0.07	
		GNDD157	237.20	0.80	1.7	59.1	5.6	5.0	0.18	1.2	
		and	255.80	1.20	0.63	5.3	9.4	5.1	0.01	0.01	
		and	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		Met:									
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.45	0.01	0.07	2
		GMDD039	67.60	1.00	24.5	58	3.9	27.0	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.1	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		GMDD041	63.50	5.1	7.9	83	7.9	12.5	0.47	0.21	
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.34	0.01	0.10	2
		GMDD043	70.50	0.30	25.9	81	9.4	31.2	0.33	3.1	1_
			10 g/t Au ec								
		(2) cut off	0.2 g/t Au e	quivalent							
		NSI: no sign	ificant inters	ection							

- Data aggregation methods
- In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal

Weighted average significant intercepts are reported to a gold grade equivalent. Results are reported to cutoff grade of a 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 4m of internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent: Au US\$ 1450 / oz Ag US\$16 /oz and Zn US\$ 2200 /t.

Metallurgical recoveries for Au, Ag and Zn are assumed to be the same and so no factors have been applied to calculate the Au equivalent values. Accordingly The formula used is AuEq (g/t) = Ag(g/t) + Au(g/t)x(16/1450) + Zn(%)x 2.12. Previous metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery. While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	equivalent values should be clearly stated.	calculation at this early stage of the Project.
		No top cuts have been applied to the reported grades.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information in most cases to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins. Cross section diagrams have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
Other substantive exploration data	- Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates. Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension
Further work	- The nature and scale of planned further work (eg	of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing. A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration. • CEL Plans to undertake the following over the next 12 months
. a. a. c. morn	tests for lateral extensions or depth extensions or	

Criteria	JORC Code explanation	Commentary
	large-scale step-out drilling).	 Additional data precision validation and drilling as required;
	 Diagrams clearly highlighting the areas of possible 	 Detailed interpretation of known mineralized zones;
	extensions including the main geological	 Geophysical tests for undercover areas.
	interpretations and future drilling areas provided this information is not commercially sensitive.	 Structural interpretation and alteration mapping using high resolution satellite data and geophysics to
	injoirnation is not commercially sensitive.	better target extensions of known mineralisation.
		 Field mapping program targeting extensions of known mineralisation.
		 Investigate further drilling requirements to upgrade both the unclassified mineralisation and
		mineralisation in the existing historical resources to meet JORC 2012 requirements;
		 Initial drill program comprising verification (twin holes) and targeting extensions of the historically
		defined mineralisation;
		Metallurgical test work.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a salable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	 Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made. 	The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; - Metal prices: Au US\$550 Oz Ag US\$10 Oz - Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil - Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical metallurgical test-work is currently under review however the assumptions used (80% recovery for Au, Ag and Zn) based on initial test results seem conservative. The most recent test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% – 87.2%.

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	- Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in comcentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle rol of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project. CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates.
		For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.

JORC Code explanation Criteria Commentary - The basis for the classification of the Mineral Resources into varying The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications Classification confidence categories. under the National Instrument 43-101 code and is considered foreign. These classifications are Whether appropriate account has been taken of all relevant factors (ie considered appropriate given the confidence that can be gained from the existing data and results relative confidence in tonnage/grade estimations reliability of input from drilling. data confidence in continuity of geology and metal values quality quantity and distribution of the data). The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in Whether the result appropriately reflects the Competent Person's view continuity of geology and metal values quality quantity and distribution of the data. Appropriate of the deposit. account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut. The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) - See Table 1. The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported. The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) - See Table 1. The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.

Criteria	JORC Code explanation	Commentary				
		Historic 2003 NI43-101 (non-JORC Code compliant):				
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		Measured	299578	14.2		
		Indicated	145001	14.6		
		Inferred	976539	13.4		
		Historic 2006 NI43-1	101 (non-JORC Code comp	liant)		
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		Measured	164294	12.5	52.1	2.5
		Indicated	51022	12.4	36.2	2.6
		Inferred	213952	11.7	46.6	2.3
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The historic resource	estimate has not been auc	lited.		
		resource report. This report were released	2000) Mineral Resource Endependent report was do to the TSX. This report consider to the realistic.	one to NI-43-101 s	tandard and th	ne results of this
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if 	three different groups are seen to be realistic. There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach or procedure are deemed appropriate given the confidence limits. The main two factors which could affect relative accuracy is grade continuity and top cut.				
	such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be	Grade continuity is variable in nature in this style of deposit and has not been demonstrated to d and closer spaced drilling is required to improve the understanding of the grade continuity in bot strike and dip directions. It is noted that the results from the twinning of three holes by La Manch are encouraging in terms of grade repeatability. The deposit contains very high grades and there is a potential need for the use of a top cut. It is noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as			continuity in bot	
	relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate					

Criteria	JORC Code explanation	Commentary
	should be compared with production data where available.	
		No production data is available for comparison